1
|
Protty MB, Tyrrell VJ, Allen-Redpath K, Soyama S, Hajeyah AA, Costa D, Choudhury A, Mitra R, Sharman A, Yaqoob P, Jenkins PV, Yousef Z, Collins PW, O’Donnell VB. Thrombin Generation Is Associated With Extracellular Vesicle and Leukocyte Lipid Membranes in Atherosclerotic Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2024; 44:2038-2052. [PMID: 39087349 PMCID: PMC11335086 DOI: 10.1161/atvbaha.124.320902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/05/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Clotting, leading to thrombosis, requires interactions of coagulation factors with the membrane aminophospholipids (aPLs) phosphatidylserine and phosphatidylethanolamine. Atherosclerotic cardiovascular disease (ASCVD) is associated with elevated thrombotic risk, which is not fully preventable using current therapies. Currently, the contribution of aPL to thrombotic risk in ASCVD is not known. Here, the aPL composition of circulating membranes in ASCVD of varying severity will be characterized along with the contribution of external facing aPL to plasma thrombin generation in patient samples. METHODS Thrombin generation was measured using a purified factor assay on platelet, leukocyte, and extracellular vesicles (EVs) from patients with acute coronary syndrome (n=24), stable coronary artery disease (n=18), and positive risk factor (n=23) and compared with healthy controls (n=24). aPL composition of resting/activated platelet and leukocytes and EV membranes was determined using lipidomics. RESULTS External facing aPLs were detected on EVs, platelets, and leukocytes, elevating significantly following cell activation. Thrombin generation was higher on the surface of EVs from patients with acute coronary syndrome than healthy controls, along with increased circulating EV counts. Thrombin generation correlated significantly with externalized EV phosphatidylserine, plasma EV counts, and total EV membrane surface area. In contrast, aPL levels and thrombin generation from leukocytes and platelets were not impacted by disease, although circulating leukocyte counts were higher in patients. CONCLUSIONS The aPL membrane of EV supports an elevated level of thrombin generation in patient plasma in ASCVD. Leukocytes may also play a role although the platelet membrane did not seem to contribute. Targeting EV formation/clearance and developing strategies to prevent the aPL surface of EV interacting with coagulation factors represents a novel antithrombotic target in ASCVD.
Collapse
Affiliation(s)
- Majd B. Protty
- Systems Immunity University Institute, Cardiff University, United Kingdom (M.B.P., V.J.T., A.A.H., D.C., P.V.J., V.B.O.D.)
| | - Victoria J. Tyrrell
- Systems Immunity University Institute, Cardiff University, United Kingdom (M.B.P., V.J.T., A.A.H., D.C., P.V.J., V.B.O.D.)
| | - Keith Allen-Redpath
- Department of Nutritional Sciences, University of Reading, United Kingdom (K.A.-R., S.S., A.S., P.Y.)
| | - Shin Soyama
- Department of Nutritional Sciences, University of Reading, United Kingdom (K.A.-R., S.S., A.S., P.Y.)
| | - Ali A. Hajeyah
- Systems Immunity University Institute, Cardiff University, United Kingdom (M.B.P., V.J.T., A.A.H., D.C., P.V.J., V.B.O.D.)
| | - Daniela Costa
- Systems Immunity University Institute, Cardiff University, United Kingdom (M.B.P., V.J.T., A.A.H., D.C., P.V.J., V.B.O.D.)
| | - Anirban Choudhury
- Morriston Cardiac Centre, Swansea Bay University Health Board, United Kingdom (A.C.)
| | - Rito Mitra
- Department of Cardiology, University Hospital of Wales, Cardiff, United Kingdom (R.M., Z.Y.)
| | - Amal Sharman
- Department of Nutritional Sciences, University of Reading, United Kingdom (K.A.-R., S.S., A.S., P.Y.)
| | - Parveen Yaqoob
- Department of Nutritional Sciences, University of Reading, United Kingdom (K.A.-R., S.S., A.S., P.Y.)
| | - P. Vince Jenkins
- Systems Immunity University Institute, Cardiff University, United Kingdom (M.B.P., V.J.T., A.A.H., D.C., P.V.J., V.B.O.D.)
- Cardiff and Vale University Health Board, Heath Park, Cardiff, United Kingdom (P.V.J.)
| | - Zaheer Yousef
- Department of Cardiology, University Hospital of Wales, Cardiff, United Kingdom (R.M., Z.Y.)
| | - Peter W. Collins
- Systems Immunity University Institute, Cardiff University, United Kingdom (M.B.P., V.J.T., A.A.H., D.C., P.V.J., V.B.O.D.)
- Cardiff and Vale University Health Board, Heath Park, Cardiff, United Kingdom (P.V.J.)
- Department of Nutritional Sciences, University of Reading, United Kingdom (K.A.-R., S.S., A.S., P.Y.)
- Morriston Cardiac Centre, Swansea Bay University Health Board, United Kingdom (A.C.)
- Department of Cardiology, University Hospital of Wales, Cardiff, United Kingdom (R.M., Z.Y.)
| | - Valerie B. O’Donnell
- Systems Immunity University Institute, Cardiff University, United Kingdom (M.B.P., V.J.T., A.A.H., D.C., P.V.J., V.B.O.D.)
| |
Collapse
|
2
|
Fritzen R, Davies A, Veenhuizen M, Campbell M, Pitt SJ, Ajjan RA, Stewart AJ. Magnesium Deficiency and Cardiometabolic Disease. Nutrients 2023; 15:nu15102355. [PMID: 37242238 DOI: 10.3390/nu15102355] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Magnesium (Mg2+) has many physiological functions within the body. These include important roles in maintaining cardiovascular functioning, where it contributes to the regulation of cardiac excitation-contraction coupling, endothelial functioning and haemostasis. The haemostatic roles of Mg2+ impact upon both the protein and cellular arms of coagulation. In this review, we examine how Mg2+ homeostasis is maintained within the body and highlight the various molecular roles attributed to Mg2+ in the cardiovascular system. In addition, we describe how nutritional and/or disease-associated magnesium deficiency, seen in some metabolic conditions, has the potential to influence cardiac and vascular outcomes. Finally, we also examine the potential for magnesium supplements to be employed in the prevention and treatment of cardiovascular disorders and in the management of cardiometabolic health.
Collapse
Affiliation(s)
- Remi Fritzen
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | - Amy Davies
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | - Miriam Veenhuizen
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | - Matthew Campbell
- School of Nursing and Health Sciences, University of Sunderland, Sunderland SR1 3DS, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Samantha J Pitt
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | - Ramzi A Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Alan J Stewart
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| |
Collapse
|
3
|
Protty MB, Jenkins PV, Collins PW, O'Donnell VB. The role of procoagulant phospholipids on the surface of circulating blood cells in thrombosis and haemostasis. Open Biol 2022; 12:210318. [PMID: 35440201 PMCID: PMC9019515 DOI: 10.1098/rsob.210318] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/21/2022] [Indexed: 01/09/2023] Open
Abstract
Phospholipids (PLs) are found in all cell types and are required for structural support and cell activation signalling pathways. In resting cells, PLs are asymmetrically distributed throughout the plasma membrane with native procoagulant aminophospholipids (aPLs) being actively maintained in the inner leaflet of the membrane. Upon platelet activation, aPLs rapidly externalize to the outer leaflet and are essential for supporting the coagulation cascade by providing binding sites for factors in the cell-based model. More recent work has uncovered a role for enzymatically oxidized PLs (eoxPLs) in facilitating coagulation, working in concert with native aPLs. Despite this, the role of aPLs and eoxPLs in thrombo-inflammatory conditions, such as arterial and venous thrombosis, has not been fully elucidated. In this review, we describe the biochemical structures, distribution and regulation of aPL externalization and summarize the literature on eoxPL generation in circulating blood cells. We focus on the currently understood role of these lipids in mediating coagulation reactions in vitro, in vivo and in human thrombotic disease. Finally, we highlight gaps in our understanding in how these lipids vary in health and disease, which may place them as future therapeutic targets for the management of thrombo-inflammatory conditions.
Collapse
Affiliation(s)
- Majd B. Protty
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - P. Vince Jenkins
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Peter W. Collins
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | | |
Collapse
|
4
|
Liu G, He S, Ding Y, Chen C, Cai Q, Zhou W. Multivesicular Liposomes for Glucose-Responsive Insulin Delivery. Pharmaceutics 2021; 14:21. [PMID: 35056918 PMCID: PMC8781467 DOI: 10.3390/pharmaceutics14010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
An intelligent insulin delivery system is highly desirable for diabetes management. Herein, we developed a novel glucose-responsive multivesicular liposome (MVL) for self-regulated insulin delivery using the double emulsion method. Glucose-responsive MVLs could effectively regulate insulin release in response to fluctuating glucose concentrations in vitro. Notably, in situ released glucose oxidase catalyzed glucose enrichment on the MVL surface, based on the combination of (3-fluoro-4-((octyloxy)carbonyl)phenyl)boronic acid and glucose. The outer MVL membrane was destroyed when triggered by the local acidic and H2O2-enriched microenvironment induced by glucose oxidase catalysis in situ, followed by the further release of entrapped insulin. Moreover, the Alizarin red probe and molecular docking were used to clarify the glucose-responsive mechanism of MVLs. Utilizing chemically induced type 1 diabetic rats, we demonstrated that the glucose-responsive MVLs could effectively regulate blood glucose levels within a normal range. Our findings suggest that glucose-responsive MVLs with good biocompatibility may have promising applications in diabetes treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China; (G.L.); (S.H.); (Y.D.); (C.C.); (Q.C.)
| |
Collapse
|
5
|
Ohkubo YZ, Madsen JJ. Uncovering Membrane-Bound Models of Coagulation Factors by Combined Experimental and Computational Approaches. Thromb Haemost 2021; 121:1122-1137. [PMID: 34214998 PMCID: PMC8432591 DOI: 10.1055/s-0040-1722187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the life sciences, including hemostasis and thrombosis, methods of structural biology have become indispensable tools for shedding light on underlying mechanisms that govern complex biological processes. Advancements of the relatively young field of computational biology have matured to a point where it is increasingly recognized as trustworthy and useful, in part due to their high space–time resolution that is unparalleled by most experimental techniques to date. In concert with biochemical and biophysical approaches, computational studies have therefore proven time and again in recent years to be key assets in building or suggesting structural models for membrane-bound forms of coagulation factors and their supramolecular complexes on membrane surfaces where they are activated. Such endeavors and the proposed models arising from them are of fundamental importance in describing and understanding the molecular basis of hemostasis under both health and disease conditions. We summarize the body of work done in this important area of research to drive forward both experimental and computational studies toward new discoveries and potential future therapeutic strategies.
