1
|
Niu Y, Li A, Xu W, Zhang R, Mei R, Zhang L, Zhou F, Pan Q, Yan Y. Platelet activation stimulates macrophages to enhance ulcerative colitis through PF4/CXCR3 signaling. Int J Mol Med 2025; 55:78. [PMID: 40084691 PMCID: PMC11936483 DOI: 10.3892/ijmm.2025.5519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/19/2025] [Indexed: 03/16/2025] Open
Abstract
Platelets are involved in hemostasis and immune regulation, but little is currently known regarding their role in inflammatory bowel disease. In the present study, the mechanism by which platelet activation affects macrophage C‑X‑C motif chemokine receptor 3 (CXCR3) by releasing platelet factor 4 (PF4), thus aggravating ulcerative colitis (UC) disease progression, was investigated. A dextran sulfate sodium‑induced mouse model showed co‑localization of the platelet marker PF4 with the macrophage M1 marker inducible nitric oxide synthase. Furthermore, co‑culturing platelets with monocytes (THP‑1) in vitro led to the transformation of monocytes into macrophages, as well as the activation of macrophages exhibiting proinflammatory properties. Meanwhile, reverse transcription‑quantitative PCR (RT‑qPCR) showed that inflammatory factors, such as IL‑1β, IL‑6 and TNF‑α were significantly increased in macrophages after platelet co‑culture. It was therefore hypothesized that the PF4/CXCR3 pathway may serve an important role in cell‑to‑cell communication. Furthermore, intervention with PF4 in THP‑1 cells induced the M1 macrophage phenotype and inflammatory cytokine expression, which was consistent with co‑culturing, whereas inhibition of CXCR3 (AMG487) reversed the effects of PF4. In addition, following treatment with PF4, THP‑1 cells were found to be under oxidative stress and apoptosis was enhanced, as determined by detecting reactive oxygen species, mitochondrial membrane potential and Annexin‑V, as well as the classical apoptotic proteins Bcl‑2/Bax/caspase‑3 through western blotting. In addition, changes in MAPK and NF‑κB, two classic inflammatory signaling pathways, were detected. Furthermore, mice were treated with an anti‑platelet medication or CXCR3 inhibitor to observe in vivo inflammatory changes; through phenotypic assessment, immunofluorescence staining, RT‑qPCR and TUNEL assay, it was demonstrated that the PF4/CXCR3 pathway may aggravate inflammation in mice with UC. In conclusion, platelets and macrophages may interact in UC through the PF4/CXCR3 pathway to exacerbate inflammation, providing novel options for the treatment of UC.
Collapse
Affiliation(s)
- Yuxiao Niu
- Graduate School, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Anhong Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Zhoupu Hospital, Shanghai 201318, P.R. China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, P.R. China
| | - Weihua Xu
- Department of Pharmacy, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Rong Zhang
- Graduate School, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Ruya Mei
- Graduate School, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Langhua Zhang
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Fenmin Zhou
- Department of Traditional Chinese Medicine, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Qin Pan
- Shanghai Institute of Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, P.R. China
| | - Yuzhong Yan
- Graduate School, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Zhoupu Hospital, Shanghai 201318, P.R. China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, P.R. China
- Department of Science Research, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| |
Collapse
|
2
|
Huang YV, Sun Y, Chou H, Wagner N, Vitale MR, Bayer AL, Xu B, Lee D, Lin Z, Branche C, Waliany S, Neal JW, Wakelee HA, Witteles RM, Nguyen PK, Graves EE, Berry GJ, Alcaide P, Wu SM, Zhu H. Novel Therapeutic Approach Targeting CXCR3 to Treat Immunotherapy Myocarditis. Circ Res 2025; 136:473-490. [PMID: 39931812 PMCID: PMC11867805 DOI: 10.1161/circresaha.124.325652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are successful in treating many cancers but may cause immune-related adverse events. ICI-mediated myocarditis has a high fatality rate with severe cardiovascular consequences. Targeted therapies for ICI myocarditis are currently limited. METHODS We used a genetic mouse model of PD1 deletion (MRL/Pdcd1-/-) along with a novel drug-treated ICI myocarditis mouse model to recapitulate the disease phenotype. We performed single-cell RNA-sequencing, single-cell T-cell receptor sequencing, and cellular indexing of transcriptomes and epitopes on immune cells isolated from MRL and MRL/Pdcd1-/- mice at serial time points. We assessed the impact of macrophage deletion in MRL/Pdcd1-/- mice, then inhibited CXCR3 (C-X-C motif chemokine receptor 3) in ICI-treated mice to assess the therapeutic effect on myocarditis phenotype. Furthermore, we delineated the functional and mechanistic effects of CXCR3 blockade on T-cell and macrophage interactions. We then correlated the results in human single-cell multiomics data from blood and heart biopsy data from patients with ICI myocarditis. RESULTS Single-cell multiomics demonstrated expansion of CXCL (C-X-C motif chemokine ligand) 9/10+CCR2+ macrophages and CXCR3hi (C-X-C motif chemokine receptor 3 high-expressing) CD8+ (cluster of differentiation) effector T lymphocytes in the hearts of MRL/Pdcd1-/- mice correlating with onset of myocarditis development. Both depletion of CXCL9/10+CCR2+ (C-C motif chemokine receptor) macrophages and CXCR3 blockade, respectively, led to decreased CXCR3hi CD8+ T-cell infiltration into the heart and significantly improved survival. Transwell migration assays demonstrated that the selective blockade of CXCR3 and its ligand, CXCL10, reduced CXCR3+CD8+ T-cell migration toward macrophages, implicating this interaction in T-cell cardiotropism toward cardiac macrophages. Furthermore, cardiomyocyte apoptosis was induced by CXCR3hi CD8+ T cells. Cardiac biopsies from patients with confirmed ICI myocarditis demonstrated infiltrating CXCR3+ T cells and CXCL9+/CXCL10+ macrophages. Both mouse cardiac immune cells and patient peripheral blood immune cells revealed expanded TCRs (T-cell receptors) correlating with CXCR3hi CD8+ T cells in ICI myocarditis samples. CONCLUSIONS These findings bring forth the CXCR3-CXCL9/10 axis as an attractive therapeutic target for ICI myocarditis treatment, and more broadly as a druggable pathway in cardiac inflammation.
Collapse
Affiliation(s)
- Yuhsin Vivian Huang
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
| | - Yin Sun
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
| | - Harrison Chou
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
| | - Noah Wagner
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
| | - Maria Rosaria Vitale
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
| | | | - Bruce Xu
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
| | - Daniel Lee
- F. Edward Hebert School of Medicine at Uniformed Services University, Bethesda, MD (D.L.)
| | - Zachary Lin
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
| | - Corynn Branche
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
| | - Sarah Waliany
- Division of Cardiovascular Medicine, Stanford, CA (S.W., R.M.W., P.K.N., S.M.W., H.Z.)
- Massachusetts General Hospital Cancer Center, Boston, MA (S.W.)
| | - Joel W. Neal
- Division of Oncology, Stanford, CA (J.W.N., H.A.W.)
- Stanford Cancer Institute, CA (J.W.N., H.A.W.)
| | - Heather A. Wakelee
- Division of Oncology, Stanford, CA (J.W.N., H.A.W.)
- Stanford Cancer Institute, CA (J.W.N., H.A.W.)
| | - Ronald M. Witteles
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
- Division of Cardiovascular Medicine, Stanford, CA (S.W., R.M.W., P.K.N., S.M.W., H.Z.)
| | - Patricia K. Nguyen
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
- Division of Cardiovascular Medicine, Stanford, CA (S.W., R.M.W., P.K.N., S.M.W., H.Z.)
| | | | | | - Pilar Alcaide
- Tufts University School of Medicine, Boston, MA (A.L.B., P.A.)
| | - Sean M. Wu
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
- Division of Cardiovascular Medicine, Stanford, CA (S.W., R.M.W., P.K.N., S.M.W., H.Z.)
| | - Han Zhu
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
- Division of Cardiovascular Medicine, Stanford, CA (S.W., R.M.W., P.K.N., S.M.W., H.Z.)
| |
Collapse
|
3
|
Liu Z, Xue X, Geng S, Jiang Z, Ge Z, Zhao C, Xu Y, Wang X, Zhang W, Lin L, Chen Z. The differences in cytokine signatures between severe fever with thrombocytopenia syndrome (SFTS) and hemorrhagic fever with renal syndrome (HFRS). J Virol 2024; 98:e0078624. [PMID: 38916398 PMCID: PMC11265425 DOI: 10.1128/jvi.00786-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) virus and hantavirus are categorized under the Bunyavirales order. The severe disease progression in both SFTS and hemorrhagic fever with renal syndrome (HFRS) is associated with cytokine storms. This study aimed to explore the differences in cytokine profiles and immune responses between the two diseases. A cross-sectional, single-center study involved 100 participants, comprising 46 SFTS patients, 48 HFRS patients, and 6 healthy controls. The study employed the Luminex cytokine detection platform to measure 48 cytokines. The differences in cytokine profiles and immune characteristics between the two diseases were further analyzed using multiple linear regression, principal component analysis, and random forest method. Among the 48 cytokines tested, 30 showed elevated levels in SFTS and/or HFRS compared to the healthy control group. Furthermore, there were 19 cytokines that exhibited significant differences between SFTS and HFRS. Random forest analysis suggested that TRAIL and CTACK were predictive of SFTS, while IL2Ralpha, MIG, IL-8, IFNalpha2, HGF, SCF, MCP-3, and PDGFBB were more common with HFRS. It was further verified by the receiver operating characteristic with area under the curve >0.8 and P-values <0.05, except for TRAIL. Significant differences were observed in the cytokine profiles of SFTS and HFRS, with TRAIL, IL2Ralpha, MIG, and IL-8 being the top 4 cytokines that most clearly distinguished the two diseases. IMPORTANCE SFTS and HFRS differ in terms of cytokine immune characteristics. TRAIL, IL-2Ralpha, MIG, and IL-8 were the top 4 that differed markedly between SFTS and HFRS.
Collapse
Affiliation(s)
- Zishuai Liu
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Xue
- Department of Infectious Disease, Beijing Ditan Hospital, Peking University, Beijing, China
| | - Shuying Geng
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, China
| | - Zhouling Jiang
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ziruo Ge
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chenxi Zhao
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanli Xu
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, China
| | - Xiaolei Wang
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ling Lin
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, China
| | - Zhihai Chen
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Infectious Disease, Beijing Ditan Hospital, Peking University, Beijing, China
| |
Collapse
|
4
|
Mpekris F, Panagi M, Charalambous A, Voutouri C, Stylianopoulos T. Modulating cancer mechanopathology to restore vascular function and enhance immunotherapy. Cell Rep Med 2024; 5:101626. [PMID: 38944037 PMCID: PMC11293360 DOI: 10.1016/j.xcrm.2024.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/12/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024]
Abstract
Solid tumor pathology, characterized by abnormalities in the tumor microenvironment (TME), challenges therapeutic effectiveness. Mechanical factors, including increased tumor stiffness and accumulation of intratumoral forces, can determine the success of cancer treatments, defining the tumor's "mechanopathology" profile. These abnormalities cause extensive vascular compression, leading to hypoperfusion and hypoxia. Hypoperfusion hinders drug delivery, while hypoxia creates an unfavorable TME, promoting tumor progression through immunosuppression, heightened metastatic potential, drug resistance, and chaotic angiogenesis. Strategies targeting TME mechanopathology, such as vascular and stroma normalization, hold promise in enhancing cancer therapies with some already advancing to the clinic. Normalization can be achieved using anti-angiogenic agents, mechanotherapeutics, immune checkpoint inhibitors, engineered bacterial therapeutics, metronomic nanomedicine, and ultrasound sonopermeation. Here, we review the methods developed to rectify tumor mechanopathology, which have even led to cures in preclinical models, and discuss their bench-to-bedside translation, including the derivation of biomarkers from tumor mechanopathology for personalized therapy.
Collapse
Affiliation(s)
- Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| | - Myrofora Panagi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Antonia Charalambous
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
5
|
Liu Z, Li L, Zhang H, Pang X, Qiu Z, Xiang Q, Cui Y. Platelet factor 4(PF4) and its multiple roles in diseases. Blood Rev 2024; 64:101155. [PMID: 38008700 DOI: 10.1016/j.blre.2023.101155] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Platelet factor 4 (PF4) combines with heparin to form an antigen that could produce IgG antibodies and participate in heparin-induced thrombocytopenia (HIT). PF4 has attracted wide attention due to its role in novel coronavirus vaccine-19 (COVID-9)-induced immune thrombotic thrombocytopenia (VITT) and cognitive impairments. The electrostatic interaction between PF4 and negatively charged molecules is vital in the progression of VITT, which is similar to HIT. Emerging evidence suggests its multiple roles in hematopoietic and angiogenic inhibition, platelet coagulation interference, host inflammatory response promotion, vascular inhibition, and antitumor properties. The emerging pharmacological effects of PF4 may help deepen the exploration of its mechanism, thus accelerating the development of targeted therapies. However, due to its pleiotropic properties, the development of drugs targeting PF4 is at an early stage and faces many challenges. Herein, we discussed the characteristics and biological functions of PF4, summarized PF4-mediated signaling pathways, and discussed its multiple roles in diseases to inform novel approaches for successful clinical translational research.
