1
|
Hausott B, Pircher L, Kind M, Park JW, Claus P, Obexer P, Klimaschewski L. Sprouty2 Regulates Endocytosis and Degradation of Fibroblast Growth Factor Receptor 1 in Glioblastoma Cells. Cells 2024; 13:1967. [PMID: 39682716 DOI: 10.3390/cells13231967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
The Sprouty (SPRY) proteins are evolutionary conserved modulators of receptor tyrosine kinase (RTK) signaling. SPRY2 inhibits fibroblast growth factor (FGF) signaling, whereas it enhances epidermal growth factor (EGF) signaling through inhibition of EGF receptor (EGFR) endocytosis, ubiquitination, and degradation. In this study, we analyzed the effects of SPRY2 on endocytosis and degradation of FGF receptor 1 (FGFR1) using two human glioblastoma (GBM) cell lines with different endogenous SPRY2 levels. SPRY2 overexpression (SPRY2-OE) inhibited clathrin- and caveolae-mediated endocytosis of FGFR1, reduced the number of caveolin-1 vesicles and the uptake of transferrin. Furthermore, FGFR1 protein was decreased by SPRY2-OE, whereas EGFR protein was increased. SPRY2-OE enhanced FGFR1 degradation by increased c-casitas b-lineage lymphoma (c-CBL)-mediated ubiquitination, but it diminished binding of phospholipase Cγ1 (PLCγ1) to FGFR1. Consequently, SPRY2-OE inhibited FGF2-induced activation of PLCγ1, whereas it enhanced EGF-induced PLCγ1 activation. Despite the reduction of FGFR1 protein and the inhibition of FGF signaling, SPRY2-OE increased cell viability, and knockdown of SPRY2 enhanced the sensitivity to cisplatin. These results demonstrate that the inhibitory effect of SPRY2-OE on FGF signaling is at least in part due to the reduction in FGFR1 levels and the decreased binding of PLCγ1 to the receptor.
Collapse
Affiliation(s)
- Barbara Hausott
- Institute of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lena Pircher
- Institute of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michaela Kind
- Institute of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Jong-Whi Park
- Institute of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Peter Claus
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Center for Systems Neuroscience, 30625 Hannover, Germany
| | - Petra Obexer
- Department of Pediatrics II, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lars Klimaschewski
- Institute of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Luo Y, Yamada M, N’Tumba-Byn T, Asif H, Gao M, Hu Y, Marangoni P, Liu Y, Evans T, Rafii S, Klein OD, Voss HU, Hadjantonakis AK, Elemento O, Martin LA, Seandel M. SPRY4-dependent ERK negative feedback demarcates functional adult stem cells in the male mouse germline†. Biol Reprod 2023; 109:533-551. [PMID: 37552049 PMCID: PMC10577279 DOI: 10.1093/biolre/ioad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/28/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023] Open
Abstract
Niche-derived growth factors support self-renewal of mouse spermatogonial stem and progenitor cells through ERK MAPK signaling and other pathways. At the same time, dysregulated growth factor-dependent signaling has been associated with loss of stem cell activity and aberrant differentiation. We hypothesized that growth factor signaling through the ERK MAPK pathway in spermatogonial stem cells is tightly regulated within a narrow range through distinct intracellular negative feedback regulators. Evaluation of candidate extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK)-responsive genes known to dampen downstream signaling revealed robust induction of specific negative feedback regulators, including Spry4, in cultured mouse spermatogonial stem cells in response to glial cell line-derived neurotrophic factor or fibroblast growth factor 2. Undifferentiated spermatogonia in vivo exhibited high levels of Spry4 mRNA. Quantitative single-cell analysis of ERK MAPK signaling in spermatogonial stem cell cultures revealed both dynamic signaling patterns in response to growth factors and disruption of such effects when Spry4 was ablated, due to dysregulation of ERK MAPK downstream of RAS. Whereas negative feedback regulator expression decreased during differentiation, loss of Spry4 shifted cell fate toward early differentiation with concomitant loss of stem cell activity. Finally, a mouse Spry4 reporter line revealed that the adult spermatogonial stem cell population in vivo is demarcated by strong Spry4 promoter activity. Collectively, our data suggest that negative feedback-dependent regulation of ERK MAPK is critical for preservation of spermatogonial stem cell fate within the mammalian testis.
Collapse
Affiliation(s)
- Yanyun Luo
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Makiko Yamada
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | | | - Hana Asif
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Meng Gao
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Yang Hu
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Pauline Marangoni
- Program in Craniofacial Biology, Department of Orofacial Sciences, University of California, San Francisco, CA, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Ying Liu
- Division of Regenerative Medicine, Department of Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Shahin Rafii
- Division of Regenerative Medicine, Department of Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ophir D Klein
- Program in Craniofacial Biology, Department of Orofacial Sciences, University of California, San Francisco, CA, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Henning U Voss
- College of Human Ecology, Cornell University, Ithaca, NY, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Laura A Martin
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Marco Seandel
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Dai H, Xu W, Wang L, Li X, Sheng X, Zhu L, Li Y, Dong X, Zhou W, Han C, Mao Y, Yao L. Loss of SPRY2 contributes to cancer-associated fibroblasts activation and promotes breast cancer development. Breast Cancer Res 2023; 25:90. [PMID: 37507768 PMCID: PMC10375677 DOI: 10.1186/s13058-023-01683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The communication between tumor cells and tumor microenvironment plays a critical role in cancer development. Cancer-associated fibroblasts (CAFs) are the major components of the tumor microenvironment and take part in breast cancer formation and progression. Here, by comparing the gene expression patterns in CAFs and normal fibroblasts, we found SPRY2 expression was significantly decreased in CAFs and decreased SPRY2 expression was correlated with worse prognosis in breast cancer patients. SPRY2 knockdown in fibroblasts promoted tumor growth and distant metastasis of breast cancer in mice. Loss of stromal SPRY2 expression promoted CAF activation dependent on glycolytic metabolism. Mechanically, SPRY2 suppressed Y10 phosphorylation of LDHA and LDHA activity by interfering with the interaction between LDHA and SRC. Functionally, SPRY2 knockdown in fibroblasts enhanced the stemness of tumor cell dependent on glycolysis in fibroblasts. Collectively, this work identified SPRY2 as a negative regulator of CAF activation, and SPRY2 in CAFs may potentially be therapeutically targeted in breast cancer treatment.
Collapse
Affiliation(s)
- Huijuan Dai
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wenting Xu
- Department of Pathology, The International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, People's Republic of China
| | - Lulu Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, People's Republic of China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaonan Sheng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lei Zhu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Ye Li
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xinrui Dong
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Weihang Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chenyu Han
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, 1158 Gongyuan Road, Shanghai, 201700, People's Republic of China.
| | - Yan Mao
- Breast Disease Center, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266003, Shandong, People's Republic of China.
| | - Linli Yao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
4
|
Park SY, Jeong HY, Batara DC, Lee SJ, Cho JY, Kim SH. Sprouty 1 is associated with stemness and cancer progression in glioblastoma. IBRO Neurosci Rep 2022; 13:120-126. [PMID: 35910677 PMCID: PMC9334334 DOI: 10.1016/j.ibneur.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most severe type of human brain tumor, with a poor prognosis and a low survival rate. GBM is composed of a variety of cell types, including glioma stem-like cells (GSCs), which attribute to its therapeutic resistance (Boyd et al., 2020). Sprouty1 (SPRY1) was first identified as a receptor tyrosine kinases (RTK) signaling mediator in a mammalian cell (Christofori, 2003), however, its role in GBM is unknown. Therefore, the goal of this study was to investigate the role of SPRY1 in the stemness and aggressiveness of GSCs. The mRNA expression levels of SPRY1 were confirmed using quantitative reverse transcription PCR (RT-qPCR) in normal human astrocytes (NHA), glioma cells, and glioma stem cells. SPRY1 expression was inhibited in glioma stem cells using small interference RNA (siRNAs) to examine its role in cell proliferation and tumorsphere formation. Bioinformatics analyses were also employed to investigate the association of SPRY1 expression with patient survival, tumor grade, and subtypes publicly available datasets. We demonstrated that SPRY1 is highly expressed in glioma stem cells than in NHA, glioma cells, and differentiated glioma stem cells. siRNA-mediated downregulation of SPRY1 expression decreased the stemness and self-renewal ability in GSC11. Bioinformatics results showed that high SPRY1 expression correlates with poor overall survival in glioma patients. Our findings suggest that SPRY1 contributes to the stemness and aggressiveness of GBM. Glioblastoma (GBM) is the most aggressive cancer type in human brain. Glioma stem cell (GSC) is a small population in GBM, associated therapy resistance and recurrence. Sprouty1 expression associated with GBM grade and patient survival. Sprouty1 highly expressed in GBM cell lines and GSC. Suppression of SPRY1 expression downregulated GSC proliferation and tumorsphere formation.
Collapse
Affiliation(s)
- Seo-Young Park
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, the Republic of Korea
| | - Hang Yeon Jeong
- Research Group of Aging Metabolism, Korea Food Research Institute, Wanju, the Republic of Korea
| | - Don Carlo Batara
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, the Republic of Korea
| | - Suk Jun Lee
- Department of Biomedical Laboratory Science, College of Health & Medical Sciences, Cheongju University, Chungbuk, the Republic of Korea
| | - Jeong-Yong Cho
- Department of Food Science and Technology, Chonnam National University, Gwangju, the Republic of Korea
| | - Sung-Hak Kim
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, the Republic of Korea
- Correspondence to: Chonnam National University, 77 Yongbongro, Gwangju 61186, the Republic of Korea.
| |
Collapse
|
5
|
Hausott B, Glueckert R, Schrott-Fischer A, Klimaschewski L. Signal Transduction Regulators in Axonal Regeneration. Cells 2022; 11:cells11091537. [PMID: 35563843 PMCID: PMC9104247 DOI: 10.3390/cells11091537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Intracellular signal transduction in response to growth factor receptor activation is a fundamental process during the regeneration of the nervous system. In this context, intracellular inhibitors of neuronal growth factor signaling have become of great interest in the recent years. Among them are the prominent signal transduction regulators Sprouty (SPRY) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN), which interfere with major signaling pathways such as extracellular signal-regulated kinase (ERK) or phosphoinositide 3-kinase (PI3K)/Akt in neurons and glial cells. Furthermore, SPRY and PTEN are themselves tightly regulated by ubiquitin ligases such as c-casitas b-lineage lymphoma (c-CBL) or neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4) and by different microRNAs (miRs) including miR-21 and miR-222. SPRY, PTEN and their intracellular regulators play an important role in the developing and the lesioned adult central and peripheral nervous system. This review will focus on the effects of SPRY and PTEN as well as their regulators in various experimental models of axonal regeneration in vitro and in vivo. Targeting these signal transduction regulators in the nervous system holds great promise for the treatment of neurological injuries in the future.