Collapse
Affiliation(s)
- Y Zenmei Ohkubo
- Department of Bioinformatics, School of Life and Natural Sciences, Abdullah Gül University, Kayseri, Turkey
| | - Jesper J Madsen
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
6
|
Muller MP, Wang Y, Morrissey JH, Tajkhorshid E. Lipid specificity of the membrane binding domain of coagulation factor X. J Thromb Haemost 2017; 15:2005-2016. [PMID: 28782177 PMCID: PMC5630516 DOI: 10.1111/jth.13788] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Indexed: 01/19/2023]
Abstract
Essentials Membrane-binding GLA domains of coagulation factors are essential for proper clot formation. Factor X (FX) is specific to phosphatidylserine (PS) lipids through unknown atomic-level interactions. Molecular dynamics simulations were used to develop the first membrane-bound model of FX-GLA. PS binding modes of FX-GLA were described, and potential PS-specific binding sites identified. SUMMARY Background Factor X (FX) binds to cell membranes in a highly phospholipid-dependent manner and, in complex with tissue factor and factor VIIa (FVIIa), initiates the clotting cascade. Experimental information concerning the membrane-bound structure of FX with atomic resolution has remained elusive because of the fluid nature of cellular membranes. FX is known to bind preferentially to phosphatidylserine (PS). Objectives To develop the first membrane-bound model of the FX-GLA domain to PS at atomic level, and to identify PS-specific binding sites of the FX-GLA domain. Methods Molecular dynamics (MD) simulations were performed to develop an atomic-level model for the FX-GLA domain bound to PS bilayers. We utilized a membrane representation with enhanced lipid mobility, termed the highly mobile membrane mimetic (HMMM), permitting spontaneous membrane binding and insertion by FX-GLA in multiple 100-ns simulations. In 14 independent simulations, FX-GLA bound spontaneously to the membrane. The resulting membrane-bound models were converted from HMMM to conventional membrane and simulated for an additional 100 ns. Results The final membrane-bound FX-GLA model allowed for detailed characterization of the orientation, insertion depth and lipid interactions of the domain, providing insight into the molecular basis of its PS specificity. All binding simulations converged to the same configuration despite differing initial orientations. Conclusions Analysis of interactions between residues in FX-GLA and lipid-charged groups allowed for potential PS-specific binding sites to be identified. This new structural and dynamic information provides an additional step towards a full understanding of the role of atomic-level lipid-protein interactions in regulating the critical and complex clotting cascade.
Collapse
Affiliation(s)
- Melanie P. Muller
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - Yan Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - James H. Morrissey
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - Emad Tajkhorshid
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| |
Collapse
|
7
|
Justice ED, Barnum SJ, Kidd T. The WAGR syndrome gene PRRG4 is a functional homologue of the commissureless axon guidance gene. PLoS Genet 2017; 13:e1006865. [PMID: 28859078 PMCID: PMC5578492 DOI: 10.1371/journal.pgen.1006865] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/11/2017] [Indexed: 01/20/2023] Open
Abstract
WAGR syndrome is characterized by Wilm's tumor, aniridia, genitourinary abnormalities and intellectual disabilities. WAGR is caused by a chromosomal deletion that includes the PAX6, WT1 and PRRG4 genes. PRRG4 is proposed to contribute to the autistic symptoms of WAGR syndrome, but the molecular function of PRRG4 genes remains unknown. The Drosophila commissureless (comm) gene encodes a short transmembrane protein characterized by PY motifs, features that are shared by the PRRG4 protein. Comm intercepts the Robo axon guidance receptor in the ER/Golgi and targets Robo for degradation, allowing commissural axons to cross the CNS midline. Expression of human Robo1 in the fly CNS increases midline crossing and this was enhanced by co-expression of PRRG4, but not CYYR, Shisa or the yeast Rcr genes. In cell culture experiments, PRRG4 could re-localize hRobo1 from the cell surface, suggesting that PRRG4 is a functional homologue of Comm. Comm is required for axon guidance and synapse formation in the fly, so PRRG4 could contribute to the autistic symptoms of WAGR by disturbing either of these processes in the developing human brain.
Collapse
Affiliation(s)
- Elizabeth D. Justice
- Department of Biology/ms 314, University of Nevada, Reno, Nevada, United States of America
| | - Sarah J. Barnum
- Department of Biology/ms 314, University of Nevada, Reno, Nevada, United States of America
| | - Thomas Kidd
- Department of Biology/ms 314, University of Nevada, Reno, Nevada, United States of America
| |
Collapse
|
8
|
Prasad R, Sen P. Structural modulation of factor VIIa by full-length tissue factor (TF 1-263): implication of novel interactions between EGF2 domain and TF. J Biomol Struct Dyn 2017; 36:621-633. [PMID: 28150568 DOI: 10.1080/07391102.2017.1289125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tissue factor (TF)-mediated factor VII (FVII) activation and a subsequent proteolytic TF-FVIIa binary complex formation is the key step initiating the coagulation cascade, with implications in various homeostatic and pathologic scenarios. TF binding allosterically modifies zymogen-like free FVIIa to its highly catalytically active form. As a result of unresolved crystal structure of the full-length TF1-263-FVIIa binary complex and free FVIIa, allosteric alterations in FVIIa following its binding to full-length TF and the consequences of these on function are not entirely clear. The present study aims to map and identify structural alterations in FVIIa and TF resulting from full-length TF binding to FVIIa and the key events responsible for enhanced FVIIa activity in coagulation. We constructed the full-length TF1-263-FVIIa membrane bound complex using computational modeling and subjected it to molecular dynamics (MD) simulations. MD simulations showed that TF alters the structure of each domain of FVIIa and these combined alterations contribute to enhanced TF-FVIIa activity. Detailed, domain-wise investigation revealed several new non-covalent interactions between TF and FVIIa that were not found in the truncated soluble TF-FVIIa crystal structure. The structural modulation of each FVIIa domain imparted by TF indicated that both inter and intra-domain communication is crucial for allosteric modulation of FVIIa. Our results suggest that these newly formed interactions can provide additional stability to the protease domain and regulate its activity profile by governing catalytic triad (CT) orientation and localization. The unexplored newly formed interactions between EGF2 and TF provides a possible explanation for TF-induced allosteric activation of FVIIa.
Collapse
Affiliation(s)
- Ramesh Prasad
- a Department of Biological Chemistry , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032 , India
| | - Prosenjit Sen
- a Department of Biological Chemistry , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032 , India
| |
Collapse
|
9
|
Lim L, Wei Y, Lu Y, Song J. ALS-Causing Mutations Significantly Perturb the Self-Assembly and Interaction with Nucleic Acid of the Intrinsically Disordered Prion-Like Domain of TDP-43. PLoS Biol 2016; 14:e1002338. [PMID: 26735904 PMCID: PMC4703307 DOI: 10.1371/journal.pbio.1002338] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022] Open
Abstract
TAR-DNA-binding protein-43 (TDP-43) C-terminus encodes a prion-like domain widely presented in RNA-binding proteins, which functions to form dynamic oligomers and also, amazingly, hosts most amyotrophic lateral sclerosis (ALS)-causing mutations. Here, as facilitated by our previous discovery, by circular dichroism (CD), fluorescence and nuclear magnetic resonance (NMR) spectroscopy, we have successfully determined conformations, dynamics, and self-associations of the full-length prion-like domains of the wild type and three ALS-causing mutants (A315E, Q331K, and M337V) in both aqueous solutions and membrane environments. The study decodes the following: (1) The TDP-43 prion-like domain is intrinsically disordered only with some nascent secondary structures in aqueous solutions, but owns the capacity to assemble into dynamic oligomers rich in β-sheet structures. By contrast, despite having highly similar conformations, three mutants gained the ability to form amyloid oligomers. The wild type and three mutants all formed amyloid fibrils after incubation as imaged by electron microscopy. (2) The interaction with nucleic acid enhances the self-assembly for the wild type but triggers quick aggregation for three mutants. (3) A membrane-interacting subdomain has been identified over residues Met311-Gln343 indispensable for TDP-43 neurotoxicity, which transforms into a well-folded Ω-loop-helix structure in membrane environments. Furthermore, despite having very similar membrane-embedded conformations, three mutants will undergo further self-association in the membrane environment. Our study implies that the TDP-43 prion-like domain appears to have an energy landscape, which allows the assembly of the wild-type sequence into dynamic oligomers only under very limited condition sets, and ALS-causing point mutations are sufficient to remodel it to more favor the amyloid formation or irreversible aggregation, thus supporting the emerging view that the pathologic aggregation may occur via the exaggeration of functionally important assemblies. Furthermore, the coupled capacity of TDP-43 in aggregation and membrane interaction may critically account for its high neurotoxicity, and therefore its decoupling may represent a promising therapeutic strategy to treat TDP-43 causing neurodegenerative diseases. The prion-like domain of TDP-43 appears to have an energy landscape that allows oligomerisation only under very limited conditions; however, TDP-43 mutations that cause amyotrophic lateral sclerosis are sufficient to remodel the protein in favor of amyloid formation. Amyotrophic lateral sclerosis (ALS) is the most prevalent fatal motor neuron disease. It was identified ~140 years ago, but the exact mechanism underlying the disease has still not been well defined. TAR-DNA-binding protein-43 (TDP-43) was identified as the major component of the proteinaceous inclusions present in ~97% ALS and ~45% frontotemporal dementia (FTD) patients, and has also been observed in an increasing spectrum of other neurodegenerative disorders, including Alzheimer disease. The TDP-43 C-terminus is a key domain—it encodes a prion-like domain and, crucially, hosts almost all ALS-causing mutations. Here we have successfully determined the conformations, dynamics, and self-associations of the prion-like domains of both wild type and three ALS-causing mutants in both aqueous solutions and membrane environments. The study suggests that the TDP-43 prion-like domain appears to have a unique energy landscape, which allows the assembly of the wild-type sequence into specific oligomers only under very limited conditions. Intriguingly, ALS-causing point mutations remodel the energy landscape to favor amyloid formation or irreversible aggregation, thus supporting the emerging view that pathologic aggregation may occur via the exaggeration of functionally important assemblies. Furthermore, the coupled capacity of TDP-43 in aggregation and membrane interaction may partly account for its high neurotoxicity; decoupling these may therefore represent a promising therapeutic strategy to treat TDP-43-mediated neurodegenerative diseases.
