1
|
Ježek P. Physiological Fatty Acid-Stimulated Insulin Secretion and Redox Signaling Versus Lipotoxicity. Antioxid Redox Signal 2025. [PMID: 39834189 DOI: 10.1089/ars.2024.0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Significance: Type 2 diabetes as a world-wide epidemic is characterized by the insulin resistance concomitant to a gradual impairment of β-cell mass and function (prominently declining insulin secretion) with dysregulated fatty acids (FAs) and lipids, all involved in multiple pathological development. Recent Advances: Recently, redox signaling was recognized to be essential for insulin secretion stimulated with glucose (GSIS), branched-chain keto-acids, and FAs. FA-stimulated insulin secretion (FASIS) is a normal physiological event upon postprandial incoming chylomicrons. This contrasts with the frequent lipotoxicity observed in rodents. Critical Issues: Overfeeding causes FASIS to overlap with GSIS providing repeating hyperinsulinemia, initiates prediabetic states by lipotoxic effects and low-grade inflammation. In contrast the protective effects of lipid droplets in human β-cells counteract excessive lipids. Insulin by FASIS allows FATP1 recruitment into adipocyte plasma membranes when postprandial chylomicrons come late at already low glycemia. Future Directions: Impaired states of pancreatic β-cells and peripheral organs at prediabetes and type 2 diabetes should be revealed, including the inter-organ crosstalk by extracellular vesicles. Details of FA/lipid molecular physiology are yet to be uncovered, such as complex phenomena of FA uptake into cells, postabsorptive inactivity of G-protein-coupled receptor 40, carnitine carrier substrate specificity, the role of carnitine-O-acetyltransferase in β-cells, and lipid droplet interactions with mitochondria. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Memetimin H, Zhu B, Lee S, Katz WS, Kern PA, Finlin BS. Improved β-cell function leads to improved glucose tolerance in a transgenic mouse expressing lipoprotein lipase in adipocytes. Sci Rep 2022; 12:22291. [PMID: 36566329 PMCID: PMC9789969 DOI: 10.1038/s41598-022-26995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022] Open
Abstract
Lipoprotein lipase (LPL) hydrolyzes the triglyceride core of lipoproteins and also functions as a bridge, allowing for lipoprotein and cholesterol uptake. Transgenic mice expressing LPL in adipose tissue under the control of the adiponectin promoter (AdipoQ-LPL) have improved glucose metabolism when challenged with a high fat diet. Here, we studied the transcriptional response of the adipose tissue of these mice to acute high fat diet exposure. Gene set enrichment analysis (GSEA) provided mechanistic insight into the improved metabolic phenotype of AdipoQ-LPL mice. First, the cholesterol homeostasis pathway, which is controlled by the SREBP2 transcription factor, is repressed in gonadal adipose tissue AdipoQ-LPL mice. Furthermore, we identified SND1 as a link between SREBP2 and CCL19, an inflammatory chemokine that is reduced in AdipoQ-LPL mice. Second, GSEA identified a signature for pancreatic β-cells in adipose tissue of AdipoQ-LPL mice, an unexpected finding. We explored whether β-cell function is improved in AdipoQ-LPL mice and found that the first phase of insulin secretion is increased in mice challenged with high fat diet. In summary, we identify two different mechanisms for the improved metabolic phenotype of AdipoQ-LPL mice. One involves improved adipose tissue function and the other involves adipose tissue-pancreatic β-cell crosstalk.
Collapse
Affiliation(s)
- Hasiyet Memetimin
- grid.266539.d0000 0004 1936 8438Division of Endocrinology, and the Barnstable Brown Diabetes and Obesity Center, Department of Medicine, University of Kentucky, Lexington, KY USA
| | - Beibei Zhu
- grid.266539.d0000 0004 1936 8438Division of Endocrinology, and the Barnstable Brown Diabetes and Obesity Center, Department of Medicine, University of Kentucky, Lexington, KY USA
| | - Sangderk Lee
- grid.266539.d0000 0004 1936 8438Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY USA
| | - Wendy S. Katz
- grid.266539.d0000 0004 1936 8438Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY USA
| | - Philip A. Kern
- grid.266539.d0000 0004 1936 8438Division of Endocrinology, and the Barnstable Brown Diabetes and Obesity Center, Department of Medicine, University of Kentucky, Lexington, KY USA
| | - Brian S. Finlin
- grid.266539.d0000 0004 1936 8438Division of Endocrinology, and the Barnstable Brown Diabetes and Obesity Center, Department of Medicine, University of Kentucky, Lexington, KY USA
| |
Collapse
|
3
|
Ježek P, Holendová B, Jabůrek M, Dlasková A, Plecitá-Hlavatá L. Contribution of Mitochondria to Insulin Secretion by Various Secretagogues. Antioxid Redox Signal 2022; 36:920-952. [PMID: 34180254 PMCID: PMC9125579 DOI: 10.1089/ars.2021.0113] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Significance: Mitochondria determine glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells by elevating ATP synthesis. As the metabolic and redox hub, mitochondria provide numerous links to the plasma membrane channels, insulin granule vesicles (IGVs), cell redox, NADH, NADPH, and Ca2+ homeostasis, all affecting insulin secretion. Recent Advances: Mitochondrial redox signaling was implicated in several modes of insulin secretion (branched-chain ketoacid [BCKA]-, fatty acid [FA]-stimulated). Mitochondrial Ca2+ influx was found to enhance GSIS, reflecting cytosolic Ca2+ oscillations induced by action potential spikes (intermittent opening of voltage-dependent Ca2+ and K+ channels) or the superimposed Ca2+ release from the endoplasmic reticulum (ER). The ATPase inhibitory factor 1 (IF1) was reported to tune the glucose sensitivity range for GSIS. Mitochondrial protein kinase A was implicated in preventing the IF1-mediated inhibition of the ATP synthase. Critical Issues: It is unknown how the redox signal spreads up to the plasma membrane and what its targets are, what the differences in metabolic, redox, NADH/NADPH, and Ca2+ signaling, and homeostasis are between the first and second GSIS phase, and whether mitochondria can replace ER in the amplification of IGV exocytosis. Future Directions: Metabolomics studies performed to distinguish between the mitochondrial matrix and cytosolic metabolites will elucidate further details. Identifying the targets of cell signaling into mitochondria and of mitochondrial retrograde metabolic and redox signals to the cell will uncover further molecular mechanisms for insulin secretion stimulated by glucose, BCKAs, and FAs, and the amplification of secretion by glucagon-like peptide (GLP-1) and metabotropic receptors. They will identify the distinction between the hub β-cells and their followers in intact and diabetic states. Antioxid. Redox Signal. 36, 920-952.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Dlasková
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Genetic association of LPL rs326 with BMI among the Kuwaiti population. Cardiovasc Endocrinol Metab 2021; 10:215-221. [PMID: 34765892 PMCID: PMC8575433 DOI: 10.1097/xce.0000000000000254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022]
Abstract
Supplemental Digital Content is available in the text. Lipoprotein lipase is a key enzyme in lipid metabolism with reported variants associated with obesity, hypertension, type 2 diabetes, and coronary heart disease. This study was performed to investigate the association between common lipoprotein lipase single nucleotide polymorphisms and metabolic disorders in a sample of Kuwaiti cohort (n = 494). Five lipoprotein lipase variants (rs1801177, rs295, rs326, ss2137497749, and ss2137497750) across the lipoprotein lipase gene were genotyped by real-time PCR employing the TaqMan allele discrimination assay. Genotype, allelic frequencies, and Hardy-Weinberg Equilibrium were determined for each variant in the cohort followed by multivariate and logistic regression analysis. A novel finding was observed for the G allele of single nucleotide polymorphism rs326 which was associated with increased BMI after adjusting for age and sex (β = 1.04; 95% confidence interval = 0.15–1.94; P = 0.02). Moreover, a significant difference in the distribution of the minor C allele of rs295 among coronary heart disease subjects compared with noncoronary heart disease, however, this significance was diminished after controlling for age, sex, and BMI. This study demonstrated that lipoprotein lipase rs326 may be indicative for the increased risk of obesity and possibly rs295 for coronary heart disease. The findings are also in agreement with other reports suggesting that intronic variants are important genetic markers in association studies. The findings warrant further studies in a large cohort to confirm and validate the results presented.
Collapse
|
5
|
Ježek P, Holendová B, Jabůrek M, Tauber J, Dlasková A, Plecitá-Hlavatá L. The Pancreatic β-Cell: The Perfect Redox System. Antioxidants (Basel) 2021; 10:antiox10020197. [PMID: 33572903 PMCID: PMC7912581 DOI: 10.3390/antiox10020197] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β-cell insulin secretion, which responds to various secretagogues and hormonal regulations, is reviewed here, emphasizing the fundamental redox signaling by NADPH oxidase 4- (NOX4-) mediated H2O2 production for glucose-stimulated insulin secretion (GSIS). There is a logical summation that integrates both metabolic plus redox homeostasis because the ATP-sensitive K+ channel (KATP) can only be closed when both ATP and H2O2 are elevated. Otherwise ATP would block KATP, while H2O2 would activate any of the redox-sensitive nonspecific calcium channels (NSCCs), such as TRPM2. Notably, a 100%-closed KATP ensemble is insufficient to reach the -50 mV threshold plasma membrane depolarization required for the activation of voltage-dependent Ca2+ channels. Open synergic NSCCs or Cl- channels have to act simultaneously to reach this threshold. The resulting intermittent cytosolic Ca2+-increases lead to the pulsatile exocytosis of insulin granule vesicles (IGVs). The incretin (e.g., GLP-1) amplification of GSIS stems from receptor signaling leading to activating the phosphorylation of TRPM channels and effects on other channels to intensify integral Ca2+-influx (fortified by endoplasmic reticulum Ca2+). ATP plus H2O2 are also required for branched-chain ketoacids (BCKAs); and partly for fatty acids (FAs) to secrete insulin, while BCKA or FA β-oxidation provide redox signaling from mitochondria, which proceeds by H2O2 diffusion or hypothetical SH relay via peroxiredoxin "redox kiss" to target proteins.