Collapse
Affiliation(s)
- Barbara Hausott
- Institute of Neuroanatomy, Medical University Innsbruck, 6020 Innsbruck, Austria;
- Correspondence:
| | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University Innsbruck, 6020 Innsbruck, Austria; (R.G.); (A.S.-F.)
| | - Anneliese Schrott-Fischer
- Department of Otorhinolaryngology, Medical University Innsbruck, 6020 Innsbruck, Austria; (R.G.); (A.S.-F.)
| | - Lars Klimaschewski
- Institute of Neuroanatomy, Medical University Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
6
|
Tang R, Langdon WY, Zhang J. Negative regulation of receptor tyrosine kinases by ubiquitination: Key roles of the Cbl family of E3 ubiquitin ligases. Front Endocrinol (Lausanne) 2022; 13:971162. [PMID: 35966060 PMCID: PMC9365936 DOI: 10.3389/fendo.2022.971162] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) serve as transmembrane receptors that participate in a broad spectrum of cellular processes including cellular growth, motility, differentiation, proliferation, and metabolism. Hence, elucidating the regulatory mechanisms of RTKs involved in an assortment of diseases such as cancers attracts increasing interest from researchers. Members of the Cbl family ubiquitin ligases (c-Cbl, Cbl-b and Cbl-c in mammals) have emerged as negative regulators of activated RTKs. Upon activation of RTKs by growth factors, Cbl binds to RTKs via its tyrosine kinase binding (TKB) domain and targets them for ubiquitination, thus facilitating their degradation and negative regulation of RTK signaling. RTKs such as epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGF), fibroblast growth factor receptor (FGFR) and hepatocyte growth factor receptor (HGFR) undergo ubiquitination upon interaction with Cbl family members. In this review, we summarize the current knowledge related to the negative regulation of RTKs by Cbl family proteins.
Collapse
Affiliation(s)
- Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Wallace Y. Langdon
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jian Zhang
- Department of Pathology, The University of Iowa, Iowa City, IA, United States
- *Correspondence: Jian Zhang,
| |
Collapse
|
7
|
Kamptner AZM, Mayer CE, Sutterlüty H. Sprouty3, but Not Sprouty1, Expression Is Beneficial for the Malignant Potential of Osteosarcoma Cells. Int J Mol Sci 2021; 22:ijms222111944. [PMID: 34769378 PMCID: PMC8585105 DOI: 10.3390/ijms222111944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022] Open
Abstract
Sprouty proteins are widely accepted modulators of receptor tyrosine kinase-associated pathways and fulfill diversified roles in cancerogenesis dependent on the originating cells. In this study we detected a high expression of Sprouty3 in osteosarcoma-derived cells and addressed the question of whether Sprouty3 and Sprouty1 influence the malignant phenotype of this bone tumor entity. By using adenoviruses, the Sprouty proteins were expressed in two different cell lines and their influence on cellular behavior was assessed. Growth curve analyses and Scratch assays revealed that Sprouty3 accelerates cell proliferation and migration. Additionally, more colonies were grown in Soft agar if the cells express Sprouty3. In parallel, Sprouty1 had no significant effect on the measured endpoints of the study in osteosarcoma-derived cells. The promotion of the tumorigenic capacities in the presence of Sprouty3 coincided with an increased activation of signaling as measured by evaluating the phosphorylation of extracellular signal-regulated kinases (ERKs). Ectopic expression of a mutated Sprouty3 protein, in which the tyrosine necessary for its activation was substituted, resulted in inhibited migration of the treated cells. Our findings identify Sprouty3 as a candidate for a tumor promoter in osteosarcoma.
Collapse
|
8
|
The chemokine CCL1 triggers an AMFR-SPRY1 pathway that promotes differentiation of lung fibroblasts into myofibroblasts and drives pulmonary fibrosis. Immunity 2021; 54:2042-2056.e8. [PMID: 34407391 DOI: 10.1016/j.immuni.2021.06.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/20/2021] [Accepted: 06/11/2021] [Indexed: 12/28/2022]
Abstract
Recruitment of immune cells to the site of inflammation by the chemokine CCL1 is important in the pathology of inflammatory diseases. Here, we examined the role of CCL1 in pulmonary fibrosis (PF). Bronchoalveolar lavage fluid from PF mouse models contained high amounts of CCL1, as did lung biopsies from PF patients. Immunofluorescence analyses revealed that alveolar macrophages and CD4+ T cells were major producers of CCL1 and targeted deletion of Ccl1 in these cells blunted pathology. Deletion of the CCL1 receptor Ccr8 in fibroblasts limited migration, but not activation, in response to CCL1. Mass spectrometry analyses of CCL1 complexes identified AMFR as a CCL1 receptor, and deletion of Amfr impaired fibroblast activation. Mechanistically, CCL1 binding triggered ubiquitination of the ERK inhibitor Spry1 by AMFR, thus activating Ras-mediated profibrotic protein synthesis. Antibody blockade of CCL1 ameliorated PF pathology, supporting the therapeutic potential of targeting this pathway for treating fibroproliferative lung diseases.
Collapse
|
9
|
Sripada A, Sirohi K, Michalec L, Guo L, McKay JT, Yadav S, Verma M, Good J, Rollins D, Gorska MM, Alam R. Sprouty2 positively regulates T cell function and airway inflammation through regulation of CSK and LCK kinases. PLoS Biol 2021; 19:e3001063. [PMID: 33684096 PMCID: PMC7971865 DOI: 10.1371/journal.pbio.3001063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/18/2021] [Accepted: 02/12/2021] [Indexed: 11/19/2022] Open
Abstract
The function of Sprouty2 (Spry2) in T cells is unknown. Using 2 different (inducible and T cell-targeted) knockout mouse strains, we found that Spry2 positively regulated extracellular signal-regulated kinase 1/2 (ERK1/2) signaling by modulating the activity of LCK. Spry2-/- CD4+ T cells were unable to activate LCK, proliferate, differentiate into T helper cells, or produce cytokines. Spry2 deficiency abrogated type 2 inflammation and airway hyperreactivity in a murine model of asthma. Spry2 expression was higher in blood and airway CD4+ T cells from patients with asthma, and Spry2 knockdown impaired human T cell proliferation and cytokine production. Spry2 deficiency up-regulated the lipid raft protein caveolin-1, enhanced its interaction with CSK, and increased CSK interaction with LCK, culminating in augmented inhibitory phosphorylation of LCK. Knockdown of CSK or dislodgment of caveolin-1-bound CSK restored ERK1/2 activation in Spry2-/- T cells, suggesting an essential role for Spry2 in LCK activation and T cell function.
Collapse
Affiliation(s)
- Anand Sripada
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Kapil Sirohi
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Lidia Michalec
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Lei Guo
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Jerome T McKay
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Sangya Yadav
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Mukesh Verma
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - James Good
- Division of Pulmonary and Critical Care, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Donald Rollins
- Division of Pulmonary and Critical Care, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Magdalena M Gorska
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rafeul Alam
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
10
|
Wybenga-Groot LE, Tench AJ, Simpson CD, Germain JS, Raught B, Moran MF, McGlade CJ. SLAP2 Adaptor Binding Disrupts c-CBL Autoinhibition to Activate Ubiquitin Ligase Function. J Mol Biol 2021; 433:166880. [PMID: 33617900 DOI: 10.1016/j.jmb.2021.166880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
CBL is a RING type E3 ubiquitin ligase that functions as a negative regulator of tyrosine kinase signaling and loss of CBL E3 function is implicated in several forms of leukemia. The Src-like adaptor proteins (SLAP/SLAP2) bind to CBL and are required for CBL-dependent downregulation of antigen receptor, cytokine receptor, and receptor tyrosine kinase signaling. Despite the established role of SLAP/SLAP2 in regulating CBL activity, the nature of the interaction and the mechanisms involved are not known. To understand the molecular basis of the interaction between SLAP/SLAP2 and CBL, we solved the crystal structure of CBL tyrosine kinase binding domain (TKBD) in complex with SLAP2. The carboxy-terminal region of SLAP2 adopts an α-helical structure which binds in a cleft between the 4H, EF-hand, and SH2 domains of the TKBD. This SLAP2 binding site is remote from the canonical TKBD phospho-tyrosine peptide binding site but overlaps with a region important for stabilizing CBL in its autoinhibited conformation. In addition, binding of SLAP2 to CBL in vitro activates the ubiquitin ligase function of autoinhibited CBL. Disruption of the CBL/SLAP2 interface through mutagenesis demonstrated a role for this protein-protein interaction in regulation of CBL E3 ligase activity in cells. Our results reveal that SLAP2 binding to a regulatory cleft of the TKBD provides an alternative mechanism for activation of CBL ubiquitin ligase function.
Collapse
Affiliation(s)
- Leanne E Wybenga-Groot
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; SPARC BioCentre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada.
| | - Andrea J Tench
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Craig D Simpson
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Jonathan St Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Brian Raught
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Michael F Moran
- Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; SPARC BioCentre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - C Jane McGlade
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9, Canada.
| |
Collapse
|
11
|
Pande S, Yang X, Friesel R. Interleukin-17 receptor D (Sef) is a multi-functional regulator of cell signaling. Cell Commun Signal 2021; 19:6. [PMID: 33436016 PMCID: PMC7805053 DOI: 10.1186/s12964-020-00695-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
Interleukin-17 receptor D (IL17RD or IL-17RD) also known as Sef (similar expression to fibroblast growth factor), is a single pass transmembrane protein that is reported to regulate several signaling pathways
. IL17RD was initially described as a feedback inhibitor of fibroblast growth factor (FGF) signaling during zebrafish and frog development. It was subsequently determined to regulate other receptor tyrosine kinase signaling cascades as well as several proinflammatory signaling pathways including Interleukin-17A (IL17A), Toll-like receptors (TLR) and Interleukin-1α (IL1α) in several vertebrate species including humans. This review will provide an overview of IL17RD regulation of signaling pathways and functions with emphasis on regulation of development and pathobiological conditions. We will also discuss gaps in our knowledge about IL17RD function to provide insight into opportunities for future investigation. Video Abstract
Collapse
Affiliation(s)
- Shivangi Pande
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04496, USA
| | - Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Robert Friesel
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA. .,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04496, USA.
| |
Collapse
|
12
|
Yawut N, Kaewpiboon C, Budluang P, Cho IR, Kaowinn S, Koh SS, Chung YH. Overexpression of Cancer Upregulated Gene 2 (CUG2) Decreases Spry2 Through c-Cbl, Leading to Activation of EGFR and β-Catenin Signaling. Cancer Manag Res 2020; 12:10243-10250. [PMID: 33116878 PMCID: PMC7573319 DOI: 10.2147/cmar.s271109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/09/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose The mechanism by which cancer upregulated gene 2 (CUG2) overexpression induces cancer stem cell-like phenotypes is not fully understood. Because the increased activity and expression of epidermal growth factor receptor (EGFR) kinase have been reported in A549 cancer cells overexpressing CUG2 (A549-CUG2) compared with control cells (A549-Vec), the Sprouty2 (Spry2) protein has gained attention as the downstream molecule of EGFR signaling. Therefore, we aim to identify the role of Spry2 in CUG2-overexpressing lung cancer cells. Materials and Methods Spry2 expression levels were examined in A549-CUG2 and A549-Vec cells by Western blotting and qRT-PCR. Cell migration, invasion, and sphere formation were examined after Spry2 suppression and overexpression. EGFR-Stat1 and Akt-ERK protein phosphorylation levels were detected via immunoblotting. NEK2 kinase and β-catenin reporter assay were performed for downstream of Spry2 signaling. Results Although A549-CUG2 cells showed lower levels of the Spry2 protein than A549-Vec cells, no difference in levels of Spry2 transcript was observed between both cells via qRT-PCR. Furthermore, MG132 treatment enhanced the protein levels and ubiquitination of Spry2, suggesting that Spry2 protein expression can be regulated via the ubiquitin-proteasome pathway. The enforced expression of c-Cbl, known as the binding partner of Spry2, decreased the Spry2 protein levels, whereas its knockdown oppositely increased them. Epithelial-mesenchymal transition (EMT) and sphere formation were increased in A549-Vec cells during Spry2 siRNA treatment, confirming the role of Spry2 in CUG2-induced oncogenesis. Furthermore, EMT and sphere formation were determined by the Spry2 protein levels through the regulation of EGFR-Stat1 and β-catenin-NEK2-Yap1 signaling pathways. Conclusion CUG2 reduces Spry2 protein levels, the negative signaling molecule of cell proliferation, via c-Cbl, possibly activating the EGFR and β-catenin signaling pathways and, in turn, contributing to the induction of cancer stem cell-like phenotypes.
