1
|
Liu P, Chen X, Zhao Y, Ali W, Xu T, Sun J, Liu Z. Anti-Stemness and Anti-Proliferative Effects of Cadmium on Bovine Mammary Epithelial Cells. Vet Sci 2024; 12:7. [PMID: 39852882 PMCID: PMC11769218 DOI: 10.3390/vetsci12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
Cadmium accumulation in the body can damage a variety of organs and impair their development and functions. In the present study, we investigated the effect of cadmium on the stemness and proliferation of normal bovine mammary epithelial cells (BMECs). Normal bovine mammary epithelial cells treated with cadmium chloride were assessed for the expression of stemness-related proteins and cell proliferation. Western blotting results found that exposure to different concentrations of cadmium (0, 1.25, 2.5, and 5 μm) for 48 h significantly increased Gli1 expression but unexpectedly decreased the expression of downstream stem cell-related proteins including BMI1, SOX2, and ALDH. However, we also observed that treatment with 5 μm cadmium for 48 h inhibited mammosphere formation using microscopy. In this study, cadmium exposure significantly reduced cell viability and mobility. Flow cytometry detection found that cadmium decreased the percentage of cells in the G0 phase but increased the percentage of cells in the S phase and the apoptosis rate. Furthermore, cadmium exposure significantly increased the levels of caspase-8, caspase-3, and PARP cleavage as assessed by western blotting. Our study uncovers a previously unrecognized role of cadmium in mammary cell stemness and suggests that cadmium may affect breast development by impairing normal stem cell self-renewal and inducing their apoptosis. Therefore, this study provides important scientific significance regarding whether heavy metal cadmium affects normal breast development.
Collapse
Affiliation(s)
- Penggang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.); (Y.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xueli Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.); (Y.Z.)
| | - Yuqing Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.); (Y.Z.)
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.); (Y.Z.)
| | - Tianle Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| | - Jing Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.); (Y.Z.)
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.); (Y.Z.)
| |
Collapse
|
2
|
Yıldız B, Demirel R, Havadar HB, Yıldız G, Öziç C, Kamiloğlu NN, Özden Ö. Blocking SIG1R Along with Low Cadmium Exposure Display Anti-cancer Qualities in Both MCF7 and MDA-MB-231 Cells. Biol Trace Elem Res 2024; 202:3588-3600. [PMID: 37940833 DOI: 10.1007/s12011-023-03947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/28/2023] [Indexed: 11/10/2023]
Abstract
Sigma-1 receptor (SIG1R) is a chaperone that modulates inositol 1,4,5-trisphosphate receptor type1 (IP3R1) calcium (Ca2+) channels on the endoplasmic reticulum. Therefore, SIG1R functions as an indirect regulator of Ca2+ and acts as an apoptosis modulator. Increased expression of SIG1R is associated with poor prognosis in breast cancers (BC), and SIG1R antagonists like BD1047 induce apoptosis. As a heavy metal, cadmium (Cd2+) is competitive with Ca2+ due to its physicochemical similarities and may trigger apoptosis at low concentrations. Our study investigated the SIG1R protein expression in 74 BC patients and found a significant increase in SIG1R expression in the triple-negative BC subtype. We also examined the apoptotic and anti-cancer effects of BD1047 in combination with CdCl2 in MCF7 and MDA-MB-213 cells. Cells were treated with CdCl2 at doses of 1 μM, 25 μM, and 50 μM, along with BD1047. Higher doses of CdCl2 were cytotoxic on both cancer cells and significantly increased DNA breaks. However, low-dose CdCl2 with BD1047 increased cell death and the apoptotic index in BC cells, although it did not exhibit cytotoxic effects on HUVEC cells. Co-administration of low-dose CdCl2 with BD1047 also reduced the migration and colony-forming ability of BC cells. Moreover, the expression of SIG1R protein in these groups decreased significantly compared to groups treated with BD1047 or low-dose CdCl2 alone. In conclusion, low-dose CdCl2 is thought to increase the apoptotic ability of BD1047 in BC cells by reducing SIG1R expression.
Collapse
Affiliation(s)
- Barış Yıldız
- Institute of Health Sciences, Department of Physiology, Kafkas University, 36100, Kars, Turkey
| | - Ramazan Demirel
- Department of Bioengineering, Institute of Natural and Applied Sciences, Kafkas University, 36100, Kars, Turkey
| | - Hatice Beşeren Havadar
- Deparment of Medical Pathology, Centre of Health Research and Training Hospital, Kafkas University, 36100, Kars, Turkey
| | - Gülden Yıldız
- Deparment of Medical Pathology, Centre of Health Research and Training Hospital, Kafkas University, 36100, Kars, Turkey
| | - Cem Öziç
- Department of Medical Biology, School of Medicine, Kafkas University, 36100, Kars, Turkey
| | - Nadide Nabil Kamiloğlu
- Department of Physiology, Faculty of Veterinary Medicine, Kafkas University, 36100, Kars, Turkey
| | - Özkan Özden
- Department of Bioengineering, Faculty of Engineering and Architecture, Kafkas University, 36100, Kars, Turkey.
| |
Collapse
|
3
|
Lei Z, Niu J, Cai H, Kong Z, Ding X, Dong Y, Zhang D, Li X, Shao J, Lin A, Zhou R, Yang S, Yan Q. NF2 regulates IP3R-mediated Ca 2+ signal and apoptosis in meningiomas. FASEB J 2024; 38:e23737. [PMID: 38953724 DOI: 10.1096/fj.202400436r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024]
Abstract
Meningiomas are the most common primary intracranial tumors and account for nearly 30% of all nervous system tumors. Approximately half of meningioma patients exhibit neurofibromin 2 (NF2) gene inactivation. Here, NF2 was shown to interact with the endoplasmic reticulum (ER) calcium (Ca2+) channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in IOMM-Lee, a high-grade malignant meningioma cell line, and the F1 subdomain of NF2 plays a critical role in this interaction. Functional assays indicated that NF2 promotes the phosphorylation of IP3R (Ser 1756) and IP3R-mediated endoplasmic reticulum (ER) Ca2+ release by binding to IP3R1, which results in Ca2+-dependent apoptosis. Knockout of NF2 decreased Ca2+ release and promoted resistance to apoptosis, which was rescued by wild-type NF2 overexpression but not by F1 subdomain deletion truncation overexpression. The effects of NF2 defects on the development of tumors were further studied in mouse models. The decreased expression level of NF2 caused by NF2 gene knockout or mutation affects the activity of the IP3R channel, which reduces Ca2+-dependent apoptosis, thereby promoting the development of tumors. We elucidated the interaction patterns of NF2 and IP3R1, revealed the molecular mechanism through which NF2 regulates IP3R1-mediated Ca2+ release, and elucidated the new pathogenic mechanism of meningioma-related NF2 variants. Our study broadens the current understanding of the biological function of NF2 and provides ideas for drug screening of NF2-associated meningioma.
Collapse
Affiliation(s)
- Zhaoying Lei
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Niu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huajian Cai
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhengyi Kong
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xue Ding
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yufei Dong
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dong Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xu Li
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jianzhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruhong Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuxu Yang
- Department of Neurosurgery Sir Run Run Shaw Hospital, School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Qingfeng Yan
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Pediatrics, The First Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang University, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Urzì Brancati V, Aliquò F, Freni J, Pantano A, Galipò E, Puzzolo D, Minutoli L, Marini HR, Campo GM, D’Ascola A. The Effects of Seleno-Methionine in Cadmium-Challenged Human Primary Chondrocytes. Pharmaceuticals (Basel) 2024; 17:936. [PMID: 39065786 PMCID: PMC11280455 DOI: 10.3390/ph17070936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Cadmium (Cd) is a potentially toxic element able to interfere with cellular functions and lead to disease or even death. Cd accumulation has been demonstrated in cartilage, where it can induce damage in joints. The aim of this study was to evaluate the effect of CdCl2 on primary cultures of human chondrocytes and the possible protective effect of seleno-methionine (Se-Met). Human primary articular chondrocytes were cultured and treated as follows: control groups, cells challenged with 7.5 μM and 10 μM CdCl2 alone, and cells pretreated with 10 and 20 μM Se-Met and then challenged with 7.5 μM and 10 μM CdCl2. Twenty-four hours after incubation, cell viability, histological evaluation with hematoxylin-eosin stain, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay were performed. Furthermore, reverse transcription-PCR was carried out to evaluate mRNA levels of BAX, BAK1, CASP-3, and CASP-9. After CdCl2 challenge at both doses, a reduced cell viability and an overexpression of BAX, BAK1, CASP-3, and CASP-9 genes, as well as a high number of TUNEL-positive cells, were demonstrated, all parameters becoming higher as the dose of CdCl2 was increased. The pretreatment with Se-Met lowered the expression of all considered genes, improved cell viability and morphological changes, and reduced the number of TUNEL-positive cells. It was concluded that Se-Met plays a protective role against CdCl2-induced structural and functional changes in chondrocytes in vitro, as it improved cell viability and showed a positive role in the context of the apoptotic pathways. It is therefore suggested that a translational, multifaceted approach, with plant-based diets, bioactive functional foods, nutraceuticals, micronutrients, and drugs, is possibly advisable in situations of environmental pollution caused by potentially toxic elements.
Collapse
Affiliation(s)
- Valentina Urzì Brancati
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (V.U.B.); (A.P.); (E.G.); (H.R.M.); (G.M.C.); (A.D.)
| | - Federica Aliquò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (F.A.); (J.F.); (D.P.)