Collapse
Affiliation(s)
- Zhiyan Liu
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, China.
| | - Longtu Li
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Hanxu Zhang
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, China
| | - Zhiwei Qiu
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, China.
| |
Collapse
|
6
|
Eiger DS, Smith JS, Shi T, Stepniewski TM, Tsai CF, Honeycutt C, Boldizsar N, Gardner J, Nicora CD, Moghieb AM, Kawakami K, Choi I, Hicks C, Zheng K, Warman A, Alagesan P, Knape NM, Huang O, Silverman JD, Smith RD, Inoue A, Selent J, Jacobs JM, Rajagopal S. Phosphorylation barcodes direct biased chemokine signaling at CXCR3. Cell Chem Biol 2023; 30:362-382.e8. [PMID: 37030291 PMCID: PMC10147449 DOI: 10.1016/j.chembiol.2023.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/10/2023] [Accepted: 03/13/2023] [Indexed: 04/10/2023]
Abstract
G protein-coupled receptor (GPCR)-biased agonism, selective activation of certain signaling pathways relative to others, is thought to be directed by differential GPCR phosphorylation "barcodes." At chemokine receptors, endogenous chemokines can act as "biased agonists", which may contribute to the limited success when pharmacologically targeting these receptors. Here, mass spectrometry-based global phosphoproteomics revealed that CXCR3 chemokines generate different phosphorylation barcodes associated with differential transducer activation. Chemokine stimulation resulted in distinct changes throughout the kinome in global phosphoproteomics studies. Mutation of CXCR3 phosphosites altered β-arrestin 2 conformation in cellular assays and was consistent with conformational changes observed in molecular dynamics simulations. T cells expressing phosphorylation-deficient CXCR3 mutants resulted in agonist- and receptor-specific chemotactic profiles. Our results demonstrate that CXCR3 chemokines are non-redundant and act as biased agonists through differential encoding of phosphorylation barcodes, leading to distinct physiological processes.
Collapse
Affiliation(s)
- Dylan S Eiger
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Jeffrey S Smith
- Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Dermatology Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tomasz Maciej Stepniewski
- Research Program on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF), 08003 Barcelona, Spain
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | | | - Julia Gardner
- Trinity College, Duke University, Durham, NC 27710, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | - Kouki Kawakami
- Department of Pharmaceutical Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Issac Choi
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Chloe Hicks
- Trinity College, Duke University, Durham, NC 27710, USA
| | - Kevin Zheng
- Harvard Medical School, Boston, MA 02115, USA
| | - Anmol Warman
- Trinity College, Duke University, Durham, NC 27710, USA
| | - Priya Alagesan
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Nicole M Knape
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Ouwen Huang
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Justin D Silverman
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Asuka Inoue
- Department of Pharmaceutical Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Jana Selent
- Research Program on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF), 08003 Barcelona, Spain
| | - Jon M Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Pharmaceutical Sciences, Tohoku University, Sendai 980-8577, Japan.
| |
Collapse
|
7
|
Talukdar SN, Osan J, Ryan K, Grove B, Perley D, Kumar BD, Yang S, Dallman S, Hollingsworth L, Bailey KL, Mehedi M. RSV-induced expanded ciliated cells contribute to bronchial wall thickening. Virus Res 2023; 327:199060. [PMID: 36746339 PMCID: PMC10007709 DOI: 10.1016/j.virusres.2023.199060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/02/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
Viral infection, particularly respiratory syncytial virus (RSV), causes inflammation in the bronchiolar airways (bronchial wall thickening, also known as bronchiolitis). This bronchial wall thickening is a common pathophysiological feature in RSV infection, but it causes more fatalities in infants than in children and adults. However, the molecular mechanism of RSV-induced bronchial wall thickening remains unknown, particularly in healthy adults. Using highly differentiated pseudostratified airway epithelium generated from primary human bronchial epithelial cells, we revealed RSV-infects primarily ciliated cells. The infected ciliated cells expanded substantially without compromising epithelial membrane integrity and ciliary functions and contributed to the increased height of the airway epithelium. Furthermore, we identified multiple factors, e.g., cytoskeletal (ARP2/3-complex-driven actin polymerization), immunological (IP10/CXCL10), and viral (NS2), contributing to RSV-induced uneven epithelium height increase in vitro. Thus, RSV-infected expanded cells contribute to a noncanonical inflammatory phenotype, which contributes to bronchial wall thickening in the airway, and is termed cytoskeletal inflammation.
Collapse
Affiliation(s)
- Sattya N Talukdar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Jaspreet Osan
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Ken Ryan
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Bryon Grove
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Danielle Perley
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Bony D Kumar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Shirley Yang
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Sydney Dallman
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Lauren Hollingsworth
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Kristina L Bailey
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep and Allergy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States.
| |
Collapse
|
8
|
Eiger DS, Smith JS, Shi T, Stepniewski TM, Tsai CF, Honeycutt C, Boldizsar N, Gardner J, Nicora CD, Moghieb AM, Kawakami K, Choi I, Zheng K, Warman A, Alagesan P, Knape NM, Huang O, Silverman JD, Smith RD, Inoue A, Selent J, Jacobs JM, Rajagopal S. Phosphorylation barcodes direct biased chemokine signaling at CXCR3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532634. [PMID: 36993369 PMCID: PMC10055163 DOI: 10.1101/2023.03.14.532634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
G protein-coupled receptor (GPCR) biased agonism, the activation of some signaling pathways over others, is thought to largely be due to differential receptor phosphorylation, or "phosphorylation barcodes." At chemokine receptors, ligands act as "biased agonists" with complex signaling profiles, which contributes to the limited success in pharmacologically targeting these receptors. Here, mass spectrometry-based global phosphoproteomics revealed that CXCR3 chemokines generate different phosphorylation barcodes associated with differential transducer activation. Chemokine stimulation resulted in distinct changes throughout the kinome in global phosphoproteomic studies. Mutation of CXCR3 phosphosites altered β-arrestin conformation in cellular assays and was confirmed by molecular dynamics simulations. T cells expressing phosphorylation-deficient CXCR3 mutants resulted in agonist- and receptor-specific chemotactic profiles. Our results demonstrate that CXCR3 chemokines are non-redundant and act as biased agonists through differential encoding of phosphorylation barcodes and lead to distinct physiological processes.
Collapse
Affiliation(s)
- Dylan S. Eiger
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Jeffrey S. Smith
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Brigham and Women’s Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Dermatology Program, Boston Children’s Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), Barcelona, 08003, Spain
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | | | | | - Julia Gardner
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Carrie D. Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | | | - Kouki Kawakami
- Department of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Issac Choi
- Department of Medicine, Duke University, Durham, NC 27710 USA
| | - Kevin Zheng
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Anmol Warman
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Priya Alagesan
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Nicole M. Knape
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Ouwen Huang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - Justin D. Silverman
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Asuka Inoue
- Department of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), Barcelona, 08003, Spain
| | - Jon M. Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
- Department of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8577, Japan
| |
Collapse
|
9
|
Dillemans L, De Somer L, Neerinckx B, Proost P. A review of the pleiotropic actions of the IFN-inducible CXC chemokine receptor 3 ligands in the synovial microenvironment. Cell Mol Life Sci 2023; 80:78. [PMID: 36862204 PMCID: PMC11071919 DOI: 10.1007/s00018-023-04715-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023]
Abstract
Chemokines are pivotal players in instigation and perpetuation of synovitis through leukocytes egress from the blood circulation into the inflamed articulation. Multitudinous literature addressing the involvement of the dual-function interferon (IFN)-inducible chemokines CXCL9, CXCL10 and CXCL11 in diseases characterized by chronic inflammatory arthritis emphasizes the need for detangling their etiopathological relevance. Through interaction with their mutual receptor CXC chemokine receptor 3 (CXCR3), the chemokines CXCL9, CXCL10 and CXCL11 exert their hallmark function of coordinating directional trafficking of CD4+ TH1 cells, CD8+ T cells, NK cells and NKT cells towards inflammatory niches. Among other (patho)physiological processes including infection, cancer, and angiostasis, IFN-inducible CXCR3 ligands have been implicated in autoinflammatory and autoimmune diseases. This review presents a comprehensive overview of the abundant presence of IFN-induced CXCR3 ligands in bodily fluids of patients with inflammatory arthritis, the outcomes of their selective depletion in rodent models, and the attempts at developing candidate drugs targeting the CXCR3 chemokine system. We further propose that the involvement of the CXCR3 binding chemokines in synovitis and joint remodeling encompasses more than solely the directional ingress of CXCR3-expressing leukocytes. The pleotropic actions of the IFN-inducible CXCR3 ligands in the synovial niche reiteratively illustrate the extensive complexity of the CXCR3 chemokine network, which is based on the intercommunion of IFN-inducible CXCR3 ligands with distinct CXCR3 isoforms, enzymes, cytokines, and infiltrated and resident cells present in the inflamed joints.
Collapse
Affiliation(s)
- Luna Dillemans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lien De Somer
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Barbara Neerinckx
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Reciprocal expression of the immune response genes CXCR3 and IFI44L as module hubs are associated with patient survivals in primary central nervous system lymphoma. Int J Clin Oncol 2023; 28:468-481. [PMID: 36607476 DOI: 10.1007/s10147-022-02285-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Here, we investigated expression modules reflecting the reciprocal expression of the cancer microenvironment and immune response-related genes associated with poor prognosis in primary central nervous system lymphoma (PCNSL). METHODS Weighted gene coexpression network analysis revealed representative modules, including neurogenesis, immune response, anti-virus, microenvironment, gene expression and translation, extracellular matrix, morphogenesis, and cell adhesion in the transcriptome data of 31 PCNSL samples. RESULTS : Gene expression networks were also reflected by protein-protein interaction networks. In particular, some of the hub genes were highly expressed in patients with PCNSL with prognoses as follows: AQP4, SLC1A3, GFAP, CXCL9, CXCL10, GBP2, IFI6, OAS2, IFIT3, DCN, LRP1, and LUM with good prognosis; and STAT1, IFITM3, GZMB, ISG15, LY6E, TGFB1, PLAUR, MMP4, FTH1, PLAU, CSF3R, FGR, POSTN, CCR7, TAS1R3, small ribosomal subunit genes, and collagen type 1/3/4/6 genes with poor prognosis. Furthermore, prognosis prediction formulae were constructed using the Cox proportional-hazards regression model, which demonstrated that the IP-10 receptor gene CXCR3 and type I interferon-induced protein gene IFI44L could predict patient survival in PCNSL. CONCLUSION These results indicate that the differential expression and balance of immune response and microenvironment genes may be required for PCNSL tumor growth or prognosis prediction, which would help understanding the mechanism of tumorigenesis and potential therapeutic targets in PCNSL.
Collapse
|
11
|
Kong W, Li X, Zou M, Zhang Y, Cai H, Zhang L, Wang X. iNKT17 cells play a pathogenic role in ethinylestradiol-induced cholestatic hepatotoxicity. Arch Toxicol 2023; 97:561-580. [PMID: 36329302 DOI: 10.1007/s00204-022-03403-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
IL-17 is closely associated with inflammation in intrahepatic cholestasis (IHC). Targeting IL-17 ameliorates IHC in mice. Invariant natural killer T (iNKT) cells are predominantly enriched in the liver and they mediate drug-induced liver injury through their secreted cytokines. However, whether iNKT17 cells are involved in ethinylestradiol (EE)-induced IHC remains unclear. In the present study, the administration of EE (10 mg/kg in vivo and 6.25 μM in vitro) promoted the activation and expansion of iNKT17 cells, which contributed to a novel hepatic iNKT17/Treg imbalance. iNKT cell-deficient Jα18-/- mice and the RORγt inhibitor digoxin (20 μg) alleviated EE-induced cholestatic hepatotoxicity and downregulated the IL-17 signalling pathway. In contrast, the co-administration of EE with recombinant IL-17 (1 μg) to Jα18-/- mice induced cholestatic hepatotoxicity and increased the infiltration of hepatic neutrophils and monocytes. Importantly, the administration of IL-17-/- iNKT cells (3.5 × 105) to Jα18-/- mice resulted in the attenuation of hepatotoxicity and the recruitment of fewer hepatic neutrophils and monocytes than the adoptive transfer of wild-type iNKT cells. These results indicated that iNKT17 cells could exert pathogenic effects. The recruitment and activation of iNKT17 cells could be attributed to the high level of CXCR3 expression on their surface. CXCL10 deficiency ameliorated EE-induced cholestatic liver damage, reduced hepatic CXCR3+ iNKT cells and inhibited RORγt expression. These findings suggest that iNKT17 cells play a key role in EE-induced cholestatic liver injury via CXCR3-mediated recruitment and activation. Our study provides new insights and therapeutic targets for cholestatic diseases.
Collapse
Affiliation(s)
- Weichao Kong
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinyu Li
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Mengzhi Zou
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Yiying Zhang
- Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Heng Cai
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Luyong Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xinzhi Wang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
12
|
EGFR-Tyrosine Kinase Inhibitors Induced Activation of the Autocrine CXCL10/CXCR3 Pathway through Crosstalk between the Tumor and the Microenvironment in EGFR-Mutant Lung Cancer. Cancers (Basel) 2022; 15:cancers15010124. [PMID: 36612121 PMCID: PMC9817815 DOI: 10.3390/cancers15010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
CXCL10 is a cytokine that is elevated during EGFR-TKI treatment in the tumor microenvironment of lung cancer. Here, we report an original study that the impact of the CXCL10/CXCR3 pathway on EGFR-TKI resistance in EGFR-mutant lung cancer through a cytokine array analysis during in vitro coculture with tumor cells and activated PBMCs treated with EGFR-TKI, as well as the serial analysis of CXCL10 in EGFR-mutant lung cancer transgenic mice during EGFR-TKI treatment. In EGFR-mutant tumor cells cocultured with activated PBMCs, EGFR-TKI treatment increased CXCL10 in the supernatant; this activated CXCR3 in the tumor cells to induce the phosphorylation of Src and the NF-κB subunit, p65, and the expression of HIF-1α. CXCL10 siRNA treatment of EGFR-mutant tumor cells also decreased CXCL10 in the supernatant from coculturing with activated PBMCs, suggesting that the effects of CXCL10 occur via autocrine and paracrine pathways. Importantly, elevated CXCL10/CXCR3 signaling was recapitulated in a transgenic lung cancer mouse model. Our results show that increased CXCL10 levels during early EGFR-TKI treatment stimulate oncogenic signaling of persistent tumor cells to contribute to EGFR-TKI resistance via autocrine and paracrine pathways.