Collapse
Affiliation(s)
- Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Yuanyuan Wei
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Yimei Lu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
10
|
Choi KM, Jeong JM, Bae JS, Cho DH, Jung SH, Hwang JY, Baeck GW, Park CI. Coagulation factor II from rock bream (Oplegnathus fasciatus): First report on the molecular biological function and expression analysis in the teleost. FISH & SHELLFISH IMMUNOLOGY 2016; 48:145-153. [PMID: 26626585 DOI: 10.1016/j.fsi.2015.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 06/05/2023]
Abstract
The rapid haemostasis of fish prevents bleeding or infection that could be caused by physical properties of the aquatic environment. Additionally, the innate immune system is the first line of defence against infection and is responsible for the recognition of pathogen-associated molecular patterns, which are important for the activation of acquired immune responses. Coagulation factor II (CFII) is an important factor in the coagulation system and is involved in recognition and interaction with various bacterial and extracellular proteins. In this study, we identified and characterised the gene encoding CFII in rock bream (Oplegnathus fasciatus) (RbCFII) and analysed its expression in various tissues after a pathogen challenge. The full-length RbCFII cDNA (2079 bp) contained an open reading frame of 1854 bp encoding 617 amino acids. Alignment analysis revealed that a gamma-carboxyglutamic acid-rich domain, two kringle domains, and a trypsin-like serine protease domain of the deduced protein were well conserved. RbCFII was ubiquitously expressed in all tissues examined but, predominantly detected in the liver and skin. RbCFII expression was dramatically up-regulated in the kidney, spleen and liver after infection with Edwardsiella tarda, Streptococcus iniae, or red seabream iridovirus. The recombinant protein RbCFII (rRbCFII) produced using an Escherichia coli expression system was able to bind all examined bacteria. Interestingly, rRbCFII has agglutination activities towards E. coli and E. tarda, while no agglutination was shown toward Vibrio ordalii and S. iniae. These findings indicate that rRbCFII performs an immunological function in the immune response, and might be involved in innate immunity as well as blood coagulation.
Collapse
Affiliation(s)
- Kwang-Min Choi
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 650-160, Republic of Korea
| | - Ji-Min Jeong
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 650-160, Republic of Korea
| | - Jin-Sol Bae
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 650-160, Republic of Korea
| | - Dong-Hee Cho
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 650-160, Republic of Korea
| | - Sung Hee Jung
- Pathology Division, National Fisheries Research and Development Institute, Busan 619-900, Republic of Korea
| | - Jee-Youn Hwang
- Pathology Division, National Fisheries Research and Development Institute, Busan 619-900, Republic of Korea
| | - Gun-Wook Baeck
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 650-160, Republic of Korea
| | - Chan-Il Park
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 650-160, Republic of Korea.
| |
Collapse
|
11
|
Gajsiewicz JM, Nuzzio KM, Rienstra CM, Morrissey JH. Tissue Factor Residues That Modulate Magnesium-Dependent Rate Enhancements of the Tissue Factor/Factor VIIa Complex. Biochemistry 2015; 54:4665-71. [PMID: 26169722 DOI: 10.1021/acs.biochem.5b00608] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The blood coagulation cascade is initiated when the cell-surface complex of factor VIIa (FVIIa, a trypsin-like serine protease) and tissue factor (TF, an integral membrane protein) proteolytically activates factor X (FX). Both FVIIa and FX bind to membranes via their γ-carboxyglutamate-rich domains (GLA domains). GLA domains contain seven to nine bound Ca(2+) ions that are critical for their folding and function, and most biochemical studies of blood clotting have employed supraphysiologic Ca(2+) concentrations to ensure saturation of these domains with bound Ca(2+). Recently, it has become clear that, at plasma concentrations of metal ions, Mg(2+) actually occupies two or three of the divalent metal ion-binding sites in GLA domains, and that these bound Mg(2+) ions are required for full function of these clotting proteins. In this study, we investigated how Mg(2+) influences FVIIa enzymatic activity. We found that the presence of TF was required for Mg(2+) to enhance the rate of FX activation by FVIIa, and we used alanine-scanning mutagenesis to identify TF residues important for mediating this response to Mg(2+). Several TF mutations, including those at residues G164, K166, and Y185, blunted the ability of Mg(2+) to enhance the activity of the TF/FVIIa complex. Our results suggest that these TF residues interact with the GLA domain of FX in a Mg(2+)-dependent manner (although effects of Mg(2+) on the FVIIa GLA domain cannot be ruled out). Notably, these TF residues are located within or immediately adjacent to the putative substrate-binding exosite of TF.
Collapse
Affiliation(s)
- Joshua M Gajsiewicz
- †Department of Biochemistry and ‡Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Kristin M Nuzzio
- †Department of Biochemistry and ‡Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Chad M Rienstra
- †Department of Biochemistry and ‡Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - James H Morrissey
- †Department of Biochemistry and ‡Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Vermaas JV, Baylon JL, Arcario MJ, Muller MP, Wu Z, Pogorelov TV, Tajkhorshid E. Efficient Exploration of Membrane-Associated Phenomena at Atomic Resolution. J Membr Biol 2015; 248:563-82. [PMID: 25998378 PMCID: PMC4490090 DOI: 10.1007/s00232-015-9806-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/30/2015] [Indexed: 12/24/2022]
Abstract
Biological membranes constitute a critical component in all living cells. In addition to providing a conducive environment to a wide range of cellular processes, including transport and signaling, mounting evidence has established active participation of specific lipids in modulating membrane protein function through various mechanisms. Understanding lipid-protein interactions underlying these mechanisms at a sufficiently high resolution has proven extremely challenging, partly due to the semi-fluid nature of the membrane. In order to address this challenge computationally, multiple methods have been developed, including an alternative membrane representation termed highly mobile membrane mimetic (HMMM) in which lateral lipid diffusion has been significantly enhanced without compromising atomic details. The model allows for efficient sampling of lipid-protein interactions at atomic resolution, thereby significantly enhancing the effectiveness of molecular dynamics simulations in capturing membrane-associated phenomena. In this review, after providing an overview of HMMM model development, we will describe briefly successful application of the model to study a variety of membrane processes, including lipid-dependent binding and insertion of peripheral proteins, the mechanism of phospholipid insertion into lipid bilayers, and characterization of optimal tilt angle of transmembrane helices. We conclude with practical recommendations for proper usage of the model in simulation studies of membrane processes.
Collapse
Affiliation(s)
- Josh V. Vermaas
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Javier L. Baylon
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Mark J. Arcario
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Melanie P. Muller
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Zhe Wu
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Taras V. Pogorelov
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Emad Tajkhorshid
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| |
Collapse
|
13
|
Kufareva I, Lenoir M, Dancea F, Sridhar P, Raush E, Bissig C, Gruenberg J, Abagyan R, Overduin M. Discovery of novel membrane binding structures and functions. Biochem Cell Biol 2014; 92:555-63. [PMID: 25394204 DOI: 10.1139/bcb-2014-0074] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The function of a protein is determined by its intrinsic activity in the context of its subcellular distribution. Membranes localize proteins within cellular compartments and govern their specific activities. Discovering such membrane-protein interactions is important for understanding biological mechanisms and could uncover novel sites for therapeutic intervention. We present a method for detecting membrane interactive proteins and their exposed residues that insert into lipid bilayers. Although the development process involved analysis of how C1b, C2, ENTH, FYVE, Gla, pleckstrin homology (PH), and PX domains bind membranes, the resulting membrane optimal docking area (MODA) method yields predictions for a given protein of known three-dimensional structures without referring to canonical membrane-targeting modules. This approach was tested on the Arf1 GTPase, ATF2 acetyltransferase, von Willebrand factor A3 domain, and Neisseria gonorrhoeae MsrB protein and further refined with membrane interactive and non-interactive FAPP1 and PKD1 pleckstrin homology domains, respectively. Furthermore we demonstrate how this tool can be used to discover unprecedented membrane binding functions as illustrated by the Bro1 domain of Alix, which was revealed to recognize lysobisphosphatidic acid (LBPA). Validation of novel membrane-protein interactions relies on other techniques such as nuclear magnetic resonance spectroscopy (NMR), which was used here to map the sites of micelle interaction. Together this indicates that genome-wide identification of known and novel membrane interactive proteins and sites is now feasible and provides a new tool for functional annotation of the proteome.
Collapse
Affiliation(s)
- Irina Kufareva
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Smith E, Vekaria R, Brown KA, Longstaff C. Kinetic regulation of the binding of prothrombin to phospholipid membranes. Mol Cell Biochem 2013; 382:193-201. [PMID: 23812842 PMCID: PMC3771376 DOI: 10.1007/s11010-013-1735-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/14/2013] [Indexed: 11/25/2022]
Abstract
A wide range of equilibrium and kinetic constants exist for the interaction of prothrombin and other coagulation factors with various model membranes from a variety of techniques. We have investigated the interaction of prothrombin with pure dioleoylphosphatidylcholine (DOPC) membranes and dioleoylphosphatidlyserine (DOPS)-containing membranes (DOPC:DOPS, 3:1) using surface plasmon resonance (SPR, with four different model membrane presentations) in addition to isotheral titration calorimetry (ITC, with suspensions of phospholipid vesicles) and ELISA methods. Using ITC, we found a simple low-affinity interaction with DOPC:DOPS membranes with a K(D) = 5.1 μM. However, ELISA methods using phospholipid bound to microtitre plates indicated a complex interaction with both DOPC:DOPS and DOPC membranes with K(D) values of 20 and 58 nM, respectively. An explanation for these discrepant results was developed from SPR studies. Using SPR with low levels of immobilised DOPC:DOPS, a high-affinity interaction with a K(D) of 18 nM was obtained. However, as phospholipid and prothrombin concentrations were increased, two distinct interactions could be discerned: (i) a kinetically slow, high-affinity interaction with K(D) in the 10(-8) M range and (ii) a kinetically rapid, low-affinity interaction with K(D) in the 10(-6 )M range. This low affinity, rapidly equilibrating, interaction dominated in the presence of DOPS. Detailed SPR studies supported a heterogeneous binding model in agreement with ELISA data. The binding of prothrombin with phospholipid membranes is complex and the techniques used to measure binding will report K D values reflecting the mixture of complexes detected. Existing data suggest that the weaker rapid interaction between prothrombin and membranes is the most important in vivo when considering the activation of prothrombin at the cell surface.
Collapse
Affiliation(s)
- Emma Smith
- Division of Cardiovascular and Diabetes Research, The LIGHT Laboratories, University of Leeds, Leeds, UK
| | | | - Katherine A. Brown
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712 USA
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE UK
| | - Colin Longstaff
- Biotherapeutics Section, National Institute for Biological Standards and Control, South Mimms, Hertfordshire EN6 3QG UK
| |
Collapse
|
15
|
Karimi Z, Falsafi-Zade S, Galehdari H. The role of Ca(2+) ions in the complex assembling of protein Z and Z-dependent protease inhibitor: A structure and dynamics investigation. Bioinformation 2012; 8:407-11. [PMID: 22715309 PMCID: PMC3374369 DOI: 10.6026/97320630008407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 04/18/2012] [Indexed: 11/29/2022] Open
Abstract
We investigated the solution structure and dynamics of the human anti-coagulation protein Z (PZ) in the complex with protein Zdependent protease inhibitor (ZPI) to order to understand key structural changes in the presence and absence of Ca(2+). Structural features of the complete complex of PZ-ZPI are poorly understood due to lack of complete atomic model of the PZ-ZPI complex. We have constructed a model of the complete PZ-ZPI complex and molecular dynamics (MD) simulation of the solvated PZ-ZPI complex with and without Ca(2+) was achieved for 100ns. It is consider that the Ω-loop of GLA domains interacts with negatively charged biological membranes in the presence of Ca(2+) ions. The PZ exerts its role as cofactor in a similar way. However, we used solvent-equilibrated dynamics to show structural features of the PZ-ZPI complex in the presence and the absence of Ca(2+)ions. We observed that the distance between the interacting sites of the ZPI with the PZ and the GLA domain decreases in the presence of Ca(2+) ions. Further, we postulated that the calculated distance between the dominant plane of the Ca(2+) ions and Ser196 of the pseudo-catalytic triad of the PZ is similar to the equivalent distance of FXa. This suggests that the central role of the PZ in the blood coagulation may be to align the inhibitory site of the ZPI with the active site of the FXa, which is depends on the interaction of the calcium bound GLA domain of the PZ with the active membrane.