Collapse
Affiliation(s)
- Natpaphan Yawut
- BK21 Plus, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Chutima Kaewpiboon
- Department of Biology, Faculty of Science, Thaksin University, Pattalung 93210, Thailand
| | - Phatcharaporn Budluang
- BK21 Plus, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Il-Rae Cho
- BK21 Plus, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sirichat Kaowinn
- Department of General Science and Liberal Arts, King Mongkut's Institute of Technology, Ladkrabang Prince of Chumphon Campus, Chumphon 86160, Thailand
| | - Sang Seok Koh
- Department of Biosciences, Dong-A University, Busan 49315, Republic of Korea
| | - Young-Hwa Chung
- BK21 Plus, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
13
|
Wang YY, Wang WC, Su CW, Hsu CW, Yuan SS, Chen YK. Overexpression of sprouty 1 protein in human oral squamous cell carcinogenesis. J Dent Sci 2020; 16:21-28. [PMID: 33384774 PMCID: PMC7770302 DOI: 10.1016/j.jds.2020.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 07/23/2020] [Indexed: 01/18/2023] Open
Abstract
Abstract Background/purpose Sprouty (SPRY) has four isoforms, SPRY1–4, and its deficiency produces haphazard ‘sprouting’ of tracheal tubules. This study investigated SPRY1 protein expression in human oral potentially malignant disorders (OPMDs) and oral squamous cell carcinomas (OSCCs). Materials and methods 90 OSCCs, 10 OPMDs with malignant transformation (MT), 17 OPMDs without MT, and six normal oral mucosa (NOM) tissue samples were subjected to immunohistochemical staining. Three human oral cancer cell lines (OCCLs), an oral precancer cell line (DOK), and a primary culture of normal oral keratinocytes (HOK) were used for western blotting. Results Significantly increased expression of SPRY1 protein from NOM and OPMD without MT to OSCC was observed. The protein expressions of SPRY1 in OCCLs were significantly enhanced as compared with DOK and HOK. Increased phosphor/total-ERK expression was observed in OCCLs as compared with HOK. A significantly increased SPRY1 protein level was noted in OPMDs with MT as compared with those without MT, in addition to a significant increase in DOK in comparison with HOK. Conclusion Our results indicated that overexpression of SPRY1 protein is potentially associated with human oral squamous cell carcinogenesis.
Collapse
Affiliation(s)
- Yen-Yun Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Chen Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Oral Pathology & Maxillofacial Radiology, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Oral & Maxillofacial Imaging Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiang-Wei Su
- Division of Oral & Maxillofacial Surgery, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ching-Wei Hsu
- Division of Oral & Maxillofacial Surgery, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shyng-Shiou Yuan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Obstetrics and Gynecology and Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Corresponding author. Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan. Fax: +886 7 3210637.
| | - Yuk-Kwan Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Oral Pathology & Maxillofacial Radiology, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Oral & Maxillofacial Imaging Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Corresponding author. School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan. Fax: +886 7 3210637.
| |
Collapse
|
14
|
Sprouty3 and Sprouty4, Two Members of a Family Known to Inhibit FGF-Mediated Signaling, Exert Opposing Roles on Proliferation and Migration of Glioblastoma-Derived Cells. Cells 2019; 8:cells8080808. [PMID: 31374860 PMCID: PMC6721513 DOI: 10.3390/cells8080808] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/26/2022] Open
Abstract
Dysregulation of receptor tyrosine kinase-induced pathways is a critical step driving the oncogenic potential of brain cancer. In this study, we investigated the role of two members of the Sprouty (Spry) family in brain cancer-derived cell lines. Using immunoblot analyses we found essential differences in the pattern of endogenous Spry3 and Spry4 expression. While Spry4 expression was mitogen-dependent and repressed in a number of cells from higher malignant brain cancers, Spry3 levels neither fluctuated in response to serum withdrawal nor were repressed in glioblastoma (GBM)-derived cell lines. In accordance to the well-known inhibitory role of Spry proteins in fibroblast growth factor (FGF)-mediated signaling, both Spry proteins were able to interfere with FGF-induced activation of the MAPK pathway although to a different extent. In response to serum solely, Spry4 exerts its role as a negative regulator of MAPK activation. Ectopic expression of Spry4 inhibited proliferation and migration of GBM-originated cells, positioning it as a tumor suppressor in brain cancer. In contrast, elevated Spry3 levels accelerated both proliferation and migration of these cell lines, while repression of Spry3 levels using shRNA caused a significant diminished growth and migration velocity rate of a GBM-derived cell line. This argues for a tumor-promoting function of Spry3 in GBMs. Based on these data we conclude that Spry3 and Spry4 fulfill different if not opposing roles within the cancerogenesis of brain malignancies.
Collapse
|
15
|
Lack of Sprouty 1 and 2 enhances survival of effector CD8 + T cells and yields more protective memory cells. Proc Natl Acad Sci U S A 2018; 115:E8939-E8947. [PMID: 30126987 DOI: 10.1073/pnas.1808320115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Identifying novel pathways that promote robust function and longevity of cytotoxic T cells has promising potential for immunotherapeutic strategies to combat cancer and chronic infections. We show that sprouty 1 and 2 (Spry1/2) molecules regulate the survival and function of memory CD8+ T cells. Spry1/2 double-knockout (DKO) ovalbumin (OVA)-specific CD8+ T cells (OT-I cells) mounted more vigorous autoimmune diabetes than WT OT-I cells when transferred to mice expressing OVA in their pancreatic β-islets. To determine the consequence of Spry1/2 deletion on effector and memory CD8+ T cell development and function, we used systemic infection with lymphocytic choriomeningitis virus (LCMV) Armstrong. Spry1/2 DKO LCMV gp33-specific P14 CD8+ T cells survive contraction better than WT cells and generate significantly more polyfunctional memory T cells. The larger number of Spry1/2 DKO memory T cells displayed enhanced infiltration into infected tissue, demonstrating that absence of Spry1/2 can result in increased recall capacity. Upon adoptive transfer into naive hosts, Spry1/2 DKO memory T cells controlled Listeria monocytogenes infection better than WT cells. The enhanced formation of more functional Spry1/2 DKO memory T cells was associated with significantly reduced mTORC1 activity and glucose uptake. Reduced p-AKT, p-FoxO1/3a, and T-bet expression was also consistent with enhanced survival and memory accrual. Collectively, loss of Spry1/2 enhances the survival of effector CD8+ T cells and results in the formation of more protective memory cells. Deleting Spry1/2 in antigen-specific CD8+ T cells may have therapeutic potential for enhancing the survival and functionality of effector and memory CD8+ T cells in vivo.
Collapse
|
16
|
Cheng JC, Chang HM, Xiong S, So WK, Leung PCK. Sprouty2 inhibits amphiregulin-induced down-regulation of E-cadherin and cell invasion in human ovarian cancer cells. Oncotarget 2018; 7:81645-81660. [PMID: 27835572 PMCID: PMC5348419 DOI: 10.18632/oncotarget.13162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/22/2016] [Indexed: 11/25/2022] Open
Abstract
Similar to Drosophila Sprouty (SPRY), mammalian SPRY proteins inhibit the receptor tyrosine kinase-mediated activation of cellular signaling pathways. SPRY2 expression levels have been shown to be down-regulated in human ovarian cancer, and patients with low SPRY2 expression have significantly poorer survival than those with high SPRY2 expression. In addition, epidermal growth factor receptor (EGFR) is overexpressed in human ovarian cancer and is associated with more aggressive clinical behavior and a poor prognosis. Amphiregulin (AREG), the most abundant EGFR ligand in ovarian cancer, binds exclusively to EGFR and stimulates ovarian cancer cell invasion by down-regulating E-cadherin expression. However, thus far, the roles of SPRY2 in AREG-regulated E-cadherin expression and cell invasion remain unclear. In the present study, we show that treatment with AREG up-regulated SPRY2 expression by activating the EGFR-mediated ERK1/2 signaling pathway in two human ovarian cancer cell lines, SKOV3 and OVCAR5. In addition, overexpression of SPRY2 attenuated the AREG-induced down-regulation of E-cadherin by inhibiting the induction of the E-cadherin transcriptional repressor, Snail. Moreover, SPRY2 overexpression attenuated AREG-stimulated cell invasion and proliferation. This study reveals that SPRY2 acts as a tumor suppressor in human ovarian cancer and illustrates the underlying mechanisms that can be used as possible targets for the development of novel therapeutics.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Siyuan Xiong
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Wai-Kin So
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| |
Collapse
|
17
|
Liao PH, Wang YY, Wang WC, Chen CH, Kao YH, Hsu JW, Chen CY, Chen PH, Yuan SS, Chen YK. Overexpression of sprouty2 in human oral squamous cell carcinogenesis. Arch Oral Biol 2017; 87:131-142. [PMID: 29291435 DOI: 10.1016/j.archoralbio.2017.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 11/23/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE This study investigated SPRY2 expression in human oral potentially malignant disorders (OPMDs) and oral squamous cell carcinomas (OSCCs). METHODS 75 OSCCs, 23 OPMDs with malignant transformation (MT), 17 OPMDs without MT, and eight normal oral mucosa (NOM) tissues were used for immunohistochemical staining; three OSCC tissues with normal tissue counterparts were used for western blotting. Three human oral cancer cell lines (OCCLs), an oral precancer cell line (DOK), and a NOM primary culture (NOMPC) were used for western blotting; OCCLs and NOMPC were employed for real-time quantitative reverse transcription-polymerase chain reaction. OCCLs were evaluated in terms of proliferation, migration, invasion and BRAF V600E point mutation assays. RESULTS Significantly increased SPRY2 protein expression was observed in OSCCs as compared with NOM, and SPRY2 expression also differed between OSCC patients with and without lymph-node metastasis. SPRY2 protein and mRNA expressions were significantly enhanced as compared with NOMPC. Increased phospho-ERK expression was observed in OCCLs as compared with NOMPC. Significant decreases in the proliferation rate, degrees of migration and invasion were noted in OCCLs with SPRY2 siRNA transfection as compared with those without SPRY2 siRNA transfection. No BRAF V600E point mutation was observed for OCCLs as compared with NOMPC. A significantly increased SPRY2 protein level was noted in OPMDs with MT as compared to those without MT, and was also found in OPMDs with MT in comparison with NOM, as well as in DOK in comparison with NOMPC. CONCLUSIONS Our results indicated that SPRY2 overexpression is associated with human oral squamous-cell carcinogenesis.