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (F.A.); (J.F.); (D.P.)
| | - Alice Pantano
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (V.U.B.); (A.P.); (E.G.); (H.R.M.); (G.M.C.); (A.D.)
| | - Erika Galipò
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (V.U.B.); (A.P.); (E.G.); (H.R.M.); (G.M.C.); (A.D.)
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (F.A.); (J.F.); (D.P.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (V.U.B.); (A.P.); (E.G.); (H.R.M.); (G.M.C.); (A.D.)
| | - Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (V.U.B.); (A.P.); (E.G.); (H.R.M.); (G.M.C.); (A.D.)
| | - Giuseppe Maurizio Campo
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (V.U.B.); (A.P.); (E.G.); (H.R.M.); (G.M.C.); (A.D.)
| | - Angela D’Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (V.U.B.); (A.P.); (E.G.); (H.R.M.); (G.M.C.); (A.D.)
| |
Collapse
|
5
|
Gu J, Guo C, Ruan J, Li K, Zhou Y, Gong X, Shi H. From ferroptosis to cuproptosis, and calcicoptosis, to find more novel metals-mediated distinct form of regulated cell death. Apoptosis 2024; 29:586-604. [PMID: 38324163 DOI: 10.1007/s10495-023-01927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 02/08/2024]
Abstract
Regulated cell death (RCD), also known as programmed cell death (PCD), plays a critical role in various biological processes, such as tissue injury/repair, development, and homeostasis. Dysregulation of RCD pathways can lead to the development of many human diseases, such as cancer, neurodegenerative disorders, and cardiovascular diseases. Maintaining proper metal ion homeostasis is critical for human health. However, imbalances in metal levels within cells can result in cytotoxicity and cell death, leading to a variety of diseases and health problems. In recent years, new types of metal overload-induced cell death have been identified, including ferroptosis, cuproptosis, and calcicoptosis. This has prompted us to examine the three defined metal-dependent cell death types, and discuss other metals-induced ferroptosis, cuproptosis, and disrupted Ca2+ homeostasis, as well as the roles of Zn2+ in metals' homeostasis and related RCD. We have reviewed the connection between metals-induced RCD and various diseases, as well as the underlying mechanisms. We believe that further research in this area will lead to the discovery of novel types of metal-dependent RCD, a better understanding of the underlying mechanisms, and the development of new therapeutic strategies for human diseases.
Collapse
Affiliation(s)
- Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Chuanzhi Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Jiacheng Ruan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Kongdong Li
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212013, China.
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
6
|
Zhang L, Qi J, Zhang X, Zhao X, An P, Luo Y, Luo J. The Regulatory Roles of Mitochondrial Calcium and the Mitochondrial Calcium Uniporter in Tumor Cells. Int J Mol Sci 2022; 23:6667. [PMID: 35743109 PMCID: PMC9223557 DOI: 10.3390/ijms23126667] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 02/06/2023] Open
Abstract
Mitochondria, as the main site of cellular energy metabolism and the generation of oxygen free radicals, are the key switch for mitochondria-mediated endogenous apoptosis. Ca2+ is not only an important messenger for cell proliferation, but it is also an indispensable signal for cell death. Ca2+ participates in and plays a crucial role in the energy metabolism, physiology, and pathology of mitochondria. Mitochondria control the uptake and release of Ca2+ through channels/transporters, such as the mitochondrial calcium uniporter (MCU), and influence the concentration of Ca2+ in both mitochondria and cytoplasm, thereby regulating cellular Ca2+ homeostasis. Mitochondrial Ca2+ transport-related processes are involved in important biological processes of tumor cells including proliferation, metabolism, and apoptosis. In particular, MCU and its regulatory proteins represent a new era in the study of MCU-mediated mitochondrial Ca2+ homeostasis in tumors. Through an in-depth analysis of the close correlation between mitochondrial Ca2+ and energy metabolism, autophagy, and apoptosis of tumor cells, we can provide a valuable reference for further understanding of how mitochondrial Ca2+ regulation helps diagnosis and therapy.
Collapse
Affiliation(s)
- Linlin Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Jingyi Qi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Xu Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Xiya Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Peng An
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Junjie Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| |
Collapse
|
7
|
Boldrini GG, Martín Molinero G, Pérez Chaca MV, Ciminari ME, Moyano F, Córdoba ME, Pennacchio G, Fanelli M, Álvarez SM, Gómez NN. Glycine max (soy) based diet improves antioxidant defenses and prevents cell death in cadmium intoxicated lungs. Biometals 2022; 35:229-244. [PMID: 35038064 DOI: 10.1007/s10534-022-00361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/04/2022] [Indexed: 11/02/2022]
Abstract
Cadmium (Cd) is a toxic metal and an important environmental contaminant. We analyzed its effects on oligoelements, oxidative stress, cell death, Hsp expression and the histoarchitecture of rat lung under different diets, using animal models of subchronic cadmium intoxication. We found that Cd lung content augmented in intoxicated groups: Zn, Mn and Se levels showed modifications among the different diets, while Cu showed no differences. Lipoperoxidation was higher in both intoxicated groups. Expression of Nrf-2 and SOD-2 increased only in SoCd. GPx levels showed a trend to increase in Cd groups. CAT activity was higher in intoxicated groups, and it was higher in Soy groups vs. Casein. LDH activity in BAL increased in CasCd and decreased in both soy-fed groups. BAX/Bcl-2 semiquantitative ratio showed similar results than LDH activity, confirmed by Caspase 3 immunofluorescence. The histological analysis revealed an infiltration process in CasCd lungs, with increased connective tissue, fused alveoli and capillary fragility. Histoarchitectural changes were less severe in soy groups. Hsp27 expression increased in both intoxicated groups, while Hsp70 only augmented in SoCd. This show that a soy-diet has a positive impact upon oxidative unbalance, cell death and morphological changes induced by Cd and it could be a good alternative strategy against Cd exposure.
Collapse
Affiliation(s)
- Gabriel Giezi Boldrini
- Laboratory of Nutrition and Environment, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
- IMIBIO-SL CONICET, San Luis, Argentina
| | - Glenda Martín Molinero
- Laboratory of Nutrition and Environment, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
- IMIBIO-SL CONICET, San Luis, Argentina
| | - María Verónica Pérez Chaca
- Laboratory of Morphophysiology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | - María Eugenia Ciminari
- Laboratory of Morphophysiology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | | | | | | | - Mariel Fanelli
- Laboratory of Oncology, IMBECU (CCT), CONICET, Mendoza, Argentina
| | - Silvina Mónica Álvarez
- Laboratory of Nutrition and Environment, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina.
- IMIBIO-SL CONICET, San Luis, Argentina.
| | - Nidia Noemí Gómez
- IMIBIO-SL CONICET, San Luis, Argentina.
- Laboratory of Morphophysiology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina.
| |
Collapse
|
8
|
Li YQ, Chen CM, Liu N, Wang L. Cadmium-induced ultrastructural changes and apoptosis in the gill of freshwater mussel Anodonta woodiana. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23338-23351. [PMID: 34811609 DOI: 10.1007/s11356-021-16877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the acute toxicity of cadmium (Cd) to the freshwater mussel Anodonta woodiana. The freshwater mussels were exposed to five concentrations of Cd (0 mg/L, 8.43 mg/L, 16.86 mg/L, 33.72 mg/L, and 67.45 mg/L) for up to 96 h. The 24-h, 48-h, 72-h, and 96-h LC50 values for Cd were estimated as 562.3 mg/L, 331.1 mg/L, 182.0 mg/L, and 134.9 mg/L, respectively. Caspase-3, caspase-8, caspase-9, and Ca-ATPase activities; protein and H2O2 levels; DNA fragmentation; and ultrastructure of the gill were also investigated. The activities of caspase-3 and caspase-9 in mussels were increased by Cd in a dose-dependent manner, where higher doses of Cd (33.72 mg/L and 67.45 mg/L) significantly increased the enzyme activities compared to the controls (P < 0.05). The caspase-8 activity was significantly depressed by a low dose of Cd (8.43 mg/L) but was clearly induced by higher doses of Cd (16.86 mg/L, 33.72 mg/L, and 67.45 mg/L) (P < 0.05). The Ca-ATPase activity and H2O2 levels were elevated and reached maximum values under the medium dose of Cd (16.86 mg/L). However, protein levels were decreased by Cd in an inverse dose-dependent manner. In the gills of the mussels, Cd treatment induced DNA fragmentation as demonstrated by DNA ladders observed via agarose gel electrophoresis. Moreover, ultrastructural alterations in gill cells of mussels treated with Cd (16.86 mg/L and 67.45 mg/L) for 96 h were observed by electronic microscopy. The ultrastructure abnormalities were characterized by the following features: (1) a disordered arrangement and breaking off of microvilli of epithelial cells; (2) chromatin condensed near the nuclear membrane and the appearances of extremely irregular nuclei, some with a fingerlike shape and an unclear, swollen, invaginated, or ruptured nuclear membrane and apoptotic bodies; (3) swollen and vacuolating mitochondria, some with disintegrated or missing cristae; (4) a disintegrated rough endoplasmic reticulum containing different sizes of vesicles; and (5) shrinking and deformation of Golgi bodies with decreased vesicle numbers. Our results demonstrated that Cd could activate caspase-3, caspase-8, caspase-9, and Ca-ATPase; cause ultrastructural changes; and produce DNA fragmentation in the mussels investigated. Based on the information obtained through this study, it is reasonable to conclude that Cd can induce apoptosis in the gills of the mussels, eventually leading to tissue damage.