Collapse
|
6
|
Lytrivi M, Castell AL, Poitout V, Cnop M. Recent Insights Into Mechanisms of β-Cell Lipo- and Glucolipotoxicity in Type 2 Diabetes. J Mol Biol 2019; 432:1514-1534. [PMID: 31628942 DOI: 10.1016/j.jmb.2019.09.016] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022]
Abstract
The deleterious effects of chronically elevated free fatty acid (FFA) levels on glucose homeostasis are referred to as lipotoxicity, and the concurrent exposure to high glucose may cause synergistic glucolipotoxicity. Lipo- and glucolipotoxicity have been studied for over 25 years. Here, we review the current evidence supporting the role of pancreatic β-cell lipo- and glucolipotoxicity in type 2 diabetes (T2D), including lipid-based interventions in humans, prospective epidemiological studies, and human genetic findings. In addition to total FFA quantity, the quality of FFAs (saturation and chain length) is a key determinant of lipotoxicity. We discuss in vitro and in vivo experimental models to investigate lipo- and glucolipotoxicity in β-cells and describe experimental pitfalls. Lipo- and glucolipotoxicity adversely affect many steps of the insulin production and secretion process. The molecular mechanisms underpinning lipo- and glucolipotoxic β-cell dysfunction and death comprise endoplasmic reticulum stress, oxidative stress and mitochondrial dysfunction, impaired autophagy, and inflammation. Crosstalk between these stress pathways exists at multiple levels and may aggravate β-cell lipo- and glucolipotoxicity. Lipo- and glucolipotoxicity are therapeutic targets as several drugs impact the underlying stress responses in β-cells, potentially contributing to their glucose-lowering effects in T2D.
Collapse
Affiliation(s)
- Maria Lytrivi
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium; Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne-Laure Castell
- CRCHUM, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Vincent Poitout
- CRCHUM, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC, Canada.
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium; Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
7
|
Affiliation(s)
- Vincent Poitout
- Centre de Recherche du Centre hospitalier de l'Université de Montréal, Montreal Diabetes Research Center, and Department of Medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
8
|
Fatty Acid-Stimulated Insulin Secretion vs. Lipotoxicity. Molecules 2018; 23:molecules23061483. [PMID: 29921789 PMCID: PMC6100479 DOI: 10.3390/molecules23061483] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Fatty acid (FA)-stimulated insulin secretion (FASIS) is reviewed here in contrast to type 2 diabetes etiology, resulting from FA overload, oxidative stress, intermediate hyperinsulinemia, and inflammation, all converging into insulin resistance. Focusing on pancreatic islet β-cells, we compare the physiological FA roles with the pathological ones. Considering FAs not as mere amplifiers of glucose-stimulated insulin secretion (GSIS), but as parallel insulin granule exocytosis inductors, partly independent of the KATP channel closure, we describe the FA initiating roles in the prediabetic state that is induced by retardations in the glycerol-3-phosphate (glucose)-promoted glycerol/FA cycle and by the impaired GPR40/FFA1 (free FA1) receptor pathway, specifically in its amplification by the redox-activated mitochondrial phospholipase, iPLA2γ. Also, excessive dietary FAs stimulate intestine enterocyte incretin secretion, further elevating GSIS, even at low glucose levels, thus contributing to diabetic hyperinsulinemia. With overnutrition and obesity, the FA overload causes impaired GSIS by metabolic dysbalance, paralleled by oxidative and metabolic stress, endoplasmic reticulum stress and numerous pro-apoptotic signaling, all leading to decreased β-cell survival. Lipotoxicity is exerted by saturated FAs, whereas ω-3 polyunsaturated FAs frequently exert antilipotoxic effects. FA-facilitated inflammation upon the recruitment of excess M1 macrophages into islets (over resolving M2 type), amplified by cytokine and chemokine secretion by β-cells, leads to an inevitable failure of pancreatic β-cells.
Collapse
|
9
|
Janssen AWF, Katiraei S, Bartosinska B, Eberhard D, Willems van Dijk K, Kersten S. Loss of angiopoietin-like 4 (ANGPTL4) in mice with diet-induced obesity uncouples visceral obesity from glucose intolerance partly via the gut microbiota. Diabetologia 2018; 61:1447-1458. [PMID: 29502266 PMCID: PMC6449003 DOI: 10.1007/s00125-018-4583-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Angiopoietin-like 4 (ANGPTL4) is an important regulator of triacylglycerol metabolism, carrying out this role by inhibiting the enzymes lipoprotein lipase and pancreatic lipase. ANGPTL4 is a potential target for ameliorating cardiometabolic diseases. Although ANGPTL4 has been implicated in obesity, the study of the direct role of ANGPTL4 in diet-induced obesity and related metabolic dysfunction is hampered by the massive acute-phase response and development of lethal chylous ascites and peritonitis in Angptl4-/- mice fed a standard high-fat diet. The aim of this study was to better characterise the role of ANGPTL4 in glucose homeostasis and metabolic dysfunction during obesity. METHODS We chronically fed wild-type (WT) and Angptl4-/- mice a diet rich in unsaturated fatty acids and cholesterol, combined with fructose in drinking water, and studied metabolic function. The role of the gut microbiota was investigated by orally administering a mixture of antibiotics (ampicillin, neomycin, metronidazole). Glucose homeostasis was assessed via i.p. glucose and insulin tolerance tests. RESULTS Mice lacking ANGPTL4 displayed an increase in body weight gain, visceral adipose tissue mass, visceral adipose tissue lipoprotein lipase activity and visceral adipose tissue inflammation compared with WT mice. However, they also unexpectedly had markedly improved glucose tolerance, which was accompanied by elevated insulin levels. Loss of ANGPTL4 did not affect glucose-stimulated insulin secretion in isolated pancreatic islets. Since the gut microbiota have been suggested to influence insulin secretion, and because ANGPTL4 has been proposed to link the gut microbiota to host metabolism, we hypothesised a potential role of the gut microbiota. Gut microbiota composition was significantly different between Angptl4-/- mice and WT mice. Interestingly, suppression of the gut microbiota using antibiotics largely abolished the differences in glucose tolerance and insulin levels between WT and Angptl4-/- mice. CONCLUSIONS/INTERPRETATION Despite increasing visceral fat mass, inactivation of ANGPTL4 improves glucose tolerance, at least partly via a gut microbiota-dependent mechanism.
Collapse
Affiliation(s)
- Aafke W F Janssen
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Saeed Katiraei
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Barbara Bartosinska
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| | - Daniel Eberhard
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| |
Collapse
|
10
|
Rojas J, Bermudez V, Palmar J, Martínez MS, Olivar LC, Nava M, Tomey D, Rojas M, Salazar J, Garicano C, Velasco M. Pancreatic Beta Cell Death: Novel Potential Mechanisms in Diabetes Therapy. J Diabetes Res 2018; 2018:9601801. [PMID: 29670917 PMCID: PMC5836465 DOI: 10.1155/2018/9601801] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/15/2017] [Accepted: 12/06/2017] [Indexed: 02/07/2023] Open
Abstract
PURPOSE OF REVIEW Describing the diverse molecular mechanisms (particularly immunological) involved in the death of the pancreatic beta cell in type 1 and type 2 diabetes mellitus. RECENT FINDINGS Beta cell death is the final event in a series of mechanisms that, up to date, have not been entirely clarified; it represents the pathophysiological mechanism in the natural history of diabetes mellitus. These mechanisms are not limited to an apoptotic process only, which is characteristic of the immune-mediated insulitis in type 1 diabetes mellitus. They also include the action of proinflammatory cytokines, the production of reactive oxygen species, DNA fragmentation (typical of necroptosis in type 1 diabetic patients), excessive production of islet amyloid polypeptide with the consequent endoplasmic reticulum stress, disruption in autophagy mechanisms, and protein complex formation, such as the inflammasome, capable of increasing oxidative stress produced by mitochondrial damage. SUMMARY Necroptosis, autophagy, and pyroptosis are molecular mechanisms that modulate the survival of the pancreatic beta cell, demonstrating the importance of the immune system in glucolipotoxicity processes and the potential role for immunometabolism as another component of what once known as the "ominous octet."