Collapse
Affiliation(s)
- Pei-Hsien Liao
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Yun Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Chen Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Oral Pathology & Maxillofacial Radiology, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Oral & Maxillofacial Imaging Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Ho Chen
- Division of Oral & Maxillofacial Surgery, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Hsun Kao
- Division of Oral & Maxillofacial Surgery, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jing-Wei Hsu
- Division of Oral & Maxillofacial Surgery, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ching-Yi Chen
- Division of Oral Pathology & Maxillofacial Radiology, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Oral & Maxillofacial Imaging Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ping-Ho Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shyng-Shiou Yuan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology and Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yuk-Kwan Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Oral Pathology & Maxillofacial Radiology, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Oral & Maxillofacial Imaging Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
18
|
Neben CL, Lo M, Jura N, Klein OD. Feedback regulation of RTK signaling in development. Dev Biol 2017; 447:71-89. [PMID: 29079424 DOI: 10.1016/j.ydbio.2017.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
Precise regulation of the amplitude and duration of receptor tyrosine kinase (RTK) signaling is critical for the execution of cellular programs and behaviors. Understanding these control mechanisms has important implications for the field of developmental biology, and in recent years, the question of how augmentation or attenuation of RTK signaling via feedback loops modulates development has become of increasing interest. RTK feedback regulation is also important for human disease research; for example, germline mutations in genes that encode RTK signaling pathway components cause numerous human congenital syndromes, and somatic alterations contribute to the pathogenesis of diseases such as cancers. In this review, we survey regulators of RTK signaling that tune receptor activity and intracellular transduction cascades, with a focus on the roles of these genes in the developing embryo. We detail the diverse inhibitory mechanisms utilized by negative feedback regulators that, when lost or perturbed, lead to aberrant increases in RTK signaling. We also discuss recent biochemical and genetic insights into positive regulators of RTK signaling and how these proteins function in tandem with negative regulators to guide embryonic development.
Collapse
Affiliation(s)
- Cynthia L Neben
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA
| | - Megan Lo
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco 94143, USA.
| |
Collapse
|
19
|
Abstract
Cells respond to changes in their environment, to developmental cues, and to pathogen aggression through the action of a complex network of proteins. These networks can be decomposed into a multitude of signaling pathways that relay signals from the microenvironment to the cellular components involved in eliciting a specific response. Perturbations in these signaling processes are at the root of multiple pathologies, the most notable of these being cancer. The study of receptor tyrosine kinase (RTK) signaling led to the first description of a mechanism whereby an extracellular signal is transmitted to the nucleus to induce a transcriptional response. Genetic studies conducted in drosophila and nematodes have provided key elements to this puzzle. Here, we briefly discuss the somewhat lesser known contribution of these multicellular organisms to our understanding of what has come to be known as the prototype of signaling pathways. We also discuss the ostensibly much larger network of regulators that has emerged from recent functional genomic investigations of RTK/RAS/ERK signaling.
Collapse
Affiliation(s)
- Dariel Ashton-Beaucage
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC, Canada, H3C 3J7
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC, Canada, H3C 3J7.
- Département de Pathologie et de Biologie Cellulaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC, Canada, H3C 3J7.
| |
Collapse
|
20
|
Lee JY, Park S, Kim KS, Ko JJ, Lee S, Kim KP, Park KS. Novel Function of Sprouty4 as a Regulator of Stemness and Differentiation of Embryonic Stem Cells. Dev Reprod 2016; 20:171-7. [PMID: 27660833 PMCID: PMC5027223 DOI: 10.12717/dr.2016.20.2.171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sprouty (Spry) genes encode inhibitors of the receptor tyrosine kinase signaling cascade, which plays important roles in stem cells. However, the role of Spry4 in the stemness of embryonic stem cells has not been fully elucidated. Here, we used mouse embryonic stem cells (mESCs) as a model system to investigate the role of Spry4 in the stem cells. Suppression of Spry4 expression results in the decreases of cell proliferation, EB formation and stemness marker expression, suggesting that Spry4 activity is associated with stemness of mESCs. Teratoma assay showed that the cartilage maturation was facilitated in Spry4 knocked down mESCs. Our results suggest that Spry4 is an important regulator of the stemness and differentiation of mESCs.
Collapse
Affiliation(s)
- Jae-Young Lee
- Dept. of Biomedical Science, College of Life Science, CHA University, Seoul 06135, Korea
| | - Sunghyun Park
- Dept. of Biomedical Science, College of Life Science, CHA University, Seoul 06135, Korea
| | - Kwang-Soo Kim
- Dept. of Biomedical Science, College of Life Science, CHA University, Seoul 06135, Korea
| | - Jeong-Jae Ko
- Dept. of Biomedical Science, College of Life Science, CHA University, Seoul 06135, Korea
| | - Soohong Lee
- Dept. of Biomedical Science, College of Life Science, CHA University, Seoul 06135, Korea
| | - Keun Pil Kim
- Dept. of Life Science, Chung-Ang University, Seoul 06975, Korea
| | - Kyung-Soon Park
- Dept. of Biomedical Science, College of Life Science, CHA University, Seoul 06135, Korea
| |
Collapse
|
21
|
Hicks KC, Patel TB. Sprouty2 Protein Regulates Hypoxia-inducible Factor-α (HIFα) Protein Levels and Transcription of HIFα-responsive Genes. J Biol Chem 2016; 291:16787-801. [PMID: 27281823 DOI: 10.1074/jbc.m116.714139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 12/14/2022] Open
Abstract
The α-subunits of hypoxia-inducible factors (HIF1α and HIF2α) promote transcription of genes that regulate glycolysis and cell survival and growth. Sprouty2 (Spry2) is a modulator of receptor tyrosine kinase signaling and inhibits cell proliferation by a number of different mechanisms. Because of the seemingly opposite actions of HIFα subunits and Spry2 on cellular processes, we investigated whether Spry2 regulates the levels of HIF1α and HIF2α proteins. In cell lines from different types of tumors in which the decreased protein levels of Spry2 have been associated with poor prognosis, silencing of Spry2 elevated HIF1α protein levels. Increases in HIF1α and HIF2α protein levels due to silencing of Spry2 also up-regulated HIFα target genes. Using HIF1α as a prototype, we show that Spry2 decreases HIF1α stability and enhances the ubiquitylation of HIF1α by a von Hippel-Lindau protein (pVHL)-dependent mechanism. Spry2 also exists in a complex with HIF1α. Because Spry2 can also associate with pVHL, using a mutant form of Spry2 (3P/3A-Spry2) that binds HIF1α, but not pVHL, we show that WT-Spry2, but not the 3P/3A-Spry2 decreases HIF1α protein levels. In accordance, expression of WT-Spry2, but not 3P/3A-Spry2 results in a decrease in HIF1α-sensitive glucose uptake. Together our data suggest that Spry2 acts as a scaffold to bring more pVHL/associated E3 ligase in proximity of HIF1α and increase its ubiquitylation and degradation. This represents a novel action for Spry2 in modulating biological processes regulated by HIFα subunits.
Collapse
Affiliation(s)
- Kristin C Hicks
- From the Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, Illinois 60153, and
| | - Tarun B Patel
- the Albany College of Pharmacy and Health Sciences, Albany, New York 12208
| |
Collapse
|
22
|
Kral R, Doriguzzi A, Mayer CE, Krenbek D, Setinek U, Sutterlüty-Fall H. Differential Effects of Variations at Codon 106 on Sprouty2 Functions in Lung Cancer-Derived Cells. J Cell Biochem 2016; 117:1822-32. [PMID: 26727965 DOI: 10.1002/jcb.25482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/04/2016] [Indexed: 11/09/2022]
Abstract
Sprouty2 is a modulator of receptor tyrosine kinase-mediated signalling with an important role during lung carcinogenesis. Here, we characterize a Sprouty2 variant harbouring a substitution of proline 106 with serine. Serine substitution fails to influence expression, but accumulation of slower migrating phosphatase-sensitive forms indicates that its presence facilitates phosphorylation. In normal lung cells the serine variant is slightly more potent in inhibiting proliferation and migration. Additionally non-malignant cells expressing the major Sprouty2 variant attach more effective to fibronectin, while the serine variant only weakly stimulates cell adhesion. Mechanistically, the serine variant interferes less effectively with mitogen-activated protein kinase induction in response to serum. Concerning the positive Sprouty2 effect on epidermal growth factor receptor activation the serine variant is more potent. In all lung cancer-derived cell lines proliferation is more effectively inhibited if the Sprouty2 protein harbours the serine. In contrast, an increased interference of the serine Sprouty2 variant is only observed in cells with unaltered K-Ras. In cells harbouring a K-Ras mutation the serine conversion weakens the reduction of migration velocity indicating that dependent on the status of K-Ras the serine influences Sprouty2 functions differently. Accordingly, cell adhesion in cells with unaffected K-Ras is only stimulated by a Sprouty2 protein harbouring proline, while a serine conversion improves the attachment of the cells with constitutive active Ras. In summary our studies demonstrate that substitution of proline by serine at position 106 has biological significance and that the observed effects of this conversion depend on the activation status of endogenous K-Ras. J. Cell. Biochem. 117: 1822-1832, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rosana Kral
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Angelina Doriguzzi
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christoph-Erik Mayer
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Dagmar Krenbek
- Institute for Pathology and Bacteriology, Otto Wagner Hospital, Baumgartner Höhe, A-1140 Vienna, Austria
| | - Ulrike Setinek
- Institute for Pathology and Bacteriology, Otto Wagner Hospital, Baumgartner Höhe, A-1140 Vienna, Austria
| | - Hedwig Sutterlüty-Fall
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| |
Collapse
|
23
|
Shin EH, Zhao G, Wang Q, Lovicu FJ. Sprouty gain of function disrupts lens cellular processes and growth by restricting RTK signaling. Dev Biol 2015; 406:129-46. [PMID: 26375880 DOI: 10.1016/j.ydbio.2015.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 11/26/2022]
Abstract
Sprouty proteins function as negative regulators of the receptor tyrosine kinase (RTK)-mediated Ras/Raf/MAPK pathway in many varied physiological and developmental processes, inhibiting growth factor-induced cellular proliferation, migration and differentiation. Like other negative regulators, Sprouty proteins are expressed in various organs during development, including the eye; ubiquitously expressed in the optic vesicle, lens pit, optic cup and lens vesicle. Given the synexpression of different antagonists (e.g, Sprouty, Sef, Spred) in the developing lens, to gain a better understanding of their specific role, in particular, their ability to regulate ocular growth factor signaling in lens cells, we characterized transgenic mice overexpressing Sprouty1 or Sprouty2 in the eye. Overexpression of Sprouty in the lens resulted in reduced lens and eye size during ocular morphogenesis, influenced by changes to the lens epithelium, aberrant fiber cell differentiation and compromised de novo maintenance of the lens capsule. Here we demonstrate an important inhibitory role for Sprouty in the regulation of lens cell proliferation and fiber differentiation in situ, potentially through its ability to modulate FGF- (and even EGF-) mediated MAPK/ERK1/2 signaling in lens cells. Whilst growth factor regulation of lens cell proliferation and fiber differentiation are required for orchestrating lens morphogenesis and growth, in turn, antagonists such as Sprouty are just as important for regulating the intracellular signaling pathways driving lens cellular processes.