Collapse
|
13
|
D'Uonnolo G, Reynders N, Meyrath M, Abboud D, Uchański T, Laeremans T, Volkman BF, Janji B, Hanson J, Szpakowska M, Chevigné A. The Extended N-Terminal Domain Confers Atypical Chemokine Receptor Properties to CXCR3-B. Front Immunol 2022; 13:868579. [PMID: 35720349 PMCID: PMC9198273 DOI: 10.3389/fimmu.2022.868579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022] Open
Abstract
The chemokine receptor CXCR3 plays a critical role in immune cell recruitment and activation. CXCR3 exists as two main isoforms, CXCR3-A and CXCR3-B, resulting from alternative splicing. Although the two isoforms differ only by the presence of an N-terminal extension in CXCR3-B, they have been attributed divergent functional effects on cell migration and proliferation. CXCR3-B is the more enigmatic isoform and the mechanisms underlying its function and signaling remain elusive. We therefore undertook an in-depth cellular and molecular comparative study of CXCR3-A and CXCR3-B, investigating their activation at different levels of the signaling cascades, including G protein coupling, β-arrestin recruitment and modulation of secondary messengers as well as their downstream gene response elements. We also compared the subcellular localization of the two isoforms and their trafficking under resting and stimulated conditions along with their ability to internalize CXCR3-related chemokines. Here, we show that the N-terminal extension of CXCR3-B drastically affects receptor features, modifying its cellular localization and preventing G protein coupling, while preserving β-arrestin recruitment and chemokine uptake capacities. Moreover, we demonstrate that gradual truncation of the N terminus leads to progressive recovery of surface expression and G protein coupling. Our study clarifies the molecular basis underlying the divergent effects of CXCR3 isoforms, and emphasizes the β-arrestin-bias and the atypical nature of CXCR3-B.
Collapse
Affiliation(s)
- Giulia D'Uonnolo
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Nathan Reynders
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Max Meyrath
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Tomasz Uchański
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | | | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium.,Laboratory of Medicinal Chemistry, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Tumor Immunotherapy and Microenvironment, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
14
|
Satarkar D, Patra C. Evolution, Expression and Functional Analysis of CXCR3 in Neuronal and Cardiovascular Diseases: A Narrative Review. Front Cell Dev Biol 2022; 10:882017. [PMID: 35794867 PMCID: PMC9252580 DOI: 10.3389/fcell.2022.882017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Chemokines form a sophisticated communication network wherein they maneuver the spatiotemporal migration of immune cells across a system. These chemical messengers are recognized by chemokine receptors, which can trigger a cascade of reactions upon binding to its respective ligand. CXC chemokine receptor 3 (CXCR3) is a transmembrane G protein-coupled receptor, which can selectively bind to CXCL9, CXCL10, and CXCL11. CXCR3 is predominantly expressed on immune cells, including activated T lymphocytes and natural killer cells. It thus plays a crucial role in immunological processes like homing of effector cells to infection sites and for pathogen clearance. Additionally, it is expressed on several cell types of the central nervous system and cardiovascular system, due to which it has been implicated in several central nervous system disorders, including Alzheimer's disease, multiple sclerosis, dengue viral disease, and glioblastoma, as well as cardiovascular diseases like atherosclerosis, Chronic Chagas cardiomyopathy, and hypertension. This review provides a narrative description of the evolution, structure, function, and expression of CXCR3 and its corresponding ligands in mammals and zebrafish and the association of CXCR3 receptors with cardiovascular and neuronal disorders. Unraveling the mechanisms underlying the connection of CXCR3 and disease could help researchers investigate the potential of CXCR3 as a biomarker for early diagnosis and as a therapeutic target for pharmacological intervention, along with developing robust zebrafish disease models.
Collapse
Affiliation(s)
- Devi Satarkar
- Department of Developmental Biology, Agharkar Research Institute, Pune, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, Pune, India
- SP Phule University, Pune, India
| |
Collapse
|
15
|
Celle A, Esteves P, Cardouat G, Beaufils F, Eyraud E, Dupin I, Maurat E, Lacomme S, Ousova O, Begueret H, Thumerel M, Marthan R, Girodet PO, Berger P, Trian T. Rhinovirus infection of bronchial epithelium induces specific bronchial smooth muscle cell migration of severe asthmatic patients. J Allergy Clin Immunol 2022; 150:104-113. [PMID: 35143808 DOI: 10.1016/j.jaci.2022.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Patients with severe asthma show an increase in both exacerbation frequency and bronchial smooth muscle (BSM) mass. Rhinovirus (RV) infection of the bronchial epithelium (BE) is the main trigger of asthma exacerbations. Histological analysis of biopsies shows that a close connection between BE and hypertrophic BSM is a criterion for severity of asthma. OBJECTIVE We hypothesized that RV infection of BE specifically increases asthmatic BSM cell migration. METHODS Serum samples, biopsies or BSM cells were obtained from 86 patients with severe asthma and 31 non-asthmatic subjects. BE cells from non-asthmatic subjects were cultured in an air-liquid interface and exposed to RV-16. Migration of BSM cells was assessed in response to BE supernatant using chemotaxis assays. Chemokine concentrations were analyzed by transcriptomics and ELISAs. Immunocytochemistry, western blotting and flow cytometry were used to quantify CXCR3 isoform distribution. CXCR3 downstream signaling pathways were assessed by calcium imaging and western blots. RESULTS BSM cells from severe asthmatic patients specifically migrated toward RV-infected BE, whereas those from non-asthmatic subjects did not. This specific migration is driven by BE CXCL10, which was increased in vitro in response to RV infection as well as in vivo in serum from exacerbating patients with severe asthma. The mechanism is related to both decreased expression and activation of the CXCR3-B-specific isoform in severe asthmatic BSM cells. CONCLUSION We have demonstrated a novel mechanism of BSM remodeling in severe asthmatic patients following RV exacerbation. This study highlights the CXCL10/CXCR3-A axis as a potential therapeutic target in severe asthma.
Collapse
Affiliation(s)
- Alexis Celle
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Pauline Esteves
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Guillaume Cardouat
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Fabien Beaufils
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Edmée Eyraud
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Isabelle Dupin
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Elise Maurat
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Sabrina Lacomme
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France
| | - Olga Ousova
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Hugues Begueret
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Matthieu Thumerel
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Roger Marthan
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Pierre-Olivier Girodet
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Patrick Berger
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Thomas Trian
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France.
| |
Collapse
|
16
|
Integrated Molecular Characterization to Reveal the Association between Kynurenine 3-Monooxygenase Expression and Tumorigenesis in Human Breast Cancers. J Pers Med 2021; 11:jpm11100948. [PMID: 34683090 PMCID: PMC8539700 DOI: 10.3390/jpm11100948] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 12/24/2022] Open
Abstract
Kynurenine 3-monooxygenase (KMO) is overexpressed in several tumors and participates in the progression of breast cancer tumorigenesis, including cancer types such as triple-negative breast cancer (TNBC). This malignant gene is an enzyme in the kynurenine pathway, which is involved in the carcinogenesis of cancer through immune function manipulation. However, it remains unclear whether the role of the KMO contributes to tumorigenesis and immune functions in human breast cancer. In this study, we found that KMO was highly expressed in different types of tumors, especially in invasive ductal breast carcinoma. In addition, KMO expression was positively correlated with the malignant clinical features of patients with breast cancer, such as TNBC and a nodal-positive status, along with patients with a higher Nottingham prognostic index (NPI). Furthermore, the top ten KMO-correlated genes were the chemokines and pro-inflammatory cytokines known to be involved in the progression of various cancers, therefore, KMO may facilitate breast cancers via synergistically regulating inflammatory responses in tumors with these hub genes. Taken together, these findings highlight the tumor-promotion role of KMO in breast cancers and suggest that KMO can serve as a biomarker for prognosis prediction in breast cancer patients.
Collapse
|
17
|
Recent Advances in Glioma Therapy: Combining Vascular Normalization and Immune Checkpoint Blockade. Cancers (Basel) 2021; 13:cancers13153686. [PMID: 34359588 PMCID: PMC8345045 DOI: 10.3390/cancers13153686] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma (GBM) accounts for more than 50% of all primary malignancies of the brain. Current standard treatment regimen for GBM includes maximal surgical resection followed by radiation and adjuvant chemotherapy. However, due to the heterogeneity of the tumor cells, tumor recurrence is often inevitable. The prognosis of patients with glioma is, thus, dismal. Glioma is a highly angiogenic tumor yet immunologically cold. As such, evolving studies have focused on designing strategies that specifically target the tyrosine kinase receptors of angiokines and encourage immune infiltration. Recent promising results from immunotherapies on other cancer types have prompted further investigations of this therapy in GBM. In this article, we reviewed the pathological angiogenesis and immune reactivity in glioma, as well as its target for drug development, and we discussed future directions in glioma therapy.
Collapse
|
18
|
Wang Z, Ao X, Shen Z, Ao L, Wu X, Pu C, Guo W, Xing W, He M, Yuan H, Yu J, Li L, Xu X. TNF-α augments CXCL10/CXCR3 axis activity to induce Epithelial-Mesenchymal Transition in colon cancer cell. Int J Biol Sci 2021; 17:2683-2702. [PMID: 34345201 PMCID: PMC8326125 DOI: 10.7150/ijbs.61350] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/13/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic inflammation-induced metastases have long been regarded as one of the significant obstacles in treating cancer. Tumor necrosis factor-α (TNF-α), a main inflammation mediator within tumor microenvironment, affects tumor development by inducing multiple chemokines to establish a complex network. Recent reports have revealed that CXCL10/CXCR3 axis affects cancer cells invasiveness and metastases, and Epithelial-mesenchymal transition (EMT) is the main reason for frequent proliferation and distant organ metastases of colon cancer (CC) cells, However, it is unclear whether TNF-α- mediated chronic inflammation can synergically enhance EMT-mediated CC metastasis through promoting chemokine expression. According to this study, TNF-α activated the PI3K/Akt and p38 MAPK parallel signal transduction pathways, then stimulate downstream NF-κB pathway p65 into the nucleus to activate CXCL10 transcription. CXCL10 enhanced the metastases of CC-cells by triggering small GTPases such as RhoA and cdc42. Furthermore, overexpression of CXCL10 significantly enhanced tumorigenicity and mobility of CC cells in vivo. We further clarified that CXCL10 activated the PI3K/Akt pathway through CXCR3, resulting in suppression of GSK-3β phosphorylation and leading to upregulation of Snail expression, thereby regulating EMT in CC cells. These outcomes lay the foundation for finding new targets to inhibit CC metastases.
Collapse
Affiliation(s)
- Zhengcheng Wang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Qingdao University, Qingdao 266000, China
| | - Xiang Ao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhilin Shen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Luoquan Ao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiaofeng Wu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Chengxiu Pu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Guo
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Xing
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Min He
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Hongfeng Yuan
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jianhua Yu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ling Li
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Qingdao University, Qingdao 266000, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
19
|
Liu Z, Zhao Q, Zheng Z, Liu S, Meng L, Dong L, Jiang X. Vascular normalization in immunotherapy: A promising mechanisms combined with radiotherapy. Biomed Pharmacother 2021; 139:111607. [PMID: 33965730 DOI: 10.1016/j.biopha.2021.111607] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Leakage and compression of blood vessels may result in deprivation of blood flow to a large number of tumor tissues, which can lead to tumor hypoxia. Hypoxia induces an increase in the expression of hypoxia-inducible factor 1 in tumor cells, which induces angiogenesis in tumors through the high expression of vascular endothelial growth factor, thereby forming a positive feedback vicious circle. Improving hypoxia by normalizing blood vessels and improving radiosensitivity by immunotherapy has emerged as a new application of combined immunotherapy and radiotherapy. Interferon γ produced by CD4 + /CD8 + T cells, induced by immune checkpoint inhibitors, plays an important role in the normalization of blood vessels; tumor-associated eosinophils also play a role in the process of immunotherapy-induced blood vessel normalization. In addition, the reduction in regulatory T cells induced by immune checkpoint inhibitors can increase eosinophil levels, which promotes the further development of vascular normalization mechanisms. This review focuses on the mechanism of immunotherapy to normalize blood vessels, and proposes a good prospect for improving hypoxia. Due to the narrow vascular normalization window of anti-angiogenesis therapy, discovery of the vascular normalization effect of immunotherapy provides a new idea for the combined application of immunotherapy and radiotherapy. The enlarged vascular normalization window and improved hypoxia provide a good opportunity for the subsequent implementation of radiotherapy. The above sorting and analysis may pave the way for a promising strategy for cancer treatment via combined immunotherapy and radiotherapy.
Collapse
Affiliation(s)
- Zijing Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Qin Zhao
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zhuangzhuang Zheng
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Shiyu Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Lihua Dong
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
20
|
Ju YY, Jiang M, Xu F, Wang D, Ding B, Ma LJ, Wu H. CXCL10 and CXCR3 in the Trigeminal Ganglion Contribute to Trigeminal Neuropathic Pain in Mice. J Pain Res 2021; 14:41-51. [PMID: 33469355 PMCID: PMC7811485 DOI: 10.2147/jpr.s288292] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/23/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose Trigeminal neuropathic pain is very common clinically, but effective treatments are lacking. Chemokines and their receptors have been implicated in the pathogenesis of chronic pain. This study explored the role of the chemokine CXCL10 and its receptor, CXCR3, in trigeminal neuropathic pain in mice. Materials and Methods Trigeminal neuropathic pain was established by partial infraorbital nerve ligation (pIONL) in wild-type and Cxcr3−/− mice. Facial mechanical allodynia was evaluated by behavioral testing. A lentivirus containing Cxcr3 shRNA (LV-Cxcr3 shRNA) was microinjected into the trigeminal ganglion (TG) to knock down Cxcr3 expression. Quantitative polymerase chain reaction assays and immunofluorescence staining were used to examine Cxcl10/Cxcr3 mRNA expression and protein distribution. Western blotting was performed to examine activation of extracellular signal-regulated kinase (ERK) and AKT in the TG. Intra-TG injection of an AKT inhibitor was performed to examine the role of AKT in trigeminal neuropathic pain. Results pIONL induced persistent trigeminal neuropathic pain, which was alleviated in Cxcr3−/− mice. Intra-TG injection of LV-Cxcr3 shRNA attenuated pIONL-induced mechanical allodynia. Furthermore, pIONL increased the expression of CXCR3 and its major ligand, CXCL10, in TG neurons. Intra-TG injection of CXCL10 induced pain hypersensitivity in wild-type mice but not in Cxcr3−/− mice. CXCL10 also induced activation of ERK and AKT in the TG of wild-type mice. Finally, pIONL-induced activation of ERK and AKT was reduced in Cxcr3−/− mice. Intra-TG injection of the AKT inhibitor alleviated pIONL-induced mechanical allodynia in WT mice but not in Cxcr3−/− mice. Conclusion CXCL10 acts on CXCR3 to induce ERK and AKT activation in TG neurons and contributes to the maintenance of trigeminal neuropathic pain.