Collapse
Affiliation(s)
- Joselyn Rojas
- Pulmonary and Critical Care Medicine Department, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
| | - Valmore Bermudez
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
- Grupo de Investigación Altos Estudios de Frontera (ALEF), Universidad Simón Bolívar, Cúcuta, Colombia
| | - Jim Palmar
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
| | - María Sofía Martínez
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
| | - Luis Carlos Olivar
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
| | - Manuel Nava
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
| | - Daniel Tomey
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
| | - Milagros Rojas
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
| | - Juan Salazar
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
| | - Carlos Garicano
- Grupo de Investigación Altos Estudios de Frontera (ALEF), Universidad Simón Bolívar, Cúcuta, Colombia
| | - Manuel Velasco
- Clinical Pharmacology Unit. School of Medicine José María Vargas, Central University of Venezuela, Caracas, Venezuela
| |
Collapse
|
11
|
Morita SY. Metabolism and Modification of Apolipoprotein B-Containing Lipoproteins Involved in Dyslipidemia and Atherosclerosis. Biol Pharm Bull 2016; 39:1-24. [DOI: 10.1248/bpb.b15-00716] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shin-ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital
| |
Collapse
|
12
|
Cheon JM, Kim DI, Kim KS. Insulin sensitivity improvement of fermented Korean Red Ginseng (Panax ginseng) mediated by insulin resistance hallmarks in old-aged ob/ob mice. J Ginseng Res 2015; 39:331-7. [PMID: 26869825 PMCID: PMC4593781 DOI: 10.1016/j.jgr.2015.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The biological actions of various ginseng extracts have been studied for treating obesity and diabetes mellitus. However, few studies have evaluated the effects of fermented Korean Red Ginseng (Panax ginseng Meyer) on metabolic syndrome. The present study evaluated the antiobesity and antidiabetic effects of fermented red ginseng (FRG) on old-aged, obese, leptin-deficient (B6.V-Lepob, "ob/ob") mice. METHODS The animals were divided into three groups and given water containing 0%, 0.5%, and 1.0% FRG for 16 wk. The effect of FRG on ob/ob mice was determined by measuring changes in body weight, levels of blood glucose, serum contents of triglycerides, total cholesterol and free fatty acids, messenger RNA (mRNA) expressions of key factors associated with insulin action, such as insulin receptor (IR), lipoprotein lipase (LPL), glucose transporter 1 and 4 (GLUT1 and GLUT4), peroxisome proliferators-activated receptor gamma (PPAR-γ), and phosphoenolpyruvate carboxykinase (PEPCK) in the liver and in muscle, and histology of the liver and pancreas. RESULTS FRG-treated mice had decreased body weight and blood glucose levels compared with control ob/ob mice. However, anti-obesity effect of FRG was not evident rather than hypoglycemic effect in old aged ob/ob mice. The hyperlipidemia in control group was attenuated in FRG-treated ob/ob mice. The mRNA expressions of IR, LPL, GLUT1, GLUT4, PPAR-γ, and PEPCK in the liver and in muscle were increased in the FRG-treated groups compared with the control group. CONCLUSION These results suggest that FRG may play a vital role in improving insulin sensitivity relative to reducing body weight in old-aged ob/ob mice.
Collapse
Affiliation(s)
- Jeong-Mu Cheon
- Department of Veterinary Toxicology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Dae-Ik Kim
- Daegu Technopark Oriental Medicine Industry Support Center, Daegu, Korea
| | - Kil-Soo Kim
- Department of Veterinary Toxicology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
13
|
Puthanveetil P, Wan A, Rodrigues B. Lipoprotein lipase and angiopoietin-like 4 – Cardiomyocyte secretory proteins that regulate metabolism during diabetic heart disease. Crit Rev Clin Lab Sci 2015; 52:138-49. [DOI: 10.3109/10408363.2014.997931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Podgornik H, Sok M, Kern I, Marc J, Cerne D. Lipoprotein lipase in non-small cell lung cancer tissue is highly expressed in a subpopulation of tumor-associated macrophages. Pathol Res Pract 2013; 209:516-20. [PMID: 23880163 DOI: 10.1016/j.prp.2013.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/13/2012] [Accepted: 06/18/2013] [Indexed: 01/18/2023]
Abstract
High lipoprotein lipase (LPL) activity in non-small cell lung cancer (NSCLC) tissue strongly predicts shorter patient survival. We tested the hypothesis that in NSCLC tissue, macrophages are the major site of LPL expression. LPL expression in the entire NSCLC tissue and in the adjacent non-cancer lung tissue was compared to the expression of genes preferentially expressed in macrophages. LPL expression at the cellular level was analyzed by mRNA fluorescence in situ hybridization. In the whole cancer tissue (but not in the adjacent non-cancer tissue), expression of LPL correlated with expression of genes preferentially expressed in macrophages (MSR1, CD163, FOLR2), but not with expression of genes preferentially expressed in tumor cells. All cells in the cancer and adjacent non-cancer tissue exhibit low LPL expression. However, in cancer tissue only, there were individual highly LPL-expressing cells which were macrophages. These LPL-overexpressing cells were approximately 10 times less abundant than anti-CD163-stained, tumor-associated macrophages. To conclude, in NSCLC tissue, a subpopulation of tumor-associated macrophages highly expresses LPL. Because tumor-associated macrophages are pro-tumorigenic, these cells should be further characterized to better understand the underlying nature of the close relationship between high LPL activity in NSCLC tissue and shorter patient survival.
Collapse
Affiliation(s)
- Helena Podgornik
- Department of Haematology, University Medical Centre Ljubljana, Zaloska cesta 2, 1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
15
|
Paz-Filho G, Mastronardi C, Wong ML, Licinio J. Leptin therapy, insulin sensitivity, and glucose homeostasis. Indian J Endocrinol Metab 2012; 16:S549-S555. [PMID: 23565489 PMCID: PMC3602983 DOI: 10.4103/2230-8210.105571] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glucose homeostasis is closely regulated not only by insulin, but also by leptin. Both hormones act centrally, regulating food intake and adiposity in humans. Leptin has several effects on the glucose-insulin homeostasis, some of which are independent of body weight and adiposity. Those effects of leptin are determined centrally in the hypothalamus and peripherally in the pancreas, muscles and liver. Leptin has beneficial effects on the glucose-insulin metabolism, by decreasing glycemia, insulinemia and insulin resistance. The understanding of the effects of leptin on the glucose-insulin homeostasis will lead to the development of leptin-based therapies against diabetes and other insulin resistance syndromes. In these review, we summarize the interactions between leptin and insulin, and their effects on the glucose metabolism.
Collapse
Affiliation(s)
- Gilberto Paz-Filho
- Department of Translational Medicine, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Claudio Mastronardi
- Department of Translational Medicine, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ma-Li Wong
- Department of Translational Medicine, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Julio Licinio
- Department of Translational Medicine, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
16
|
Nyrén R, Chang CL, Lindström P, Barmina A, Vorrsjö E, Ali Y, Juntti-Berggren L, Bensadoun A, Young SG, Olivecrona T, Olivecrona G. Localization of lipoprotein lipase and GPIHBP1 in mouse pancreas: effects of diet and leptin deficiency. BMC PHYSIOLOGY 2012. [PMID: 23186339 PMCID: PMC3537605 DOI: 10.1186/1472-6793-12-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins and enables uptake of lipolysis products for energy production or storage in tissues. Our aim was to study the localization of LPL and its endothelial anchoring protein glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) in mouse pancreas, and effects of diet and leptin deficiency on their expression patterns. For this, immunofluorescence microscopy was used on pancreatic tissue from C57BL/6 mouse embryos (E18), adult mice on normal or high-fat diet, and adult ob/ob-mice treated or not with leptin. The distribution of LPL and GPIHBP1 was compared to insulin, glucagon and CD31. Heparin injections were used to discriminate between intracellular and extracellular LPL. RESULTS In the exocrine pancreas LPL was found in capillaries, and was mostly co-localized with GPIHBP1. LPL was releasable by heparin, indicating localization on cell surfaces. Within the islets, most of the LPL was associated with beta cells and could not be released by heparin, indicating that the enzyme remained mostly within cells. Staining for LPL was found also in the glucagon-producing alpha cells, both in embryos (E18) and in adult mice. Only small amounts of LPL were found together with GPIHBP1 within the capillaries of islets. Neither a high fat diet nor fasting/re-feeding markedly altered the distribution pattern of LPL or GPIHBP1 in mouse pancreas. Islets from ob/ob mice appeared completely deficient of LPL in the beta cells, while LPL-staining was normal in alpha cells and in the exocrine pancreas. Leptin treatment of ob/ob mice for 12 days reversed this pattern, so that most of the islets expressed LPL in beta cells. CONCLUSIONS We conclude that both LPL and GPIHBP1 are present in mouse pancreas, and that LPL expression in beta cells is dependent on leptin.