Collapse
Affiliation(s)
- Eun Hae Shin
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia
| | - Guannan Zhao
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia
| | - Qian Wang
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia
| | - Frank J Lovicu
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia; Save Sight Institute, University of Sydney, NSW, Australia.
| |
Collapse
|
24
|
Doriguzzi A, Haigl B, Gsur A, Sutterlüty-Fall H. The increased Sprouty4 expression in response to serum is transcriptionally controlled by Specific protein 1. Int J Biochem Cell Biol 2015; 64:220-8. [PMID: 25957915 DOI: 10.1016/j.biocel.2015.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/17/2015] [Accepted: 04/28/2015] [Indexed: 11/29/2022]
Abstract
Sprouty proteins control length and intensity of the intracellular signal transduction cascade activated by mitogens in the cellular environment. As part of a negative feedback loop, their expression is supposed to be elevated by the same factors. In this report, Sprouty4 expression in response to serum and the underlying regulatory mechanisms were investigated. We verified that Sprouty4 expression is activated by serum addition in all tested cells independent of their origin. Strict correlation between Sprouty4 protein levels and promoter activity indicates mainly transcriptional regulation of Sprouty4 serum-responsiveness. Induction of the mitogen-activated protein kinase pathway is required for Sprouty4 promoter activation in the presence of serum. Nonetheless, signal transduction via this pathway is not sufficient to fully induce the Sprouty4 promoter. Instead, deletion and mutation analysis identified two annotated Specific protein 1 binding sites as the critical cis-elements responsible for conferring the serum induction of the promoter. Corroborating, repressed Specific protein 1 activity or levels result in constitutive lowered transcriptional activity of the Sprouty4 promoter. These data demonstrate that Specific protein 1 plays a crucial role in the regulation of Sprouty4 in response to serum.
Collapse
Affiliation(s)
- Angelina Doriguzzi
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Barbara Haigl
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Hedwig Sutterlüty-Fall
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
25
|
Abstract
Sprouty proteins are evolutionarily conserved modulators of MAPK/ERK pathway. Through interacting with an increasing number of effectors, mediators, and regulators with ultimate influence on multiple targets within or beyond ERK, Sprouty orchestrates a complex, multilayered regulatory system and mediates a crosstalk among different signaling pathways for a coordinated cellular response. As such, Sprouty has been implicated in various developmental and physiological processes. Evidence shows that ERK is aberrantly activated in malignant conditions. Accordingly, Sprouty deregulation has been reported in different cancer types and shown to impact cancer development, progression, and metastasis. In this article, we have tried to provide an overview of the current knowledge about the Sprouty physiology and its regulatory functions in health, as well as an updated review of the Sprouty status in cancer. Putative implications of Sprouty in cancer biology, their clinical relevance, and their proposed applications are also revisited. As a developing story, however, role of Sprouty in cancer remains to be further elucidated.
Collapse
Affiliation(s)
- Samar Masoumi-Moghaddam
- UNSW Department of Surgery, University of New South Wales, St George Hospital, Kogarah, Sydney, NSW, 2217, Australia,
| | | | | |
Collapse
|
26
|
Noble M, Mayer-Pröschel M, Li Z, Dong T, Cui W, Pröschel C, Ambeskovic I, Dietrich J, Han R, Yang YM, Folts C, Stripay J, Chen HY, Stevens BM. Redox biology in normal cells and cancer: restoring function of the redox/Fyn/c-Cbl pathway in cancer cells offers new approaches to cancer treatment. Free Radic Biol Med 2015; 79:300-23. [PMID: 25481740 PMCID: PMC10173888 DOI: 10.1016/j.freeradbiomed.2014.10.860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022]
Abstract
This review discusses a unique discovery path starting with novel findings on redox regulation of precursor cell and signaling pathway function and identification of a new mechanism by which relatively small changes in redox status can control entire signaling networks that regulate self-renewal, differentiation, and survival. The pathway central to this work, the redox/Fyn/c-Cbl (RFC) pathway, converts small increases in oxidative status to pan-activation of the c-Cbl ubiquitin ligase, which controls multiple receptors and other proteins of central importance in precursor cell and cancer cell function. Integration of work on the RFC pathway with attempts to understand how treatment with systemic chemotherapy causes neurological problems led to the discovery that glioblastomas (GBMs) and basal-like breast cancers (BLBCs) inhibit c-Cbl function through altered utilization of the cytoskeletal regulators Cool-1/βpix and Cdc42, respectively. Inhibition of these proteins to restore normal c-Cbl function suppresses cancer cell division, increases sensitivity to chemotherapy, disrupts tumor-initiating cell (TIC) activity in GBMs and BLBCs, controls multiple critical TIC regulators, and also allows targeting of non-TICs. Moreover, these manipulations do not increase chemosensitivity or suppress division of nontransformed cells. Restoration of normal c-Cbl function also allows more effective harnessing of estrogen receptor-α (ERα)-independent activities of tamoxifen to activate the RFC pathway and target ERα-negative cancer cells. Our work thus provides a discovery strategy that reveals mechanisms and therapeutic targets that cannot be deduced by standard genetics analyses, which fail to reveal the metabolic information, isoform shifts, protein activation, protein complexes, and protein degradation critical to our discoveries.
Collapse
Affiliation(s)
- Mark Noble
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Zaibo Li
- Department of Pathology, Ohio State University Wexner Medical Center, 410W 10th Avenue, E403 Doan Hall, Columbus, OH 43210-1240, USA.
| | - Tiefei Dong
- University of Michigan Tech Transfer, 1600 Huron Pkwy, 2nd Floor, Building 520, Ann Arbor, MI 48109-2590, USA.
| | - Wanchang Cui
- Department of Radiation Oncology, University of Maryland School of Medicine,10 South Pine Street, MSTF Room 600, Baltimore, MD 21201, USA.
| | - Christoph Pröschel
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Ibro Ambeskovic
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Joerg Dietrich
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Yawkey 9E, Boston, MA 02114, USA.
| | - Ruolan Han
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Yin Miranda Yang
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Christopher Folts
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Jennifer Stripay
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Hsing-Yu Chen
- Harvard Medical School, Department of Cell Biology 240 Longwood Avenue Building C1, Room 513B Boston, MA 02115, USA.
| | - Brett M Stevens
- University of Colorado School of Medicine, Division of Hematology, 12700 E. 19th Avenue, Campus Box F754-AMCA, Aurora, CO 80045, USA.
| |
Collapse
|
27
|
So WK, Cheng JC, Fan Q, Wong AST, Huntsman DG, Gilks CB, Leung PCK. Loss of Sprouty2 in human high-grade serous ovarian carcinomas promotes EGF-induced E-cadherin down-regulation and cell invasion. FEBS Lett 2014; 589:302-9. [PMID: 25533808 DOI: 10.1016/j.febslet.2014.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 12/22/2022]
Abstract
Sprouty (SPRY) proteins are well-characterized factors that inhibit receptor tyrosine kinase signaling. Our Human Exonic Evidence-Based Oligonucleotide (HEEBO) microarray results showed that the mRNA levels of SPRY2, but not of SPRY1 or SPRY4, are down-regulated in high-grade serous ovarian carcinoma (HGSC) tissues and epithelial ovarian cancer (EOC) cell lines. Molecular inversion probe (MIP) copy number analysis showed the deletion of the SPRY2 locus in HGSC. Overexpression of SPRY2 reduced EGF-induced cell invasion by attenuating EGF-induced E-cadherin down-regulation. Moreover, a positive correlation between SPRY2 and E-cadherin protein levels was observed in HGSC tissues. This study reveals the loss of SPRY2 in HGSC and indicates an important tumor-suppressive role for SPRY2 in mediating the stimulatory effect of EGF on human EOC progression.
Collapse
Affiliation(s)
- Wai-Kin So
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | - Qianlan Fan
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | - Alice S T Wong
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, BC Cancer Agency, Vancouver, BC, Canada; Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - C Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, BC Cancer Agency, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, Vancouver General Hospital and University of British Columbia, Vancouver, BC, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
28
|
Hampton KK, Craven RJ. Pathways driving the endocytosis of mutant and wild-type EGFR in cancer. Oncoscience 2014; 1:504-12. [PMID: 25594057 PMCID: PMC4278327 DOI: 10.18632/oncoscience.67] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/20/2014] [Indexed: 12/25/2022] Open
Abstract
EGFR (epidermal growth factor receptor) is activated through changes in expression or mutations in a number of tumors and is a driving force in cancer progression. EGFR is targeted by numerous inhibitors, including chimeric antibodies targeting the extracellular domain and small molecule kinase domain inhibitors. The kinase domain inhibitors are particularly active against mutant forms of the receptor, and subsequent mutations drive resistance to the inhibitors. Here, we review recent developments on the trafficking of wild-type and mutant EGFR, focusing on the roles of MIG6, SPRY2, ITSN, SHP2, S2RPGRMC1 and RAK. Some classes of EGFR regulators affect wild-type and mutant EGFR equally, while others are specific for either the wild-type or mutant form of the receptor. Below we summarize multiple signaling-associated pathways that are important in trafficking wild-type and mutant EGFR with the goal being stimulation of new approaches for targeting the distinct forms of the receptor.
Collapse
Affiliation(s)
- Kaia K Hampton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Rolf J Craven
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| |
Collapse
|
29
|
Yim DGR, Ghosh S, Guy GR, Virshup DM. Casein kinase 1 regulates Sprouty2 in FGF-ERK signaling. Oncogene 2014; 34:474-84. [PMID: 24469046 DOI: 10.1038/onc.2013.564] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/14/2013] [Accepted: 12/10/2013] [Indexed: 12/11/2022]
Abstract
Sprouty2 (SPRY2) is a potent negative regulator of receptor tyrosine kinase signaling, and is implicated as a tumor suppressor. SPRY2 inhibits FGF-RAS-ERK signaling by binding to growth factor receptor bound protein 2 (GRB2) during fibroblast growth factor receptor (FGFR) activation, disrupting the GRB2-SOS (son of sevenless) complex that transduces signals from FGFR to RAS. SPRY2 binding to GRB2 is modulated by phosphorylation but the key regulatory kinase(s) are not known. Prior studies identified the frequent presence of CK1 phosphorylation motifs on SPRY2. We therefore tested if CK1 has a role in SPRY2 phosphorylation and function. Loss of CK1 binding and inhibition of CK1 activity by two structurally distinct small molecules abrogated SPRY2 inhibition of FGF-ERK signaling, leading to decreased SPRY2 interaction with GRB2. Moreover, CK1 activity and binding are necessary for SPRY2 inhibition of FGF-stimulated neurite outgrowth in PC12 cells. Consistent with its proposed role as an inhibitor of FGF signaling, we find that CSNK1E transcript abundance negatively correlates with FGF1/FGF7 message in human gastric cancer samples. Modulation of CK1 activity may be therapeutically useful in the treatment of FGF/SPRY2-related diseases.