Collapse
Affiliation(s)
- Yong Quan Li
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China
| | - Chien M Chen
- Department of Environmental Resources Management, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Na Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China.
| |
Collapse
|
9
|
A Viral Long Non-Coding RNA Protects against Cell Death during Human Cytomegalovirus Infection of CD14+ Monocytes. Viruses 2022; 14:v14020246. [PMID: 35215840 PMCID: PMC8874509 DOI: 10.3390/v14020246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNA β2.7 is the most highly transcribed viral gene during latent human cytomegalovirus (HCMV) infection. However, as yet, no function has ever been ascribed to β2.7 during HCMV latency. Here we show that β2.7 protects against apoptosis induced by high levels of reactive oxygen species (ROS) in infected monocytes, which routinely support latent HCMV infection. Monocytes infected with a wild-type (WT) virus, but not virus deleted for the β2.7 gene (Δβ2.7), are protected against mitochondrial stress and subsequent apoptosis. Protected monocytes display lower levels of ROS and additionally, stress-induced death in the absence of β2.7 can be reversed by an antioxidant which reduces ROS levels. Furthermore, we show that infection with WT but not Δβ2.7 virus results in strong upregulation of a cellular antioxidant enzyme, superoxide dismutase 2 (SOD2) in CD14+ monocytes. These observations identify a role for the β2.7 viral transcript, the most abundantly expressed viral RNA during latency but for which no latency-associated function has ever been ascribed, and demonstrate a novel way in which HCMV protects infected monocytes from pro-death signals to optimise latent carriage.
Collapse
|
10
|
Gupta S, Vandevord JM, Loftus LM, Toupin N, Al-Afyouni MH, Rohrabaugh TN, Turro C, Kodanko JJ. Ru(II)-Based Acetylacetonate Complexes Induce Apoptosis Selectively in Cancer Cells. Inorg Chem 2021; 60:18964-18974. [PMID: 34846875 DOI: 10.1021/acs.inorgchem.1c02796] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The synthesis, chemical and biological characterization of seven Ru(II) polypyridyl complexes containing acetylacetonate (acac) ligands are reported. Electronic absorption spectra were determined and electrochemical potentials consistent with Ru(III/II) couples ranging from +0.60 to +0.73 V vs Ag/AgCl were measured. A series of complexes were screened against MDA-MB-231, DU-145, and MCF-10A cell lines to evaluate their cytotoxicities in cancer and normal cell lines. Although most complexes were either nontoxic or equipotent in cancer cells and normal cell lines, compound 1, [Ru(dpqy)(acac)(py)](PF6), where dqpy is 2,6-di(quinolin-2-yl)pyridine, showed up to 2.5:1.0 selectivity for cancer as compared to normal cells, along with nanomolar EC50 values in MDA-MB-231 cells. Lipophilicity, determined as the octanol/water partition coefficient, log Po/w, ranged from -0.33 (0.06) to 1.15 (0.10) for the complexes. Although cytotoxicity was not correlated with electrochemical potentials, a moderate linear correlation between lipophilicity and toxicities was observed. Cell death mechanism studies indicated that several of the Ru-acac compounds, including 1, induce apoptosis in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Sayak Gupta
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Jessica M Vandevord
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lauren M Loftus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicholas Toupin
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Malik H Al-Afyouni
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas N Rohrabaugh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
11
|
Fant C, Granzotto A, Mestas JL, Ngo J, Lafond M, Lafon C, Foray N, Padilla F. DNA Double-Strand Breaks in Murine Mammary Tumor Cells Induced by Combined Treatment with Doxorubicin and Controlled Stable Cavitation. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2941-2957. [PMID: 34315620 DOI: 10.1016/j.ultrasmedbio.2021.05.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Chemotherapeutic agents such as doxorubicin induce cell cytotoxicity through induction of DNA double-strand breaks. Recent studies have reported the occurrence of DNA double-strand breaks in different cell lines exposed to cavitational ultrasound. As ultrasound stable cavitation can potentiate the therapeutic effects of cytotoxic drugs, we hypothesized that combined treatment with unseeded stable cavitation and doxorubicin would lead to increased DNA damage and would reduce cell viability and proliferation in vitro. In this study, we describe how we determined, using 4T1 murine mammary carcinoma as a model cell line, that unseeded stable cavitation combined with doxorubicin leads to additive DNA double-strand break induction. Combined treatment with doxorubicin and unseeded stable cavitation significantly reduced cell viability and proliferation at 72 h. A mechanistic study of the potential mechanisms of action of the combined treatment identified the presence of cavitation necessary to increase early DNA double-strand break induction, likely mediated by a bystander effect with release of extracellular calcium.
Collapse
Affiliation(s)
- Cécile Fant
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, Lyon, France
| | | | - Jean-Louis Mestas
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, Lyon, France
| | - Jacqueline Ngo
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, Lyon, France
| | - Maxime Lafond
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, Lyon, France
| | - Cyril Lafon
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, Lyon, France
| | | | - Frédéric Padilla
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, Lyon, France; Focused Ultrasound Foundation, Charlottesville, Virginia, USA; Department of Radiology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|
12
|
Wei ZJ, Sun L, Li YL, Muhammad JS, Wang Y, Feng QW, Zhang YZ, Inadera H, Cui ZG, Wu CA. Low‑calorie sweetener D‑psicose promotes hydrogen peroxide‑mediated apoptosis in C2C12 myogenic cells favoring skeletal muscle cell injury. Mol Med Rep 2021; 24:536. [PMID: 34080650 PMCID: PMC8170266 DOI: 10.3892/mmr.2021.12175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Diet and exercise are the most effective approaches used to induce weight loss. D‑psicose is a low‑calorie sweetener that has been shown to reduce weight in obese individuals. However, the effect of D‑psicose on muscle cells under oxidative stress, which is produced during exercise, requires further investigation. The present study aimed to determine the effects of D‑psicose on C2C12 myogenic cells in vitro. Hydrogen peroxide (H2O2) was used to stimulate the generation of intracellular reactive oxygen species (ROS) in muscle cells to mimic exercise conditions. Cell viability was analyzed using a MTT assay and flow cytometry was used to analyze the levels of apoptosis, mitochondrial membrane potential (MMP), the generation of ROS and the cell cycle distribution following treatment. Furthermore, protein expression levels were analyzed using western blotting and cell proliferation was determined using a colony formation assay. The results of the present study revealed that D‑psicose alone exerted no toxicity on C2C12 mouse myogenic cells. However, in the presence of low‑dose (100 µM) H2O2‑induced ROS, D‑psicose induced C2C12 cell injury and significantly decreased C2C12 cell viability in a dose‑dependent manner. In addition, the levels of apoptosis and the generation of ROS increased, while the MMP decreased. MAPK family molecules were also activated in a dose‑dependent manner following treatment. Notably, the combined treatment induced G2/M phase arrest and reduced the proliferation of C2C12 cells. In conclusion, the findings of the present study suggested that D‑psicose may induce toxic effects on muscle cells in a simulated exercise situation by increasing ROS levels, activating the MAPK signaling pathway and disrupting the MMP.
Collapse
Affiliation(s)
- Zhen-Jie Wei
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Lu Sun
- Department of Pediatric Cardiology, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Yu-Lin Li
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ying Wang
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Qian-Wen Feng
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yan-Zhuo Zhang
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Hidekuni Inadera
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Zheng-Guo Cui
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Cheng-Ai Wu
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| |
Collapse
|
13
|
Rahgoshai S, Mehnati P, Aghamiri MR, Haghighi Borujeini M, Banaei A, Tarighatnia A, Nader ND, Kiapour M, Abedi-Firouzjah R. Evaluating the radioprotective effect of Cimetidine, IMOD, and hybrid radioprotectors agents: An in-vitro study. Appl Radiat Isot 2021; 174:109760. [PMID: 33971548 DOI: 10.1016/j.apradiso.2021.109760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION There are various radioprotective agents with different mechanisms that help to decrease ionizing radiation side effects. The radioprotective effect of Cimetidine and IMOD was assessed individually and compared with the hybrid radioprotectors agents (HRPAs-IMOD and Cimetidine) on human lymphocyte cells. METHODS Twenty healthy volunteers (ten men and ten women) participated in the present study. About 75 mL peripheral blood lymphocytes from each individual were collected, and they were divided into 36 groups. Briefly, the blood samples were treated with different concentrations of Cimetidine (12.6 and 25.2 μg/mL) and IMOD (0.04, 0.08, and 0.12 mg/mL), and also a combination of these agents, namely hybrid radioprotectors agents (HRPAs). Besides, the irradiated groups were exposed to 2 and 4 Gy of Co-60 gamma irradiation. The amount of cellular damage was assessed using the micronucleus assay. The repeated measurements and paired T-test statistical analysis were used to compare the micronucleus frequencies in different groups. RESULTS The micronucleus frequencies were significantly reduced (p < 0.05) in irradiated groups when the non-toxic concentrations of Cimetidine, IMOD, and HRPAs have been used. The reduction in micronucleus frequency was obtained 5-29% for Cimetidine and 40-51% for IMOD in peripheral blood lymphocytes irradiated with 2 Gy. This reduction in 4 Gy irradiation was 8-17% for Cimetidine and 27-37% for IMOD. The HRPAs resulted in a higher radioprotective effect, in a way that they cause up to 58% and 43% micronucleus frequency reduction in 2 and 4 Gy, respectively. CONCLUSION In conclusion, the HRPAs showed the highest level of radioprotective. In addition, IMOD was remarkably higher radioprotective than Cimetidine, which may be related to its greater non-toxic concentrations.