Collapse
Affiliation(s)
- Yuan-Yuan Ju
- Department of Otolaryngology, Head, and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China.,Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Ming Jiang
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Feifei Xu
- Department of Otolaryngology, Head, and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Dongqin Wang
- Department of Otolaryngology, Head, and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Bixiao Ding
- Department of Otolaryngology, Head, and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Ling-Jie Ma
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Hao Wu
- Department of Otolaryngology, Head, and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
21
|
Shepherd EL, Saborano R, Northall E, Matsuda K, Ogino H, Yashiro H, Pickens J, Feaver RE, Cole BK, Hoang SA, Lawson MJ, Olson M, Figler RA, Reardon JE, Nishigaki N, Wamhoff BR, Günther UL, Hirschfield G, Erion DM, Lalor PF. Ketohexokinase inhibition improves NASH by reducing fructose-induced steatosis and fibrogenesis. JHEP Rep 2020; 3:100217. [PMID: 33490936 PMCID: PMC7807164 DOI: 10.1016/j.jhepr.2020.100217] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/30/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
Background & Aims Increasing evidence highlights dietary fructose as a major driver of non-alcoholic fatty liver disease (NAFLD) pathogenesis, the majority of which is cleared on first pass through the hepatic circulation by enzymatic phosphorylation to fructose-1-phosphate via the ketohexokinase (KHK) enzyme. Without a current approved therapy, disease management emphasises lifestyle interventions, but few patients adhere to such strategies. New targeted therapies are urgently required. Methods We have used a unique combination of human liver specimens, a murine dietary model of NAFLD and human multicellular co-culture systems to understand the hepatocellular consequences of fructose administration. We have also performed a detailed nuclear magnetic resonance-based metabolic tracing of the fate of isotopically labelled fructose upon administration to the human liver. Results Expression of KHK isoforms is found in multiple human hepatic cell types, although hepatocyte expression predominates. KHK knockout mice show a reduction in serum transaminase, reduced steatosis and altered fibrogenic response on an Amylin diet. Human co-cultures exposed to fructose exhibit steatosis and activation of lipogenic and fibrogenic gene expression, which were reduced by pharmacological inhibition of KHK activity. Analysis of human livers exposed to 13C-labelled fructose confirmed that steatosis, and associated effects, resulted from the accumulation of lipogenic precursors (such as glycerol) and enhanced glycolytic activity. All of these were dose-dependently reduced by administration of a KHK inhibitor. Conclusions We have provided preclinical evidence using human livers to support the use of KHK inhibition to improve steatosis, fibrosis, and inflammation in the context of NAFLD. Lay summary We have used a mouse model, human cells, and liver tissue to test how exposure to fructose can cause the liver to store excess fat and become damaged and scarred. We have then inhibited a key enzyme within the liver that is responsible for fructose metabolism. Our findings show that inhibition of fructose metabolism reduces liver injury and fibrosis in mouse and human livers and thus this may represent a potential route for treating patients with fatty liver disease in the future.
Collapse
Key Words
- ALD, alcohol-related cirrhosis
- ALT, alanine transaminase
- APRI, AST to Platelet Ratio Index
- AST, aspartate transaminase
- BEC, biliary epithelial cells
- BSA, bovine serum albumin
- CT, computed tomography
- DNL, de novo lipogenesis
- FIB4, fibrosis-4
- Fibrosis
- Fructose
- G/F, glucose/fructose
- HSCs, hepatic stellate cells
- HSECs, hepatic sinusoidal endothelial cells
- HSQC, heteronuclear single quantum coherence
- IGF, insulin-like growth factor
- KHK, ketohexokinase
- KO, knockout
- LGLI, low glucose and insulin
- Metabolism
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NASH
- NASH, non-alcoholic steatohepatitis
- NPCs, non-parenchymal cells
- PBC, primary biliary cholangitis
- PDGF, platelet-derived growth factor
- PSC, primary sclerosing cholangitis
- TG, triglyceride
- TGFB, transforming growth factor beta
- TIMP-1, Tissue Inhibitor of Matrix metalloproteinase-1
- Treatment
- WT, wild-type
- aLMF, activated liver myofibroblasts
Collapse
Affiliation(s)
- Emma L Shepherd
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Raquel Saborano
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Ellie Northall
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Kae Matsuda
- Takeda Pharmaceuticals Cardiovascular and Metabolic Drug Discovery Unit, Kanagawa, Japan
| | - Hitomi Ogino
- Takeda Pharmaceuticals Cardiovascular and Metabolic Drug Discovery Unit, Kanagawa, Japan
| | - Hiroaki Yashiro
- Takeda Pharmaceuticals Gastroenterology Drug Discovery Unit, Cambridge, MA, USA
| | - Jason Pickens
- Takeda Pharmaceuticals Gastroenterology Drug Discovery Unit, Cambridge, MA, USA
| | | | | | | | | | | | | | | | - Nobuhiro Nishigaki
- Takeda Pharmaceuticals Cardiovascular and Metabolic Drug Discovery Unit, Kanagawa, Japan
| | | | - Ulrich L Günther
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Gideon Hirschfield
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Toronto Centre for Liver Disease, University of Toronto, Toronto General Hospital, Toronto, Canada
| | - Derek M Erion
- Takeda Pharmaceuticals Gastroenterology Drug Discovery Unit, Cambridge, MA, USA
| | - Patricia F Lalor
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
22
|
Kong YF, Sha WL, Wu XB, Zhao LX, Ma LJ, Gao YJ. CXCL10/CXCR3 Signaling in the DRG Exacerbates Neuropathic Pain in Mice. Neurosci Bull 2020; 37:339-352. [PMID: 33196963 DOI: 10.1007/s12264-020-00608-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chemokines and receptors have been implicated in the pathogenesis of chronic pain. Here, we report that spinal nerve ligation (SNL) increased CXCR3 expression in dorsal root ganglion (DRG) neurons, and intra-DRG injection of Cxcr3 shRNA attenuated the SNL-induced mechanical allodynia and heat hyperalgesia. SNL also increased the mRNA levels of CXCL9, CXCL10, and CXCL11, whereas only CXCL10 increased the number of action potentials (APs) in DRG neurons. Furthermore, in Cxcr3-/- mice, CXCL10 did not increase the number of APs, and the SNL-induced increase of the numbers of APs in DRG neurons was reduced. Finally, CXCL10 induced the activation of p38 and ERK in ND7-23 neuronal cells and DRG neurons. Pretreatment of DRG neurons with the P38 inhibitor SB203580 decreased the number of APs induced by CXCL10. Our data indicate that CXCR3, activated by CXCL10, mediates p38 and ERK activation in DRG neurons and enhances neuronal excitability, which contributes to the maintenance of neuropathic pain.
Collapse
Affiliation(s)
- Yan-Fang Kong
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Wei-Lin Sha
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Xiao-Bo Wu
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Lin-Xia Zhao
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Ling-Jie Ma
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Yong-Jing Gao
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
23
|
Zhu MX, Wan WL, Hong Y, Wang YF, Dong F, Jing HM. Expression and role of MIG/CXCR3 axis in mantle cell lymphoma. Exp Cell Res 2020; 397:112365. [PMID: 33197439 DOI: 10.1016/j.yexcr.2020.112365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/31/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022]
Abstract
Mantle cell lymphoma (MCL) is a unique subtype of B-cell non-Hodgkin lymphoma with a generally aggressive and heterogeneous clinical course. Chemokines are one of the complex components in the tumor microenvironment (TME), and they play a vital role in tumor progression and metastasis. There is no information about the monokine induced by gamma interferon (MIG)/CXC chemokine receptor 3 (CXCR3) axis in patients with MCL. In the present study, we discovered that CXCR3 was highly expressed in MCL tissues and some cell lines including Maver, Z138, and Jeko-1, and significantly associated with clinical factors reflecting high tumor burden in MCL patients. Moreover, elevated serum MIG at diagnosis showed a close relationship with advanced disease and poor prognosis in MCL patients. Additionally, the role of CXCR3 in promoting the proliferation and inhibiting the apoptosis of primary MCL cells and Jeko-1 cells was validated by in vitro experiments. Further research indicated that the MIG/CXCR3 axis mediated MCL cell migration to the TME through the PI3K/AKT signaling pathway. Therefore, the MIG/CXCR3 axis might be a potential target with fewer off-target side effects than other targets in MCL.
Collapse
Affiliation(s)
- Ming-Xia Zhu
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, PR China
| | - Wen-Li Wan
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, PR China
| | - Yun Hong
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, PR China
| | - Yan-Fang Wang
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, PR China
| | - Fei Dong
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, PR China
| | - Hong-Mei Jing
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, PR China.
| |
Collapse
|
24
|
Worrell JC, Walsh SM, Fabre A, Kane R, Hinz B, Keane MP. CXCR3A promotes the secretion of the antifibrotic decoy receptor sIL-13Rα2 by pulmonary fibroblasts. Am J Physiol Cell Physiol 2020; 319:C1059-C1069. [PMID: 33026833 DOI: 10.1152/ajpcell.00076.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CXC chemokine receptor 3 (CXCR3) A and its IFN-inducible ligands CXCL9 and CXCL10 regulate vascular remodeling and fibroblast motility. IL-13 is a profibrotic cytokine implicated in the pathogenesis of inflammatory and fibroproliferative conditions. Previous work from our laboratory has shown that CXCR3A is negatively regulated by IL-13 and is necessary for the basal regulation of the IL-13 receptor subunit IL-13Rα2. This study investigates the regulation of fibroblast phenotype, function, and downstream IL-13 signaling by CXCR3A in vitro. CXCR3A was overexpressed via transient transfection. CXCR3A-/- lung fibroblasts were isolated for functional analysis. Additionally, the contribution of CXCR3A to tissue remodeling following acute lung injury was assessed in vivo with wild-type (WT) and CXCR3-/- mice challenged with IL-13. CXCR3 and IL-13Rα2 displayed a reciprocal relationship after stimulation with either IL-13 or CXCR3 ligands. CXCR3A reduced expression of fibroblast activation makers, soluble collagen production, and proliferation. CXCR3A enhanced the basal expression of pERK1/2 while inducing IL-13-mediated downregulation of NF-κB-p65. CXCR3A-/- pulmonary fibroblasts were increasingly proliferative and displayed reduced contractility and α-smooth muscle actin expression. IL-13 challenge regulated expression of the CXCR3 ligands and soluble IL-13Rα2 levels in lungs and bronchoalveolar lavage fluid (BALF) of WT mice; this response was absent in CXCR3-/- mice. Alveolar macrophage accumulation and expression of genes involved in lung remodeling was increased in CXCR3-/- mice. We conclude that CXCR3A is a central antifibrotic factor in pulmonary fibroblasts, limiting fibroblast activation and reducing extracellular matrix (ECM) production. Therefore, targeting of CXCR3A may be a novel approach to regulating fibroblast activity in lung fibrosis and remodeling.
Collapse
Affiliation(s)
- Julie C Worrell
- St. Vincent's University Hospital and School of Medicine, University College Dublin and UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - Sinead M Walsh
- St. Vincent's University Hospital and School of Medicine, University College Dublin and UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Aurélie Fabre
- St. Vincent's University Hospital and School of Medicine, University College Dublin and UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.,UCD Conway Research Pathology Core Technology, University College Dublin, Dublin, Ireland
| | - Rosemary Kane
- St. Vincent's University Hospital and School of Medicine, University College Dublin and UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Michael P Keane
- St. Vincent's University Hospital and School of Medicine, University College Dublin and UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Groover MK, Richmond JM. Potential therapeutic manipulations of the CXCR3 chemokine axis for the treatment of inflammatory fibrosing diseases. F1000Res 2020; 9:1197. [PMID: 33145014 PMCID: PMC7590900 DOI: 10.12688/f1000research.26728.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Chemokines play important roles in homeostasis and inflammatory processes. While their roles in leukocyte recruitment are well-appreciated, chemokines play additional roles in the body, including mediating or regulating angiogenesis, tumor metastasis and wound healing. In this opinion article, we focus on the role of CXCR3 and its ligands in fibrotic processes. We emphasize differences of the effects of each ligand, CXCL9, CXCL10 and CXCL11, on fibroblasts in different tissues of the body. We include discussions of differences in signaling pathways that may account for protective or pro-fibrotic effects of each ligand in different experimental models and ex vivo analysis of human tissues. Our goal is to highlight potential reasons why there are disparate findings in different models, and to suggest ways in which this chemokine axis could be manipulated for the treatment of fibrosis.