Collapse
Affiliation(s)
- Zahra Karimi
- Bioinformatics unit, Department of Genetics, Shahid Chamran University, Ahvaz, Iran
| | - Sajad Falsafi-Zade
- Bioinformatics unit, Department of Genetics, Shahid Chamran University, Ahvaz, Iran
| | - Hamid Galehdari
- Department of Genetics, Shahid Chamran University, Ahvaz, Iran
| |
Collapse
|
16
|
Morrissey JH, Tajkhorshid E, Rienstra CM. Nanoscale studies of protein-membrane interactions in blood clotting. J Thromb Haemost 2011; 9 Suppl 1:162-7. [PMID: 21781251 PMCID: PMC3151027 DOI: 10.1111/j.1538-7836.2011.04300.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most of the steps in the blood clotting cascade require clotting proteins to bind to membrane surfaces with exposed phosphatidylserine. In spite of the importance of these protein-membrane interactions, we still lack a detailed understanding of how clotting proteins interact with membranes and how membranes contribute so profoundly to catalysis. Our laboratories are using multidisciplinary approaches to explore, at atomic-resolution, how blood clotting protein complexes assemble and function on membrane surfaces.
Collapse
Affiliation(s)
- J H Morrissey
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
17
|
Arcario MJ, Ohkubo YZ, Tajkhorshid E. Capturing spontaneous partitioning of peripheral proteins using a biphasic membrane-mimetic model. J Phys Chem B 2011; 115:7029-37. [PMID: 21561114 PMCID: PMC3102442 DOI: 10.1021/jp109631y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 04/20/2011] [Indexed: 12/25/2022]
Abstract
Membrane binding of peripheral proteins, mediated by specialized anchoring domains, is a crucial step for their biological function. Computational studies of membrane insertion, however, have proven challenging and largely inaccessible, due to the time scales required for the complete description of the process, mainly caused by the slow diffusion of the lipid molecules composing the membrane. Furthermore, in many cases, the nature of the membrane "anchor", i.e., the part of the protein that inserts into the membrane, is also unknown. Here, we address some of these issues by developing and employing a simplified representation of the membrane by a biphasic solvent model which we demonstrate can be used efficiently to capture and describe the process of hydrophobic insertion of membrane anchoring domains in all-atom molecular dynamics simulations. Applying the model, we have studied the insertion of the anchoring domain of a coagulation protein (the GLA domain of human protein C), starting from multiple initial configurations varying with regard to the initial orientation and height of the protein with respect to the membrane. In addition to efficiently and consistently identifying the "keel" region as the hydrophobic membrane anchor, within a few nanoseconds each configuration simulated showed a convergent height (2.20 ± 1.04 Å) and angle with respect to the interface normal (23.37 ± 12.48°). We demonstrate that the model can produce the same results as those obtained from a full representation of a membrane, in terms of both the depth of penetration and the orientation of the protein in the final membrane-bound form with an order of magnitude decrease in the required computational time compared to previous models, allowing for a more exhaustive search for the correct membrane-bound configuration.
Collapse
Affiliation(s)
- Mark J. Arcario
- Center for Biophysics and Computational Biology, Department of Biochemistry, College of Medicine, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Y. Zenmei Ohkubo
- Center for Biophysics and Computational Biology, Department of Biochemistry, College of Medicine, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Center for Biophysics and Computational Biology, Department of Biochemistry, College of Medicine, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
Ohkubo YZ, Morrissey JH, Tajkhorshid E. Dynamical view of membrane binding and complex formation of human factor VIIa and tissue factor. J Thromb Haemost 2010; 8:1044-53. [PMID: 20180816 PMCID: PMC2890040 DOI: 10.1111/j.1538-7836.2010.03826.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
SUMMARY BACKGROUND The molecular mechanism of enhancement of the enzymatic activity of factor VIIa by tissue factor (TF) is not fully understood, primarily because of the lack of atomic models for the membrane-bound form of the TF-FVIIa complex. OBJECTIVES To construct the first membrane-bound model of the TF-FVIIa complex, and to investigate the dynamics of the complex in solution and on the surface of anionic membranes by using large-scale molecular dynamics (MD) simulations in full atomic detail. METHODS Membrane-bound models of the TF-FVIIa complex and the individual factors were constructed and subjected to MD simulations, in order to characterize protein-protein and protein-lipid interactions, and to investigate the dynamics of TF and FVIIa. RESULTS The MD trajectories reveal that isolated FVIIa undergoes large structural fluctuation, primarily due to the hinge motions between its domains, whereas soluble TF (sTF) is structurally stable. Upon complex formation, sTF restricts the motion of FVIIa significantly. The results also show that, in the membrane-bound form, sTF directly interacts with the lipid headgroups, even in the absence of FVIIa. CONCLUSION The first atomic models of membrane-bound sTF-FVIIa, FVIIa and sTF are presented, revealing that sTF forms direct contacts with the lipids, both in the isolated form and in complex with FVIIa. The main effect of sTF binding to FVIIa is spatial stabilization of the catalytic site of FVIIa, which ensures optimal interaction with the substrate, FX.
Collapse
Affiliation(s)
- Y Z Ohkubo
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, USA
| | | | | |
Collapse
|
19
|
de Courcy B, Pedersen LG, Parisel O, Gresh N, Silvi B, Pilmé J, Piquemal JP. Understanding selectivity of hard and soft metal cations within biological systems using the subvalence concept. I. Application to blood coagulation: direct cation-protein electronic effects vs. indirect interactions through water networks. J Chem Theory Comput 2010; 6:1048-1063. [PMID: 20419068 PMCID: PMC2856951 DOI: 10.1021/ct100089s] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Following a previous study by de Courcy et al. ((2009) Interdiscip. Sci. Comput. Life Sci. 1, 55-60), we demonstrate in this contribution, using quantum chemistry, that metal cations exhibit a specific topological signature in the electron localization of their density interacting with ligands according to its "soft" or "hard" character. Introducing the concept of metal cation subvalence, we show that a metal cation can split its outer-shell density (the so-called subvalent domains or basins) according to it capability to form a partly covalent bond involving charge transfer. Such behaviour is investigated by means of several quantum chemical interpretative methods encompasing the topological analysis of the Electron Localization Function (ELF) and Bader's Quantum Theory of Atoms in Molecules (QTAIM) and two energy decomposition analyses (EDA), namely the Restricted Variational Space (RVS) and Constrained Space Orbital Variations (CSOV) approaches. Further rationalization is performed by computing ELF and QTAIM local properties such as electrostatic distributed moments and local chemical descriptors such as condensed Fukui Functions and dual descriptors. These reactivity indexes are computed within the ELF topological analysis in addition to QTAIM offering access to non atomic reactivity local index, for example on lone pairs. We apply this "subvalence" concept to study the cation selectivity in enzymes involved in blood coagulation (GLA domains of three coagulation factors). We show that the calcium ions are clearly able to form partially covalent charge transfer networks between the subdomain of the metal ion and the carboxylate oxygen lone pairs whereas magnesium does not have such ability. Our analysis also explains the different role of two groups (high affinity and low affinity cation binding sites) present in GLA domains. If the presence of Ca(II) is mandatory in the central "high affinity" region to conserve a proper folding and a charge transfer network, external sites are better stabilised by Mg(II), rather than Ca(II), in agreement with experiment. The central role of discrete water molecules is also discussed in order to understand the stabilities of the observed X-rays structures of the Gla domain. Indeed, the presence of explicit water molecules generating indirect cation-protein interactions through water networks is shown to be able to reverse the observed electronic selectivity occuring when cations directly interact with the Gla domain without the need of water.
Collapse
Affiliation(s)
- B. de Courcy
- UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005, Paris, France
- CNRS, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005, Paris, France
| | - L. G. Pedersen
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709 (USA)
| | - O. Parisel
- UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005, Paris, France
- CNRS, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005, Paris, France
| | - N. Gresh
- Laboratoire de Pharmacochimie Moléculaire et Cellulaire, U648 INSERM, UFR Biomédicale, Université Paris Descartes, 45, rue des Saints-Pères, 75006 Paris
| | - B. Silvi
- UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005, Paris, France
- CNRS, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005, Paris, France
| | - J. Pilmé
- UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005, Paris, France
- CNRS, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005, Paris, France
- Université de Lyon, Université Lyon 1, Faculté de pharmacie, F-69373Lyon, Cedex 08, France
| | - J.-P. Piquemal
- UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005, Paris, France
- CNRS, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005, Paris, France
| |
Collapse
|
20
|
Krisinger MJ, Guo LJ, Salvagno GL, Guidi GC, Lippi G, Dahlbäck B. Mouse recombinant protein C variants with enhanced membrane affinity and hyper-anticoagulant activity in mouse plasma. FEBS J 2009; 276:6586-602. [PMID: 19817854 DOI: 10.1111/j.1742-4658.2009.07371.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mouse anticoagulant protein C (461 residues) shares 69% sequence identity with its human ortholog. Interspecies experiments suggest that there is an incompatibility between mouse and human protein C, such that human protein C does not function efficiently in mouse plasma, nor does mouse protein C function efficiently in human plasma. Previously, we described a series of human activated protein C (APC) Gla domain mutants (e.g. QGNSEDY-APC), with enhanced membrane affinity that also served as superior anticoagulants. To characterize these Gla mutants further in mouse models of diseases, the analogous mutations were now made in mouse protein C. In total, seven mutants (mutated at one or more of positions P(10)S(12)D(23)Q(32)N(33)) and wild-type protein C were expressed and purified to homogeneity. In a surface plasmon resonance-based membrane-binding assay, several high affinity protein C mutants were identified. In Ca(2+) titration experiments, the high affinity variants had a significantly reduced (four-fold) Ca(2+) requirement for half-maximum binding. In a tissue factor-initiated thrombin generation assay using mouse plasma, all mouse APC variants, including wild-type, could completely inhibit thrombin generation; however, one of the variants denoted mutant III (P10Q/S12N/D23S/Q32E/N33D) was found to be a 30- to 50-fold better anticoagulant compared to the wild-type protein. This mouse APC variant will be attractive to use in mouse models aiming to elucidate the in vivo effects of APC variants with enhanced anticoagulant activity.