Collapse
Affiliation(s)
- Siroos Rahgoshai
- Radiology Group, Shahid Beheshti of University of Paramedical Sciences, Tehran, Iran; Medical Imaging Department, Aalinasab Hospital, Social Security Organization (SSO), Tabriz, Iran
| | - Parinaz Mehnati
- Medical Physics Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Reza Aghamiri
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran
| | | | - Amin Banaei
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Tarighatnia
- Medical Imaging Department, Aalinasab Hospital, Social Security Organization (SSO), Tabriz, Iran; Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran, University of Medical Sciences, Tehran, Iran
| | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Mohammad Kiapour
- Department of Medical Physics Radiobiology and Radiation Protection, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | | |
Collapse
|
14
|
Etemadi T, Momeni HR, Ghafarizadeh AA. Impact of silymarin on cadmium-induced apoptosis in human spermatozoa. Andrologia 2020; 52:e13795. [PMID: 32829504 DOI: 10.1111/and.13795] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress-induced apoptosis in spermatozoa may lead to male infertility. Environmental pollutants and heavy metals such as cadmium cause harmful effects on the reproductive system and sperm parameters through the induction of oxidative stress. Silymarin, as a potent antioxidant, is able to inhibit oxidative stress. This study was performed to investigate the protective effects of silymarin on cadmium-induced toxicity in human spermatozoa. Sperm samples were divided into the following five groups: (a) spermatozoa at 0 min, (b) spermatozoa in the control group, (c) spermatozoa treated with cadmium chloride (20 μM), (d) spermatozoa treated with silymarin (2 μM)+ cadmium chloride (20 μM) and (e) spermatozoa treated with silymarin (2 μM). Sperm parameters related to apoptosis, such as DNA fragmentation, nucleus diameter, mitochondrial membrane potential (MMP) and expression of caspase-3, were evaluated in all groups. After 180 min, spermatozoa treated with cadmium chloride showed a significant decrease in nucleus diameter and MMP but a significant increase in DNA fragmentation; however, caspase-3 expression remained unchanged. At this time point, silymarin in the silymarin + cadmium chloride group could significantly reverse the adverse effects of cadmium chloride on these parameters.Silymarn could partly compensate for the caspase-independent apoptosis in the spermatozoa. Therefore, oxidative stress could be a consequence for cadmium toxicity.
Collapse
Affiliation(s)
- Tahereh Etemadi
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Hamid Reza Momeni
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | | |
Collapse
|
15
|
Malaiyandi LM, Sharthiya H, Barakat AN, Edwards JR, Dineley KE. Using FluoZin-3 and fura-2 to monitor acute accumulation of free intracellular Cd 2+ in a pancreatic beta cell line. Biometals 2019; 32:951-964. [PMID: 31754889 PMCID: PMC7446769 DOI: 10.1007/s10534-019-00226-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/08/2019] [Indexed: 11/28/2022]
Abstract
The understanding of cellular Cd2+ accumulation and toxicity is hampered by a lack of fluorescent indicators selective for intracellular free Cd2+ ([Cd2+]i). In this study, we used depolarized MIN6 mouse pancreatic beta cells as a model for evaluating [Cd2+]i detection with commercially available fluorescent probes, most of which have been traditionally used to visualize [Ca2+]i and [Zn2+]i. We trialed a panel of 12 probes including fura-2, FluoZin-3, Leadmium Green, Rhod-5N, indo-1, Fluo-5N, and others. We found that the [Zn2+]i probe FluoZin-3 and the traditional [Ca2+]i probe fura-2 responded most consistently and robustly to [Cd2+]i accumulation mediated by voltage-gated calcium channels. While selective detection of [Cd2+]i by fura-2 required the omission of Ca2+ from extracellular buffers, FluoZin-3 responded to [Cd2+]i similarly in the presence or absence of extracellular Ca2+. Furthermore, we showed that FluoZin-3 and fura-2 can be used together for simultaneous monitoring of [Ca2+]i and [Cd2+]i in the same cells. None of the other fluorophores tested were effective [Cd2+]i detectors in this model.
Collapse
Affiliation(s)
- Latha M Malaiyandi
- Departments of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL, 60515, USA
| | - Harsh Sharthiya
- Departments of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL, 60515, USA
- AbbVie Inc., Headquarters 1 N. Waukegan Road, North Chicago, IL, 60064, USA
| | - Ameir N Barakat
- Departments of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL, 60515, USA
| | - Joshua R Edwards
- Departments of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL, 60515, USA
| | - Kirk E Dineley
- Departments of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL, 60515, USA.
| |
Collapse
|
16
|
Zhang J, Zhang X, Wen C, Duan Y, Zhang H. Lotus seedpod proanthocyanidins protect against neurotoxicity after methyl-mercuric chloride injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109560. [PMID: 31421536 DOI: 10.1016/j.ecoenv.2019.109560] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
In the present study, to investigate the prevention mechanism of proanthocyanidins from lotus seedpod (LSPCs) on methyl mercuric chloride (MMC) induced neurotoxicity, neuron/astrocyte cells were co-cultured to simulate the microenvironment in vivo to the greatest extent. The results showed that, compared with MMC group, pretreatment with LSPCs not only improved cell survival rate, decreased the release of lactate dehydrogenase (LDH), decreased the intracellular reactive oxygen species (ROS) level, and prevented the increase of intracellular [Ca2+]i, but also significantly increased the total anti-oxidation capacity (T-AOC) (p<0.05), the levels of glutathione peroxidase (GSH-Px) (p<0.05), glutathione (GSH) (p<0.05), and mitochondrial membrane potential (MMP) (p<0.01). Besides, LSPCs up-regulated the expression of transcriptional factor Nrf2/HO-1 in a concentration-dependent manner. Moreover, LSPCs reduced the expression of Bax protein, significantly increased the expression of Bcl-xl, Bcl-2, β-Ⅲ-Tubulin, SYN, and Arc proteins. The expression of these proteins is mainly regulated by genes and reflects the changes of genes functions. Taken together, these results suggested that LSPCs could enhance cellular antioxidant defense capacity through regulating the activation of Nrf2/HO-1, and involving the inhibition of mitochondria-mediated apoptotic signaling pathway.
Collapse
Affiliation(s)
- Jixian Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xuxu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chaoting Wen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, 212013, China.
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
17
|
Zhou DR, Eid R, Miller KA, Boucher E, Mandato CA, Greenwood MT. Intracellular second messengers mediate stress inducible hormesis and Programmed Cell Death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:773-792. [PMID: 30716408 DOI: 10.1016/j.bbamcr.2019.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
|
18
|
Zhou DR, Eid R, Boucher E, Miller KA, Mandato CA, Greenwood MT. Stress is an agonist for the induction of programmed cell death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:699-712. [DOI: 10.1016/j.bbamcr.2018.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/17/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
|
19
|
Wilczek G, Karcz J, Rost-Roszkowska M, Kędziorski A, Wilczek P, Skowronek M, Wiśniewska K, Kaszuba F, Surmiak K. Evaluation of selected biological properties of the hunting web spider (Steatoda grossa, Theridiidae) in the aspect of short- and long-term exposure to cadmium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:297-306. [PMID: 30504028 DOI: 10.1016/j.scitotenv.2018.11.374] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/01/2018] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
The study aimed at comparing the effects of short- and long-term exposure of Steatoda grossa female spiders to cadmium on the web's architecture, its energy content, and ultrastructure of ampullate glands. Simple food chain model (medium with 0.25 mM CdCl2 → Drosophila hydei flies → spider (for 4 weeks or 12 months) was used for the exposure. Analysis of Cd content provided evidence that silk fibers of the web are well protected against its incorporation irrespectively of the exposure period. Long-term exposure to cadmium resulted in the occurrence of numerous autophagosomes with degenerated organelles as well as apoptotic and necrotic cells in the ampullate glands. Concurrently, the individual silk fibers building double and multiple combination complexes were significantly thinner than in the control threads. Moreover, exposed spiders spun net with smaller mean calorific value than did the control individuals. Hence, evaluation of both the diameter of silk fibers and calorific value of the web can serve as biomarkers of the effects caused by exposure of these predators to cadmium.
Collapse
Affiliation(s)
- Grażyna Wilczek
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland.
| | - Jagna Karcz
- Laboratory of Scanning Electron Microscopy, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, Katowice 40-007, Poland
| | - Magdalena Rost-Roszkowska
- Department of Embriology and Histology of Animals, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland
| | - Andrzej Kędziorski
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland
| | - Piotr Wilczek
- Bioengineering Laboratory, Heart Prosthesis Institute FRK, Wolności 345a, Zabrze 41-800, Poland
| | - Magdalena Skowronek
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland
| | - Kamila Wiśniewska
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland
| | - Florentyna Kaszuba
- Department of Embriology and Histology of Animals, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland
| | - Kinga Surmiak
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland
| |
Collapse
|
20
|
Abreu PL, Ferreira LMR, Cunha-Oliveira T, Alpoim MC, Urbano AM. HSP90: A Key Player in Metal-Induced Carcinogenesis? HEAT SHOCK PROTEINS 2019. [DOI: 10.1007/978-3-030-23158-3_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Karri V, Kumar V, Ramos D, Oliveira E, Schuhmacher M. Comparative In Vitro Toxicity Evaluation of Heavy Metals (Lead, Cadmium, Arsenic, and Methylmercury) on HT-22 Hippocampal Cell Line. Biol Trace Elem Res 2018; 184:226-239. [PMID: 28994012 DOI: 10.1007/s12011-017-1177-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/28/2017] [Indexed: 01/06/2023]
Abstract
Heavy metals are considered some of the most toxic environmental pollutants. Exposure to heavy metals including lead (Pb), cadmium (Cd), arsenic (As), and methyl mercury (MeHg) has long been known to cause damage to human health. Many recent studies have supported the hippocampus as the major target for these four metals for inflicting cognitive dysfunction. In the present study, we proposed hippocampal relevant in vitro toxicity of Pb, Cd, As, and MeHg in HT-22 cell line. This study reports, initially, cytotoxic effects in acute, subchronic, chronic exposures. We further investigated the mechanistic potency of DNA damage and apoptosis damage with the observed cytotoxicity. The genotoxicity and apoptosis were measured by using the comet assay, annexin-V FTIC / propidium iodide (PI) assay, respectively. The results of cytotoxicity assay clearly demonstrated significant concentration and time-dependent effects on HT-22 cell line. The genotoxic and apoptosis effects also concentration-dependent fashion with respect to their potency in the range of IC10-IC30, maximal level of damage observed in MeHg. In conclusion, the obtained result suggests concentration and potency-dependent response; the maximal level of toxicity was observed in MeHg. These novel findings support that Pb, Cd, As, and MeHg induce cytotoxic, genotoxic, and apoptotic effects on HT-22 cells in potency-dependent manner; MeHg> As> Cd> Pb. Therefore, the toxicity of Pb, Cd, As, and MeHg could be useful for knowing the common underlying molecular mechanism, and also for estimating the mixture impacts on HT-22 cell line.