Collapse
Affiliation(s)
- Morgan K. Groover
- Department of Dermatology, University of Massachussetts Medical School, Worcester, MA, 01605, USA
| | - Jillian M. Richmond
- Department of Dermatology, University of Massachussetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
26
|
Quan W, Luo Q, Tang Q, Furihata T, Li D, Fassbender K, Liu Y. NLRP3 Is Involved in the Maintenance of Cerebral Pericytes. Front Cell Neurosci 2020; 14:276. [PMID: 32973459 PMCID: PMC7473034 DOI: 10.3389/fncel.2020.00276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/05/2020] [Indexed: 01/07/2023] Open
Abstract
Pericytes play a central role in regulating the structure and function of capillaries in the brain. However, molecular mechanisms that drive pericyte proliferation and differentiation are unclear. In our study, we immunostained NACHT, LRR and PYD domains-containing protein 3 (NLRP3)-deficient and wild-type littermate mice and observed that NLRP3 deficiency reduced platelet-derived growth factor receptor β (PDGFRβ)-positive pericytes and collagen type IV immunoreactive vasculature in the brain. In Western blot analysis, PDGFRβ and CD13 proteins in isolated cerebral microvessels from the NLRP3-deficient mouse brain were decreased. We further treated cultured pericytes with NLRP3 inhibitor, MCC950, and demonstrated that NLRP3 inhibition attenuated cell proliferation but did not induce apoptosis. NLRP3 inhibition also decreased protein levels of PDGFRβ and CD13 in cultured pericytes. On the contrary, treatments with IL-1β, the major product of NLRP3-contained inflammasome, increased protein levels of PDGFRβ, and CD13 in cultured cells. The alteration of PDGFRβ and CD13 protein levels were correlated with the phosphorylation of AKT. Inhibition of AKT reduced both protein markers and abolished the effect of IL-1β activation in cultured pericytes. Thus, NLRP3 activation might be essential to maintain pericytes in the healthy brain through phosphorylating AKT. The potential adverse effects on the cerebral vascular pericytes should be considered in clinical therapies with NLRP3 inhibitors.
Collapse
Affiliation(s)
- Wenqiang Quan
- Department of Clinical Laboratory, Tongji Hospital, Tongji University Medical School, Shanghai, China.,Department of Neurology, Saarland University, Homburg, Germany
| | - Qinghua Luo
- Department of Neurology, Saarland University, Homburg, Germany
| | - Qiqiang Tang
- Department of Neurology, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, China
| | - Tomomi Furihata
- Department of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Dong Li
- Department of Clinical Laboratory, Tongji Hospital, Tongji University Medical School, Shanghai, China
| | | | - Yang Liu
- Department of Clinical Laboratory, Tongji Hospital, Tongji University Medical School, Shanghai, China.,Department of Neurology, Saarland University, Homburg, Germany
| |
Collapse
|
27
|
Caligiuri A, Pastore M, Lori G, Raggi C, Di Maira G, Marra F, Gentilini A. Role of Chemokines in the Biology of Cholangiocarcinoma. Cancers (Basel) 2020; 12:cancers12082215. [PMID: 32784743 PMCID: PMC7463556 DOI: 10.3390/cancers12082215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA), a heterogeneous tumor with poor prognosis, can arise at any level in the biliary tree. It may derive from epithelial cells in the biliary tracts and peribiliary glands and possibly from progenitor cells or even hepatocytes. Several risk factors are responsible for CCA onset, however an inflammatory milieu nearby the biliary tree represents the most common condition favoring CCA development. Chemokines play a key role in driving the immunological response upon liver injury and may sustain tumor initiation and development. Chemokine receptor-dependent pathways influence the interplay among various cellular components, resulting in remodeling of the hepatic microenvironment towards a pro-inflammatory, pro-fibrogenic, pro-angiogenic and pre-neoplastic setting. Moreover, once tumor develops, chemokine signaling may influence its progression. Here we review the role of chemokines in the regulation of CCA development and progression, and the modulation of angiogenesis, metastasis and immune control. The potential role of chemokines and their receptors as possible biomarkers and/or therapeutic targets for hepatobiliary cancer is also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Fabio Marra
- Correspondence: (F.M.); (A.G.); Tel.: +39-055-2758095 or +39-055-2758498 or +39-055-2758499 (F.M.); +39-055-2751801 (A.G.)
| | - Alessandra Gentilini
- Correspondence: (F.M.); (A.G.); Tel.: +39-055-2758095 or +39-055-2758498 or +39-055-2758499 (F.M.); +39-055-2751801 (A.G.)
| |
Collapse
|
28
|
Liu Z, Liang W, Kang D, Chen Q, Ouyang Z, Yan H, Huang B, Jin D, Chen Y, Li Q. Increased Osteoblastic Cxcl9 Contributes to the Uncoupled Bone Formation and Resorption in Postmenopausal Osteoporosis. Clin Interv Aging 2020; 15:1201-1212. [PMID: 32764906 PMCID: PMC7381095 DOI: 10.2147/cia.s254885] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Estrogen deficiency leads to bone loss in postmenopausal osteoporosis, because bone formation, albeit enhanced, fails to keep pace with the stimulated osteoclastic bone resorption. The mechanism driving this uncoupling is central to the pathogenesis of postmenopausal osteoporosis, which, however, remains poorly understood. We previously found that Cxcl9 secreted by osteoblasts inhibited osteogenesis in bone, while the roles of Cxcl9 on osteoclastic bone resorption and osteoporosis are unclear. Materials and Methods Postmenopausal osteoporosis mouse model was established by bilateral surgical ovariectomy (OVX). In situ hybridization was performed to detect Cxcl9 mRNA expression in bone. ELISA assay was conducted to assess Cxcl9 concentrations in bone and serum. Cxcl9 activity was blocked by its neutralizing antibody. Micro-CT was performed to determine the effects of Cxcl9 neutralization on bone structure. Cell Migration and adhesion assay were conducted to evaluate the effects of Cxcl9 on osteoclast activity. TRAP staining and Western blot were performed to assess osteoclast differentiation. CXCR3 antagonist NBI-74,330 or ERK antagonist SCH772984 was administered to osteoclast to study the effects of Cxcl9 on CXCR3/ERK signaling. Results Cxcl9 was expressed and secreted increasingly in OVX mice bone. Neutralizing Cxcl9 in bone marrow prevented bone loss in the mice by facilitating bone formation as well as inhibiting bone resorption. In vitro, Cxcl9 secreted from osteoblasts facilitated osteoclast precursors adhesion, migration and their differentiation into mature osteoclasts. The positive role of osteoblastic Cxcl9 on osteoclasts was eliminated by blocking CXCR3/ERK signaling in osteoclasts. Estrogen negatively regulated Cxcl9 expression and secretion in osteoblasts, explaining the increased Cxcl9 concentration in OVX mice bone. Conclusion Our study illustrates the roles of Cxcl9 in inhibiting bone formation and stimulating bone resorption in osteoporotic bone, therefore providing a possible therapeutic target to the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Zezheng Liu
- Academy of Orthopedics, Guangdong Province, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Wenquan Liang
- Academy of Orthopedics, Guangdong Province, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Dawei Kang
- Academy of Orthopedics, Guangdong Province, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Qingjing Chen
- Academy of Orthopedics, Guangdong Province, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Zhicong Ouyang
- Academy of Orthopedics, Guangdong Province, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Huibo Yan
- Academy of Orthopedics, Guangdong Province, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Bin Huang
- Academy of Orthopedics, Guangdong Province, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Dadi Jin
- Academy of Orthopedics, Guangdong Province, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Yinkui Chen
- Department of Oncology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Qingchu Li
- Academy of Orthopedics, Guangdong Province, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
29
|
Rodríguez-Fernández JL, Criado-García O. The Chemokine Receptor CCR7 Uses Distinct Signaling Modules With Biased Functionality to Regulate Dendritic Cells. Front Immunol 2020; 11:528. [PMID: 32351499 PMCID: PMC7174648 DOI: 10.3389/fimmu.2020.00528] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
Chemotaxis is a molecular mechanism that confers leukocytes the ability to detect gradients of chemoattractants. Chemokine receptors are well-known regulators of chemotaxis in leukocytes; however, they can regulate several other activities in these cells. This information has been often neglected, probably due to the paramount role of chemotaxis in the immune system and in biology. Therefore, the experimental data available on the mechanisms used by chemokine receptors to regulate other functions of leukocytes is sparse. The results obtained in the study of the chemokine receptor CCR7 in dendritic cells (DCs) provide interesting information on this issue. CCR7 guides the DCs from the peripheral tissues to the lymph nodes, where these cells control T cell activation. CCR7 can regulate DC chemotaxis, survival, migratory speed, cytoarchitecture, and endocytosis. Biochemical and functional analyses show: first, that CCR7 uses in DCs the PI3K/Akt pathway to control survival, the MAPK pathway to control chemotaxis, and the RhoA pathways to regulate actin dynamics, which in turn controls migratory speed, cytoarchitecture, and endocytosis; second, that these three signaling pathways behave as modules with a high degree of independence; and third, that although each one of these routes can regulate several functions in different settings, CCR7 promotes in DCs a functional bias in each pathway. The data uncover an interesting mechanism used by CCR7 to regulate the DCs, entailing multifunctional signaling pathways organized in modules with biased functionality. A similar mechanism could be used by other chemoattractant receptors to regulate the functions of leukocytes.
Collapse
Affiliation(s)
- José Luis Rodríguez-Fernández
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Olga Criado-García
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
30
|
Gao HF, Cheng CS, Tang J, Li Y, Chen H, Meng ZQ, Chen Z, Chen LY. CXCL9 chemokine promotes the progression of human pancreatic adenocarcinoma through STAT3-dependent cytotoxic T lymphocyte suppression. Aging (Albany NY) 2020; 12:502-517. [PMID: 31913856 PMCID: PMC6977695 DOI: 10.18632/aging.102638] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
Chemokines play essential roles in the progression of various human cancers; however, the expression and role of CXC chemokines in pancreatic adenocarcinoma (PAAD) have not yet been identified. The aim of this study is to identify the expression patterns, clinical significance and mechanisms of CXC chemokines in regulating tumour microenvironment of PAAD. Three CXC chemokines, including CXCL5, CXCL9, and CXCL10, were significantly overexpressed in PAAD tissues, which were correlated with the poor survival of the patients. CXCL9/10 was associated with change of immune cell pattern in the tumour microenvironment, and supplementation of CXCL9 in the orthotopic murine PAAD model promoted tumour progression. In particular, CXCL9 reduced the CD8+ cytotoxic T lymphocytes in the tumour microenvironment of PAAD, which could be attributed to the reduced CD8+ T cell proliferation, activation, and secretion of anti-tumour cytokines. In vitro treatment of CXCL9 directly led to the suppression of the proliferation, activation, and secretion of anti-tumour cytokines of isolated CD8+ T cells. Inhibition of STAT3 recovered the CXCL9-inhibited proliferation, activation, and secretion of anti-tumour cytokines of CD8+ T cells. Our study indicates CXCL9 as a potential target of immunotherapy in PAAD treatment by regulating the CD8+ T lymphocytes in the tumour microenvironment.
Collapse
Affiliation(s)
- Hui-Feng Gao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Chien-Shan Cheng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jian Tang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Ye Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Hao Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Zhi-Qiang Meng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Zhen Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Lian-Yu Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| |
Collapse
|
31
|
Bikfalvi A, Billottet C. The CC and CXC chemokines: major regulators of tumor progression and the tumor microenvironment. Am J Physiol Cell Physiol 2020; 318:C542-C554. [PMID: 31913695 DOI: 10.1152/ajpcell.00378.2019] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemokines are a family of soluble cytokines that act as chemoattractants to guide the migration of cells, in particular of immune cells. However, chemokines are also involved in cell proliferation, differentiation, and survival. Chemokines are associated with a variety of human diseases including chronic inflammation, immune dysfunction, cancer, and metastasis. This review discusses the expression of CC and CXC chemokines in the tumor microenvironment and their supportive and inhibitory roles in tumor progression, angiogenesis, metastasis, and tumor immunity. We also specially focus on the diverse roles of CXC chemokines (CXCL9-11, CXCL4 and its variant CXCL4L1) and their two chemokine receptor CXCR3 isoforms, CXCR3-A and CXCR3-B. These two distinct isoforms have divergent roles in tumors, either promoting (CXCR3-A) or inhibiting (CXCR3-B) tumor progression. Their effects are mediated not only directly in tumor cells but also indirectly via the regulation of angiogenesis and tumor immunity. A full comprehension of their mechanisms of action is critical to further validate these chemokines and their receptors as biomarkers or therapeutic targets in cancer.