Collapse
Affiliation(s)
- D G R Yim
- 1] Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore [2] Signal Transduction Laboratory, Institute for Molecular and Cellular Biology, Biopolis, Singapore [3] Genome Institute of Singapore, Biopolis, Singapore
| | - S Ghosh
- Center for Computational Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - G R Guy
- Signal Transduction Laboratory, Institute for Molecular and Cellular Biology, Biopolis, Singapore
| | - D M Virshup
- 1] Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore [2] Department of Biochemistry, YYL School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
30
|
Okur MN, Russo A, O'Bryan JP. Receptor tyrosine kinase ubiquitylation involves the dynamic regulation of Cbl-Spry2 by intersectin 1 and the Shp2 tyrosine phosphatase. Mol Cell Biol 2014; 34:271-9. [PMID: 24216759 PMCID: PMC3911288 DOI: 10.1128/mcb.00850-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/30/2013] [Accepted: 10/31/2013] [Indexed: 11/20/2022] Open
Abstract
Ubiquitylation of receptor tyrosine kinases (RTKs) regulates their trafficking and lysosomal degradation. The multidomain scaffolding protein intersectin 1 (ITSN1) is an important regulator of this process. ITSN1 stimulates ubiquitylation of the epidermal growth factor receptor (EGFR) through enhancing the activity of the Cbl E3 ubiquitin ligase. However, the precise mechanism through which ITSN1 enhances Cbl activity is unclear. Here, we demonstrate that ITSN1 interacts with and recruits the Shp2 tyrosine phosphatase to Spry2 to enhance its dephosphorylation, thereby disrupting the inhibitory effect of Spry2 on Cbl and enhancing EGFR ubiquitylation. In contrast, expression of a catalytically inactive Shp2 mutant reversed the effect of ITSN1 on Spry2 dephosphorylation and decreased Cbl-mediated EGFR ubiquitylation. In addition, disruption of ITSN1 binding to Spry2 through point mutation of the Pro-rich ITSN1 binding site in Spry2 resulted in decreased Shp2-Spry2 interaction and enhanced Spry2 tyrosine phosphorylation. This study demonstrates that ITSN1 enhances Cbl activity, in part, by modulating the interaction of Cbl with Spry2 through recruitment of Shp2 phosphatase to the Cbl-Spry2 complex. These findings reveal a new level of complexity in the regulation of RTKs by Cbl through ITSN1 binding with Shp2 and Spry2.
Collapse
Affiliation(s)
- Mustafa Nazir Okur
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Angela Russo
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - John P. O'Bryan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
31
|
HER. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
32
|
Chen FJ, Lee KW, Lai CC, Lee SP, Shen HH, Tsai SP, Liu BH, Wang LM, Liou GG. Structure of native oligomeric Sprouty2 by electron microscopy and its property of electroconductivity. Biochem Biophys Res Commun 2013; 439:351-6. [PMID: 24012675 DOI: 10.1016/j.bbrc.2013.08.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 12/28/2022]
Abstract
Receptor tyrosine kinases (RTKs) regulate many cellular processes, and Sprouty2 (Spry2) is known as an important regulator of RTK signaling pathways. Therefore, it is worth investigating the properties of Spry2 in more detail. In this study, we found that Spry2 is able to self-assemble into oligomers with a high-affinity KD value of approximately 16nM, as determined through BIAcore surface plasmon resonance analysis. The three-dimensional (3D) structure of Spry2 was resolved using an electron microscopy (EM) single-particle reconstruction approach, which revealed that Spry2 is donut-shaped with two lip-cover domains. Furthermore, the method of energy dispersive spectrum obtained through EM was analyzed to determine the elements carried by Spry2, and the results demonstrated that Spry2 is a silicon- and iron-containing protein. The silicon may contribute to the electroconductivity of Spry2, and this property exhibits a concentration-dependent feature. This study provides the first report of a silicon- and iron-containing protein, and its 3D structure may allow us (1) to study the potential mechanism through the signal transduction is controlled by switching the electronic transfer on or off and (2) to develop a new type of conductor or even semiconductor using biological or half-biological hybrid materials in the future.
Collapse
Affiliation(s)
- Feng-Jung Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC; Department of Photonics & Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rathmanner N, Haigl B, Vanas V, Doriguzzi A, Gsur A, Sutterlüty-Fall H. Sprouty2 but not Sprouty4 is a potent inhibitor of cell proliferation and migration of osteosarcoma cells. FEBS Lett 2013; 587:2597-605. [PMID: 23831057 DOI: 10.1016/j.febslet.2013.06.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/17/2013] [Accepted: 06/22/2013] [Indexed: 10/26/2022]
Abstract
As negative regulators of receptor tyrosine kinase-mediated signalling, Sprouty proteins fulfil important roles during carcinogenesis. In this report, we demonstrate that Sprouty2 protein expression inhibits cell proliferation and migration in osteosarcoma-derived cells. Although earlier reports describe a tumour-promoting function, these results indicate that Sprouty proteins also have the potential to function as tumour suppressors in sarcoma. In contrast to Sprouty2, Sprouty4 expression failed to interfere with proliferation and migration of the osteosarcoma-derived cells, possibly due to a less pronounced interference with mitogen-activated protein kinase activity. Sequences within the NH2-terminus are responsible for the specific inhibitory function of Sprouty2 protein.
Collapse
Affiliation(s)
- Nadine Rathmanner
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
34
|
Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, Dong L, Feng D, Goetz B, Arya P, Bailey TA, Palermo N, Borgstahl GEO, Natarajan A, Raja SM, Naramura M, Band V, Band H. Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:122-39. [PMID: 23085373 DOI: 10.1016/j.bbamcr.2012.10.010] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 12/20/2022]
Abstract
Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell-cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant "activated PTK-selective" ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease.
Collapse
Affiliation(s)
- Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, Dong L, Feng D, Goetz B, Arya P, Bailey TA, Palermo N, Borgstahl GEO, Natarajan A, Raja SM, Naramura M, Band V, Band H. Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. BIOCHIMICA ET BIOPHYSICA ACTA 2012. [PMID: 23085373 DOI: 10.1016/j.bbamcr] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell-cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant "activated PTK-selective" ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease.
Collapse
Affiliation(s)
- Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Alsina FC, Ledda F, Paratcha G. New insights into the control of neurotrophic growth factor receptor signaling: implications for nervous system development and repair. J Neurochem 2012; 123:652-61. [PMID: 22994539 DOI: 10.1111/jnc.12021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/12/2012] [Accepted: 09/16/2012] [Indexed: 11/28/2022]
Abstract
Neurotrophic growth factors control neuronal development by activating specific receptor tyrosine kinase positive signaling pathways, such as Ras-MAPK and PI3K-Akt cascades. Once activated, neurotrophic factor receptors also trigger a cascade of molecular events, named negative receptor signaling, that restricts the intensity of the positive signals and modulates cellular behavior. Thus, to avoid signaling errors that ultimately could lead to aberrant neuronal physiology and disease, negative signaling mechanisms have evolved to ensure that suitable thresholds of neuronal stimulation are achieved and maintained during right periods of time. Recent findings have revealed that neurotrophic factor receptor signaling is tightly modulated through the coordinated action of many different protein regulators that limit or potentiate signal propagation in spatially and temporally controlled manners, acting at specific points after receptor engagement. In this review, we discuss progress in this field, highlighting the importance of these modulators in axonal growth, guidance, neural connectivity, and nervous system regeneration.
Collapse
Affiliation(s)
- Fernando C Alsina
- Division of Molecular and Cellular Neuroscience, Institute of Cellular Biology and Neuroscience Prof. Dr. E. De Robertis (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | | | | |
Collapse
|
37
|
Abstract
Fibroblast growth factors (FGFs) are important molecules that control bone formation. FGF act by activating FGF receptors (FGFRs) and downstream signaling pathways that control cells of the osteoblast lineage. Recent advances have been made in the identification of FGF/FGFR signaling pathways that control osteogenesis. Indeed, studies of mouse and human models provided novel insights into the signaling pathways that control bone formation. Genomic studies also highlighted the implication of molecular targets of FGF/FGFR signaling regulating osteoblastogenesis. Recent studies further revealed the important role of crosstalks between FGF/FGFR signaling and other signaling pathways in the regulation of osteogenesis. Finally, the importance of the mechanisms modulating FGFR degradation in the control of osteoblast differentiation has been recently revealed. This short review summarizes the recently described mechanisms underlying FGF/FGFR signaling that are involved in the control of osteoblastogenesis. This knowledge may have potential therapeutic implications in skeletal disorders characterized by abnormal bone formation.
Collapse
Affiliation(s)
- Pierre J Marie
- Laboratory of Osteoblast Biology and Pathology, INSERM UMR-606 and University Paris Diderot, Paris F-75475, France.
| | | | | |
Collapse
|
38
|
Alsina FC, Irala D, Fontanet PA, Hita FJ, Ledda F, Paratcha G. Sprouty4 is an endogenous negative modulator of TrkA signaling and neuronal differentiation induced by NGF. PLoS One 2012; 7:e32087. [PMID: 22384148 PMCID: PMC3285629 DOI: 10.1371/journal.pone.0032087] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 01/23/2012] [Indexed: 01/05/2023] Open
Abstract
The Sprouty (Spry) family of proteins represents endogenous regulators of downstream signaling pathways induced by receptor tyrosine kinases (RTKs). Using real time PCR, we detect a significant increase in the expression of Spry4 mRNA in response to NGF, indicating that Spry4 could modulate intracellular signaling pathways and biological processes induced by NGF and its receptor TrkA. In this work, we demonstrate that overexpression of wild-type Spry4 causes a significant reduction in MAPK and Rac1 activation and neurite outgrowth induced by NGF. At molecular level, our findings indicate that ectopic expression of a mutated form of Spry4 (Y53A), in which a conserved tyrosine residue was replaced, fail to block both TrkA-mediated Erk/MAPK activation and neurite outgrowth induced by NGF, suggesting that an intact tyrosine 53 site is required for the inhibitory effect of Spry4 on NGF signaling. Downregulation of Spry4 using small interference RNA knockdown experiments potentiates PC12 cell differentiation and MAPK activation in response to NGF. Together, these findings establish a new physiological mechanism through which Spry4 regulates neurite outgrowth reducing not only the MAPK pathway but also restricting Rac1 activation in response to NGF.
Collapse
Affiliation(s)
- Fernando C. Alsina
- Division of Molecular and Cellular Neuroscience, Institute of Cellular Biology and Neuroscience Prof. Dr. E. De Robertis (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Dolores Irala
- Division of Molecular and Cellular Neuroscience, Institute of Cellular Biology and Neuroscience Prof. Dr. E. De Robertis (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Paula A. Fontanet
- Division of Molecular and Cellular Neuroscience, Institute of Cellular Biology and Neuroscience Prof. Dr. E. De Robertis (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Francisco J. Hita
- Division of Molecular and Cellular Neuroscience, Institute of Cellular Biology and Neuroscience Prof. Dr. E. De Robertis (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cellular Biology and Neuroscience Prof. Dr. E. De Robertis (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires, Argentina
- Laboratory of Molecular and Cellular Neuroscience, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cellular Biology and Neuroscience Prof. Dr. E. De Robertis (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires, Argentina
- Laboratory of Molecular and Cellular Neuroscience, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
39
|
Anderson K, Nordquist KA, Gao X, Hicks KC, Zhai B, Gygi SP, Patel TB. Regulation of cellular levels of Sprouty2 protein by prolyl hydroxylase domain and von Hippel-Lindau proteins. J Biol Chem 2011; 286:42027-42036. [PMID: 22006925 DOI: 10.1074/jbc.m111.303222] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sprouty (Spry) proteins modulate the actions of receptor tyrosine kinases during development and tumorigenesis. Decreases in cellular levels of Spry, especially Sprouty2 (Spry2), have been implicated in the growth and progression of tumors of the breast, prostate, lung, and liver. During development and tumor growth, cells experience hypoxia. Therefore, we investigated how hypoxia modulates the levels of Spry proteins. Hypoxia elevated the levels of all four expressed Spry isoforms in HeLa cells. Amounts of endogenous Spry2 in LS147T and HEP3B cells were also elevated by hypoxia. Using Spry2 as a prototype, we demonstrate that silencing and expression of prolyl hydroxylase domain proteins (PHD1-3) increase and decrease, respectively, the cellular content of Spry2. Spry2 also preferentially interacted with PHD1-3 and von Hippel-Lindau protein (pVHL) during normoxia but not in hypoxia. Additionally, Spry2 is hydroxylated on Pro residues 18, 144, and 160, and substitution of these residues with Ala enhanced stability of Spry2 and abrogated its interactions with pVHL. Silencing of pVHL increased levels of Spry2 by decreasing its ubiquitylation and degradation and thereby augmented the ability of Spry2 to inhibit FGF-elicited activation of ERK1/2. Thus, prolyl hydroxylase mediated hydroxylation and subsequent pVHL-elicited ubiquitylation of Spry2 target it for degradation and, consequently, provide a novel mechanism of regulating growth factor signaling.