Collapse
Affiliation(s)
- Rakel Nyrén
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, Umeå, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kuemmerle NB, Rysman E, Lombardo PS, Flanagan AJ, Lipe BC, Wells WA, Pettus JR, Froehlich HM, Memoli VA, Morganelli PM, Swinnen JV, Timmerman LA, Chaychi L, Fricano CJ, Eisenberg BL, Coleman WB, Kinlaw WB. Lipoprotein lipase links dietary fat to solid tumor cell proliferation. Mol Cancer Ther 2011; 10:427-36. [PMID: 21282354 DOI: 10.1158/1535-7163.mct-10-0802] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Many types of cancer cells require a supply of fatty acids (FA) for growth and survival, and interrupting de novo FA synthesis in model systems causes potent anticancer effects. We hypothesized that, in addition to synthesis, cancer cells may obtain preformed, diet-derived FA by uptake from the bloodstream. This would require hydrolytic release of FA from triglyceride in circulating lipoprotein particles by the secreted enzyme lipoprotein lipase (LPL), and the expression of CD36, the channel for cellular FA uptake. We find that selected breast cancer and sarcoma cells express and secrete active LPL, and all express CD36. We further show that LPL, in the presence of triglyceride-rich lipoproteins, accelerates the growth of these cells. Providing LPL to prostate cancer cells, which express low levels of the enzyme, did not augment growth, but did prevent the cytotoxic effect of FA synthesis inhibition. Moreover, LPL knockdown inhibited HeLa cell growth. In contrast to the cell lines, immunohistochemical analysis confirmed the presence of LPL and CD36 in the majority of breast, liposarcoma, and prostate tumor tissues examined (n = 181). These findings suggest that, in addition to de novo lipogenesis, cancer cells can use LPL and CD36 to acquire FA from the circulation by lipolysis, and this can fuel their growth. Interfering with dietary fat intake, lipolysis, and/or FA uptake will be necessary to target the requirement of cancer cells for FA.
Collapse
Affiliation(s)
- Nancy B Kuemmerle
- Section of Hematology and Oncology, Department of Medicine, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
The common biological basis for common complex diseases: evidence from lipoprotein lipase gene. Eur J Hum Genet 2010; 18:3-7. [PMID: 19639021 DOI: 10.1038/ejhg.2009.134] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The lipoprotein lipase (LPL) gene encodes a rate-limiting enzyme protein that has a key role in the hydrolysis of triglycerides. Hypertriglyceridemia, one widely prevalent syndrome of LPL deficiency and dysfunction, may be a risk factor in the development of dyslipidemia, type II diabetes (T2D), essential hypertension (EH), coronary heart disease (CHD) and Alzheimer's disease (AD). Findings from earlier studies indicate that LPL may have a role in the pathology of these diseases and therefore is a common or shared biological basis for these common complex diseases. To examine this hypothesis, we reviewed articles on the molecular structure, expression and function of the LPL gene, and its potential role in the etiology of diseases. Evidence from these studies indicate that LPL dysfunction is involved in dyslipidemia, T2D, EH, CHD and AD; and support the hypothesis that there is a common or shared biological basis for these common complex diseases.
Collapse
|
19
|
Unger RH, Clark GO, Scherer PE, Orci L. Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1801:209-14. [PMID: 19948243 DOI: 10.1016/j.bbalip.2009.10.006] [Citation(s) in RCA: 407] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/09/2009] [Accepted: 10/13/2009] [Indexed: 11/30/2022]
Abstract
In the 20th century industrialized nations have become afflicted with an unprecedented pandemic of increased adiposity. In the United States, the epicenter of the epidemic, over 2/3 of the population, is overweight and 1 of every 6 Americans carries the diagnosis of metabolic syndrome. Although genes determine susceptibility to environmental factors, the epidemic is clearly due to increased consumption of calorie-dense, highly lipogenic foods, coupled with a marked decrease in physical exertion resulting from modern technologies. If this lifestyle continues, morbid consequences are virtually inevitable. They include type II diabetes and a cluster of disorders known as "the metabolic syndrome" usually appearing in middle age. The morbid consequences of the chronic caloric surplus are buffered before middle age by the partitioning of these calories as fat in the adipocyte compartment which is specifically designed to store triglycerides. Leptin has been proposed as the major hormonal regulator of the partitioning of surplus calories. However, multiple factors can determine the storage capacity of the fat tissue and when it is exceeded ectopic lipid deposition begins. The organs affected in metabolic syndrome include skeletal muscle, liver, heart and pancreas, which are now known to contain abnormal levels of triglycerides. While neutral fat is probably harmless, it is an index of ectopic lipid overload. Fatty acid derivatives can interfere with the function of the cell and ultimately lead to its demise through lipoapoptosis, the consequences of which are gradual organ failure.
Collapse
Affiliation(s)
- Roger H Unger
- Touchstone Center for Diabetes Research, Department of Internal Medicine at the University of Texas Southwestern Medical Center, Dallas, TX 75390-8854, USA.
| | | | | | | |
Collapse
|
20
|
Poitout V, Amyot J, Semache M, Zarrouki B, Hagman D, Fontés G. Glucolipotoxicity of the pancreatic beta cell. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1801:289-98. [PMID: 19715772 DOI: 10.1016/j.bbalip.2009.08.006] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/13/2009] [Accepted: 08/13/2009] [Indexed: 02/07/2023]
Abstract
The concept of glucolipotoxicity refers to the combined, deleterious effects of elevated glucose and fatty acid levels on pancreatic beta-cell function and survival. Significant progress has been made in recent years towards a better understanding of the cellular and molecular basis of glucolipotoxicity in the beta cell. The permissive effect of elevated glucose on the detrimental actions of fatty acids stems from the influence of glucose on intracellular fatty acid metabolism, promoting the synthesis of cellular lipids. The combination of excessive levels of fatty acids and glucose therefore leads to decreased insulin secretion, impaired insulin gene expression, and beta-cell death by apoptosis, all of which probably have distinct underlying mechanisms. Recent studies from our laboratory have identified several pathways implicated in fatty acid inhibition of insulin gene expression, including the extracellular-regulated kinase (ERK1/2) pathway, the metabolic sensor Per-Arnt-Sim kinase (PASK), and the ATF6 branch of the unfolded protein response. We have also confirmed in vivo in rats that the decrease in insulin gene expression is an early defect which precedes any detectable abnormality in insulin secretion. While the role of glucolipotoxicity in humans is still debated, the inhibitory effects of chronically elevated fatty acid levels has been clearly demonstrated in several studies, at least in individuals genetically predisposed to developing type 2 diabetes. It is therefore likely that glucolipotoxicity contributes to beta-cell failure in type 2 diabetes as well as to the decline in beta-cell function observed after the onset of the disease.
Collapse
Affiliation(s)
- Vincent Poitout
- Montreal Diabetes Research Center, CRCHUM, Department of Medicine, University of Montreal, Montreal, QC, Canada.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Lipoprotein lipase (LPL) is a multifunctional enzyme produced by many tissues, including adipose tissue, cardiac and skeletal muscle, islets, and macrophages. LPL is the rate-limiting enzyme for the hydrolysis of the triglyceride (TG) core of circulating TG-rich lipoproteins, chylomicrons, and very low-density lipoproteins (VLDL). LPL-catalyzed reaction products, fatty acids, and monoacylglycerol are in part taken up by the tissues locally and processed differentially; e.g., they are stored as neutral lipids in adipose tissue, oxidized, or stored in skeletal and cardiac muscle or as cholesteryl ester and TG in macrophages. LPL is regulated at transcriptional, posttranscriptional, and posttranslational levels in a tissue-specific manner. Nutrient states and hormonal levels all have divergent effects on the regulation of LPL, and a variety of proteins that interact with LPL to regulate its tissue-specific activity have also been identified. To examine this divergent regulation further, transgenic and knockout murine models of tissue-specific LPL expression have been developed. Mice with overexpression of LPL in skeletal muscle accumulate TG in muscle, develop insulin resistance, are protected from excessive weight gain, and increase their metabolic rate in the cold. Mice with LPL deletion in skeletal muscle have reduced TG accumulation and increased insulin action on glucose transport in muscle. Ultimately, this leads to increased lipid partitioning to other tissues, insulin resistance, and obesity. Mice with LPL deletion in the heart develop hypertriglyceridemia and cardiac dysfunction. The fact that the heart depends increasingly on glucose implies that free fatty acids are not a sufficient fuel for optimal cardiac function. Overall, LPL is a fascinating enzyme that contributes in a pronounced way to normal lipoprotein metabolism, tissue-specific substrate delivery and utilization, and the many aspects of obesity and other metabolic disorders that relate to energy balance, insulin action, and body weight regulation.
Collapse
Affiliation(s)
- Hong Wang
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | |
Collapse
|
22
|
Abstract
The glucolipotoxicity hypothesis postulates that chronically elevated levels of glucose and fatty acids adversely affect pancreatic beta-cell function and thereby contribute to the deterioration of insulin secretion in Type 2 diabetes. Whereas ample experimental evidence in in vitro systems supports the glucolipotoxicity hypothesis, the contribution of this phenomenon to beta-cell dysfunction in human Type 2 diabetes has been questioned. The reasons for this controversy include: differences between in vitro systems and in vivo situations; time-dependent effects of fatty acids on insulin secretion (acutely stimulatory and chronically inhibitory); and the ill-defined use of the suffix '-toxicity'. In vitro, prolonged exposure of insulin-secreting cells or isolated islets to concomitantly elevated levels of fatty acids and glucose impairs insulin secretion, inhibits insulin gene expression and, under certain circumstances, induces beta-cell death by apoptosis. Recent studies in our laboratory have shown that cyclical and alternate infusions of glucose and Intralipid in rats impair insulin gene expression, providing evidence that inhibition of the insulin gene under glucolipotoxic conditions is an early defect that might indeed contribute to beta-cell failure in Type 2 diabetes, although this hypothesis remains to be tested in humans.