Collapse
Affiliation(s)
- Andreas Bikfalvi
- INSERM U1029, Pessac, France.,University of Bordeaux, Pessac, France
| | | |
Collapse
|
32
|
Simula L, Pacella I, Colamatteo A, Procaccini C, Cancila V, Bordi M, Tregnago C, Corrado M, Pigazzi M, Barnaba V, Tripodo C, Matarese G, Piconese S, Campello S. Drp1 Controls Effective T Cell Immune-Surveillance by Regulating T Cell Migration, Proliferation, and cMyc-Dependent Metabolic Reprogramming. Cell Rep 2019; 25:3059-3073.e10. [PMID: 30540939 PMCID: PMC6302735 DOI: 10.1016/j.celrep.2018.11.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 08/01/2018] [Accepted: 11/01/2018] [Indexed: 01/09/2023] Open
Abstract
Mitochondria are key players in the regulation of T cell biology by dynamically responding to cell needs, but how these dynamics integrate in T cells is still poorly understood. We show here that the mitochondrial pro-fission protein Drp1 fosters migration and expansion of developing thymocytes both in vitro and in vivo. In addition, we find that Drp1 sustains in vitro clonal expansion and cMyc-dependent metabolic reprogramming upon activation, also regulating effector T cell numbers in vivo. Migration and extravasation defects are also exhibited in Drp1-deficient mature T cells, unveiling its crucial role in controlling both T cell recirculation in secondary lymphoid organs and accumulation at tumor sites. Moreover, the observed Drp1-dependent imbalance toward a memory-like phenotype favors T cell exhaustion in the tumor microenvironment. All of these findings support a crucial role for Drp1 in several processes during T cell development and in anti-tumor immune-surveillance. The pro-fission protein Drp1 sustains correct thymocyte maturation Drp1 promotes T cell metabolic reprogramming and expansion upon activation Drp1 allows efficient T cell extravasation from blood and infiltration into tumors An optimal T cell anti-tumor response requires Drp1
Collapse
Affiliation(s)
- Luca Simula
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; IRCCS, Fondazione Santa Lucia, Rome, Italy
| | - Ilenia Pacella
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Alessandra Colamatteo
- Department of Molecular Medicine and Biotechnologies, University of Naples "Federico II," Naples, Italy
| | - Claudio Procaccini
- IRCCS, Fondazione Santa Lucia, Rome, Italy; Institute of Experimental Oncology and Endocrinology, National Research Council (IEOS-CNR), Naples, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo School of Medicine, Italy
| | - Matteo Bordi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Tregnago
- Department of Women and Child Health, Haematology-Oncology Clinic and Lab, University of Padova, Padova, Italy
| | - Mauro Corrado
- Max Planck Institute of Immunology and Epigenetics, Freiburg im Breisgau, Germany
| | - Martina Pigazzi
- Department of Women and Child Health, Haematology-Oncology Clinic and Lab, University of Padova, Padova, Italy
| | - Vincenzo Barnaba
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo School of Medicine, Italy
| | - Giuseppe Matarese
- Department of Molecular Medicine and Biotechnologies, University of Naples "Federico II," Naples, Italy; Institute of Experimental Oncology and Endocrinology, National Research Council (IEOS-CNR), Naples, Italy
| | - Silvia Piconese
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Silvia Campello
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; IRCCS, Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
33
|
Victorelli S, Lagnado A, Halim J, Moore W, Talbot D, Barrett K, Chapman J, Birch J, Ogrodnik M, Meves A, Pawlikowski JS, Jurk D, Adams PD, van Heemst D, Beekman M, Slagboom PE, Gunn DA, Passos JF. Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction. EMBO J 2019; 38:e101982. [PMID: 31633821 PMCID: PMC6885734 DOI: 10.15252/embj.2019101982] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence has been shown to contribute to skin ageing. However, the role of melanocytes in the process is understudied. Our data show that melanocytes are the only epidermal cell type to express the senescence marker p16INK4A during human skin ageing. Aged melanocytes also display additional markers of senescence such as reduced HMGB1 and dysfunctional telomeres, without detectable telomere shortening. Additionally, senescent melanocyte SASP induces telomere dysfunction in paracrine manner and limits proliferation of surrounding cells via activation of CXCR3-dependent mitochondrial ROS. Finally, senescent melanocytes impair basal keratinocyte proliferation and contribute to epidermal atrophy in vitro using 3D human epidermal equivalents. Crucially, clearance of senescent melanocytes using the senolytic drug ABT737 or treatment with mitochondria-targeted antioxidant MitoQ suppressed this effect. In conclusion, our study provides proof-of-concept evidence that senescent melanocytes affect keratinocyte function and act as drivers of human skin ageing.
Collapse
Affiliation(s)
- Stella Victorelli
- Ageing Research LaboratoriesNewcastle University Institute for AgeingNewcastle UniversityNewcastle upon TyneUK
- Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUK
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Anthony Lagnado
- Ageing Research LaboratoriesNewcastle University Institute for AgeingNewcastle UniversityNewcastle upon TyneUK
- Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUK
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Jessica Halim
- Ageing Research LaboratoriesNewcastle University Institute for AgeingNewcastle UniversityNewcastle upon TyneUK
- Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUK
| | - Will Moore
- Ageing Research LaboratoriesNewcastle University Institute for AgeingNewcastle UniversityNewcastle upon TyneUK
- Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUK
| | - Duncan Talbot
- Unilever DiscoverColworth Science ParkSharnbrook, BedfordshireUK
| | - Karen Barrett
- Unilever DiscoverColworth Science ParkSharnbrook, BedfordshireUK
| | - James Chapman
- Ageing Research LaboratoriesNewcastle University Institute for AgeingNewcastle UniversityNewcastle upon TyneUK
- Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUK
| | - Jodie Birch
- Ageing Research LaboratoriesNewcastle University Institute for AgeingNewcastle UniversityNewcastle upon TyneUK
- Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUK
| | - Mikolaj Ogrodnik
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | | | | | - Diana Jurk
- Ageing Research LaboratoriesNewcastle University Institute for AgeingNewcastle UniversityNewcastle upon TyneUK
- Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUK
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Peter D Adams
- Institute of Cancer SciencesCR‐UK Beatson InstituteUniversity of GlasgowGlasgowUK
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| | - Diana van Heemst
- Department of Gerontology and GeriatricsLeiden University Medical CenterLeidenThe Netherlands
- Netherlands Consortium for Healthy AgingLeiden University Medical CenterLeidenThe Netherlands
| | - Marian Beekman
- Department of Biomedical Data SciencesSection of Molecular EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
| | - P Eline Slagboom
- Department of Biomedical Data SciencesSection of Molecular EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
- Max Planck Institute for Biology of AgeingCologneGermany
| | - David A Gunn
- Unilever DiscoverColworth Science ParkSharnbrook, BedfordshireUK
| | - João F Passos
- Ageing Research LaboratoriesNewcastle University Institute for AgeingNewcastle UniversityNewcastle upon TyneUK
- Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUK
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| |
Collapse
|
34
|
Kowalski K, Brzoska E, Ciemerych MA. The role of CXC receptors signaling in early stages of mouse embryonic stem cell differentiation. Stem Cell Res 2019; 41:101636. [PMID: 31722287 DOI: 10.1016/j.scr.2019.101636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/27/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022] Open
Abstract
Interplay between CXCR7 and other CXC receptors, namely CXCR4 or CXCR3, binding such ligands as SDF-1 or ITAC, was shown to regulate multiple cellular processes. The developmental role of signaling pathways mediated by these receptors was proven by the phenotypes of mice lacking either functional CXCR4, or CXCR7, or SDF-1, showing that formation of certain lineages relies on these factors. In this study, using in vitro differentiating mouse embryonic stem cells that lacked the function of CXCR7, we asked the question about the role of CXCR mediated signaling during early steps of differentiation. Our analysis showed that interaction of SDF-1 or ITAC with CXC receptors is necessary for the regulation of crucial developmental regulators expression and that CXCR7 is involved in the control of ESC pluripotency and differentiation into mesodermal lineages.
Collapse
Affiliation(s)
- Kamil Kowalski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland.
| |
Collapse
|
35
|
Caccuri F, Bugatti A, Corbellini S, Roversi S, Zani A, Mazzuca P, Marsico S, Caruso A, Giagulli C. The Synthetic Dipeptide Pidotimod Shows a Chemokine-Like Activity through CXC Chemokine Receptor 3 (CXCR3). Int J Mol Sci 2019; 20:ijms20215287. [PMID: 31653015 PMCID: PMC6862300 DOI: 10.3390/ijms20215287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
In recent years immunomodulators have gained a strong interest and represent nowadays an active expanding area of research for the control of microbial diseases and for their therapeutic potential in preventing, treating and reducing the morbidity and mortality of different diseases. Pidotimod (3-L-pyroglutamyl-L-thiaziolidine-4carboxylic acid, PDT) is a synthetic dipeptide, which possesses immunomodulatory properties and exerts a well-defined pharmacological activity against infections, but its real mechanism of action is still undefined. Here, we show that PDT is capable of activating tyrosine phosphorylation-based cell signaling in human primary monocytes and triggering rapid adhesion and chemotaxis. PDT-induced monocyte migration requires the activation of the PI3K/Akt signaling pathway and chemokine receptor CXCR3. Indeed, a mAb to CXCR3 and a specific receptor inhibitor suppressed significantly PDT-dependent chemotaxis, and CXCR3-silenced primary monocytes lost responsiveness to PDT chemoattraction. Moreover, our results highlighted that the PDT-induced migratory activity is sustained by the CXCR3A isoform, since CXCR3-transfected L1.2 cells acquired responsiveness to PDT stimulation. Finally, we show that PDT, as CXCR3 ligands, is also able to direct the migration of IL-2 activated T cells, which express the highest levels of CXCR3 among CXCR3-expressing cells. In conclusion, our study defines a chemokine-like activity for PDT through CXCR3A and points on the possible role that this synthetic dipeptide may play in leukocyte trafficking and function. Since recent studies have highlighted diverse therapeutic roles for molecules which activates CXCR3, our findings call for an exploration of using this dipeptide in different pathological processes.
Collapse
Affiliation(s)
- Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Silvia Corbellini
- Laboratory of Microbiology and Virology, Azienda Socio Sanitaria Territoriale Spedali Civili, 25123 Brescia, Italy.
| | - Sara Roversi
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Pietro Mazzuca
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy.
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Cinzia Giagulli
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
36
|
Raggi C, Fiaccadori K, Pastore M, Correnti M, Piombanti B, Forti E, Navari N, Abbadessa G, Hall T, Destro A, Di Tommaso L, Roncalli M, Meng F, Glaser S, Rovida E, Peraldo-Neia C, Olaizola P, Banales JM, Gerussi A, Elvevi A, Droz Dit Busset M, Bhoori S, Mazzaferro V, Alpini G, Marra F, Invernizzi P. Antitumor Activity of a Novel Fibroblast Growth Factor Receptor Inhibitor for Intrahepatic Cholangiocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2090-2101. [PMID: 31351075 DOI: 10.1016/j.ajpath.2019.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 06/05/2019] [Accepted: 06/18/2019] [Indexed: 12/31/2022]
Abstract
Fibroblast growth factor receptor 2 (FGFR2) might have an important role in the pathogenesis and biology of cholangiocarcinoma (CCA). We examined FGFR expression in CCA tumor specimens obtained from patients and CCA cell lines, and then determined the effects of the novel FGFR inhibitor, derazantinib (DZB; formally, ARQ 087), which is currently in clinical phase 2 trials for intrahepatic CCA. DZB inhibited the growth of CCA cell lines in a dose-dependent manner, and extracellular signal-regulated kinase 1/2 and AKT. It also activated apoptotic and cell growth arrest signaling. DZB reduced the in vitro invasiveness and the expression of key epithelial-mesenchymal transition genes. The in vitro data correlated with the expression of FGFRs in human CCA specimens by immunohistochemistry (FGFR1, 30% positive; and FGFR2, 65% positive) and the CCA cell lines assayed by Western blot analysis. These correlated in vitro studies suggest that FGFR may play an important role in the pathogenesis and biology of CCA. Our findings support the notion that FGFR inhibitors, like DZB, should be further evaluated at the clinical stage as targeted therapy for CCA treatment.
Collapse
Affiliation(s)
- Chiara Raggi
- Humanitas Clinical and Research Center, Rozzano, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | | | - Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Benedetta Piombanti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elisa Forti
- Humanitas Clinical and Research Center, Rozzano, Italy
| | - Nadia Navari
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giovanni Abbadessa
- Clinical Development Department, ArQule, Inc., Burlington, Massachusetts
| | - Terence Hall
- Clinical Development Department, ArQule, Inc., Burlington, Massachusetts
| | | | - Luca Di Tommaso
- Pathology Unit, Humanitas Research Hospital, Rozzano, Italy; University of Milan Medical School, Milan, Italy
| | - Massimo Roncalli
- Pathology Unit, Humanitas Research Hospital, Rozzano, Italy; University of Milan Medical School, Milan, Italy
| | - Fanyin Meng
- Department of Research, Central Texas Veterans Health Care System, Baylor Scott & White Digestive Disease Research Center, Scott & White Health, Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas
| | - Shannon Glaser
- Department of Research, Central Texas Veterans Health Care System, Baylor Scott & White Digestive Disease Research Center, Scott & White Health, Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Paula Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Networked Biomedical Research Center for Hepatic and Digestive Diseases, Ikerbasque, San Sebastián, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Networked Biomedical Research Center for Hepatic and Digestive Diseases, Ikerbasque, San Sebastián, Spain
| | - Alessio Gerussi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital, Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Alessandra Elvevi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital, Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Michele Droz Dit Busset
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation, IRCCS Foundation National Cancer Institute, Milan, Italy
| | - Sherrie Bhoori
- Gastroenterology and Liver Transplant Hepatology, IRCCS Foundation National Cancer Institute, Milan, Italy
| | - Vincenzo Mazzaferro
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation, IRCCS Foundation National Cancer Institute, Milan, Italy; Department of Surgery, University of Milan, Milan, Italy
| | - Gianfranco Alpini
- Department of Research, Central Texas Veterans Health Care System, Baylor Scott & White Digestive Disease Research Center, Scott & White Health, Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pietro Invernizzi
- Humanitas Clinical and Research Center, Rozzano, Italy; Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital, Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy.
| |
Collapse
|
37
|
Reynders N, Abboud D, Baragli A, Noman MZ, Rogister B, Niclou SP, Heveker N, Janji B, Hanson J, Szpakowska M, Chevigné A. The Distinct Roles of CXCR3 Variants and Their Ligands in the Tumor Microenvironment. Cells 2019; 8:cells8060613. [PMID: 31216755 PMCID: PMC6627231 DOI: 10.3390/cells8060613] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 12/22/2022] Open
Abstract
First thought to orchestrate exclusively leukocyte trafficking, chemokines are now acknowledged for their multiple roles in the regulation of cell proliferation, differentiation, and survival. Dysregulation of their normal functions contributes to various pathologies, including inflammatory diseases and cancer. The two chemokine receptor 3 variants CXCR3-A and CXCR3-B, together with their cognate chemokines (CXCL11, CXCL10, CXCL9, CXCL4, and CXCL4L1), are involved in the control but also in the development of many tumors. CXCR3-A drives the infiltration of leukocytes to the tumor bed to modulate tumor progression (paracrine axis). Conversely, tumor-driven changes in the expression of the CXCR3 variants and their ligands promote cancer progression (autocrine axis). This review summarizes the anti- and pro-tumoral activities of the CXCR3 variants and their associated chemokines with a focus on the understanding of their distinct biological roles in the tumor microenvironment.