Collapse
Affiliation(s)
- Kimberly Anderson
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153
| | - Kyle A Nordquist
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153; Institute of Signal Transduction, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153
| | - Xianlong Gao
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153; Institute of Signal Transduction, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153
| | - Kristin C Hicks
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153
| | - Bo Zhai
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Tarun B Patel
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153; Institute of Signal Transduction, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153.
| |
Collapse
|
40
|
Faratian D, Sims AH, Mullen P, Kay C, Um I, Langdon SP, Harrison DJ. Sprouty 2 is an independent prognostic factor in breast cancer and may be useful in stratifying patients for trastuzumab therapy. PLoS One 2011; 6:e23772. [PMID: 21909357 PMCID: PMC3166119 DOI: 10.1371/journal.pone.0023772] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 07/25/2011] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Resistance to trastuzumab is a clinical problem, partly due to overriding activation of MAPK/PI3K signalling. Sprouty-family proteins are negative regulators of MAPK/PI3K signalling, but their role in HER2-therapy resistance is unknown. PATIENTS AND METHODS Associations between Sprouty gene expression and clinicopathological features were investigated in a breast cancer microarray meta-analysis. Changes in expression of Spry2 and feedback inhibition on trastuzumab resistance were studied in SKBr3 and BT474 breast carcinoma cell lines using cell viability assays. Spry2 protein expression was measured by quantitative immunofluorescence in a cohort of 122 patients treated with trastuzumab. RESULTS Low gene expression of Spry2 was associated with increased pathological grade, high HER2 expression, and was a significant independent prognostic factor. Overexpression of Spry2 in SKBr3s resulted in enhanced inhibition of cell viability after trastuzumab treatment, and the PI3K-inhibitor LY294002 had a similar effect. Low Spry2 expression was associated with increased risk of death (HR = 2.28, 95% CI 1.22-4.26; p = 0.008) in trastuzumab-treated patients, including in multivariate analysis. Stratification of trastuzumab-treated patients using PTEN and Spry2 was superior to either marker in isolation. CONCLUSION In breast cancers with deficient feedback inhibition, combinatorial therapy with negative regulators of growth factor signalling may be an effective therapeutic strategy.
Collapse
Affiliation(s)
- Dana Faratian
- Edinburgh Breakthrough Research Unit and Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The four ESCRT (endocytic sorting complexes required for transport) complexes (ESCRT-0, -I, -II, and -III) normally operate sequentially in the trafficking of cellular cargo. HIV-1 Gag trafficking and release as virus-like particles (VLPs) require the participation of ESCRTs; however, its use of ESCRTs is selective and nonsequential. Specifically, Gag trafficking to release sites on the plasma membrane does not require ESCRT-0 or -II. It is known that a bypass of ESCRT-0 is achieved by the direct linkage of the ESCRT-I component, Tsg101, to the primary L domain motif (PTAP) in Gag and that bypass of ESCRT-II is achieved by the linkage of Gag to ESCRT-III through the adaptor protein Alix. However, the mechanism by which Gag suppresses the interaction of bound ESCRT-I with ESCRT-II is unknown. Here we show (i) that VLP release requires the steady-state level of Sprouty 2 (Spry2) in COS-1 cells, (ii) that Spry2 binds the ESCRT-II component Eap20, (iii) that binding Eap20 permits Spry2 to disrupt ESCRT-I interaction with ESCRT-II, and (iv) that coexpression of Gag with a Spry2 fragment that binds Eap20 increases VLP release. Spry2 also facilitated release of P7L-Gag (i.e., release in the absence of Tsg101 binding). In this case, rescue required the secondary L domain (YPX(n)L) in HIV-1 Gag that binds Alix and the region in Spry2 that binds Eap20. The results identify Spry2 as a novel cellular factor that facilitates release driven by the primary and secondary HIV-1 Gag L domains.
Collapse
|
42
|
Mahoney JA, Fisher JC, Snyder SA, Hauck ML. Feasibility of using gene expression analysis to study canine soft tissue sarcomas. Mamm Genome 2010; 21:577-82. [PMID: 21076837 DOI: 10.1007/s00335-010-9298-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/18/2010] [Indexed: 10/18/2022]
Abstract
The prognosis given for canine soft tissue sarcomas (STSs) is based primarily on histopathologic grade. The decision to administer adjuvant chemotherapy is difficult since less than half of patients with high-grade STSs develop metastatic disease. We hypothesize that there is a gene signature that will improve our ability to predict development of metastatic disease in STS patients. The objective of this study was to determine the feasibility of using cDNA microarray and quantitative real-time PCR (qRT-PCR) analysis to determine gene expression patterns in metastatic versus nonmetastatic canine STSs, given the inherent heterogeneity of this group of tumors. Five STSs from dogs with metastatic disease were evaluated in comparison to eight STSs from dogs without metastasis. Tumor RNA was extracted, processed, and labeled for application to the Affymetrix Canine Genechip 2.0 Array. Array fluorescence was normalized using D-Chip software and data analysis was performed with JMP/Genomics. Differential gene expression was validated using qRT-PCR. Over 200 genes were differentially expressed at a false discovery rate of 5%. Differential gene expression was validated for five genes upregulated in metastatic tumors. Quantitative RT-PCR confirmed increased relative expression of all five genes of interest in the metastatic STSs. Our results demonstrate that microarray and qRT-PCR are feasible methods for comparing gene signatures in canine STSs. Further evaluation of the differences between gene expression in metastatic STSs and in nonmetastatic STSs is likely to identify genes that are important in the development of metastatic disease and improve our ability to prognosticate for individual patients.
Collapse
Affiliation(s)
- Jennifer A Mahoney
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, 4700 Hillsborough Street, Raleigh, NC 27606, USA
| | | | | | | |
Collapse
|
43
|
Grassian AR, Schafer ZT, Brugge JS. ErbB2 stabilizes epidermal growth factor receptor (EGFR) expression via Erk and Sprouty2 in extracellular matrix-detached cells. J Biol Chem 2010; 286:79-90. [PMID: 20956544 DOI: 10.1074/jbc.m110.169821] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Epithelial cells are dependent on extracellular matrix (ECM) attachment for maintenance of metabolic activity and suppression of apoptosis. Here we show that loss of ECM attachment causes down-regulation of epidermal growth factor receptor (EGFR) and β1 integrin protein and mRNA expression and that ErbB2, which is amplified in 25% of breast tumors, reverses these effects of ECM deprivation. ErbB2 rescue of β1 integrin mRNA and protein in suspended cells is dependent on EGFR, however, the rescue of EGFR expression does not require β1 integrin. We show that there is a significant decrease in the stability of EGFR in ECM-detached cells that is reversed by ErbB2 overexpression. Rescue of both EGFR and β1 integrin protein by ErbB2 is dependent on Erk activity and induction of its downstream target Sprouty2, a protein known to regulate EGFR protein stability. Interestingly, expression of EGFR and β1 integrin protein is more dependent on Erk/Sprouty2 in ECM-detached ErbB2-overexpressing cells when compared with ECM-attached cells. These results provide further insight into the ErbB2-driven anchorage independence of tumor cells and provide a new mechanism for regulation of EGFR and β1 integrin expression in ECM-detached cells.
Collapse
Affiliation(s)
- Alexandra R Grassian
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
44
|
Mayer CE, Haigl B, Jantscher F, Siegwart G, Grusch M, Berger W, Sutterlüty H. Bimodal expression of Sprouty2 during the cell cycle is mediated by phase-specific Ras/MAPK and c-Cbl activities. Cell Mol Life Sci 2010; 67:3299-311. [PMID: 20461437 PMCID: PMC11115549 DOI: 10.1007/s00018-010-0379-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 04/14/2010] [Accepted: 04/20/2010] [Indexed: 10/19/2022]
Abstract
Sprouty2 is an important inhibitor of cell proliferation and signal transduction. In this study, we found a bimodal expression of Sprouty2 protein during cell cycle progression after exit from quiescence, whereas elevated Sprouty4 expression in the G1 phase stayed high throughout the rest of the cell cycle. Induction of the mitogen-activated protein kinase via activated Ras was crucial for increased Sprouty2 expression at the G0/G1 transition. Following the first peak, accelerated proteasomal protein degradation caused a transient attenuation of Sprouty2 abundance during late G1. Since the decline in its expression was abolished by dominant negative c-Cbl and the timely restricted interaction between Sprouty2 and c-Cbl disappeared at the second peak of Sprouty2 expression, we conclude that the second phase in the cell cycle-specific expression profile of Sprouty2 is solely dependent on ubiquitination by c-Cbl. Our results suggest that Sprouty2 abundance is the result of strictly coordinated activities of Ras and c-Cbl.
Collapse
Affiliation(s)
- Christoph-Erik Mayer
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
45
|
Sun Q, Jackson RA, Ng C, Guy GR, Sivaraman J. Additional serine/threonine phosphorylation reduces binding affinity but preserves interface topography of substrate proteins to the c-Cbl TKB domain. PLoS One 2010; 5:e12819. [PMID: 20877636 PMCID: PMC2943896 DOI: 10.1371/journal.pone.0012819] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 08/23/2010] [Indexed: 12/20/2022] Open
Abstract
The E3-ubiquitin ligase, c-Cbl, is a multi-functional scaffolding protein that plays a pivotal role in controlling cell phenotype. As part of the ubiquitination and downregulation process, c-Cbl recognizes targets, such as tyrosine kinases and the Sprouty proteins, by binding to a conserved (NX/R)pY(S/T)XXP motif via its uniquely embedded SH2 domain (TKB domain). We previously outlined the mode of binding between the TKB domain and various substrate peptide motifs, including epidermal growth factor receptor (EGFR) and Sprouty2 (Spry2), and demonstrated that an intrapetidyl hydrogen bond forms between the (pY-1) arginine or (pY-2) asparagine and the phosphorylated tyrosine, which is crucial for binding. Recent reports demonstrated that, under certain types of stimulation, the serine/threonine residues at the pY+1 and/or pY+2 positions within this recognition motif of EGFR and Sprouty2 may be endogenously phosphorylated. Using structural and binding studies, we sought to determine whether this additional phosphorylation could affect the binding of the TKB domain to these peptides and consequently, whether the type of stimulation can dictate the degree to which substrates bind to c-Cbl. Here, we show that additional phosphorylation significantly reduces the binding affinity between the TKB domain and its target proteins, EGFR and Sprouty2, as compared to peptides bearing a single tyrosine phosphorylation. The crystal structure indicates that this is accomplished with minimal changes to the essential intrapeptidyl bond and that the reduced strength of the interaction is due to the charge repulsion between c-Cbl and the additional phosphate group. This obvious reduction in binding affinity, however, indicates that Cbl's interactions with its TKB-centered binding partners may be more favorable in the absence of Ser/Thr phosphorylation, which is stimulation and context specific in vivo. These results demonstrate the importance of understanding the environment in which certain residues are phosphorylated, and the necessity of including this in structural investigations.