Collapse
Affiliation(s)
- Venkatanaidu Karri
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain.
| | - David Ramos
- Plataforma de Proteòmica, Parc Científic de Barcelona, C/ Baldiri Reixac, 10-12, 08028, Barcelona, Spain
| | - Eliandre Oliveira
- Unidad de Toxicologia, Parc Científic de Barcelona, C/ Baldiri Reixac, 10-12, 08028, Barcelona, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain
| |
Collapse
|
22
|
Sun L, Cui ZG, Zakki SA, Feng QW, Li ML, Inadera H. Mechanistic study of nonivamide enhancement of hyperthermia-induced apoptosis in U937 cells. Free Radic Biol Med 2018; 120:147-159. [PMID: 29551639 DOI: 10.1016/j.freeradbiomed.2018.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 11/16/2022]
Abstract
Hyperthermia is one therapeutic tool for damaging and killing cancer cells, with minimal injury to normal tissues. However, its cytotoxic effects alone are insufficient for quantitative cancer cell death. To overcome this limitation, several studies have explored non-toxic enhancers for hyperthermia-induced cell death. Capsaicin may be applicable as a therapeutic tool against various types of cancer. In the present study, we employed nonivamide, a less-pungent capsaicin analogue, to investigate its possible enhancing effects on hyperthermia-induced apoptosis; moreover, we analyzed its molecular mechanism. Treatment of U937 cells at 44 °C for 15 min, combined with nonivamide 50 μM, revealed enhancement of apoptosis. Significant increases in reactive oxygen species generation, mitochondrial dysfunction, and cleaved caspase-3 were observed during the combined treatment; these were accompanied by an increase in pro-apoptotic Bcl-2 family proteins and a decrease in anti-apoptotic Bcl-2 proteins. In addition, significant increases in p-JNK and p-p38 were detected, following the combined treatment. In conclusion, nonivamide enhanced hyperthermia-induced apoptosis via a mitochondrial-caspase dependent pathway. The underlying mechanism may include elevation of intracellular reactive oxygen species, mitochondrial dysfunction, and increased activation of JNK and p38.
Collapse
Affiliation(s)
- Lu Sun
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Zheng-Guo Cui
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Graduate School of Medicine, Henan Polytechnic University, Jiaozuo 454000 China
| | - Shahbaz Ahmad Zakki
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Qian-Wen Feng
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Meng-Ling Li
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hidekuni Inadera
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
23
|
Pulikkathodi AK, Sarangadharan I, Chen YH, Lee GY, Chyi JI, Lee GB, Wang YL. Dynamic monitoring of transmembrane potential changes: a study of ion channels using an electrical double layer-gated FET biosensor. LAB ON A CHIP 2018; 18:1047-1056. [PMID: 29488525 DOI: 10.1039/c7lc01305a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this research, we have designed, fabricated and characterized an electrical double layer (EDL)-gated AlGaN/GaN high electron mobility transistor (HEMT) biosensor array to study the transmembrane potential changes of cells. The sensor array platform is designed to detect and count circulating tumor cells (CTCs) of colorectal cancer (CRC) and investigate cellular bioelectric signals. Using the EDL FET biosensor platform, cellular responses can be studied in physiological salt concentrations, thereby eliminating complex automation. Upon investigation, we discovered that our sensor response follows the transmembrane potential changes of captured cells. Our whole cell sensor platform can be used to monitor the dynamic changes in the membrane potential of cells. The effects of continuously changing electrolyte ion concentrations and ion channel blocking using cadmium are investigated. This methodology has the potential to be used as an electrophysiological probe for studying ion channel gating and the interaction of biomolecules in cells. The sensor can also be a point-of-care diagnostic tool for rapid screening of diseases.
Collapse
Affiliation(s)
- Anil Kumar Pulikkathodi
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan 300, R.O.C.
| | | | | | | | | | | | | |
Collapse
|
24
|
Kim S, Cheon H, Kim SM, Kim YY. GSK-3β-mediated regulation of cadmium-induced cell death and survival. Cell Mol Biol Lett 2018; 23:9. [PMID: 29563926 PMCID: PMC5848555 DOI: 10.1186/s11658-018-0076-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 02/28/2018] [Indexed: 11/26/2022] Open
Abstract
Background Previous studies indicated that cadmium (Cd) increases PI3-kinase/Akt phosphorylation, resulting in an alteration in GSK-3β activity. However, the mechanism of Cd-induced endoplasmic reticulum (ER) stress in neuronal cells has yet to be studied in needs further elucidation. We examined the role of GSK-3β in Cd-induced neuronal cell death and the related downstream signaling pathways. Methods SH-SY5Y human neuroblastoma cells were treated with 10 or 20 μM BAPTA-AM and 1 μM wortmannin for 30 min and then incubated with 25 μM Cd for 12 h. Apoptotic cells were visualized via DAPI and PI staining. Data were evaluated with one-way analysis of variance (ANOVA) followed by Student’s t-test. Data are expressed as the means ± SD of experiments performed at least three times. Results Treatment of human neuronal SH-SY5Y cells with Cd induced ER, stress as evidenced by the increased expression of GRP78, which is a marker of ER stress. Cd exposure significantly increased the phosphorylation of Akt at thr308 and ser473 and that of GSK-3β at ser9 in a time-dependent manner, while the total protein levels of GSK-3β and Akt did not change. Cd-induced apoptosis was higher in GSK-3β-knockdown cells than in normal cells. Conclusions Our data suggest that Akt/GSK-3β signaling activated by Cd is involved in neuronal cell survival.
Collapse
Affiliation(s)
- Seungwoo Kim
- 1Division of Brain Diseases, Center for Biomedical Science, National Institute of Health, Center for Disease Control & Prevention, Osong Health Technology Administration Complex, 187, Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, South Korea
| | - Hyosoon Cheon
- 1Division of Brain Diseases, Center for Biomedical Science, National Institute of Health, Center for Disease Control & Prevention, Osong Health Technology Administration Complex, 187, Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, South Korea
| | - Sam-Moon Kim
- 1Division of Brain Diseases, Center for Biomedical Science, National Institute of Health, Center for Disease Control & Prevention, Osong Health Technology Administration Complex, 187, Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, South Korea
| | - Young-Youl Kim
- 2Division of Biobank for Health Sciences, Center for Genome Science, National Institute of Health, Center for Disease Control & Prevention, 200 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, South Korea
| |
Collapse
|
25
|
Khan N, Kazi TG, Afridi HI, Arain MB. Determination of Cadmium in Human Serum and Blood Samples after Dispersive Liquid–Liquid Microextraction Using a Task-Specific Ionic Liquid. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1354868] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Noman Khan
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Tasneem Gul Kazi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Hasan Imran Afridi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | | |
Collapse
|
26
|
Zhu J, Yang Y, Liu S, Xu H, Wu Y, Zhang G, Wang Y, Wang Y, Liu Y, Guo Q. Anticancer effect of thalidomide in vitro on human osteosarcoma cells. Oncol Rep 2016; 36:3545-3551. [PMID: 27748909 DOI: 10.3892/or.2016.5158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/05/2016] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma is a high‑grade malignant tumor frequently found in children and adolescents. Thalidomide has been reported for treatment of various malignancies. Thalidomide was added to osteosarcoma cells and studied by cytotoxicity assay, evaluating apoptosis, cell cycle arrest, mitochondrial membrane potential (ΔΨm), and reactive oxygen species (ROS) levels and the expression of Bcl‑2, Bax, caspase‑3 and NF‑κB. The results showed that thalidomide could inhibit the proliferation of MG‑63 and U2OS cells in a concentration‑ and time‑dependent manner. Morphological changes of apoptosis were also observed. Thalidomide increased the apoptosis rate of MG‑63 cells and induced cell cycle arrest by increasing the number of cells in the G0/G1 phase and decreasing the percentage of S phase in MG‑63 cells. Further investigation showed that a disruption of ΔΨm and upregulation of ROS were induced by thalidomide in high concentration. By western blot analysis, thalidomide resulted in the decreasing expression of Bcl‑2 and NF‑κB, and the increasing expression of Bcl‑2/Bax and caspase‑3. Here, we provide evidence that thalidomide could cause apoptosis in osteosarcoma cells. Taken together, these results indicate that thalidomide could be an antitumor drug in the therapy of osteosarcoma.