Collapse
Affiliation(s)
- Michael J Krisinger
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, University Hospital, Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
21
|
Direct analysis reveals an absence of gamma-carboxyglutamic acid in cancer procoagulant from human tissues. Blood Coagul Fibrinolysis 2009; 20:315-20. [PMID: 19448531 DOI: 10.1097/mbc.0b013e32831bc2c5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Additional carboxylation of glutamic acid by vitamin K-dependent gamma-carboxylase is a common posttranslational modification of many proteins, including some of blood clotting factors. Vitamin K-antagonists, such as warfarin, are often included in the therapy of malignant disease, decreasing the blood coagulation potential. Cancer procoagulant, a direct blood coagulation factor X activator from malignant tissue, is considered as a vitamin K-dependent protein, so it could serve as one of possible targets for the therapy with warfarin. However, there is still no experimental data demonstrating directly the presence of gamma-carboxyglutamic acid (Gla) in a cancer procoagulant molecule. The presence of Gla in cancer procoagulant isolated from human amnion-chorion membranes and from human malignant melanoma WM 115 cell line was analyzed directly, using specific anti-Gla monoclonal antibodies. There was no detectable amount of Gla in cancer procoagulant isolated from fetal or malignant tissue. Cancer procoagulant from human tissues does not contain Gla-rich domain. The finding indicates that cancer procoagulant is rather a poor target for warfarin therapy of malignant disease.
Collapse
|
22
|
Dudev T, Lim C. Metal-Binding Affinity and Selectivity of Nonstandard Natural Amino Acid Residues from DFT/CDM Calculations. J Phys Chem B 2009; 113:11754-64. [DOI: 10.1021/jp904249s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Todor Dudev
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and the Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and the Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
23
|
Characterization of a homozygous Gly11Val mutation in the Gla domain of coagulation factor X. Thromb Res 2009; 124:144-8. [DOI: 10.1016/j.thromres.2008.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/13/2008] [Accepted: 11/23/2008] [Indexed: 11/23/2022]
|
24
|
Abstract
Abstract
Blood haemostasis is accomplished by a complex network of coagulatory and fibrinolytic processes. These processes have to be delicately balanced, as clinically manifested by bleeding disorders, such as haemophilia A and B. These disorders are caused by defects in coagulation factor VIII and factor IX, respectively. Following a dual strategy, we emphasise on the one hand principles conserved in most coagulation enzymes, thus mirroring much of the underlying complexity in haemostasis; on the other hand, we identify enzymatic properties of the factor IXa-factor VIIIa system (Xase) that distinguish this proteolytic machine from other components of the coagulation system. While the exact mechanisms of its activity modulation remain baffling until today, superactive factor IX mutants significantly improve our current understanding and serve as a specific and testable model of Xase action.
Collapse
Affiliation(s)
- Thomas Zögg
- Department of Molecular Biology, Division of Structural Biology, University of Salzburg, Billrothstraße 11, A-5020 Salzburg, Austria
| | - Hans Brandstetter
- Department of Molecular Biology, Division of Structural Biology, University of Salzburg, Billrothstraße 11, A-5020 Salzburg, Austria
| |
Collapse
|
25
|
Rodríguez Y, Mezei M, Osman R. The PT1-Ca2+ Gla domain binds to a membrane through two dipalmitoylphosphatidylserines. A computational study. Biochemistry 2009; 47:13267-78. [PMID: 19086158 DOI: 10.1021/bi801199v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Binding of vitamin K-dependent proteins to cell membranes containing phosphatidylserine (PS) via gamma-carboxyglutamic acid (Gla) domains is one of the essential steps in the blood coagulation pathway. During activation of the coagulation cascade, prothrombin is converted to thrombin by prothrombinase, a complex consisting of serine protease FXa and cofactor FVa, anchored to anionic phospholipids on the surface of activated platelets in the presence of calcium ions. To investigate the binding of the Gla domain of prothrombin fragment 1 (PT1) to anionic lipids in the presence of Ca2+, we have conducted MD simulations of the protein with one and two dipalmitoylphosphatidylserines (DPPS) in a dipalmitoylphosphatidylcholine (DPPC) bilayer membrane. The results show a well-defined phosphatidylserine binding site, which agrees generally with crystallographic studies [Huang, M., et al. (2003) Nat. Struct. Biol. 10, 751-756]. However, in the presence of the lipid membrane, some of the interactions observed in the crystal structure adjust during the simulations possibly because in our system the PT1-Ca2+ complex is embedded in a DPPC lipid membrane. Our simulations confirm the existence of a second phospholipid headgroup binding site on the opposite face of the PT1-Ca2+ complex as suggested by MacDonald et al. [(1997) Biochemistry 36, 5120-5127]. The serine headgroup in the second site binds through a Gla domain-bound calcium ion Ca1, Gla30, and Lys11. On the basis of free energy simulations, we estimate the energy of binding of the PT1-Ca2+ complex to a single DPPS to be around -11.5 kcal/mol. The estimated free energy of binding of a DPPS lipid to the second binding site is around -8.8 kcal/mol and is in part caused by the nature of the second site and in part by entropic effects.
Collapse
Affiliation(s)
- Yoel Rodríguez
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
26
|
Sharma AK, Zhou GP, Kupferman J, Surks HK, Christensen EN, Chou JJ, Mendelsohn ME, Rigby AC. Probing the interaction between the coiled coil leucine zipper of cGMP-dependent protein kinase Ialpha and the C terminus of the myosin binding subunit of the myosin light chain phosphatase. J Biol Chem 2008; 283:32860-9. [PMID: 18782776 DOI: 10.1074/jbc.m804916200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide and nitrovasodilators induce vascular smooth muscle cell relaxation in part by cGMP-dependent protein kinase I (PKG-Ialpha)-mediated activation of myosin phosphatase (MLCP). Mechanistically it has been proposed that protein-protein interactions between the N-terminal leucine zipper (LZ) domain of PKG-Ialpha ((PKG-Ialpha(1-59)) and the LZ and/or coiled coil (CC) domain of the myosin binding subunit (MBS) of MLCP are localized in the C terminus of MBS. Although recent studies have supported these interactions, the critical amino acids responsible for these interactions have not been identified. Here we present structural and biophysical data identifying that the LZ domain of PKG-Ialpha(1-59) interacts with a well defined 42-residue CC motif (MBS(CT42)) within the C terminus of MBS. Using glutathione S-transferase pulldown experiments, chemical cross-linking, size exclusion chromatography, circular dichroism, and isothermal titration calorimetry we identified a weak dimer-dimer interaction between PKG-Ialpha(1-59) and this C-terminal CC domain of MBS. The K(d) of this non-covalent complex is 178.0+/-1.5 microm. Furthermore our (1)H-(15)N heteronuclear single quantum correlation NMR data illustrate that this interaction is mediated by several PKG-Ialpha residues that are on the a, d, e, and g hydrophobic and electrostatic interface of the C-terminal heptad layers 2, 4, and 5 of PKG-Ialpha. Taken together these data support a role for the LZ domain of PKG-Ialpha and the CC domain of MBS in this requisite contractile complex.
Collapse
Affiliation(s)
- Alok K Sharma
- Divison of Molecular and Vascular Medicine, Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Crystal structure of human factor VIII: implications for the formation of the factor IXa-factor VIIIa complex. Structure 2008; 16:597-606. [PMID: 18400180 DOI: 10.1016/j.str.2008.03.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2008] [Revised: 02/27/2008] [Accepted: 03/01/2008] [Indexed: 11/24/2022]
Abstract
Factor VIII is a procofactor that plays a critical role in blood coagulation, and is missing or defective in hemophilia A. We determined the X-ray crystal structure of B domain-deleted human factor VIII. This protein is composed of five globular domains and contains one Ca(2+) and two Cu(2+) ions. The three homologous A domains form a triangular heterotrimer where the A1 and A3 domains serve as the base and interact with the C2 and C1 domains, respectively. The structurally homologous C1 and C2 domains reveal membrane binding features. Based on biochemical studies, a model of the factor IXa-factor VIIIa complex was constructed by in silico docking. Factor IXa wraps across the side of factor VIII, and an extended interface spans the factor VIII heavy and light chains. This model provides insight into the activation of factor VIII and the interaction of factor VIIIa with factor IXa on the membrane surface.
Collapse
|
28
|
Persson E. Protein disulfide isomerase has no stimulatory chaperone effect on factor X activation by factor VIIa-soluble tissue factor. Thromb Res 2008; 123:171-6. [PMID: 18550154 DOI: 10.1016/j.thromres.2008.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/27/2008] [Accepted: 04/21/2008] [Indexed: 11/26/2022]
Abstract
INTRODUCTION It was recently reported that protein disulfide isomerase (PDI) stimulates factor X (FX) activation by factor VIIa (FVIIa) bound to soluble tissue factor (sTF) in a purified system and that PDI may be responsible for activating cellular tissue factor (TF) and switching it between its roles in blood coagulation and cellular signalling. This study further investigates the former effect of PDI. METHOD FX activations by FVIIa-sTF(1-219) were carried out in the presence of different forms of PDI, with annexin V or detergent present in the system and using various forms of FVIIa and FX. In addition, FVIIa-lipidated TF was used as the FX activator. RESULTS Recombinant human PDI did not influence FX activation by FVIIa-sTF(1-219), whereas PDI purified from bovine liver enhanced the activation rate in a dose-dependent manner. The inclusion of annexin V or detergent abolished the stimulatory effect. Removal of the phospholipid-interactive gamma-carboxyglutamic acid (Gla)-containing domain from either FVIIa or FX obliterated the bovine PDI-induced enhancement of FX activation, as did the introduction of F4A or L8A mutation in FVIIa. The presence of 25 nM bovine PDI lowered the apparent K(m) for FX from far above 10 microM to 1-2 microM. No PDI effect was seen when FVIIa-lipidated TF was the FX activator. CONCLUSIONS FX activation is insensitive to PDI per se and a phospholipid contaminant in the bovine PDI preparation acts stimulatory when sTF, but not lipidated TF, is the cofactor. Strong support is provided by the lacking effect of bovine PDI after removal or modification of the Gla domain in either FVIIa or FX as well as by the effects of annexin V and detergents and the decreased K(m) value.