Collapse
Affiliation(s)
- Qingxiang Sun
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | | | - Cherlyn Ng
- Institute of Molecular and Cell Biology, Biopolis, Singapore, Singapore
| | - Graeme R. Guy
- Institute of Molecular and Cell Biology, Biopolis, Singapore, Singapore
- * E-mail: (GRG); (JS)
| | - J. Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (GRG); (JS)
| |
Collapse
|
46
|
Akbulut S, Reddi AL, Aggarwal P, Ambardekar C, Canciani B, Kim MKH, Hix L, Vilimas T, Mason J, Basson MA, Lovatt M, Powell J, Collins S, Quatela S, Phillips M, Licht JD. Sprouty proteins inhibit receptor-mediated activation of phosphatidylinositol-specific phospholipase C. Mol Biol Cell 2010; 21:3487-96. [PMID: 20719962 PMCID: PMC2947483 DOI: 10.1091/mbc.e10-02-0123] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PLCγ03B3 binds Spry1 and Spry2. Overexpression of Spry decreased PLCγ03B3 activity and IP3 and DAG production, whereas Spry-deficient cells yielded more IP3. Spry overexpression inhibited T-cell receptor signaling and Spry1 null T-cells hyperproliferated with TCR ligation. Through action of PLCγ03B3, Spry may influence signaling through multiple receptors. Sprouty (Spry) proteins are negative regulators of receptor tyrosine kinase signaling; however, their exact mechanism of action remains incompletely understood. We identified phosphatidylinositol-specific phospholipase C (PLC)-γ as a partner of the Spry1 and Spry2 proteins. Spry–PLCγ interaction was dependent on the Src homology 2 domain of PLCγ and a conserved N-terminal tyrosine residue in Spry1 and Spry2. Overexpression of Spry1 and Spry2 was associated with decreased PLCγ phosphorylation and decreased PLCγ activity as measured by production of inositol (1,4,5)-triphosphate (IP3) and diacylglycerol, whereas cells deficient for Spry1 or Spry1, -2, and -4 showed increased production of IP3 at baseline and further increased in response to growth factor signals. Overexpression of Spry 1 or Spry2 or small-interfering RNA-mediated knockdown of PLCγ1 or PLCγ2 abrogated the activity of a calcium-dependent reporter gene, suggesting that Spry inhibited calcium-mediated signaling downstream of PLCγ. Furthermore, Spry overexpression in T-cells, which are highly dependent on PLCγ activity and calcium signaling, blocked T-cell receptor-mediated calcium release. Accordingly, cultured T-cells from Spry1 gene knockout mice showed increased proliferation in response to T-cell receptor stimulation. These data highlight an important action of Spry, which may allow these proteins to influence signaling through multiple receptors.
Collapse
Affiliation(s)
- Simge Akbulut
- Division of Hematology and Oncology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chitra E, Lin YW, Davamani F, Hsiao KN, Sia C, Hsieh SY, Wei OL, Chen JH, Chow YH. Functional interaction between Env oncogene from Jaagsiekte sheep retrovirus and tumor suppressor Sprouty2. Retrovirology 2010; 7:62. [PMID: 20678191 PMCID: PMC2922082 DOI: 10.1186/1742-4690-7-62] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 08/02/2010] [Indexed: 11/10/2022] Open
Abstract
Background Jaagsiekte sheep retrovirus (JSRV) is a type D retrovirus capable of transforming target cells in vitro and in vivo. The Envelope (Env) gene from JSRV and from related retroviruses can induce oncogenic transformation, although the detailed mechanism is yet to be clearly understood. Host cell factors are envisaged to play a critical determining role in the regulation of Env-mediated cell transformation. Results JSRV Env-mediated transformation of a lung adenocarcinoma cell line induced rapid proliferation, anchorage-independent growth and tumor formation, but completely abrogated the migration ability. An analysis of the signaling scenario in the transformed cells suggested the involvement of the ERK pathway regulated by Sprouty2 in cell migration, and the PI3K-Akt and STAT3 pathways in proliferation and anchorage-independence. On the other hand, in a normal lung epithelial cell line, Env-mediated transformation only decreased the migration potential while the other functions remained unaltered. We observed that Env induced the expression of a tumor suppressor, Sprouty2, suggesting a correlation between Env-effect and Sprouty2 expression. Overexpression of Sprouty2 per se not only decreased the migratory potential and tumor formation potential of the target cells but also made them resistant to subsequent Env-mediated transformation. On the other hand, over expression of the functional mutants of Sprouty2 had no inhibitory effect, confirming the role of Sprouty2 as a tumor suppressor. Conclusions Our studies demonstrate that Env and Sprouty2 have a functional relationship, probably through shared signaling network. Sprouty2 functions as a tumor suppressor regulating oncogenic transformation of cells, and it therefore has the potential to be exploited as a therapeutic anti-cancer agent.
Collapse
Affiliation(s)
- Ebenezer Chitra
- Vaccine R&D Center, National Health Research Institutes, 35, Keyan Road, Zhunan, Miaoli County 350, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Holgren C, Dougherty U, Edwin F, Cerasi D, Taylor I, Fichera A, Joseph L, Bissonnette M, Khare S. Sprouty-2 controls c-Met expression and metastatic potential of colon cancer cells: sprouty/c-Met upregulation in human colonic adenocarcinomas. Oncogene 2010; 29:5241-53. [PMID: 20661223 PMCID: PMC2945447 DOI: 10.1038/onc.2010.264] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Sprouty negatively regulates receptor tyrosine kinase signals by inhibiting Ras/ERK pathways. Sprouty is down-regulated in breast, prostate and liver cancers and appears to function as a tumor suppressor. The role of Sprouty in colonic neoplasia, however, has not been investigated. Sprouty-2 protein and mRNA transcripts were significantly up-regulated in human colonic adenocarcinomas. Strikingly, the c-Met receptor was also upregulated in tumors with increased sprouty-2. To delineate a potential causal relationship between sprouty-2 and c-Met, K-ras mutant HCT-116 colon cancer cells were transduced with purified TAT-sprouty-2 protein or stably transfected with full-length human sprouty-2 gene. Sprouty-2 up-regulation significantly increased cell proliferation by accelerating cell cycle transition. Sprouty-2 transfectants demonstrated strong up-regulation of c-Met protein and mRNA transcripts and hepatocyte growth factor stimulated ERK and Akt phosphorylation and enhanced cell migration and invasion. In contrast, knockdown of c-Met by siRNA significantly decreased cell proliferation, migration and invasion in sprouty-2 transfectants. Further, knockdown of sprouty-2 by siRNA in parental HT-29 and LS-174T colon cancer cells also decreased cell invasion. Sprouty-2 transfectants formed significantly larger tumor xenografts and demonstrated increased proliferation and angiogenesis and suppressed apoptosis. Sprouty-2 tumors metastasized to liver from cecal orthotopic implants suggesting sprouty-2 might also enhance metastatic signals. Thus in colon cancer sprouty functions as an oncogene and its effects are mediated in part by c-Met up-regulation.
Collapse
Affiliation(s)
- C Holgren
- Hines Veterans Affairs Medical Center, Hines, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Visser Smit GD, Place TL, Cole SL, Clausen KA, Vemuganti S, Zhang G, Koland JG, Lill NL. Cbl controls EGFR fate by regulating early endosome fusion. Sci Signal 2009; 2:ra86. [PMID: 20029031 DOI: 10.1126/scisignal.2000217] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amino acid residues 1 to 434 of the E3 ubiquitin ligase Cbl control signaling of the epidermal growth factor receptor (EGFR) by enhancing its ubiquitination, down-regulation, and lysosomal degradation. This region of Cbl comprises a tyrosine kinase-binding domain, a linker region, a really interesting new gene finger (RF), and a subset of the residues of the RF tail. In experiments with full-length alanine substitution mutants, we demonstrated that the RF tail of Cbl regulated biochemically distinct checkpoints in the endocytosis of EGFR. The Cbl- and ubiquitin-dependent degradation of the regulator of internalization hSprouty2 was compromised by the Val(431)--> Ala mutation, whereas the Cbl- and EGFR-dependent dephosphorylation or degradation of the endosomal trafficking regulator Hrs was compromised by the Phe(434)--> Ala mutation. Deregulated phosphorylation of Hrs correlated with inhibition of the fusion of early endosomes and of the degradation of EGFR. This study provides the first evidence that Cbl regulates receptor fate by controlling the fusion of sorting endosomes. We postulate that it does so by modulating the abundance of tyrosine-phosphorylated Hrs.
Collapse
Affiliation(s)
- Gina D Visser Smit
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lee JS, Lee JE, Oh YM, Park JB, Choi H, Choi CY, Kim IH, Lee SH, Choi K. Recruitment of Sprouty1 to immune synapse regulates T cell receptor signaling. THE JOURNAL OF IMMUNOLOGY 2009; 183:7178-86. [PMID: 19915061 DOI: 10.4049/jimmunol.0803799] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
TCR stimulation not only initiates positive signals for T cell activation, but also induces negative signals that down-regulate T cells. We previously reported that Sprouty1, a negative regulator of Ras-MAPK pathway of receptor tyrosine kinases, was induced by TCR signal and inhibited TCR signaling in CD4+ T cell clones. In this study, we addressed the mechanism underlying Sprouty1 inhibition of T cells. When overexpressed in Jurkat T cells, Sprouty1 inhibited TCR signal-induced IL-2 transcription, and also AP-1, NFAT, and NF-kappaB activation, which suggests that Sprouty1 acts at proximal TCR signalosome. Accordingly, we found that Sprouty1 translocated to immune synapse upon TCR engagement in both Jurkat cells and activated primary T cells and interacted with various signaling molecules in the TCR signalosome, such as linker for activation of T cells (LAT), phospholipase C-gamma1 (PLC-gamma1), c-Cbl/Cbl-b, and HPK1. Sprouty1 inhibited LAT phosphorylation, leading to decreased MAPK activation and IL-2 production. Deletion of C-terminal 54 amino acids in Sprouty1 abolished its inhibitory effect and this deletion mutant was unable to translocate to immune synapse and interact with LAT. Overall, our data suggest that Sprouty1 induced by TCR signal negatively regulates further TCR signaling by interacting with proximal signaling molecules in immune synapse, providing a novel regulatory mechanism of T cells.
Collapse
Affiliation(s)
- Jun Sung Lee
- Specific Organs Cancer Branch Research Institute National Cancer Center, Gyeonggi-do, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|