Collapse
Affiliation(s)
- Nathan Reynders
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
- Faculty of Science, Technology and Communication, University of Luxembourg, L-1526 Luxembourg, Luxembourg.
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, CHU, B-4000 Liège, Belgium.
| | - Alessandra Baragli
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| | - Muhammad Zaeem Noman
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| | - Bernard Rogister
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, B-4000 Liège, Belgium.
- Neurology Department, CHU, Academic Hospital, University of Liège, B-4000 Liège, Belgium.
| | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| | - Nikolaus Heveker
- Research Centre, Saint-Justine Hospital, University of Montreal, Montréal H3T 1C5, Canada.
- Department of Biochemistry, University of Montreal, Montréal H3T 1J4, Canada.
| | - Bassam Janji
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, CHU, B-4000 Liège, Belgium.
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicine (CIRM), University of Liège, CHU, B-4000 Liège, Belgium.
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| |
Collapse
|
38
|
Simula L, Campanella M, Campello S. Targeting Drp1 and mitochondrial fission for therapeutic immune modulation. Pharmacol Res 2019; 146:104317. [PMID: 31220561 DOI: 10.1016/j.phrs.2019.104317] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 01/05/2023]
Abstract
Mitochondria are dynamic organelles whose processes of fusion and fission are tightly regulated by specialized proteins, known as mitochondria-shaping proteins. Among them, Drp1 is the main pro-fission protein and its activity is tightly regulated to ensure a strict control over mitochondria shape according to the cell needs. In the recent years, mitochondrial dynamics emerged as a new player in the regulation of fundamental processes during T cell life. Indeed, the morphology of mitochondria directly regulates T cell differentiation, this by affecting the engagment of alternative metabolic routes upon activation. Further, Drp1-dependent mitochondrial fission sustains both T cell clonal expansion and T cell migration and invasivness. By this review, we aim at discussing the most recent findings about the roles played by the Drp1-dependent mitochondrial fission in T cells, and at highlighting how its pharmacological modulation could open the way to future therapeutic approaches to modulate T cell response.
Collapse
Affiliation(s)
- Luca Simula
- Dept. of Biology, University of Rome Tor Vergata, Rome, Italy; Dept. of Paediatric Haemato-Oncology, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street NW1 0TU, London, United Kingdom; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT, London, United Kingdom
| | - Silvia Campello
- Dept. of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
39
|
CXCR7 contributes to the aggressive phenotype of cholangiocarcinoma cells. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2246-2256. [PMID: 31059778 DOI: 10.1016/j.bbadis.2019.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/15/2022]
Abstract
Development of cholangiocarcinoma (CCA) is dependent on a cross-talk with stromal cells, which release different chemokines including CXCL12, that interacts with two different receptors, CXCR4 and CXCR7. The aim of the present study was to investigate the role of CXCR7 in CCA cells. CXCR7 is overexpressed by different CCA cell lines and in human CCA specimens. Knock-down of CXCR7 in HuCCT-1 cells reduced migration, invasion, and CXCL12-induced adhesion to collagen I. Survival of CCA was also reduced in CXCR7-silenced cells. The ability of CXCL12 to induce cell migration and survival was also blocked by CCX733, a CXCR7 antagonist. Similar effects of CXCR7 activation were observed in CCLP-1 cells and in primary iCCA cells. Enrichment of tumor stem-like cells by a 3D culture system resulted in increased CXCR7 expression compared to cells grown in monolayers, and genetic knockdown of CXCR7 robustly reduced sphere formation both in HuCCT-1 and in CCLP-1 cells. In HuCCT-1 cells CXCR7 was found to interact with β-arrestin 2, which was necessary to mediate CXCL12-induced migration, but not survival. In conclusion, CXCR7 is widely expressed in CCA, and contributes to the aggressive phenotype of CCA cells, inducing cell migration, invasion, adhesion, survival, growth and stem cell-like features. Cell migration induced by CXCR7 requires interaction with β-arrestin 2.
Collapse
|
40
|
Smith JS, Nicholson LT, Suwanpradid J, Glenn RA, Knape NM, Alagesan P, Gundry JN, Wehrman TS, Atwater AR, Gunn MD, MacLeod AS, Rajagopal S. Biased agonists of the chemokine receptor CXCR3 differentially control chemotaxis and inflammation. Sci Signal 2018; 11:11/555/eaaq1075. [PMID: 30401786 DOI: 10.1126/scisignal.aaq1075] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The chemokine receptor CXCR3 plays a central role in inflammation by mediating effector/memory T cell migration in various diseases; however, drugs targeting CXCR3 and other chemokine receptors are largely ineffective in treating inflammation. Chemokines, the endogenous peptide ligands of chemokine receptors, can exhibit so-called biased agonism by selectively activating either G protein- or β-arrestin-mediated signaling after receptor binding. Biased agonists might be used as more targeted therapeutics to differentially regulate physiological responses, such as immune cell migration. To test whether CXCR3-mediated physiological responses could be segregated by G protein- and β-arrestin-mediated signaling, we identified and characterized small-molecule biased agonists of the receptor. In a mouse model of T cell-mediated allergic contact hypersensitivity (CHS), topical application of a β-arrestin-biased, but not a G protein-biased, agonist potentiated inflammation. T cell recruitment was increased by the β-arrestin-biased agonist, and biopsies of patients with allergic CHS demonstrated coexpression of CXCR3 and β-arrestin in T cells. In mouse and human T cells, the β-arrestin-biased agonist was the most efficient at stimulating chemotaxis. Analysis of phosphorylated proteins in human lymphocytes showed that β-arrestin-biased signaling activated the kinase Akt, which promoted T cell migration. This study demonstrates that biased agonists of CXCR3 produce distinct physiological effects, suggesting discrete roles for different endogenous CXCR3 ligands and providing evidence that biased signaling can affect the clinical utility of drugs targeting CXCR3 and other chemokine receptors.
Collapse
Affiliation(s)
- Jeffrey S Smith
- Department of Biochemistry, Duke University, Durham, NC 27710, USA.,Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | | | - Rachel A Glenn
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Nicole M Knape
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Priya Alagesan
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Jaimee N Gundry
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | | | | | - Michael D Gunn
- Department of Medicine, Duke University, Durham, NC 27710, USA.,Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Amanda S MacLeod
- Department of Dermatology, Duke University, Durham, NC 27710, USA.,Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC 27710, USA. .,Department of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
41
|
Gomaa AI, Ehsan NA, Elrefaei AA, Sultan MM, Elsabaawy MM. The Role of Monocyte/Macrophage and CXCR3 in Differentiation between Recurrent Hepatitis C and Acute Cellular Rejection Postliver Transplantation. J Immunol Res 2018; 2018:2726939. [PMID: 29854831 PMCID: PMC5952568 DOI: 10.1155/2018/2726939] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/08/2018] [Accepted: 04/01/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Liver transplantation (LT) is the recommended treatment for patients with advanced liver disease and cirrhosis in all guidelines, mostly as a complication of HCV. The distinction between reinfection of the graft with HCV and acute cellular rejection (ACR) is essential because they are managed differently. Hepatic macrophages, which can either arise from circulating blood-derived monocytes (BDM) or from resident tissue Kupffer cells, are central in the pathogenesis of chronic liver injury. The aim of this work was to evaluate whether the origin of macrophages and the immune mediator CXCR3 could help in differentiating between acute recurrent HCV and ACR after liver transplantation. METHODS Twenty-nine cases of recurrent hepatitis C and 26 cases of ACR were included in this study. The expression of CD 68 (macrophage marker), CD11b (BDM marker), and CxCR3 in the postliver transplant biopsy using immunohistochemistry was determined. RESULTS CD11b expression highlighting macrophages of BDM origin was in favor of recurrent hepatitis C (P < 0.001) than in ACR (P = 0.44), while CXCR3 expression by hepatocytes was in favor of ACR (P = 0.001). CONCLUSION Macrophage infiltrating liver tissue post LT can distinguish between ACR by upregulation of CXCR3 and recurrent hepatitis C by predominant CD11b.
Collapse
Affiliation(s)
- Asmaa Ibrahim Gomaa
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El Koum, Egypt
| | - Nermine Ahmed Ehsan
- Department of Pathology, National Liver Institute, Menoufia University, Shebin El Koum, Egypt
| | - Ahmed A. Elrefaei
- Department of Pathology, National Liver Institute, Menoufia University, Shebin El Koum, Egypt
| | - Mervat Mohamed Sultan
- Department of Pathology, National Liver Institute, Menoufia University, Shebin El Koum, Egypt
| | - Maha Mohamed Elsabaawy
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El Koum, Egypt
| |
Collapse
|
42
|
Benten D, Kluwe J, Wirth JW, Thiele ND, Follenzi A, Bhargava KK, Palestro CJ, Koepke M, Tjandra R, Volz T, Lutgehetmann M, Gupta S. A humanized mouse model of liver fibrosis following expansion of transplanted hepatic stellate cells. J Transl Med 2018; 98:525-536. [PMID: 29352225 PMCID: PMC6526950 DOI: 10.1038/s41374-017-0010-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatic stellate cells (HSCs) are major contributors to liver fibrosis, as hepatic injuries may cause their transdifferentiation into myofibroblast-like cells capable of producing excessive extracellular matrix proteins. Also, HSCs can modulate engraftment of transplanted hepatocytes and contribute to liver regeneration. Therefore, understanding the biology of human HSCs (hHSCs) is important, but effective methods have not been available to address their fate in vivo. To investigate whether HSCs could engraft and repopulate the liver, we transplanted GFP-transduced immortalized hHSCs into immunodeficient NOD/SCID mice. Biodistribution analysis with radiolabeled hHSCs showed that after intrasplenic injection, the majority of transplanted cells rapidly translocated to the liver. GFP-immunohistochemistry demonstrated that transplanted hHSCs engrafted alongside hepatic sinusoids. Prior permeabilization of the sinusoidal endothelial layer with monocrotaline enhanced engraftment of hHSCs. Transplanted hHSCs remained engrafted without relevant proliferation in the healthy liver. However, after CCl4 or bile duct ligation-induced liver damage, transplanted hHSCs expanded and contributed to extracellular matrix production, formation of bridging cell-septae and cirrhosis-like hepatic pseudolobules. CCl4-induced injury recruited hHSCs mainly to zone 3, whereas after bile duct ligation, hHSCs were mainly in zone 1 of the liver lobule. Transplanted hHSCs neither transdifferentiated into other cell types nor formed tumors in these settings. In conclusion, a humanized mouse model was generated by transplanting hHSCs, which proliferated during hepatic injury and inflammation, and contributed to liver fibrosis. The ability to repopulate the liver with transplanted hHSCs will be particularly significant for mechanistic studies of cell-cell interactions and fibrogenesis within the liver.
Collapse
Affiliation(s)
- Daniel Benten
- Departments of Medicine and Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany. .,Helios Klinikum Duisburg, Duisburg, Germany.
| | - Johannes Kluwe
- Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jan W. Wirth
- Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Nina D. Thiele
- Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Follenzi
- Department of HealthSciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Kuldeep K. Bhargava
- Division of Nuclear Medicine and Molecular Imaging, Long Island Jewish Health Center, NorthWell Health, New Hyde Park, NY, USA
| | - Christopher J. Palestro
- Division of Nuclear Medicine and Molecular Imaging, Long Island Jewish Health Center, NorthWell Health, New Hyde Park, NY, USA
| | - Michael Koepke
- Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Reni Tjandra
- Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Tassilo Volz
- Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Lutgehetmann
- Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sanjeev Gupta
- Departments of Medicine and Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
43
|
Kim B, Lee JH, Jin WJ, Kim HH, Ha H, Lee ZH. JN-2, a C-X-C motif chemokine receptor 3 antagonist, ameliorates arthritis progression in an animal model. Eur J Pharmacol 2018; 823:1-10. [DOI: 10.1016/j.ejphar.2018.01.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 12/11/2022]
|
44
|
Ding Q, Xia Y, Ding S, Lu P, Sun L, Liu M. An alternatively spliced variant of CXCR3 mediates the metastasis of CD133+ liver cancer cells induced by CXCL9. Oncotarget 2018; 7:14405-14. [PMID: 26883105 PMCID: PMC4924724 DOI: 10.18632/oncotarget.7360] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/28/2016] [Indexed: 12/21/2022] Open
Abstract
Metastasis of liver cancer is closely linked to tumor microenvironment, in which chemokines and their receptors act in an important role. The CXCR3, the receptor of chemokine CXCL9, belongs to a superfamily of rhodopsin-like seven transmembrane GPCRs and CXCR subfamily. In HCC tissues, CXCR3 was frequently upregulated and correlated with tumor size, tumor differentiation, portal invasion and metastasis. In the study, CXCR3-A isoform that was bound by CXCL9 was found to cause significant change of ERK1/2 phosphorylation level in the MAPK signaling pathway, consequently upregulating the MMP2 and MMP9 expression and promoting invasion and metastasis of CD133+ liver cancer cells. Also, CXCR3-A suppressed the adhesion ability of CD133+ liver cancer cells that stimulated by CXCL9 for 24h. These findings suggest that CXCR3 and its ligand CXCL9 could promote the metastasis of liver cancer cells and might be a potential target for the intervention of liver cancer metastasis.