Collapse
Affiliation(s)
- Egon Persson
- Haemostasis Biochemistry, Novo Nordisk A/S, Novo Nordisk Park (G8.2.76), DK-2760 Måløv, Denmark.
| |
Collapse
|
29
|
Ohkubo YZ, Tajkhorshid E. Distinct structural and adhesive roles of Ca2+ in membrane binding of blood coagulation factors. Structure 2008; 16:72-81. [PMID: 18184585 DOI: 10.1016/j.str.2007.10.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/18/2007] [Accepted: 10/20/2007] [Indexed: 11/26/2022]
Abstract
The GLA domain, a common membrane-anchoring domain of several serine protease coagulation factors, is a key element in membrane association and activation of these factors in a highly Ca2+-dependent manner. However, the critical role of Ca2+ ions in binding is only poorly understood. Here, we present the atomic model of a membrane-bound GLA domain by using MD simulations of the GLA domain of human factor VIIa and an anionic lipid bilayer. The binding is furnished through a complete insertion of the omega-loop into the membrane and through direct interactions of structurally bound Ca2+ ions and protein side chains with negative lipids. The model suggests that Ca2+ ions play two distinct roles in the process: the four inner Ca2+ ions are primarily responsible for optimal folding of the GLA domain for membrane insertion, whereas the outer Ca2+ ions anchor the protein to the membrane through direct contacts with lipids.
Collapse
Affiliation(s)
- Y Zenmei Ohkubo
- Department of Biochemistry, Beckman Institute and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
30
|
Lin L, Huai Q, Huang M, Furie B, Furie BC. Crystal structure of the bovine lactadherin C2 domain, a membrane binding motif, shows similarity to the C2 domains of factor V and factor VIII. J Mol Biol 2007; 371:717-24. [PMID: 17583728 PMCID: PMC2701442 DOI: 10.1016/j.jmb.2007.05.054] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 05/09/2007] [Accepted: 05/18/2007] [Indexed: 11/29/2022]
Abstract
Lactadherin, a glycoprotein secreted by a variety of cell types, contains two EGF domains and two C domains with sequence homology to the C domains of blood coagulation proteins factor V and factor VIII. Like these proteins, lactadherin binds to phosphatidylserine (PS)-containing membranes with high affinity. We determined the crystal structure of the bovine lactadherin C2 domain (residues 1 to 158) at 2.4 A. The lactadherin C2 structure is similar to the C2 domains of factors V and VIII (rmsd of C(alpha) atoms of 0.9 A and 1.2 A, and sequence identities of 43% and 38%, respectively). The lactadherin C2 domain has a discoidin-like fold containing two beta-sheets of five and three antiparallel beta-strands packed against one another. The N and C termini are linked by a disulfide bridge between Cys1 and Cys158. One beta-turn and two loops containing solvent-exposed hydrophobic residues extend from the C2 domain beta-sandwich core. In analogy with the C2 domains of factors V and VIII, some or all of these solvent-exposed hydrophobic residues, Trp26, Leu28, Phe31, and Phe81, likely participate in membrane binding. The C2 domain of lactadherin may serve as a marker of cell surface phosphatidylserine exposure and may have potential as a unique anti-thrombotic agent.
Collapse
Affiliation(s)
- Lin Lin
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
31
|
Wikström A, Deinum J. Probing the interaction of coagulation factors with phospholipid vesicle surfaces by surface plasma resonance. Anal Biochem 2006; 362:98-107. [PMID: 17239338 DOI: 10.1016/j.ab.2006.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 12/04/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
The dynamics of the binding of human coagulation factor Xa (FXa) and prothrombin to small unilamellar vesicles (25% phosphatidylserine, 75% phosphatidylcholine) were compared and quantified by Biacore, using two immobilization techniques. The vesicles were either tagged with different molar ratios of cholesterol-DNA and attached on Au chips or fused directly on L1 chips. The diameter in solution was 145 nm, but the more DNA tags/vesicle the more compressed the immobilized vesicles became; with 30 DNA tags the calculated thickness was 88 nm and with 1 DNA tag it was 138 nm. In both models the affinity for the vesicles was higher for the activated coagulation factors than for the corresponding zymogens. FXa and prothrombin had the highest affinities. The affinity was dependent on the vesicle preparation since overall K(D) values were up to 10 times lower for N(2)-dried than for vacuum-dried phospholipids, although with apparently fewer binding sites. However, compression of the vesicles had no effect on the K(D). In contrast, the rate constants were dependent on the number of DNA tags; thus deformation of the vesicles was observed. The k(a) and k(d) for FXa were similar for vesicles attached with 30 DNA tags or fused on the L1 chip but higher with fewer tags and approximately 10 times higher if attached with 1 tag. Thus for controlled kinetic studies immobilized DNA-tagged vesicles should be used.
Collapse
Affiliation(s)
- Angelica Wikström
- Department of Applied Physics, Chalmers University of Technology, S-431 90 Göteborg, Sweden
| | | |
Collapse
|
32
|
Abstract
The story I shall recount started in 1969, when I was given the opportunity to join the Department of Clinical Chemistry at the University Hospital in Malmö. I had just finished medical school at the university in the neighboring town of Lund. Parallel to pursuing my medical studies I had spent some time in the Department of Biochemistry. I did not know much about biochemistry, but it was enough for me to realize that I wanted to do laboratory research rather than developing a clinical career. I was happy to accept an offer to start working in the laboratory, particularly as the head of the department, Professor Carl-Bertil Laurell, had an excellent reputation. As it turned out, I came to spend almost all of my professional life in the laboratory.
Collapse
Affiliation(s)
- J Stenflo
- Department of Clinical Chemistry, University Hospital, Malmö, Sweden.
| |
Collapse
|
33
|
Taboureau O, Olsen OH. Computational study of coagulation factor VIIa's affinity for phospholipid membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 36:133-44. [PMID: 17131117 DOI: 10.1007/s00249-006-0114-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 09/12/2006] [Accepted: 10/31/2006] [Indexed: 11/28/2022]
Abstract
The interaction between the gamma-carboxyglutamic acid-rich domain of coagulation factor VIIa (FVIIa), a vitamin-K-dependent enzyme, and phospholipid membranes plays a major role in initiation of blood coagulation. However, despite a high sequence and structural similarity to the Gla domain of other vitamin-K-dependent enzymes with a high membrane affinity, its affinity for negatively charged phospholipids is poor. A few amino acid differences are responsible for this observation. Based on the X-ray structure of lysophosphatidylserine (lysoPS) bound to the Gla domain of bovine prothrombin (Prth), models of the Gla domain of wildtype FVIIa and mutated FVIIa Gla domains in complex with lysoPS were built. Molecular dynamics (MD) and steered molecular dynamics (SMD) simulations on the complexes were applied to investigate the significant difference in the binding affinity. The MD simulation approach provides a structural and dynamic support to the role of P10Q and K32E mutations in the improvement of the membrane contact. Hence, rotation of the Gly11 main chain generated during the MD simulation results in a hydrogen bond with Q10 side chain as well as the appearance of a hydrogen bond between E32 and Q10 forcing the loop harbouring Arg9 and Arg15 to shrink and thereby enhances the accessibility of the phospholipids to the calcium ions. Furthermore, the application of the SMD simulation method to dissociate C6-lysoPS from a series of Gla domain models exhibits a ranking of the rupture force that can be useful in the interpretation of the PS interaction with Gla domains. Finally, adiabatic mapping of Gla6 residue in FVIIa with or without insertion of Tyr4 confirms the critical role of the insertion on the conformation of the side chain Gla6 in FVIIa and the corresponding Gla7 in Prth.
Collapse
Affiliation(s)
- Olivier Taboureau
- Haemostasis Biochemistry, Novo Nordisk A/S, Novo Nordisk Park, Building G8.2.90, 2760 Måløv, Denmark
| | | |
Collapse
|
34
|
Bukys MA, Kim PY, Nesheim ME, Kalafatis M. A control switch for prothrombinase: characterization of a hirudin-like pentapeptide from the COOH terminus of factor Va heavy chain that regulates the rate and pathway for prothrombin activation. J Biol Chem 2006; 281:39194-204. [PMID: 17020886 DOI: 10.1074/jbc.m604482200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane-bound factor Xa alone catalyzes prothrombin activation following initial cleavage at Arg(271) and prethrombin 2 formation (pre2 pathway). Factor Va directs prothrombin activation by factor Xa through the meizothrombin pathway, characterized by initial cleavage at Arg(320) (meizo pathway). We have shown previously that a pentapeptide encompassing amino acid sequence 695-699 from the COOH terminus of the heavy chain of factor Va (Asp-Tyr-Asp-Tyr-Gln, DYDYQ) inhibits prothrombin activation by prothrombinase in a competitive manner with respect to substrate. To understand the mechanism of inhibition of thrombin formation by DYDYQ, we have studied prothrombin activation by gel electrophoresis. Titration of plasma-derived prothrombin activation by prothrombinase, with increasing concentrations of peptide, resulted in complete inhibition of the meizo pathway. However, thrombin formation still occurred through the pre2 pathway. These data demonstrate that the peptide preferentially inhibits initial cleavage of prothrombin by prothrombinase at Arg(320). These findings were corroborated by studying the activation of recombinant mutant prothrombin molecules rMZ-II (R155A/R284A/R271A) and rP2-II (R155A/R284A/R320A) which can be only cleaved at Arg(320) and Arg(271), respectively. Cleavage of rMZ-II by prothrombinase was completely inhibited by low concentrations of DYDYQ, whereas high concentrations of pentapeptide were required to inhibit cleavage of rP2-II. The pentapeptide also interfered with prothrombin cleavage by membrane-bound factor Xa alone in the absence of factor Va increasing the rate for cleavage at Arg(271) of plasma-derived prothrombin or rP2-II. Our data demonstrate that pentapeptide DYDYQ has opposing effects on membrane-bound factor Xa for prothrombin cleavage, depending on the incorporation of factor Va in prothrombinase.
Collapse
Affiliation(s)
- Michael A Bukys
- Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115, USA
| | | | | | | |
Collapse
|
35
|
Henriques ST, Castanho MARB. Environmental factors that enhance the action of the cell penetrating peptide pep-1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1669:75-86. [PMID: 15893509 DOI: 10.1016/j.bbamem.2004.11.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 11/18/2004] [Accepted: 11/19/2004] [Indexed: 11/24/2022]
Abstract
Pep-1 is a cell penetrating peptide (CPP) derived from the nuclear localization sequence of Simian Virus 40 large antigen T and from reverse transcriptase of Human Immunodeficiency Virus. Although it has been successfully used to transport proteins into cells, its action at the molecular level is not yet clear, mainly the local environmental factors that condition partition and translocation. Characterization in aqueous medium and quantification of partition into bilayers were carried out. Dynamic light scattering studies show that pep-1 self-associates in aqueous medium. The role of the bilayer phase, anionic lipids, ionic strength of the medium, reducing agents and pep-1 concentration on the extent and kinetics of partition were studied. Unlike others cationic CPP (e.g. penetratin) pep-1 has a high affinity to neutral vesicles (Kp = 2.8 x 10(3)), which is enhanced by anionic lipids. In a reduction environment partition is strongly inhibited (Kp = 2.2 x 10(2)), which might be a key-feature in the biological action of pep-1. Peptide incorporation takes place in the millisecond time-range to the lipidic interfaces. These environmental factors are systematized to enlighten how they help cellular uptake.