Collapse
|
23
|
Abstract
Glucotoxicity, lipotoxicity, and glucolipotoxicity are secondary phenomena that are proposed to play a role in all forms of type 2 diabetes. The underlying concept is that once the primary pathogenesis of diabetes is established, probably involving both genetic and environmental forces, hyperglycemia and very commonly hyperlipidemia ensue and thereafter exert additional damaging or toxic effects on the beta-cell. In addition to their contribution to the deterioration of beta-cell function after the onset of the disease, elevations of plasma fatty acid levels that often accompany insulin resistance may, as glucose levels begin to rise outside of the normal range, also play a pathogenic role in the early stages of the disease. Because hyperglycemia is a prerequisite for lipotoxicity to occur, the term glucolipotoxicity, rather than lipotoxicity, is more appropriate to describe deleterious effects of lipids on beta-cell function. In vitro and in vivo evidence supporting the concept of glucotoxicity is presented first, as well as a description of the underlying mechanisms with an emphasis on the role of oxidative stress. Second, we discuss the functional manifestations of glucolipotoxicity on insulin secretion, insulin gene expression, and beta-cell death, and the role of glucose in the mechanisms of glucolipotoxicity. Finally, we attempt to define the role of these phenomena in the natural history of beta-cell compensation, decompensation, and failure during the course of type 2 diabetes.
Collapse
Affiliation(s)
- Vincent Poitout
- Montreal Diabetes Research Center, CR-CHUM, Technopole Angus, 2901 Rachel Est, Montreal, Quebec, Canada H1W 4A4.
| | | |
Collapse
|
24
|
Hagman DK, Latour MG, Chakrabarti SK, Fontes G, Amyot J, Tremblay C, Semache M, Lausier JA, Roskens V, Mirmira RG, Jetton TL, Poitout V. Cyclical and alternating infusions of glucose and intralipid in rats inhibit insulin gene expression and Pdx-1 binding in islets. Diabetes 2008; 57:424-31. [PMID: 17991758 PMCID: PMC2979006 DOI: 10.2337/db07-1285] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Prolonged exposure of isolated islets of Langerhans to elevated levels of fatty acids, in the presence of high glucose, impairs insulin gene expression via a transcriptional mechanism involving nuclear exclusion of pancreas-duodenum homeobox-1 (Pdx-1) and loss of MafA expression. Whether such a phenomenon also occurs in vivo is unknown. Our objective was therefore to ascertain whether chronic nutrient oversupply inhibits insulin gene expression in vivo. RESEARCH DESIGN AND METHODS Wistar rats received alternating 4-h infusions of glucose and Intralipid for a total of 72 h. Control groups received alternating infusions of glucose and saline, saline and Intralipid, or saline only. Insulin and C-peptide secretion were measured under hyperglycemic clamps. Insulin secretion and gene expression were assessed in isolated islets, and beta-cell mass was quantified by morphometric analysis. RESULTS Neither C-peptide secretion nor insulin sensitivity was different among infusion regimens. Insulin content and insulin mRNA levels were lower in islets isolated from rats infused with glucose plus Intralipid. This was associated with reduced Pdx-1 binding to the endogenous insulin promoter, and an increased proportion of Pdx-1 localized in the cytoplasm versus the nucleus. In contrast, MafA mRNA and protein levels and beta-cell mass and proliferation were unchanged. CONCLUSIONS Cyclical and alternating infusions of glucose and Intralipid in normal rats inhibit insulin gene expression without affecting insulin secretion or beta-cell mass. We conclude that fatty acid inhibition of insulin gene expression, in the presence of high glucose, is an early functional defect that may contribute to beta-cell failure in type 2 diabetes.
Collapse
Affiliation(s)
- Derek K. Hagman
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Quebec, Canada
| | - Martin G. Latour
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Quebec, Canada
| | - Swarup K. Chakrabarti
- Department of Medicine and the Diabetes Center, University of Virginia, Charlottesville, Virginia
| | - Ghislaine Fontes
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Quebec, Canada
| | - Julie Amyot
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Quebec, Canada
| | - Caroline Tremblay
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Quebec, Canada
| | - Meriem Semache
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Quebec, Canada
| | - James A. Lausier
- Division of Endocrinology, Diabetes and Metabolism, University of Vermont College of Medicine, Burlington, Vermont
| | - Violet Roskens
- Division of Endocrinology, Diabetes and Metabolism, University of Vermont College of Medicine, Burlington, Vermont
| | - Raghavendra G. Mirmira
- Department of Medicine and the Diabetes Center, University of Virginia, Charlottesville, Virginia
| | - Thomas L. Jetton
- Division of Endocrinology, Diabetes and Metabolism, University of Vermont College of Medicine, Burlington, Vermont
| | - Vincent Poitout
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Quebec, Canada
- Departments of Medicine, Nutrition, and Biochemistry, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
25
|
Lee Y, Ravazzola M, Park BH, Bashmakov YK, Orci L, Unger RH. Metabolic mechanisms of failure of intraportally transplanted pancreatic beta-cells in rats: role of lipotoxicity and prevention by leptin. Diabetes 2007; 56:2295-301. [PMID: 17563069 DOI: 10.2337/db07-0460] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The objective of this study was to determine whether the late failure of beta-cells in islets transplanted via the portal vein is caused by excess insulin-stimulated lipogenesis and lipotoxicity and, if so, whether the damage can be prevented by reducing lipogenesis surrounding the islets. Based on the premise that high portal vein levels of nutrients and incretins would stimulate hyperinsulinemia, thereby inducing intense lipogenesis in nearby hepatocytes, normal islets were transplanted into livers of syngeneic streptozotocin-induced diabetic recipients. Hydrolysis of the surrounding fat would flood the islet grafts with fatty acids that could damage and destroy the beta-cells. Reducing lipogenesis by leptin or caloric restriction should prevent or reduce the destruction. After a rise after transplantation, insulin levels gradually declined and hyperglycemia increased. Four weeks after transplantation mRNA of the lipogenic transcription factor, sterol regulatory element-binding protein-1c (SREBP-1c) and its lipogenic target enzymes were elevated in livers of these recipients, as was triacylglycerol content. Positive oil red O staining for lipids and immunostaining for SREBP-1 were observed in hepatocytes surrounding islets with damaged beta-cells. Leptin-induced lipopenia prevented and caloric restriction reduced steatosis, hyperglycemia, and apoptotic beta-cell destruction. Excessive SREBP-1c-mediated lipogenesis, induced in hepatocytes by insulin hypersecretion, is followed by beta-cell destruction in the grafts and reappearance of diabetes. Graft failure is prevented by blocking lipogenesis. The results suggest that strict antilipogenic intervention might improve outcomes after human islet transplantation.
Collapse
Affiliation(s)
- Young Lee
- Gifford Laboratories of the Touchstone Center for Diabetes Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8854, USA
| | | | | | | | | | | |
Collapse
|
26
|
Flowers JB, Rabaglia ME, Schueler KL, Flowers MT, Lan H, Keller MP, Ntambi JM, Attie AD. Loss of stearoyl-CoA desaturase-1 improves insulin sensitivity in lean mice but worsens diabetes in leptin-deficient obese mice. Diabetes 2007; 56:1228-39. [PMID: 17369521 DOI: 10.2337/db06-1142] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The lipogenic gene stearoyl-CoA desaturase (SCD)1 appears to be a promising new target for obesity-related diabetes, as mice deficient in this enzyme are resistant to diet- and leptin deficiency-induced obesity. The BTBR mouse strain replicates many features of insulin resistance found in humans with excess visceral adiposity. Using the hyperinsulinemic-euglycemic clamp technique, we determined that insulin sensitivity was improved in heart, soleus muscle, adipose tissue, and liver of BTBR SCD1-deficient mice. We next determined whether SCD1 deficiency could prevent diabetes in leptin-deficient BTBR mice. Loss of SCD1 in leptin(ob/ob) mice unexpectedly accelerated the progression to severe diabetes; 6-week fasting glucose increased approximately 70%. In response to a glucose challenge, Scd1(-/-) leptin(ob/ob) mice had insufficient insulin secretion, resulting in glucose intolerance. A morphologically distinct class of islets isolated from the Scd1(-/-) leptin(ob/ob) mice had reduced insulin content and increased triglycerides, free fatty acids, esterified cholesterol, and free cholesterol and also a much higher content of saturated fatty acids. We believe the accumulation of lipid is due to an upregulation of lipoprotein lipase (20-fold) and Cd36 (167-fold) and downregulation of lipid oxidation genes in this class of islets. Therefore, although loss of Scd1 has beneficial effects on adiposity, this benefit may come at the expense of beta-cells, resulting in an increased risk of diabetes.