Collapse
Affiliation(s)
- Qiang Ding
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yujia Xia
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuping Ding
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Panpan Lu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Liang Sun
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
45
|
Liu H, Tian Q, Ai X, Qin Y, Cui Z, Li M, Yang J, Zhai D, Liu Y, Chen S, Meng J, Sun T, Zhou H, Yang C. Dihydroartemisinin attenuates autoimmune thyroiditis by inhibiting the CXCR3/PI3K/AKT/NF-κB signaling pathway. Oncotarget 2017; 8:115028-115040. [PMID: 29383139 PMCID: PMC5777751 DOI: 10.18632/oncotarget.22854] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022] Open
Abstract
Dihydroartemisinin (DHA) is the first generation of naturally occurring artemisinin derivatives with antimalarial activity. Recent research showed that this drug also features immunosuppressive and anti-inflammatory properties. Autoimmune thyroiditis (AIT) is a common organ-specific autoimmune disease with no available effective drug treatment. In this study, we investigated effects of DHA on AIT in vitro and in vivo. Results showed that DHA can visibly reduce antithyroglobulin antibody and thyroid peroxidase antibody levels and regulate T helper cells (Th) 1/Th2 imbalance of experimental AIT mice. DHA also dose-dependently suppressed proliferation of lymphocytes induced by lipopolysaccharide and concanavalin A. DHA inhibited binding of C-X-C chemokine ligand 10 (CXCL10) and its receptor (C–X–C motif) receptor 3 (CXCR3), thus inhibiting calcium flow. DHA can also reduce expression levels of PI3-kinase (PI3K), p-PI3K, protein kinase B (AKT), p-AKT, nuclear factor (NF)-κB/p65, and p-NF-κB/p65. In conclusion, DHA may serve as treatment drug for AIT by inhibiting the CXCR3/PI3K/AKT/NF-kB signaling pathway.
Collapse
Affiliation(s)
- Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, China.,College of Life Sciences, Nankai University, Tianjin, China
| | - Qin Tian
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoyu Ai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuan Qin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhanhong Cui
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, China
| | - Meng Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiahuan Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, China
| | - Denghui Zhai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, China
| | - Yanrong Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shuang Chen
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jing Meng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
46
|
Boyé K, Pujol N, D Alves I, Chen YP, Daubon T, Lee YZ, Dedieu S, Constantin M, Bello L, Rossi M, Bjerkvig R, Sue SC, Bikfalvi A, Billottet C. The role of CXCR3/LRP1 cross-talk in the invasion of primary brain tumors. Nat Commun 2017; 8:1571. [PMID: 29146996 PMCID: PMC5691136 DOI: 10.1038/s41467-017-01686-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 10/10/2017] [Indexed: 11/09/2022] Open
Abstract
CXCR3 plays important roles in angiogenesis, inflammation, and cancer. However, the precise mechanism of regulation and activity in tumors is not well known. We focused on CXCR3-A conformation and on the mechanisms controlling its activity and trafficking and investigated the role of CXCR3/LRP1 cross talk in tumor cell invasion. Here we report that agonist stimulation induces an anisotropic response with conformational changes of CXCR3-A along its longitudinal axis. CXCR3-A is internalized via clathrin-coated vesicles and recycled by retrograde trafficking. We demonstrate that CXCR3-A interacts with LRP1. Silencing of LRP1 leads to an increase in the magnitude of ligand-induced conformational change with CXCR3-A focalized at the cell membrane, leading to a sustained receptor activity and an increase in tumor cell migration. This was validated in patient-derived glioma cells and patient samples. Our study defines LRP1 as a regulator of CXCR3, which may have important consequences for tumor biology.
Collapse
Affiliation(s)
- Kevin Boyé
- INSERM U1029, Pessac, 33615, France.,Université de Bordeaux, Pessac, 33615, France
| | - Nadège Pujol
- INSERM U1029, Pessac, 33615, France.,Université de Bordeaux, Pessac, 33615, France
| | | | - Ya-Ping Chen
- Institute of Bioinformatics and Structural Biology, NTHU, Hsinchu, 30055, Taiwan
| | - Thomas Daubon
- INSERM U1029, Pessac, 33615, France.,Université de Bordeaux, Pessac, 33615, France.,K.G. Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Bergen, 5009, Norway.,Department of Oncology, Luxembourg Institute of Health, Luxembourg, L-1526, Luxembourg
| | - Yi-Zong Lee
- Institute of Bioinformatics and Structural Biology, NTHU, Hsinchu, 30055, Taiwan
| | - Stephane Dedieu
- CNRS UMR 7369 MEDyC, Université de Reims Champagne-Ardenne, Reims, 51687, France
| | - Marion Constantin
- INSERM U1029, Pessac, 33615, France.,Université de Bordeaux, Pessac, 33615, France
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Humanitas Resarch Hospital, Milan, 20089, Italy
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Humanitas Resarch Hospital, Milan, 20089, Italy
| | - Rolf Bjerkvig
- K.G. Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Bergen, 5009, Norway.,Department of Oncology, Luxembourg Institute of Health, Luxembourg, L-1526, Luxembourg
| | - Shih-Che Sue
- Institute of Bioinformatics and Structural Biology, NTHU, Hsinchu, 30055, Taiwan
| | - Andreas Bikfalvi
- INSERM U1029, Pessac, 33615, France. .,Université de Bordeaux, Pessac, 33615, France.
| | - Clotilde Billottet
- INSERM U1029, Pessac, 33615, France. .,Université de Bordeaux, Pessac, 33615, France.
| |
Collapse
|
47
|
Boyé K, Billottet C, Pujol N, Alves ID, Bikfalvi A. Ligand activation induces different conformational changes in CXCR3 receptor isoforms as evidenced by plasmon waveguide resonance (PWR). Sci Rep 2017; 7:10703. [PMID: 28878333 PMCID: PMC5587768 DOI: 10.1038/s41598-017-11151-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
The chemokine receptor CXCR3 plays important roles in angiogenesis, inflammation and cancer. Activation studies and biological functions of CXCR3 are complex due to the presence of spliced isoforms. CXCR3-A is known as a pro-tumor receptor whereas CXCR3-B exhibits anti-tumor properties. Here, we focused on the conformational change of CXCR3-A and CXCR3-B after agonist or antagonist binding using Plasmon Waveguide Resonance (PWR). Agonist stimulation induced an anisotropic response with very distinct conformational changes for the two isoforms. The CXCR3 agonist bound CXCR3-A with higher affinity than CXCR3-B. Using various concentrations of SCH546738, a CXCR3 specific inhibitor, we demonstrated that low SCH546738 concentrations (≤1 nM) efficiently inhibited CXCR3-A but not CXCR3-B’s conformational change and activation. This was confirmed by both, biophysical and biological methods. Taken together, our study demonstrates differences in the behavior of CXCR3-A and CXCR3-B upon ligand activation and antagonist inhibition which may be of relevance for further studies aimed at specifically inhibiting the CXCR3A isoform.
Collapse
Affiliation(s)
- K Boyé
- INSERM, U1029, Pessac, France.,Université de Bordeaux, Pessac, France
| | - C Billottet
- INSERM, U1029, Pessac, France.,Université de Bordeaux, Pessac, France
| | - N Pujol
- INSERM, U1029, Pessac, France.,Université de Bordeaux, Pessac, France
| | - I D Alves
- Université de Bordeaux, Pessac, France. .,CBMN, UMR 5248 CNRS, Pessac, France.
| | - A Bikfalvi
- INSERM, U1029, Pessac, France. .,Université de Bordeaux, Pessac, France.
| |
Collapse
|
48
|
Lee JH, Kim B, Jin WJ, Kim HH, Ha H, Lee ZH. Pathogenic roles of CXCL10 signaling through CXCR3 and TLR4 in macrophages and T cells: relevance for arthritis. Arthritis Res Ther 2017; 19:163. [PMID: 28724396 PMCID: PMC5518115 DOI: 10.1186/s13075-017-1353-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 05/30/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by uncontrolled joint inflammation and destruction of bone and cartilage. We previously reported that C-X-C motif chemokine 10 (CXCL10; also called IP-10) has important roles in joint inflammation and bone destruction in arthritis. However, the specific mechanisms by which CXCL10 regulates the recruitment of inflammatory cells and the production of osteoclastogenic cytokines in RA progression are not fully understood. METHODS Bone marrow-derived macrophages and CD4+ T cells were isolated from wild-type (WT), Cxcl10 -/-, and Cxcr3 -/- mice. CXCL10-induced migration was performed using a Boyden chamber, and CXCL10-stimulated production of osteoclastogenic cytokines was measured by quantitative real-time PCR and ELISA. Collagen antibody-induced arthritis (CAIA) was induced by administration of collagen type II antibodies and lipopolysaccharide to the mice. Clinical scores were analyzed and hind paws were collected for high-resolution micro-CT, and histomorphometry. Serum was used to assess bone turnover and levels of osteoclastogenic cytokines. RESULTS CXCL10 increased the migration of inflammatory cells through C-X-C chemokine receptor 3 (CXCR3)-mediated, but not toll-like receptor 4 (TLR4)-mediated, ERK activation. Interestingly, both receptors CXCR3 and TLR4 were simultaneously required for CXCL10-stimulated production of osteoclastogenic cytokines in CD4+ T cells. Furthermore, calcineurin-dependent NFATc1 activation was essential for CXCL10-induced RANKL expression. In vivo, F4/80+ macrophages and CD4+ T cells robustly infiltrated into synovium of WT mice with CAIA but were significantly reduced in both Cxcl10 -/- and Cxcr3 -/- mice. Serum concentrations of osteoclastogenic cytokines and bone destruction were also reduced in the knockout mice, leading to attenuated progression of arthritis. CONCLUSION These findings highlight the importance of CXCL10 signaling in the pathogenesis of RA and provide previously unidentified details of the mechanisms by which CXCL10 promotes the development of arthritis.
Collapse
Affiliation(s)
- Jong-Ho Lee
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bongjun Kim
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, 28 Yeongon-dong, Jongno-gu, Seoul, 110-749, Republic of Korea
| | - Won Jong Jin
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, 28 Yeongon-dong, Jongno-gu, Seoul, 110-749, Republic of Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, 28 Yeongon-dong, Jongno-gu, Seoul, 110-749, Republic of Korea
| | - Hyunil Ha
- Clinical Research Division, Korean Medicine-Based Herbal Drug Development Group, Korea Institute of Oriental Medicine, 483 Expo-Ro, Yuseong-Gu, Daejeon, 305-811, Republic of Korea.
| | - Zang Hee Lee
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, 28 Yeongon-dong, Jongno-gu, Seoul, 110-749, Republic of Korea.
| |
Collapse
|
49
|
Collier JJ, Sparer TE, Karlstad MD, Burke SJ. Pancreatic islet inflammation: an emerging role for chemokines. J Mol Endocrinol 2017; 59:R33-R46. [PMID: 28420714 PMCID: PMC5505180 DOI: 10.1530/jme-17-0042] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
Both type 1 and type 2 diabetes exhibit features of inflammation associated with alterations in pancreatic islet function and mass. These immunological disruptions, if unresolved, contribute to the overall pathogenesis of disease onset. This review presents the emerging role of pancreatic islet chemokine production as a critical factor regulating immune cell entry into pancreatic tissue as well as an important facilitator of changes in tissue resident leukocyte activity. Signaling through two specific chemokine receptors (i.e., CXCR2 and CXCR3) is presented to illustrate key points regarding ligand-mediated regulation of innate and adaptive immune cell responses. The prospective roles of chemokine ligands and their corresponding chemokine receptors to influence the onset and progression of autoimmune- and obesity-associated forms of diabetes are discussed.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Chemokines/genetics
- Chemokines/immunology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/pathology
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Immunity, Innate
- Inflammation
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Leukocytes/immunology
- Leukocytes/pathology
- Obesity/genetics
- Obesity/immunology
- Obesity/pathology
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/immunology
- Signal Transduction
Collapse
Affiliation(s)
- J Jason Collier
- Laboratory of Islet Biology and InflammationPennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Department of SurgeryGraduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, USA
| | - Tim E Sparer
- Department of MicrobiologyUniversity of Tennessee, Knoxville, Knoxville, Tennessee, USA
| | - Michael D Karlstad
- Department of SurgeryGraduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, USA
| | - Susan J Burke
- Laboratory of ImmunogeneticsPennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
50
|
Tian L, Goldstein A, Wang H, Ching Lo H, Sun Kim I, Welte T, Sheng K, Dobrolecki LE, Zhang X, Putluri N, Phung TL, Mani SA, Stossi F, Sreekumar A, Mancini MA, Decker WK, Zong C, Lewis MT, Zhang XHF. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature 2017; 544:250-254. [PMID: 28371798 PMCID: PMC5788037 DOI: 10.1038/nature21724] [Citation(s) in RCA: 569] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/24/2017] [Indexed: 12/16/2022]
Abstract
Blockade of angiogenesis can retard tumour growth, but may also paradoxically increase metastasis1,2. Vessel normalization (VN) may resolve this paradox3. VN involves increased pericyte coverage, improved tumour vessel perfusion, reduced vascular permeability, and consequently mitigated hypoxia3. While these processes alter tumour progression, their regulation is poorly understood. Here we show that Type 1 T helper (Th1) cells play a crucial role in VN. Bioinformatic analyses revealed that gene expression features related to VN correlate with immunostimulatory pathways, especially T lymphocyte (TL) infiltration/activities. To delineate the causal relationship, we employed various mouse models with VN or TL deficiencies. While VN disruption reduced TL infiltration as expected4, reciprocal depletion or inactivation of CD4+-TLs decreased VN, indicating a mutually-regulatory loop. Additionally, CD4+-TL activation by immune checkpoint blockade (ICB) increased VN. IFNγ+ Th1 cells are the major population associated with VN. Patient-derived xenograft (PDX) tumours growing in immunodeficient animal hosts exhibited enhanced hypoxia compared to the original tumours in immunocompetent human hosts, which was reduced by adoptive Th1 transfer. Our findings elucidate an unexpected role of Th1 in vasculature and immune reprogramming. Th1 cells may be a marker and a determinant of both ICB and anti-angiogenesis efficacies.
Collapse
Affiliation(s)
- Lin Tian
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Verna &Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Amit Goldstein
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Hin Ching Lo
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Ik Sun Kim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Thomas Welte
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Kuanwei Sheng
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Lacey E Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Xiaomei Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Nagireddy Putluri
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Verna &Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Thuy L Phung
- Department of Pathology &Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, Texas 77030, USA
| | - Fabio Stossi
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Arun Sreekumar
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Verna &Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Michael A Mancini
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - William K Decker
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Department of Pathology &Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Chenghang Zong
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|