Collapse
Affiliation(s)
- Sónia Troeira Henriques
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | | |
Collapse
|
36
|
Preston RJS, Villegas-Mendez A, Sun YH, Hermida J, Simioni P, Philippou H, Dahlbäck B, Lane DA. Selective modulation of protein C affinity for EPCR and phospholipids by Gla domain mutation. FEBS J 2004; 272:97-108. [PMID: 15634335 DOI: 10.1111/j.1432-1033.2004.04401.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Uniquely amongst vitamin K-dependent coagulation proteins, protein C interacts via its Gla domain both with a receptor, the endothelial cell protein C receptor (EPCR), and with phospholipids. We have studied naturally occurring and recombinant protein C Gla domain variants for soluble (s)EPCR binding, cell surface activation to activated protein C (APC) by the thrombin-thrombomodulin complex, and phospholipid dependent factor Va (FVa) inactivation by APC, to establish if these functions are concordant. Wild-type protein C binding to sEPCR was characterized with surface plasmon resonance to have an association rate constant of 5.23 x 10(5) m(-1).s(-1), a dissociation rate constant of 7.61 x 10(-2) s(-1) and equilibrium binding constant (K(D)) of 147 nm. It was activated by thrombin over endothelial cells with a K(m) of 213 nm and once activated to APC, rapidly inactivated FVa. Each of these interactions was dramatically reduced for variants causing gross Gla domain misfolding (R-1L, R-1C, E16D and E26K). Recombinant variants Q32A, V34A and D35A had essentially normal functions. However, R9H and H10Q/S11G/S12N/D23S/Q32E/N33D/H44Y (QGNSEDY) variants had slightly reduced (< twofold) binding to sEPCR, arising from an increased rate of dissociation, and increased K(m) (358 nm for QGNSEDY) for endothelial cell surface activation by thrombin. Interestingly, these variants had greatly reduced (R9H) or greatly enhanced (QGNSEDY) ability to inactivate FVa. Therefore, protein C binding to sEPCR and phospholipids is broadly dependent on correct Gla domain folding, but can be selectively influenced by judicious mutation.
Collapse
Affiliation(s)
- Roger J S Preston
- Department of Haematology, Division of Investigative Science, Hammersmith Campus, Imperial College London, UK
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Grant MA, Baikeev RF, Gilbert GE, Rigby AC. Lysine 5 and Phenylalanine 9 of the Factor IX ω-Loop Interact with Phosphatidylserine in a Membrane-Mimetic Environment. Biochemistry 2004; 43:15367-78. [PMID: 15581349 DOI: 10.1021/bi049107f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The binding of factor IX to cell membranes requires a structured N-terminal omega-loop conformation that exposes hydrophobic residues for a highly regulated interaction with a phospholipid. We hypothesized that a peptide comprised of amino acids Gly4-Gln11 of factor IX (fIX(G4)(-)(Q11)) and constrained by an engineered disulfide bond would assume the native factor IX omega-loop conformation in the absence of Ca(2+). The small size and freedom from aggregation-inducing calcium interactions would make fIX(G4)(-)(Q11) suitable for structural studies for eliciting details about phospholipid interactions. fIX(G4)(-)(Q11) competes with factor IXa for binding sites on phosphatidylserine-containing membranes with a K(i) of 11 microM and inhibits the activation of factor X by the factor VIIIa-IXa complex with a K(i) of 285 microM. The NMR structure of fIX(G4)(-)(Q11) reveals an omega-loop backbone fold and side chain orientation similar to those found in the calcium-bound factor IX Gla domain, FIX(1-47)-Ca(2+). Dicaproylphosphatidylserine (C(6)PS) induces HN, Halpha backbone, and Hbeta chemical shift perturbations at residues Lys5, Leu6, Phe9, and Val10 of fIX(G4)(-)(Q11), while selectively protecting the NHzeta side chain resonance of Lys5 from solvent exchange. NOEs between the aromatic ring protons of Phe9 and specific acyl chain protons of C(6)PS indicate that these phosphatidylserine protons reside 3-6 A from Phe9. Stabilization of the phosphoserine headgroup and glycerol backbone of C(6)PS identifies that phosphatidylserine is in a protected environment that is spatially juxtaposed with fIX(G4)(-)(Q11). Together, these data demonstrate that Lys5, Leu6, Phe9, and Val10 preferentially interact with C(6)PS and allow us to correlate known hemophilia B mutations of factor IX at Lys5 or Phe9 with impaired phosphatidylserine interaction.
Collapse
Affiliation(s)
- Marianne A Grant
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
38
|
Raghuraman H, Chattopadhyay A. Influence of lipid chain unsaturation on membrane-bound melittin: a fluorescence approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1665:29-39. [PMID: 15471568 DOI: 10.1016/j.bbamem.2004.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 06/08/2004] [Accepted: 06/22/2004] [Indexed: 11/28/2022]
Abstract
Melittin, a cationic hemolytic peptide, is intrinsically fluorescent due to the presence of a single functionally important tryptophan residue. The organization of membrane-bound melittin is dependent on the physical state and composition of membranes. In particular, polyunsaturated lipids have been shown to modulate the membrane-disruptive action of melittin. Phospholipids with polyunsaturated acyl chains are known to modulate a number of physical properties of membranes and play an important role in regulating structure and function of membrane proteins. In this study, we have used melittin to address the influence of unsaturated lipids in modulating lipid-protein interactions. Our results show that fluorescence parameters such as intensity, emission maximum, polarization, lifetime and acrylamide quenching of melittin incorporated in membranes are dependent on the degree of unsaturation of lipids in membranes. Importantly, melittin in membranes composed of various unsaturated lipids shows red edge excitation shift (REES) implying that melittin is localized in a motionally restricted region in membranes. The extent of REES was found to increase drastically in membranes with increasing unsaturation, especially when the lipids contained more than two double bonds. In addition, increasing unsaturation in membranes causes a considerable change in the secondary structure of membrane-bound melittin. Taken together, our results assume significance in the overall context of the role of unsaturated lipids in membranes in the organization and function of membrane proteins and membrane-active peptides.
Collapse
Affiliation(s)
- H Raghuraman
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
39
|
Shmulevitz M, Epand RF, Epand RM, Duncan R. Structural and functional properties of an unusual internal fusion peptide in a nonenveloped virus membrane fusion protein. J Virol 2004; 78:2808-18. [PMID: 14990700 PMCID: PMC353762 DOI: 10.1128/jvi.78.6.2808-2818.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2003] [Accepted: 11/13/2003] [Indexed: 11/20/2022] Open
Abstract
The avian and Nelson Bay reoviruses are two of only a limited number of nonenveloped viruses capable of inducing cell-cell membrane fusion. These viruses encode the smallest known membrane fusion proteins (p10). We now show that a region of moderate hydrophobicity we call the hydrophobic patch (HP), present in the small N-terminal ectodomain of p10, shares the following characteristics with the fusion peptides of enveloped virus fusion proteins: (i) an abundance of glycine and alanine residues, (ii) a potential amphipathic secondary structure, (iii) membrane-seeking characteristics that correspond to the degree of hydrophobicity, and (iv) the ability to induce lipid mixing in a liposome fusion assay. The p10 HP is therefore predicted to provide a function in the mechanism of membrane fusion similar to those of the fusion peptides of enveloped virus fusion peptides, namely, association with and destabilization of opposing lipid bilayers. Mutational and biophysical analysis suggested that the internal fusion peptide of p10 lacks alpha-helical content and exists as a disulfide-stabilized loop structure. Similar kinked structures have been reported in the fusion peptides of several enveloped virus fusion proteins. The preservation of a predicted loop structure in the fusion peptide of this unusual nonenveloped virus membrane fusion protein supports an imperative role for a kinked fusion peptide motif in biological membrane fusion.
Collapse
Affiliation(s)
- Maya Shmulevitz
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | | | |
Collapse
|
40
|
Birner R, Daum G. Biogenesis and cellular dynamics of aminoglycerophospholipids. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 225:273-323. [PMID: 12696595 DOI: 10.1016/s0074-7696(05)25007-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aminoglycerophospholipids phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho) comprise about 80% of total cellular phospholipids in most cell types. While the major function of PtdCho in eukaryotes and PtdEtn in prokaryotes is that of bulk membrane lipids, PtdSer is a minor component and appears to play a more specialized role in the plasma membrane of eukaryotes, e.g., in cell recognition processes. All three aminoglycerophospholipid classes are essential in mammals, whereas prokaryotes and lower eukaryotes such as yeast appear to be more flexible regarding their aminoglycerophospholipid requirement. Since different subcellular compartments of eukaryotes, namely the endoplasmic reticulum and mitochondria, contribute to the biosynthetic sequence of aminoglycerophospholipid formation, intracellular transport, sorting, and specific function of these lipids in different organelles are of special interest.
Collapse
Affiliation(s)
- Ruth Birner
- Institut für Biochemie, Technische Universität Graz, Petersgasse 12/2, A-8010 Graz, Austria
| | | |
Collapse
|
41
|
Dai Q, Zajicek J, Castellino FJ, Prorok M. Binding and orientation of conantokins in PL vesicles and aligned PL multilayers. Biochemistry 2003; 42:12511-21. [PMID: 14580197 DOI: 10.1021/bi034918p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The association of a ligand with its cognate cell surface receptor can be facilitated by interactions between the ligand and the lipid phase of the cell membrane. With respect to the N-methyl-D-aspartate receptor (NMDAR), we have previously established a low affinity, nonreceptor-mediated interaction of the peptidic conantokins with synaptic membranes in conjunction with a high affinity binding to the NMDARs present therein [Klein, R. C., Prorok, M., and Castellino, F. J. (2003) J. Pept. Res. 61, 307-317]. In the current study, several techniques including size-exclusion chromatography, circular dichroism, fluorescence, and NMR spectroscopies were used to investigate the binding, conformation, and orientation of conantokins and their variants to a variety of phospholipid (PL) vesicles and multilayers. We have found that conantokins bind to PLs and that the effectors Ca(2+) and spermine slightly increase this binding ability. The conantokins preserve a high degree of helical conformation when bound to vesicles in the presence of Ca(2+). In the absence of Ca(2+), only conantokin-G (con-G) manifests an increase in conantokin helicity with increasing vesicle concentration. In solution, the conantokins appear to be localized at the headgroup of vesicles and do not insert into the hydrophobic core of the bilayer. On aligned PL films, the helical axis of the conantokins can either reside normal to the membrane surface or partition in a parallel orientation, depending on the nature of the conantokins and the PLs used. These orientation preferences may be conjoined with the biological activities of the conantokins.