Collapse
Affiliation(s)
- Jessica B Flowers
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 537606, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Nolan CJ, Madiraju MSR, Delghingaro-Augusto V, Peyot ML, Prentki M. Fatty acid signaling in the beta-cell and insulin secretion. Diabetes 2006; 55 Suppl 2:S16-23. [PMID: 17130640 DOI: 10.2337/db06-s003] [Citation(s) in RCA: 303] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fatty acids (FAs) and other lipid molecules are important for many cellular functions, including vesicle exocytosis. For the pancreatic beta-cell, while the presence of some FAs is essential for glucose-stimulated insulin secretion, FAs have enormous capacity to amplify glucose-stimulated insulin secretion, which is particularly operative in situations of beta-cell compensation for insulin resistance. In this review, we propose that FAs do this via three interdependent processes, which we have assigned to a "trident model" of beta-cell lipid signaling. The first two arms of the model implicate intracellular metabolism of FAs, whereas the third is related to membrane free fatty acid receptor (FFAR) activation. The first arm involves the AMP-activated protein kinase/malonyl-CoA/long-chain acyl-CoA (LC-CoA) signaling network in which glucose, together with other anaplerotic fuels, increases cytosolic malonyl-CoA, which inhibits FA partitioning into oxidation, thus increasing the availability of LC-CoA for signaling purposes. The second involves glucose-responsive triglyceride (TG)/free fatty acid (FFA) cycling. In this pathway, glucose promotes LC-CoA esterification to complex lipids such as TG and diacylglycerol, concomitant with glucose stimulation of lipolysis of the esterification products, with renewal of the intracellular FFA pool for reactivation to LC-CoA. The third arm involves FFA stimulation of the G-protein-coupled receptor GPR40/FFAR1, which results in enhancement of glucose-stimulated accumulation of cytosolic Ca2+ and consequently insulin secretion. It is possible that FFA released by the lipolysis arm of TG/FFA cycling is partly "secreted" and, via an autocrine/paracrine mechanism, is additive to exogenous FFAs in activating the FFAR1 pathway. Glucose-stimulated release of arachidonic acid from phospholipids by calcium-independent phospholipase A2 and/or from TG/FFA cycling may also be involved. Improved knowledge of lipid signaling in the beta-cell will allow a better understanding of the mechanisms of beta-cell compensation and failure in diabetes.
Collapse
|
28
|
Newsholme P, Keane D, Welters HJ, Morgan NG. Life and death decisions of the pancreatic β-cell: the role of fatty acids. Clin Sci (Lond) 2006; 112:27-42. [PMID: 17132138 DOI: 10.1042/cs20060115] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Both stimulatory and detrimental effects of NEFAs (non-esterified fatty acids) on pancreatic β-cells have been recognized. Acute exposure of the pancreatic β-cell to high glucose concentrations and/or saturated NEFAs results in a substantial increase in insulin release, whereas chronic exposure results in desensitization and suppression of secretion, followed by induction of apoptosis. Some unsaturated NEFAs also promote insulin release acutely, but they are less toxic to β-cells during chronic exposure and can even exert positive protective effects. Therefore changes in the levels of NEFAs are likely to be important for the regulation of β-cell function and viability under physiological conditions. In addition, the switching between endogenous fatty acid synthesis or oxidation in the β-cell, together with alterations in neutral lipid accumulation, may have critical implications for β-cell function and integrity. Long-chain acyl-CoA (formed from either endogenously synthesized or exogenous fatty acids) controls several aspects of β-cell function, including activation of specific isoenzymes of PKC (protein kinase C), modulation of ion channels, protein acylation, ceramide formation and/or NO-mediated apoptosis, and transcription factor activity. In this review, we describe the effects of exogenous and endogenous fatty acids on β-cell metabolism and gene and protein expression, and have explored the outcomes with respect to insulin secretion and β-cell integrity.
Collapse
Affiliation(s)
- Philip Newsholme
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland.
| | | | | | | |
Collapse
|
29
|
Lindegaard MLS, Damm P, Mathiesen ER, Nielsen LB. Placental triglyceride accumulation in maternal type 1 diabetes is associated with increased lipase gene expression. J Lipid Res 2006; 47:2581-8. [PMID: 16940551 DOI: 10.1194/jlr.m600236-jlr200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Maternal diabetes can cause fetal macrosomia and increased risk of obesity, diabetes, and cardiovascular disease in adulthood of the offspring. Although increased transplacental lipid transport could be involved, the impact of maternal type 1 diabetes on molecular mechanisms for lipid transport in placenta is largely unknown. To examine whether maternal type 1 diabetes affects placental lipid metabolism, we measured lipids and mRNA expression of lipase-encoding genes in placentas from women with type 1 diabetes (n = 27) and a control group (n = 21). The placental triglyceride (TG) concentration and mRNA expression of endothelial lipase (EL) and hormone-sensitive lipase (HSL) were increased in placentas from women with diabetes. The differences were more pronounced in women with diabetes and suboptimal metabolic control than in women with diabetes and good metabolic control. Placental mRNA expression of lipoprotein lipase and lysosomal lipase were similar in women with diabetes and the control group. Immunohistochemistry showed EL protein in syncytiotrophoblasts facing the maternal blood and endothelial cells facing the fetal blood in placentas from both normal women and women with diabetes. These results suggest that maternal type 1 diabetes is associated with TG accumulation and increased EL and HSL gene expression in placenta and that optimal metabolic control reduces these effects.
Collapse
Affiliation(s)
- Marie L S Lindegaard
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
30
|
Haber EP, Procópio J, Carvalho CRO, Carpinelli AR, Newsholme P, Curi R. New Insights into Fatty Acid Modulation of Pancreatic β‐Cell Function. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 248:1-41. [PMID: 16487789 DOI: 10.1016/s0074-7696(06)48001-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Insulin resistance states as found in type 2 diabetes and obesity are frequently associated with hyperlipidemia. Both stimulatory and detrimental effects of free fatty acids (FFA) on pancreatic beta cells have long been recognized. Acute exposure of the pancreatic beta cell to both high glucose concentrations and saturated FFA results in a substantial increase of insulin release, whereas a chronic exposure results in desensitization and suppression of secretion. Reduction of plasma FFA levels in fasted rats or humans severely impairs glucose-induced insulin release but palmitate can augment insulin release in the presence of nonstimulatory concentrations of glucose. These results imply that changes in physiological plasma levels of FFA are important for regulation of beta-cell function. Although it is widely accepted that fatty acid (FA) metabolism (notably FA synthesis and/or formation of LC-acyl-CoA) is necessary for stimulation of insulin secretion, the key regulatory molecular mechanisms controlling the interplay between glucose and fatty acid metabolism and thus insulin secretion are not well understood but are now described in detail in this review. Indeed the correct control of switching between FA synthesis or oxidation may have critical implications for beta-cell function and integrity both in vivo and in vitro. LC-acyl-CoA (formed from either endogenously synthesized or exogenous FA) controls several aspects of beta-cell function including activation of certain types of PKC, modulation of ion channels, protein acylation, ceramide- and/or NO-mediated apoptosis, and binding to and activating nuclear transcriptional factors. The present review also describes the possible effects of FAs on insulin signaling. We have previously reported that acute exposure of islets to palmitate up-regulates some key components of the intracellular insulin signaling pathway in pancreatic islets. Another aspect considered in this review is the potential source of fatty acids for pancreatic islets in addition to supply in the blood. Lipids can be transferred from leukocytes (macrophages) to pancreatic islets in coculture. This latter process may provide an additional source of FAs that may play a significant role in the regulation of insulin secretion.
Collapse
Affiliation(s)
- Esther P Haber
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
31
|
Hu L, Deeney JT, Nolan CJ, Peyot ML, Ao A, Richard AM, Luc E, Faergeman NJ, Knudsen J, Guo W, Sorhede-Winzell M, Prentki M, Corkey BE. Regulation of lipolytic activity by long-chain acyl-coenzyme A in islets and adipocytes. Am J Physiol Endocrinol Metab 2005; 289:E1085-92. [PMID: 16091387 DOI: 10.1152/ajpendo.00210.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular lipolysis is a major pathway of lipid metabolism that has roles, not only in the provision of free fatty acids as energy substrate, but also in intracellular signal transduction. The latter is likely to be particularly important in the regulation of insulin secretion from islet beta-cells. The mechanisms by which lipolysis is regulated in different tissues is, therefore, of considerable interest. Here, the effects of long-chain acyl-CoA esters (LC-CoA) on lipase activity in islets and adipocytes were compared. Palmitoyl-CoA (Pal-CoA, 1-10 microM) stimulated lipase activity in islets from both normal and hormone-sensitive lipase (HSL)-null mice and in phosphatase-treated islets, indicating that the stimulatory effect was neither on HSL nor phosphorylation dependent. In contrast, we reproduced the previously published observations showing inhibition of HSL activity by LC-CoA in adipocytes. The inhibitory effect of LC-CoA on adipocyte HSL was dependent on phosphorylation and enhanced by acyl-CoA-binding protein (ACBP). In contrast, the stimulatory effect on islet lipase activity was blocked by ACBP, presumably due to binding and sequestration of LC-CoA. These data suggest the following intertissue relationship between islets and adipocytes with respect to fatty acid metabolism, LC-CoA signaling, and lipolysis. Elevated LC-CoA in islets stimulates lipolysis to generate a signal to increase insulin secretion, whereas elevated LC-CoA in adipocytes inhibits lipolysis. Together, these opposite actions of LC-CoA lower circulating fat by inhibiting its release from adipocytes and promoting fat storage via insulin action.