Collapse
Affiliation(s)
- Jianwei Zhu
- Department of Orthopaedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Ya Yang
- The Nursing College, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Sihong Liu
- Department of Orthopaedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Huihua Xu
- Department of Orthopaedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Yong Wu
- Department of Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Guiqiang Zhang
- Department of Orthopaedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Yuxuan Wang
- Department of Orthopaedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Yan Wang
- Department of Orthopaedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Yamin Liu
- Department of Orthopaedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Qifeng Guo
- Department of Orthopaedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
27
|
Lakshma Nayak V, Nagaseshadri B, Vishnuvardhan M, Kamal A. Investigation of the apoptotic pathway induced by benzimidazole–oxindole conjugates against human breast cancer cells MCF-7. Bioorg Med Chem Lett 2016; 26:3313-3317. [DOI: 10.1016/j.bmcl.2016.05.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/25/2016] [Accepted: 05/16/2016] [Indexed: 12/21/2022]
|
28
|
LIU XUEZHONG, ZHANG YIRAN, WANG YI, YAN YUAN, WANG JIAJING, GU JIANHONG, CHUN BIANJIAN, LIU ZONGPING. Investigation of cadmium-induced apoptosis and the protective effect of N-acetylcysteine in BRL 3A cells. Mol Med Rep 2016; 14:373-9. [DOI: 10.3892/mmr.2016.5218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 12/30/2015] [Indexed: 11/06/2022] Open
|
29
|
Shi JL, Fu L, Wang WD. High expression of inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) as a novel biomarker for worse prognosis in cytogenetically normal acute myeloid leukemia. Oncotarget 2016; 6:5299-309. [PMID: 25779662 PMCID: PMC4467150 DOI: 10.18632/oncotarget.3024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/31/2014] [Indexed: 11/25/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) is a key regulator for the activity of calcium ion transmembrane transportation, which plays a critical role in cell cycle and proliferation. However, the clinical impact of ITPR2 in cytogenetically normal acute myeloid leukemia (CN-AML) remained unknown. Several microarray datasets were used to evaluate the association between ITPR2 expression and clinical and molecular characteristics. ITPR2 showed a higher expression in CN-AML patients than normal persons. In a cohort of 157 CN-AML patients, high ITPR2 expression (ITPR2high) was associated with dramatically shorter overall survival (OS; P = 0.004) and event-free survival (EFS; P = 0.01), which were also shown in the European Leukemia Net (ELN) intermediate-I genetic category (OS: P = 0.0066; EFS: P = 0.009). Multivariable analyses adjusting for known prognostic factors confirmed ITPR2high to be associated with shorter OS (P = 0.0019) and EFS (P = 0.012). The prognostic value of ITPR2 was further validated in another cohort of 162 CN-AML patients (P = 0.007). In addition, first gene/microRNA expression signatures were derived that associated with ITPR2high on the genome-wide scale, which provided many indications to illustrate the possible mechanisms why ITPR2 could function. These results could aid to identify new targets and design novel therapeutic strategies for CN-AML patients.
Collapse
Affiliation(s)
- Jin-long Shi
- Medical Engineering Support Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Lin Fu
- Department of Hematology and Lymphoma Research Center, Peking University, Beijing 100191, China
| | - Wei-dong Wang
- Medical Engineering Support Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
30
|
The Effects of Cadmium at Low Environmental Concentrations on THP-1 Macrophage Apoptosis. Int J Mol Sci 2015; 16:21410-27. [PMID: 26370970 PMCID: PMC4613260 DOI: 10.3390/ijms160921410] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 01/07/2023] Open
Abstract
Cadmium at environmental concentrations is a risk factor for many diseases, including cardiovascular and neurodegenerative diseases, in which macrophages play an important role. The aim of this study was to evaluate the effects of cadmium at low environmental (nanomolar) concentrations on apoptotic processes in THP-1(acute monocytic leukemia cells line)-derived macrophages, with special focus on mitochondrial events involved. Macrophages were incubated with various cadmium chloride (CdCl2) solutions for 48 h at final concentrations of 5 nM, 20 nM, 200 nM and 2 µM CdCl2. Cell viability was measured using flow cytometry. Flow cytometric measurement (annexin V/FITC (annexin V/fluorescein isothiocyanate) and PI (propidium iodide) double staining) was used to quantify the extent of apoptosis. Fluorescence and confocal microscopy were used for imaging of apoptosis process. Changes in mitochondrial membrane potential were monitored using cytofluorimetry after cell staining with JC-1(5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazol-carbocyane iodide) probe. Mitochondrial ROS (reactive oxygen species) levels were measured cytofluorimetrically after incubation of cells with mitochondrial superoxide indicator (MitoSOX) red fluorescent marker. The mRNA expression of Bcl-2 and Bax was analysed with qRT-PCR. Our study demonstrates that cadmium, even at low environmental concentrations, exerts mitochondrial toxicity in THP-1 macrophages. Forty-eight-hour exposure to very low concentrations reduces cell viability and results in cell death by apoptosis and necrosis. The decrease in mitochondrial membrane potential, increased ROS production, increased Bax and decreased Bcl-2 mRNA expression are mitochondrial events involved in cadmium-induced apoptosis.
Collapse
|
31
|
Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 2015; 90:1-37. [DOI: 10.1007/s00204-015-1579-5] [Citation(s) in RCA: 535] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023]
|
32
|
Hwang KA, Choi KC. Anticarcinogenic Effects of Dietary Phytoestrogens and Their Chemopreventive Mechanisms. Nutr Cancer 2015; 67:796-803. [DOI: 10.1080/01635581.2015.1040516] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Wang L, Li YY, Ge J, Zhang J, Liang SK, Li LF, Ma C, Gao EJ. Syntheses, structures, characterization, and bioactivities of new Cd(II) complex of 2,3-pyrazinedicarboxylate with 1,10-phenanthroline. RUSS J COORD CHEM+ 2015. [DOI: 10.1134/s1070328415020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Wang J, Hao M, Liu C, Liu R. Cadmium induced apoptosis in mouse primary hepatocytes: the role of oxidative stress-mediated ERK pathway activation and the involvement of histone H3 phosphorylation. RSC Adv 2015. [DOI: 10.1039/c5ra03210e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Time-delayed apoptosis induced by cadmium in primary hepatocytes through DNA damage, histone modification and ERK signaling cascade, which are all mediated by oxidative stress.
Collapse
Affiliation(s)
- Jing Wang
- School of Environmental Science and Engineering
- Shandong University
- China-America CRC for Environment & Health
- Jinan 250100
- P. R. China
| | - Minglu Hao
- School of Environmental Science and Engineering
- Shandong University
- China-America CRC for Environment & Health
- Jinan 250100
- P. R. China
| | - Chunguang Liu
- School of Environmental Science and Engineering
- Shandong University
- China-America CRC for Environment & Health
- Jinan 250100
- P. R. China
| | - Rutao Liu
- School of Environmental Science and Engineering
- Shandong University
- China-America CRC for Environment & Health
- Jinan 250100
- P. R. China
| |
Collapse
|
35
|
Shift in monocyte apoptosis with increasing viral load and change in apoptosis-related ISG/Bcl2 family gene expression in chronically HIV-1-infected subjects. J Virol 2014; 89:799-810. [PMID: 25355877 DOI: 10.1128/jvi.02382-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Although monocytes and macrophages are targets of HIV-1-mediated immunopathology, the impact of high viremia on activation-induced monocyte apoptosis relative to monocyte and macrophage activation changes remains undetermined. In this study, we determined constitutive and oxidative stress-induced monocyte apoptosis in uninfected and HIV(+) individuals across a spectrum of viral loads (n = 35; range, 2,243 to 1,355,998 HIV-1 RNA copies/ml) and CD4 counts (range, 26 to 801 cells/mm(3)). Both constitutive apoptosis and oxidative stress-induced apoptosis were positively associated with viral load and negatively associated with CD4, with an elevation in apoptosis occurring in patients with more than 40,000 (4.6 log) copies/ml. As expected, expression of Rb1 and interferon-stimulated genes (ISGs), plasma soluble CD163 (sCD163) concentration, and the proportion of CD14(++) CD16(+) intermediate monocytes were elevated in viremic patients compared to those in uninfected controls. Although CD14(++) CD16(+) frequencies, sCD14, sCD163, and most ISG expression were not directly associated with a change in apoptosis, sCD14 and ISG expression showed an association with increasing viral load. Multivariable analysis of clinical values and monocyte gene expression identified changes in IFI27, IFITM2, Rb1, and Bcl2 expression as determinants of constitutive apoptosis (P = 3.77 × 10(-5); adjusted R(2) = 0.5983), while changes in viral load, IFITM2, Rb1, and Bax expression were determinants of oxidative stress-induced apoptosis (P = 5.59 × 10(-5); adjusted R(2) = 0.5996). Our data demonstrate differential activation states in monocytes between levels of viremia in association with differences in apoptosis that may contribute to greater monocyte turnover with high viremia. IMPORTANCE This study characterized differential monocyte activation, apoptosis, and apoptosis-related gene expression in low- versus high-level viremic HIV-1 patients, suggesting a shift in apoptosis regulation that may be associated with disease state. Using single and multivariable analysis of monocyte activation parameters and gene expression, we supported the hypothesis that monocyte apoptosis in HIV disease is a reflection of viremia and activation state with contributions from gene expression changes within the ISG and Bcl2 gene families. Understanding monocyte apoptosis response may inform HIV immunopathogenesis, retention of infected macrophages, and monocyte turnover in low- or high-viral-load states.