Collapse
Affiliation(s)
- Qiuyun Dai
- Department of Chemistry and Biochemistry and the W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
42
|
Huang M, Rigby AC, Morelli X, Grant MA, Huang G, Furie B, Seaton B, Furie BC. Structural basis of membrane binding by Gla domains of vitamin K-dependent proteins. Nat Struct Mol Biol 2003; 10:751-6. [PMID: 12923575 DOI: 10.1038/nsb971] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2003] [Accepted: 07/24/2003] [Indexed: 11/09/2022]
Abstract
In a calcium-dependent interaction critical for blood coagulation, vitamin K-dependent blood coagulation proteins bind cell membranes containing phosphatidylserine via gamma-carboxyglutamic acid-rich (Gla) domains. Gla domain-mediated protein-membrane interaction is required for generation of thrombin, the terminal enzyme in the coagulation cascade, on a physiologic time scale. We determined by X-ray crystallography and NMR spectroscopy the lysophosphatidylserine-binding site in the bovine prothrombin Gla domain. The serine head group binds Gla domain-bound calcium ions and Gla residues 17 and 21, fixed elements of the Gla domain fold, predicting the structural basis for phosphatidylserine specificity among Gla domains. Gla domains provide a unique mechanism for protein-phospholipid membrane interaction. Increasingly Gla domains are being identified in proteins unrelated to blood coagulation. Thus, this membrane-binding mechanism may be important in other physiologic processes.
Collapse
Affiliation(s)
- Mingdong Huang
- Center for Hemostasis and Thrombosis Research, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Shikamoto Y, Morita T, Fujimoto Z, Mizuno H. Crystal structure of Mg2+- and Ca2+-bound Gla domain of factor IX complexed with binding protein. J Biol Chem 2003; 278:24090-4. [PMID: 12695512 DOI: 10.1074/jbc.m300650200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Factor IX is an indispensable protein required in the blood coagulation cascade. It binds to the surface of phospholipid membrane by means of a gamma-carboxyglutamic acid (Gla) domain situated at the N terminus. Recently, we showed that physiological concentrations of Mg2+ ions affect the native conformation of the Gla domain and in doing so augment the biological activity of factor IXa and binding affinity with its binding protein even in the presence of Ca2+ ions. Here we report on the crystal structures of the Mg2+/Ca2+-bound and Ca2+-bound (Mg2+-free) factor IX Gla domain (IXGD1-46) in complex with its binding protein (IX-bp) at 1.55 and 1.80 A resolutions, respectively. Three Mg2+ and five Ca2+ ions were bound in the Mg2+/Ca2+-bound IXGD1-46, and the Mg2+ ions were replaced by Ca2+ ions in Mg2+-free IXGD1-46. Comparison of Mg2+/Ca2+-bound with Ca2+-bound structures of the complexes showed that Mg2+ ion, which formed a bridge between IXGD1-46 and IX-bp, forced IXGD1-46 to rotate 4 degrees relative to IX-bp and hence might be the cause of a more tight interaction between the molecules than in the case of the Mg2+-free structure. The results clearly suggest that Mg2+ ions are required to maintain native conformation and in vivo function of factor IX Gla domain during blood coagulation.
Collapse
Affiliation(s)
- Yasuo Shikamoto
- Department of Biochemistry, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | |
Collapse
|
44
|
Harvey SB, Stone MD, Martinez MB, Nelsestuen GL. Mutagenesis of the gamma-carboxyglutamic acid domain of human factor VII to generate maximum enhancement of the membrane contact site. J Biol Chem 2003; 278:8363-9. [PMID: 12506121 DOI: 10.1074/jbc.m211629200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Site-directed mutagenesis of the 40 N-terminal residues (gamma-carboxyglutamic acid domain) of blood clotting factor VII was carried out to identify sites that improve membrane affinity. Improvements and degree of change included P10Q (2-fold), K32E (13-fold), and insertion of Tyr at position 4 (2-fold). Two other beneficial changes, D33F (2-fold) and A34E (1.5-fold), may exert their impact via influence of K32E. The modification D33E (5.2-fold) also resulted in substantial improvement. The combined mutant with highest affinity, (Y4)P10Q/K32E/D33F/A34E, showed 150-296-fold enhancement over wild-type factor VIIa, depending on the assay used. Undercarboxylation of Glu residues at positions 33 and 34 may result in an underestimate of the true contributions of gamma-carboxyglutamic acid at these positions. Except for the Tyr(4) mutant, all other beneficial mutations were located on the same surface of the protein, suggesting a possible membrane contact region. An initial screening assay was developed that provided faithful evaluation of mutants in crude mixtures. Overall, the results suggest features of membrane binding by vitamin K-dependent proteins and provide reagents that may prove useful for research and therapy.
Collapse
Affiliation(s)
- Stephen B Harvey
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
45
|
Majumder R, Wang J, Lentz BR. Effects of water soluble phosphotidylserine on bovine factor Xa: functional and structural changes plus dimerization. Biophys J 2003; 84:1238-51. [PMID: 12547804 PMCID: PMC1302700 DOI: 10.1016/s0006-3495(03)74939-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Previous work has shown that two molecules of a soluble form of phosphatidylserine, C6PS, bind to human and bovine factor X(a). Activity measurements along with the fluorescence of active-site-labeled human factor X(a) showed that two linked sites specifically regulate the active site conformation and proteolytic activity of the human enzyme. These results imply, but cannot demonstrate, a C6PS-induced factor X(a) conformational change. The purpose of this paper is to extend these observations to bovine factor X(a) and to demonstrate that they do reflect conformational changes. We report that the fluorescence of active-site-labeled bovine factor X(a) also varied with C6PS concentration in a sigmoidal manner, whereas amidolytic activity of unlabeled enzyme varied in a simple hyperbolic fashion, also as seen for human factor X(a). C6PS induced a 70-fold increase in bovine factor X(a)'s autolytic activity, consistent with the 60-fold increase in proteolytic activity reported for human factor X(a). In addition, circular dichroism spectroscopy clearly demonstrated that C6PS binding to bovine factor X(a) induces secondary structural changes. In addition, C6PS binding to the tighter of the two sites triggered structural changes that lead to Ca(2+)-dependent dimer formation, as demonstrated by changes in intrinsic fluorescence and quantitative native gel electrophoresis. Dimerization produced further change in secondary structure, either inter- or intramolecularly. These results, along with results presented previously, support a model in which C6PS binds in a roughly sequential fashion to two linked sites whose occupancy in both human and bovine factor X(a) elicits different structural and functional responses.
Collapse
Affiliation(s)
- Rinku Majumder
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260, USA
| | | | | |
Collapse
|
46
|
Rezende SM, Lane DA, Mille-Baker B, Samama MM, Conard J, Simmonds RE. Protein S Gla-domain mutations causing impaired Ca(2+)-induced phospholipid binding and severe functional protein S deficiency. Blood 2002; 100:2812-9. [PMID: 12351389 DOI: 10.1182/blood-2002-03-0909] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified 2 PROS1 missense mutations in the exon that encodes the vitamin K-dependent Gla domain of protein S (Gly11Asp and Thr37Met) in kindred with phenotypic protein S deficiency and thrombosis. In studies using recombinant proteins, substitution of Gly11Asp did not affect production of protein S but resulted in 15.2-fold reduced protein S activity in a factor Va inactivation assay. Substitution of Thr37Met reduced expression by 33.2% (P <.001) and activity by 3.6-fold. The Gly11Asp variant had 5.4-fold reduced affinity for anionic phospholipid vesicles (P <.0001) and decreased affinity for an antibody specific for the Ca(2+)-dependent conformation of the protein S Gla domain (HPS21). Examination of a molecular model suggested that this could be due to repositioning of Gla29. In contrast, the Thr37Met variant had only a modest 1.5-fold (P <.001), reduced affinities for phospholipid and HPS21. This mutation seems to disrupt the aromatic stack region. The proposita was a compound heterozygote with free protein S antigen levels just below the lower limit of the normal range, and this is now attributed to the partial expression defect of the Thr37Met mutation. The activity levels were strongly reduced to 15% of normal, probably reflecting the functional deficit of both protein S variants. Her son (who was heterozygous only for Thr37Met) had borderline levels of protein S antigen and activity, reflecting the partial secretion and functional defect associated with this mutation. This first characterization of natural protein S Gla-domain variants highlights the importance of the high affinity protein S-phospholipid interaction for its anticoagulant role.
Collapse
Affiliation(s)
- Suely M Rezende
- Department of Haematology, Division of Investigative Science, Hammersmith Campus, Imperial College of Science, Technology, and Medicine, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
47
|
Tory MC, Merrill AR. Determination of membrane protein topology by red-edge excitation shift analysis: application to the membrane-bound colicin E1 channel peptide. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1564:435-48. [PMID: 12175927 DOI: 10.1016/s0005-2736(02)00493-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A new approach for the determination of the bilayer location of Trp residues in proteins has been applied to the study of the membrane topology of the channel-forming bacteriocin, colicin E1. This method, red-edge excitation shift (REES) analysis, was initially applied to the study of 12 single Trp-containing channel peptides of colicin E1 in the soluble state in aqueous medium. Notably, REES was observed for most of the channel peptides in aqueous solution upon low pH activation. The extent of REES was subsequently characterized using a model membrane system composed of the tripeptide, Lys-Trp-Lys, bound to dimyristoyl-sn-glycerol-3-phosphatidylserine liposomes. Subsequently, data accrued from the model peptide-lipid system was used to interpret information obtained on the channel peptides when bound to dioleoyl-sn-glycerol-3-phosphatidylcholine/dioleoyl-sn-glycerol-3-phosphatidylglycerol membrane vesicles. The single Trp mutant peptides were divided into three categories based on the change in the REES values observed for the Trp residues when the peptides were bound to liposomes as compared to the REES values measured for the soluble peptides. F-404 W, F-413 W, F-443 W, F-484 W, and W-495 peptides exhibited small and/or insignificant REES changes (Delta REES) whereas W-424, F-431 W, and Y-507 W channel peptides possessed modest REES changes (3 nm< or = Delta REES< or = 7 nm). In contrast, wild-type, Y-367 W, W-460, Y-478 W, and I-499 W channel peptides showed large Delta REES values upon membrane binding (7 nm< Delta REES< or =12 nm). The REES data for the membrane-bound structure of the colicin E1 channel peptide proved consistent with previous data for the topology of the closed channel state, which lends further credence to the currently proposed channel model. In conclusion, the REES method provides another source of topological data for assignment of the bilayer location for Trp residues within membrane-associated proteins; however, it also requires careful interpretation of spectral data in combination with structural information on the proteins being investigated.
Collapse
Affiliation(s)
- Monica C Tory
- Department of Chemistry and Biochemistry, Guelph-Waterloo Centre for Graduate Work in Chemistry, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | |
Collapse
|