Collapse
Affiliation(s)
- Liping Hu
- Obesity Research Center, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hong J, Abudula R, Chen J, Jeppesen PB, Dyrskog SEU, Xiao J, Colombo M, Hermansen K. The short-term effect of fatty acids on glucagon secretion is influenced by their chain length, spatial configuration, and degree of unsaturation: studies in vitro. Metabolism 2005; 54:1329-36. [PMID: 16154432 DOI: 10.1016/j.metabol.2005.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Accepted: 04/11/2005] [Indexed: 11/16/2022]
Abstract
The influence of fatty acids on beta cell function has been well established whereas little is known about the role of fatty acids on alpha cell function. The aim of our study was to investigate the short-term effects of chain length, spatial configuration, and degree of unsaturation of fatty acids on glucagon secretion from isolated mouse islets and alpha tumor cell 1 clone 6 cells (alpha TC1-6 cells). Glucagon release was measured with different saturated and unsaturated fatty acids as well as cis and trans isomers of fatty acids at low and high glucose. Palmitate (0.1-0.5 mmol/L) immediately stimulated glucagon release in a dose-dependent manner from both isolated islets and alpha TC 1-6 cells. The longer chain length of saturated fatty acids, the higher glucagon responses were obtained. The average fold increase in glucagon to saturated fatty acids (0.3 mmol/L) compared to control was octanoate 1.5, laurate 2.0, myristate 2.9, palmitate 5.4, and stearate 6.2, respectively. Saturated fatty acids were more effective than unsaturated fatty acids in stimulating glucagon secretion. At an equimolar concentration, trans-fatty acids were more potent than their cis isomers. Fatty acids immediately stimulate glucagon secretion from isolated mouse islets pancreatic alpha cells. The chain length, spatial configuration, and degree of unsaturation of fatty acids influence the glucagonotropic effect.
Collapse
Affiliation(s)
- Jing Hong
- Department of Endocrinology and Metabolism, Aarhus Sygehus THG, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Pappan KL, Pan Z, Kwon G, Marshall CA, Coleman T, Goldberg IJ, McDaniel ML, Semenkovich CF. Pancreatic β-Cell Lipoprotein Lipase Independently Regulates Islet Glucose Metabolism and Normal Insulin Secretion. J Biol Chem 2005; 280:9023-9. [PMID: 15637076 DOI: 10.1074/jbc.m409706200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lipid and glucose metabolism are adversely affected by diabetes, a disease characterized by pancreatic beta-cell dysfunction. To clarify the role of lipids in insulin secretion, we generated mice with beta-cell-specific overexpression (betaLPL-TG) or inactivation (betaLPL-KO) of lipoprotein lipase (LPL), a physiologic provider of fatty acids. LPL enzyme activity and triglyceride content were increased in betaLPL-TG islets; decreased LPL enzyme activity in betaLPL-KO islets did not affect islet triglyceride content. Surprisingly, both betaLPL-TG and betaLPL-KO mice were strikingly hyperglycemic during glucose tolerance testing. Impaired glucose tolerance in betaLPL-KO mice was present at one month of age, whereas betaLPL-TG mice did not develop defective glucose homeostasis until approximately five months of age. Glucose-simulated insulin secretion was impaired in islets isolated from both mouse models. Glucose oxidation, critical for ATP production and triggering of insulin secretion mediated by the ATP-sensitive potassium (KATP) channel, was decreased in betaLPL-TG islets but increased in betaLPL-KO islets. Islet ATP content was not decreased in either model. Insulin secretion was defective in both betaLPL-TG and betaLPL-KO islets under conditions causing calcium-dependent insulin secretion independent of the KATP channel. These results show that beta-cell-derived LPL has two physiologically relevant effects in islets, the inverse regulation of glucose metabolism and the independent mediation of insulin secretion through effects distal to membrane depolarization.
Collapse
Affiliation(s)
- Kirk L Pappan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Palanivel R, Veluthakal R, Kowluru A. Regulation by glucose and calcium of the carboxylmethylation of the catalytic subunit of protein phosphatase 2A in insulin-secreting INS-1 cells. Am J Physiol Endocrinol Metab 2004; 286:E1032-41. [PMID: 14970009 DOI: 10.1152/ajpendo.00587.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we reported that the catalytic subunit of protein phosphatase 2A (PP2Ac) undergoes carboxylmethylation (CML) at its COOH-terminal leucine, and that inhibitors of such a posttranslational modification markedly attenuate nutrient-induced insulin secretion from isolated beta-cells. More recent studies have suggested direct inhibitory effects of glucose metabolites on PP2A activity in isolated beta-cells, implying that inhibition of PP2A leads to stimulation of insulin secretion. Because the CML of PP2Ac has been shown to facilitate the holoenzyme assembly and subsequent functional activation of PP2A, we investigated putative regulation by glucose of the CML of PP2Ac in insulin-secreting (INS)-1 cells. Our data indicated a marked inhibition by specific intermediates of glucose metabolism (e.g., citrate and phosphoenolpyruvate) of the CML of PP2Ac in INS-1 cell lysates. Such inhibitory effects were also demonstrable in intact cells by glucose. Mannoheptulose, an inhibitor of glucose metabolism, completely prevented inhibitory effects of glucose on the CML of PP2Ac. Moreover, glucose-mediated inhibition of the CML of PP2Ac was resistant to diazoxide, suggesting that glucose metabolism and the generation of glucose metabolites might control inhibition of the CML of PP2Ac. A membrane-depolarizing concentration of KCl also induced inhibition of the CML of PP2Ac in intact INS cells. On the basis of these data, we propose that glucose metabolism and increase in intracellular calcium facilitate inhibition of the CML of PP2Ac, resulting in functional inactivation of PP2A. This, in turn, might retain the key signaling proteins of the insulin exocytotic cascade in their phosphorylated state, leading to stimulated insulin secretion.
Collapse
Affiliation(s)
- Rengasamy Palanivel
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48202, USA
| | | | | |
Collapse
|
35
|
Roduit R, Nolan C, Alarcon C, Moore P, Barbeau A, Delghingaro-Augusto V, Przybykowski E, Morin J, Massé F, Massie B, Ruderman N, Rhodes C, Poitout V, Prentki M. A role for the malonyl-CoA/long-chain acyl-CoA pathway of lipid signaling in the regulation of insulin secretion in response to both fuel and nonfuel stimuli. Diabetes 2004; 53:1007-19. [PMID: 15047616 DOI: 10.2337/diabetes.53.4.1007] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The malonyl-CoA/long-chain acyl-CoA (LC-CoA) model of glucose-induced insulin secretion (GIIS) predicts that malonyl-CoA derived from glucose metabolism inhibits fatty acid oxidation, thereby increasing the availability of LC-CoA for lipid signaling to cellular processes involved in exocytosis. For directly testing the model, INSr3 cell clones overexpressing malonyl-CoA decarboxylase in the cytosol (MCDc) in a tetracycline regulatable manner were generated, and INS(832/13) and rat islets were infected with MCDc-expressing adenoviruses. MCD activity was increased more than fivefold, and the malonyl-CoA content was markedly diminished. This was associated with enhanced fat oxidation at high glucose, a suppression of the glucose-induced increase in cellular free fatty acid (FFA) content, and reduced partitioning at elevated glucose of exogenous palmitate into lipid esterification products. MCDc overexpression, in the presence of exogenous FFAs but not in their absence, reduced GIIS in all beta-cell lines and in rat islets. It also markedly curtailed the stimulation of insulin secretion by other fuel and nonfuel secretagogues. In the absence of MCDc overexpression, the secretory responses to all types of secretagogues were amplified by the provision of exogenous fatty acids. In the presence of exogenous FFAs, the fatty acyl-CoA synthetase inhibitor triacsin C reduced secretion in response to glucose and nonfuel stimuli. The data show the existence of important links between the metabolic coupling factor malonyl-CoA, the partitioning of fatty acids, and the stimulation of insulin secretion to both fuel and nonfuel stimuli.
Collapse
Affiliation(s)
- Raphaël Roduit
- Molecular Nutrition Unit, Department of Nutrition, University of Montreal and the Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yaney GC, Corkey BE. Fatty acid metabolism and insulin secretion in pancreatic beta cells. Diabetologia 2003; 46:1297-312. [PMID: 13680127 DOI: 10.1007/s00125-003-1207-4] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Revised: 07/14/2003] [Indexed: 01/16/2023]
Abstract
Increases in glucose or fatty acids affect metabolism via changes in long-chain acyl-CoA formation and chronically elevated fatty acids increase total cellular CoA. Understanding the response of pancreatic beta cells to increased amounts of fuel and the role that altered insulin secretion plays in the development and maintenance of obesity and Type 2 diabetes is important. Data indicate that the activated form of fatty acids acts as an effector molecule in stimulus-secretion coupling. Glucose increases cytosolic long-chain acyl-CoA because it increases the "switch" compound malonyl-CoA that blocks mitochondrial beta-oxidation, thus implementing a shift from fatty acid to glucose oxidation. We present arguments in support of the following: (i) A source of fatty acid either exogenous or endogenous (derived by lipolysis of triglyceride) is necessary to support normal insulin secretion; (ii) a rapid increase of fatty acids potentiates glucose-stimulated secretion by increasing fatty acyl-CoA or complex lipid concentrations that act distally by modulating key enzymes such as protein kinase C or the exocytotic machinery; (iii) a chronic increase of fatty acids enhances basal secretion by the same mechanism, but promotes obesity and a diminished response to stimulatory glucose; (iv) agents which raise cAMP act as incretins, at least in part, by stimulating lipolysis via beta-cell hormone-sensitive lipase activation. Furthermore, increased triglyceride stores can give higher rates of lipolysis and thus influence both basal and stimulated insulin secretion. These points highlight the important roles of NEFA, LC-CoA, and their esterified derivatives in affecting insulin secretion in both normal and pathological states.