Collapse
|
36
|
Zhan Q, Tang M. Research advances on apoptosis caused by quantum dots. Biol Trace Elem Res 2014; 161:3-12. [PMID: 25062887 DOI: 10.1007/s12011-014-0068-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/08/2014] [Indexed: 12/27/2022]
Abstract
Recently, quantum dots (QDs) have been widely applied in biological and biomedical fields such as cell labeling, living tissue imaging, and photodynamic therapy because of their superior optical properties. Meanwhile, the potential biological negative effects and/or toxic effects of QDs have become increasingly important, especially the cytotoxicity caused by QDs. One of the common cytotoxicity when living organisms are treated with QD is apoptosis, where many attempts have been made to explain the mechanisms of apoptosis caused by QDs' use. One of the mechanisms is the production of cadmium ion (Cd(2+)) and reactive oxygen species (ROS). Excess generation of ROS will result in oxidative stress that would mediate apoptosis. Furthermore, the activation of cell death receptors and mitochondria-dependent such as B cell lymphoma 2 (Bcl-2) family and the caspase family could onset apoptosis. Signal transduction such as some classical signal pathways of PI3K-AKT, NF-E2-related factor 2 (Nrf2)-antioxidant response element (ARE), mitogen-activated protein kinases (MAPKs), and nuclear factor kappa B (NF-κB) also plays an important role in the regulation of apoptosis. Several ways to reduce the apoptotic rate have been introduced, such as surface modification, controlling, the dose, size, and exposure time of QDs as well as using antioxidants or inhibitors. In this review, we attempted to review the most recent findings associated with apoptosis caused by QDs so as to provide some guidelines for a safer QD application in the future.
Collapse
Affiliation(s)
- Qingling Zhan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | | |
Collapse
|
37
|
Rehman MU, Jawaid P, Yoshihisa Y, Li P, Zhao QL, Narita K, Katoh T, Kondo T, Shimizu T. Spiruchostatin A and B, novel histone deacetylase inhibitors, induce apoptosis through reactive oxygen species-mitochondria pathway in human lymphoma U937 cells. Chem Biol Interact 2014; 221:24-34. [DOI: 10.1016/j.cbi.2014.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/30/2014] [Accepted: 07/11/2014] [Indexed: 12/01/2022]
|
38
|
Rani A, Kumar A, Lal A, Pant M. Cellular mechanisms of cadmium-induced toxicity: a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2014; 24:378-99. [PMID: 24117228 DOI: 10.1080/09603123.2013.835032] [Citation(s) in RCA: 437] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cadmium is a widespread toxic pollutant of occupational and environmental concern because of its diverse toxic effects: extremely protracted biological half-life (approximately 20-30 years in humans), low rate of excretion from the body and storage predominantly in soft tissues (primarily, liver and kidneys). It is an extremely toxic element of continuing concern because environmental levels have risen steadily due to continued worldwide anthropogenic mobilization. Cadmium is absorbed in significant quantities from cigarette smoke, food, water and air contamination and is known to have numerous undesirable effects in both humans and animals. Cadmium has a diversity of toxic effects including nephrotoxicity, carcinogenicity, teratogenicity and endocrine and reproductive toxicities. At the cellular level, cadmium affects cell proliferation, differentiation, apoptosis and other cellular activities. Current evidence suggests that exposure to cadmium induces genomic instability through complex and multifactorial mechanisms. Most important seems to be cadmium interaction with DNA repair mechanism, generation of reactive oxygen species and induction of apoptosis. In this article, we have reviewed recent developments and findings on cadmium toxicology.
Collapse
Affiliation(s)
- Anju Rani
- a Department of Biotechnology , Graphic Era University , Dehradun , India
| | | | | | | |
Collapse
|
39
|
Shao CC, Li N, Zhang ZW, Su J, Li S, Li JL, Xu SW. Cadmium supplement triggers endoplasmic reticulum stress response and cytotoxicity in primary chicken hepatocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 106:109-114. [PMID: 24836885 DOI: 10.1016/j.ecoenv.2014.04.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 03/27/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
Cadmium (Cd), a potent hepatotoxin, has been reported to induce endoplasmic reticulum (ER) stress in various cell types. However, whether such effect exists in bird is still unclear. To delineate the effects of Cd exposure on ER stress response, we examined the expression of 78-kDa glucose-regulated protein (GRP78) and alteration in calcium homeostasis in primary chicken hepatocytes treated with 2-22 µM Cd for 24 h. A significant decrease of cell viability was observed in chicken hepatocytes following Cd administration. In cells treated with Cd, GRP78 protein levels increased in a dose-dependent manner. In addition, GRP78 and GRP94mRNA levels were elevated in response to Cd exposure. The increase of the intracellular Ca(2+) concentration in chicken hepatocytes was found during Cd exposure. Cd significantly decreased the CaM mRNA levels in hepatocytes. These results show that Cd regulates the expression of GRP78 and calcium homeostasis in chicken hepatocytes, suggesting that ER stress induced by Cd plays an important role in the mechanisms of Cd cytotoxicity to the bird hepatocytes.
Collapse
Affiliation(s)
- Cheng-Cheng Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People׳s Republic of China
| | - Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People׳s Republic of China
| | - Zi-Wei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People׳s Republic of China
| | - Jian Su
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People׳s Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People׳s Republic of China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People׳s Republic of China.
| | - Shi-Wen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People׳s Republic of China.
| |
Collapse
|
40
|
Al Kaddissi S, Legeay A, Elia AC, Gonzalez P, Floriani M, Cavalie I, Massabuau JC, Gilbin R, Simon O. Mitochondrial gene expression, antioxidant responses, and histopathology after cadmium exposure. ENVIRONMENTAL TOXICOLOGY 2014; 29:893-907. [PMID: 23065898 DOI: 10.1002/tox.21817] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 05/29/2023]
Abstract
The present study investigates cadmium effects on the transcription of mitochondrial genes of Procambarus clarkii after acute (0.05, 0.5, and 5 mg Cd/L; 4-10 days) and chronic exposures (10 μg Cd/L; 30-60 days). Transcriptional responses of cox1, atp6, and 12S using quantitative real-time RT-PCR were assessed in gills and hepatopancreas. Additionally, the expression levels of genes involved in detoxification and/or oxidative stress responses [mt, sod(Mn)] and enzymatic activities of antioxidants (SOD, CAT, GPX, and GST) were analyzed. The histopathological effects in hepatopancreas of crayfish were evaluated by light microscopy. Relationships between endpoints at different levels of biological organization and Cd bioaccumulation were also examined. Cd induced high levels of bioaccumulation, which was followed by mitochondrial dysfunction and histological alterations in both experiments. Moreover, perturbations in the defence mechanisms against oxidative stress tended to increase with time. Results also showed that molecular responses can vary depending on the intensity and duration of the chemical stress applied to the organisms and that the study of mt gene expression levels seemed to be the best tool to assess Cd intoxication.
Collapse
Affiliation(s)
- Simone Al Kaddissi
- Laboratory of Radioecology and Ecotoxicology (LRE), Institute of Radioprotection and Nuclear Safety (IRSN), Bd 186, BP 3, 13115 Saint-Paul-Lez-Durance, France; Laboratory of Aquatic Ecotoxicology (EA), University of Bordeaux1/UMR CNRS 5805, Dr Peyneau Square, 33120 Arcachon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Oxymatrine Extracted from Sophora flavescens Inhibited Cell Growth and Induced Apoptosis in Human Osteosarcoma MG-63 Cells In Vitro. Cell Biochem Biophys 2014; 70:1439-44. [DOI: 10.1007/s12013-014-0078-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Cui ZG, Piao JL, Kondo T, Ogawa R, Tsuneyama K, Zhao QL, Feril LB, Inadera H. Molecular mechanisms of hyperthermia-induced apoptosis enhanced by docosahexaenoic acid: Implication for cancer therapy. Chem Biol Interact 2014; 215:46-53. [DOI: 10.1016/j.cbi.2014.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/08/2014] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
|
43
|
Wang D, Bi Z. Bufalin inhibited the growth of human osteosarcoma MG-63 cells via down-regulation of Bcl-2/Bax and triggering of the mitochondrial pathway. Tumour Biol 2014; 35:4885-90. [PMID: 24570183 DOI: 10.1007/s13277-014-1640-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/08/2014] [Indexed: 01/12/2023] Open
Abstract
Cinobufacini (Huachansu), a Chinese medicine prepared from the skin of Bufo bufo gargarizans Cantor (Bufonidae), has potent anti-tumor activity in vitro and in vivo. However, the molecular mechanism of cell apoptosis induced by Bufalin remains elusive. Here, we investigated the apoptosis in Bufalin-treated human osteosarcoma MG-63 cells. The results showed that Bufalin could inhibit cell proliferation and induce apoptosis in a dose- and time-dependent manner. Further investigation revealed that a disruption of mitochondrial transmembrane potential (MMP) and an up-regulation of reactive oxygen species (ROS) in Bufalin-treated cells. By western blot analysis, we found that the up-regulation of Apaf-1, cleaved PARP, cleaved caspase-3, cleaved caspase-9, and Bax/Bcl-2, varies with different concentration of Bufalin. These protein interactions may play a pivotal role in the regulation of apoptosis. Taken together, these results overall indicate that Bufalin could be used as an effective anti-tumor agent in therapy of osteosarcoma targets the mitochondrial-dependent signaling pathway.
Collapse
Affiliation(s)
- Dewei Wang
- Department of Orthopaedics, First Affiliated Hospital of Harbin Medical University, No.23 Youzheng street, Harbin, Heilongjiang province, 150001, China
| | | |
Collapse
|
44
|
Shao Q, Zhao X, Yao L. Matrine inhibits the growth of retinoblastoma cells (SO-Rb50) by decreasing proliferation and inducing apoptosis in a mitochondrial pathway. Mol Biol Rep 2014; 41:3475-80. [PMID: 24515384 DOI: 10.1007/s11033-014-3209-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 01/27/2014] [Indexed: 11/28/2022]
Abstract
Matrine, one of the main active components of extracts from the dry roots of Sophora flavescens, has potent anti-tumor activity in vitro and in vivo. Here, we investigated the apoptosis in matrine-treated retinoblastoma cells. The results showed that matrine could inhibit cell proliferation and induce apoptosis in a dose- and time-dependent manner. Further investigation revealed that a disruption of mitochondrial transmembrane potential and an up-regulation of reactive oxygen species in matrine-treated cells. By western blot analysis, we found that the up-regulation of cleaved Apaf-1, cleaved caspase-3, cleaved caspase-9, cleaved caspase-7, Bax/Bcl-2, varying with different concentration of matrine. These protein interactions may play a pivotal role in the regulation of apoptosis. Taken together, these results overall indicate that matrine could be used as an effective anti-tumor agent in therapy of retinoblastoma targets the caspase-dependent signaling pathway.
Collapse
Affiliation(s)
- Qingliang Shao
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang, China
| | | | | |
Collapse
|
45
|
Cui ZG, Piao JL, Rehman MU, Ogawa R, Li P, Zhao QL, Kondo T, Inadera H. Molecular mechanisms of hyperthermia-induced apoptosis enhanced by withaferin A. Eur J Pharmacol 2014; 723:99-107. [DOI: 10.1016/j.ejphar.2013.11.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 11/13/2013] [Accepted: 11/23/2013] [Indexed: 01/02/2023]
|
46
|
Pérez Díaz MFF, Acosta M, Mohamed FH, Ferramola ML, Oliveros LB, Gimenez MS. Protective effect of soybeans as protein source in the diet against cadmium-aorta redox and morphological alteration. Toxicol Appl Pharmacol 2013; 272:806-15. [PMID: 23916567 DOI: 10.1016/j.taap.2013.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
We investigated the effects of cadmium exposition on thoracic aorta redox status and morphology, and the putative protective effect of soybeans in the diet. Male Wistar rats were separated into 6 groups: 3 fed with a diet containing casein and 3 containing soybeans, as protein source. Within each protein group, one was given tap water (control) and the other two tap water containing 15 and 100 ppm of Cd(2+), respectively, for two months. In rats fed with casein diet, 15 ppm of Cd induced an increase of thiobarbituric acid-reactive substances (TBARS), and of the catalase (CAT) and glutathione peroxidase (GPx) activities, which were even higher with 100 ppm of Cd(2+), in aorta. Also, 100 ppm Cd(2+) exposure increased superoxide dismutase (CuZnSOD) activity; CAT, GPX, SOD, Nrf2 and metallothioneine II mRNA expressions and CAT, GPx and NOX-2 protein levels, compared with control. Aorta endothelial and cytoplasmic alterations were observed. However, with the soybeans diet, 15 and 100 ppm of Cd(2+) did not modify TBARS levels; CAT, GPX and Nrf2 mRNA expressions; CAT, GPx and NOX-2 protein; and the aorta morphology, compared with control. The soybean diet attenuates the redox changes and protects against morphological alterations induced, in a dose-dependent way, by Cd in aorta.
Collapse
Affiliation(s)
- Matías F F Pérez Díaz
- Department of Biochemistry and Biological Sciences, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, Argentina; IMIBIO-San Luis CONICET, Argentina
| | | | | | | | | | | |
Collapse
|
47
|
Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 2013; 87:1743-86. [PMID: 23982889 DOI: 10.1007/s00204-013-1110-9] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022]
Abstract
Cellular stress elicited by the toxic metal Cd(2+) does not coerce the cell into committing to die from the onset. Rather, detoxification and adaptive processes are triggered concurrently, allowing survival until normal function is restored. With high Cd(2+), death pathways predominate. However, if sublethal stress levels affect cells for prolonged periods, as in chronic low Cd(2+) exposure, adaptive and survival mechanisms may deregulate, such that tumorigenesis ensues. Hence, death and malignancy are the two ends of a continuum of cellular responses to Cd(2+), determined by magnitude and duration of Cd(2+) stress. Signaling cascades are the key factors affecting cellular reactions to Cd(2+). This review critically surveys recent literature to outline major features of death and survival signaling pathways as well as their activation, interactions and cross talk in cells exposed to Cd(2+). Under physiological conditions, receptor activation generates 2nd messengers, which are short-lived and act specifically on effectors through their spatial and temporal dynamics to transiently alter effector activity. Cd(2+) recruits physiological 2nd messenger systems, in particular Ca(2+) and reactive oxygen species (ROS), which control key Ca(2+)- and redox-sensitive molecular switches dictating cell function and fate. Severe ROS/Ca(2+) signals activate cell death effectors (ceramides, ASK1-JNK/p38, calpains, caspases) and/or cause irreversible damage to vital organelles, such as mitochondria and endoplasmic reticulum (ER), whereas low localized ROS/Ca(2+) levels act as 2nd messengers promoting cellular adaptation and survival through signal transduction (ERK1/2, PI3K/Akt-PKB) and transcriptional regulators (Ref1-Nrf2, NF-κB, Wnt, AP-1, bestrophin-3). Other cellular proteins and processes targeted by ROS/Ca(2+) (metallothioneins, Bcl-2 proteins, ubiquitin-proteasome system, ER stress-associated unfolded protein response, autophagy, cell cycle) can evoke death or survival. Hence, temporary or permanent disruptions of ROS/Ca(2+) induced by Cd(2+) play a crucial role in eliciting, modulating and linking downstream cell death and adaptive and survival signaling cascades.
Collapse
|
48
|
NF-κB acts downstream of EGFR in regulating low dose cadmium induced primary lung cell proliferation. Biometals 2013; 26:897-911. [DOI: 10.1007/s10534-013-9666-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 08/03/2013] [Indexed: 01/15/2023]
|
49
|
Yang GY, Zhang CL, Liu XC, Qian G, Deng DQ. Effects of cigarette smoke extracts on the growth and senescence of skin fibroblasts in vitro. Int J Biol Sci 2013; 9:613-23. [PMID: 23847443 PMCID: PMC3708041 DOI: 10.7150/ijbs.6162] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/27/2013] [Indexed: 12/24/2022] Open
Abstract
Epidemiological studies have shown that cigarette smoke (CS), a very common environmental factor, plays an important role in skin aging. Although some in vivo studies have suggested that CS affects skin aging, the detailed effects of CS on skin cells in vitro remain largely unknown. In this study, we investigated the effects of cigarette smoke extract (CSE) on the growth, proliferation, and senescene of skin fibroblasts and the possible mechanism underlying these effects. Primary cultured human fibroblasts were exposed to a range of concentrations of CSE. Cell viability and cell proliferation after CSE exposure were analyzed with the methyl thiazolyl tetrazolium (MTT) assay and bromodeoxyuridine incorporation assay, respectively. Growth curves of fibroblasts exposed to different concentrations of CSE were developed and prolonged CSE-exposed cells were observed. Morphological and ultrastructural changes in fibroblasts were assessed by inverted light microscopy and transmission electron microscopy (TEM). Dying cells were stained with senescence-associated β-galactosidase (SA β-gal). Intracellular reactive oxygen species (ROS) levels, superoxide dismutase (SOD) activity, and glutathione peroxidase (GSH-Px) activity were determined by a colorimetric method. We found that proliferative capacity and growth were inhibited by CSE exposure in a dose- and time-dependent manner. Fibroblasts exposed to even low concentrations of CSE for a long period of time (5 passages) showed significantly increased SA β-gal activity and typical features of aging cells. Meanwhile, CSE inhibited superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and augmented ROS levels. Our observations suggest that CSE exposure impairs fibroblast growth and proliferation and leads to features similar to those seen in senescent cells. Oxidative stress injury and inhibition of antioxidant defense activity may be involved in CSE-induced fibroblast senescence.
Collapse
Affiliation(s)
- Gao-yun Yang
- 1. Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chun-lei Zhang
- 2. Department of Dermatology, Peking University Third Hospital. Haidian District, Beijing, China
| | - Xiang-chen Liu
- 1. Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ge Qian
- 3. Department of Dermatology and Rheumatology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dan-qi Deng
- 3. Department of Dermatology and Rheumatology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
50
|
Taylor AM, Maher WA. Exposure-dose-response of Tellina deltoidalis to metal-contaminated estuarine sediments: 1. Cadmium spiked sediments. Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:44-55. [PMID: 23660388 DOI: 10.1016/j.cbpc.2013.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/30/2013] [Accepted: 04/30/2013] [Indexed: 11/16/2022]
Abstract
Cadmium is a ubiquitous environmental metal contaminant with an affinity for biological membranes; it can enter cells by facilitated transport and it binds therein to various biomolecules and affects membrane system function. The relationship between cadmium exposure, dose and response was investigated in the benthic, deposit feeding, marine bivalve Tellina deltoidalis, using 28 day microcosm spiked cadmium exposures. Tissue cadmium reached steady state with the exposure concentration. Half the accumulated cadmium was detoxified and with increased exposure more was converted into metal rich granules. Most biologically active cadmium was in the mitochondrial fraction, with up to 7320-fold cadmium increases in exposed organisms. Cadmium exposed T. deltoidalis generally had reduced glutathione peroxidase enzyme activity. An increase in total glutathione concentrations, due to a build up of oxidised glutathione, was indicated by the reduced to oxidised glutathione ratio. All cadmium exposed T. deltoidalis had reduced total antioxidant capacity that corresponded with increased lipid peroxidation, lysosomal destabilisation and micronuclei frequency. Clear exposure-dose-response relationships have been demonstrated for T. deltoidalis exposed to cadmium-spiked sediments, supporting this organism's suitability for laboratory or in situ evaluation of sediment cadmium toxicity.
Collapse
Affiliation(s)
- Anne M Taylor
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia.
| | | |
Collapse
|