Collapse
Affiliation(s)
- G C Yaney
- Boston University School of Medicine, Obesity Research Center, 650 Albany Street, Boston, MA 02118, USA
| | | |
Collapse
|
37
|
Abstract
Lipoprotein lipase (LPL) regulates the plasma levels of triglyceride and HDL. Three aspects are reviewed. 1) Clinical implications of human LPL gene variations: common mutations and their effects on plasma lipids and coronary heart disease are discussed. 2) LPL actions in the nervous system, liver, and heart: the discussion focuses on LPL and tissue lipid uptake. 3) LPL gene regulation: the LPL promoter and its regulatory elements are described.
Collapse
Affiliation(s)
- Martin Merkel
- Department of Medicine, University of Hamburg, Hamburg, Germany. Department of Medicine, University of Colorado Health Sciences Center, Denver, CO, USA
| | | | | |
Collapse
|
38
|
Preiss-Landl K, Zimmermann R, Hämmerle G, Zechner R. Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism. Curr Opin Lipidol 2002; 13:471-81. [PMID: 12352010 DOI: 10.1097/00041433-200210000-00002] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE OF REVIEW The aim of this review is to summarize and discuss recent advances in the understanding of the physiological role of lipoprotein lipase in lipid and energy metabolism. RECENT FINDINGS Studies on the transcriptional and the posttranscriptional level of lipoprotein lipase expression have provided new insights into the complex mechanisms that are involved in the regulation of the enzyme. Additionally a large body of evidence from both human studies and animal models suggests that the level of lipoprotein lipase expression in a given tissue is the rate limiting process for the uptake of triglyceride derived fatty acids. Imbalances in the partitioning of fatty acids among peripheral tissues have major metabolic consequences. For example, in mice both decreased lipoprotein lipase activities in adipose tissue and increased activity in muscle are associated with resistance to obesity; lack of lipoprotein lipase activity in macrophages is correlated with a decreased susceptibility to develop atherosclerotic lesions and overexpression of the enzyme in muscle is associated with increased blood glucose levels and insulin resistance. SUMMARY Considering the central role of lipoprotein lipase in energy metabolism it is a reasonable goal to discover and develop new drugs that affect the tissue specific expression pattern of the enzyme.
Collapse
Affiliation(s)
- Karina Preiss-Landl
- Institute of Molecular Bioloogy, Biochemistry and Microbiology, Karl-Frasnzens-University, Graz, Heinrichstrasse 31a, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
39
|
Greenberg AS, McDaniel ML. Identifying the links between obesity, insulin resistance and beta-cell function: potential role of adipocyte-derived cytokines in the pathogenesis of type 2 diabetes. Eur J Clin Invest 2002; 32 Suppl 3:24-34. [PMID: 12028372 DOI: 10.1046/j.1365-2362.32.s3.4.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A combination of insulin resistance and pancreatic beta-cell dysfunction underlies most cases of type 2 diabetes. While the interplay of these two impairments is believed to be important in the development and progression of type 2 diabetes, the mechanisms involved are unclear. A number of factors have been suggested as possibly linking insulin resistance and beta-cell dysfunction in the pathogenesis of type 2 diabetes mellitus. Pro-inflammatory cytokines such as tumour necrosis factor-alpha (TNF-alpha) have deleterious effects on both glucose homeostasis and beta-cell function, and can disrupt insulin signalling pathways in both pancreatic beta cells and liver and adipose tissue. The anti-inflammatory activity of the thiazolidinedione anti-diabetic agents is potentially beneficial, given the possible role of pro-inflammatory cytokines in linking insulin resistance with beta-cell dysfunction.
Collapse
Affiliation(s)
- A S Greenberg
- Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University and the Division of Endocrinology, Tupper Research Institute, New England Medical Center, Boston MA, USA
| | | |
Collapse
|
40
|
Lipid partitioning in the pancreatic β cell: physiologic and pathophysiologic implications. ACTA ACUST UNITED AC 2002. [DOI: 10.1097/00060793-200204000-00005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
41
|
Lin X, Schonfeld G, Yue P, Chen Z. Hepatic fatty acid synthesis is suppressed in mice with fatty livers due to targeted apolipoprotein B38.9 mutation. Arterioscler Thromb Vasc Biol 2002; 22:476-82. [PMID: 11884293 DOI: 10.1161/hq0302.105271] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Humans and genetically engineered mice with hypobetalipoproteinemia due to truncation-producing mutations of the apolipoprotein B (apoB) gene frequently have fatty livers, because the apoB defect impairs the capacity of livers to export triglycerides (TGs). We assessed the adaptation of hepatic lipid metabolism in our apoB-38.9-bearing mice. Hepatic TG contents were 2- and 4-fold higher in heterozygous and homozygous mice, respectively, compared with wild-type mice. Respective in vivo hepatic fatty acid synthetic rates were reduced to 40% and 15% of the wild-type rate. Hepatic mRNAs for sterol regulatory element-binding protein (SREBP)-1c, fatty acid synthase (FAS), and stearoyl coenzyme A desaturase-1 were coordinately decreased. FAS and SREBP-1c mRNA levels were strongly and positively correlated with each other and inversely correlated with hepatic TGs, suggesting that impaired TG export is a potent inhibitor of fatty acid synthesis. In contrast, levels of plasma beta-hydroxybutyrate and of hepatic carnitine palmitoyl transferase and peroxisome proliferator-activated receptor-alpha mRNAs were not altered, implying that beta-oxidation was not affected. Fasting followed by refeeding increased hepatic fatty acid synthesis 56-fold over fasting in normal and heterozygous mice but only 24-fold in homozygous mice. Parallel changes occurred in FAS and SREBP-1c mRNAs. Thus, impairment of very low density lipoprotein export downregulates hepatic fatty acid synthesis, but the adaptation is incomplete, resulting in fatty livers. The signals mediating suppression of FAS and SREBP-1c levels remain to be identified.
Collapse
Affiliation(s)
- Xiaobo Lin
- Division of Atherosclerosis, Nutrition and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Mo 63110, USA
| | | | | | | |
Collapse
|
42
|
Fobker M, Voss R, Reinecke H, Crone C, Assmann G, Walter M. Accumulation of cardiolipin and lysocardiolipin in fibroblasts from Tangier disease subjects. FEBS Lett 2001; 500:157-62. [PMID: 11445077 DOI: 10.1016/s0014-5793(01)02578-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tangier disease (TD) is an inherited disorder of lipid metabolism characterized by very low high density lipoprotein (HDL) plasma levels, cellular cholesteryl ester accumulation and reduced cholesterol excretion in response to HDL apolipoproteins. Molecular defects in the ATP binding cassette transporter 1 (ABCA1) have recently been identified as the cause of TD. ABCA1 plays a key role in the translocation of cholesterol across the plasma membrane, and defective ABCA1 causes cholesterol storage in TD cells. Not only cholesterol efflux, but also phospholipid efflux was shown to be impaired in TD cells. By use of thin layer chromatography, high performance liquid chromatography and time-of-flight secondary ion mass spectrometry, we characterized the cellular phospholipid content in fibroblasts from three homozygous TD patients. The cellular content of the major phospholipids was not found to be significantly altered in TD fibroblasts. However, the two phospholipids cardiolipin and lysocardiolipin, which make up minute amounts in normal cells, were at least 3-5-fold enriched in fibroblasts from TD subjects. A structurally closely related phospholipid (lysobisphosphatidic acid) has recently been shown to be enriched in Niemann-Pick type C, another lipid storage disorder. Altogether these data may indicate that the role of these phospholipids is a regulatory one rather than that of a bulk mediator of cholesterol solubilization in sterol trafficking and efflux.
Collapse
Affiliation(s)
- M Fobker
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universität Münster, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Tinkelenberg AH, Liu Y, Alcantara F, Khan S, Guo Z, Bard M, Sturley SL. Mutations in yeast ARV1 alter intracellular sterol distribution and are complemented by human ARV1. J Biol Chem 2000; 275:40667-70. [PMID: 11063737 DOI: 10.1074/jbc.c000710200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intracellular cholesterol redistribution between membranes and its subsequent esterification are critical aspects of lipid homeostasis that prevent free sterol toxicity. To identify genes that mediate sterol trafficking, we screened for yeast mutants that were inviable in the absence of sterol esterification. Mutations in the novel gene, ARV1, render cells dependent on sterol esterification for growth, nystatin-sensitive, temperature-sensitive, and anaerobically inviable. Cells lacking Arv1p display altered intracellular sterol distribution and are defective in sterol uptake, consistent with a role for Arv1p in trafficking sterol into the plasma membrane. Human ARV1, a predicted sequence ortholog of yeast ARV1, complements the defects associated with deletion of the yeast gene. The genes are predicted to encode transmembrane proteins with potential zinc-binding motifs. We propose that ARV1 is a novel mediator of eukaryotic sterol homeostasis.
Collapse
Affiliation(s)
- A H Tinkelenberg
- Institute of Human Nutrition and Departments of Pediatrics and Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|