1
|
Venturini E, Maaß S, Bischler T, Becher D, Vogel J, Westermann AJ. Functional characterization of the DUF1127-containing small protein YjiS of Salmonella Typhimurium. MICROLIFE 2025; 6:uqae026. [PMID: 39790481 PMCID: PMC11707872 DOI: 10.1093/femsml/uqae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 11/19/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Bacterial small proteins impact diverse physiological processes, however, technical challenges posed by small size hampered their systematic identification and biochemical characterization. In our quest to uncover small proteins relevant for Salmonella pathogenicity, we previously identified YjiS, a 54 amino acid protein, which is strongly induced during this pathogen's intracellular infection stage. Here, we set out to further characterize the role of YjiS. Cell culture infection assays with Salmonella mutants lacking or overexpressing YjiS suggested this small protein to delay bacterial escape from macrophages. Mutant scanning of the protein's conserved, arginine-rich DUF1127 domain excluded a major effect of single amino acid substitutions on the infection phenotype. A comparative dual RNA-seq assay uncovered the molecular footprint of YjiS in the macrophage response to infection, with host effects related to oxidative stress and the cell cortex. Bacterial cell fractionation experiments demonstrated YjiS to associate with the inner membrane and proteins interacting with YjiS in pull-down experiments were enriched for inner membrane processes. Among the YjiS interactors was the two-component system SsrA/B, the master transcriptional activator of intracellular virulence genes and a suppressor of flagellar genes. Indeed, in the absence of YjiS, we observed elevated expression of motility genes and an increased number of flagella per bacterium. Together, our study points to a role for Salmonella YjiS as a membrane-associated timer of pathogen dissemination.
Collapse
Affiliation(s)
- Elisa Venturini
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Sandra Maaß
- Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, D-17489 Greifswald, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, D-97080 Würzburg, Germany
| | - Dörte Becher
- Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, D-17489 Greifswald, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Alexander J Westermann
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
- Department of Microbiology, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| |
Collapse
|
2
|
Laekas-Hameder M, Daigle F. Only time will tell: lipopolysaccharide glycoform and biofilm-formation kinetics in Salmonella species and Escherichia coli. J Bacteriol 2024; 206:e0031824. [PMID: 39315775 PMCID: PMC11500611 DOI: 10.1128/jb.00318-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
In Gram-negative bacteria, LPS (lipopolysaccharide) has been thoroughly characterized and has been shown to play a major role in pathogenesis and bacterial defense. In Salmonella and Escherichia coli, LPS also influences biofilm development. However, the overall role of LPS glycoform in biofilm formation has not been conclusively settled, as there is a lack of consensus on the topic. Some studies show that LPS mutants produce less biofilm biomass than the wild-type strains, while others show that they produce more. This review summarizes current knowledge of LPS biosynthesis and explores the impact of defective steps on biofilm-related characteristics, such as motility, adhesion, auto-aggregation, and biomass production in Salmonella and E. coli. Overall, motility tends to decrease, while adhesion and auto-aggregation phenotypes tend to increase in most LPS-mutant strains. Interestingly, biofilm biomass of various LPS mutants revealed a clear pattern dependent on biofilm maturation time. Incubation times of less than 24 h resulted in a biofilm-defective phenotype compared to the wild-type, while incubation exceeding 24 h led to significantly higher levels of biofilm production. This explains conflicting results found in reports describing the same LPS mutations. It is therefore critical to consider the effect of biofilm maturation time to ascertain the effects of LPS glycoform on biofilm phenotype. Underlying reasons for such changes in biofilm kinetics may include changes in signalling systems affecting biofilm maturation and composition, and dynamic LPS modifications. A better understanding of the role of LPS in the evolution and modification of biofilms is crucial for developing strategies to disperse biofilms.
Collapse
Affiliation(s)
- Magdalena Laekas-Hameder
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - France Daigle
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
3
|
Dehinwal R, Gopinath T, Smith RD, Ernst RK, Schifferli DM, Waldor MK, Marassi FM. A pH-sensitive motif in an outer membrane protein activates bacterial membrane vesicle production. Nat Commun 2024; 15:6958. [PMID: 39138228 PMCID: PMC11322160 DOI: 10.1038/s41467-024-51364-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Outer membrane vesicles (OMVs) produced by Gram-negative bacteria have key roles in cell envelope homeostasis, secretion, interbacterial communication, and pathogenesis. The facultative intracellular pathogen Salmonella Typhimurium increases OMV production inside the acidic vacuoles of host cells by changing expression of its outer membrane proteins and modifying the composition of lipid A. However, the molecular mechanisms that translate pH changes into OMV production are not completely understood. Here, we show that the outer membrane protein PagC promotes OMV production through pH-dependent interactions between its extracellular loops and surrounding lipopolysaccharide (LPS). Structural comparisons and mutational studies indicate that a pH-responsive amino acid motif in PagC extracellular loops, containing PagC-specific histidine residues, is crucial for OMV formation. Molecular dynamics simulations suggest that protonation of histidine residues leads to changes in the structure and flexibility of PagC extracellular loops and their interactions with the surrounding LPS, altering membrane curvature. Consistent with that hypothesis, mimicking acidic pH by mutating those histidine residues to lysine increases OMV production. Thus, our findings reveal a mechanism for sensing and responding to environmental pH and for control of membrane dynamics by outer membrane proteins.
Collapse
Affiliation(s)
- Ruchika Dehinwal
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, USA
- Department of Microbiology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA
| | - Tata Gopinath
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Richard D Smith
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Dieter M Schifferli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, USA.
- Department of Microbiology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA.
| | | |
Collapse
|
4
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
5
|
Riediger M, Hoffmann K, Isberner R, Dreyer A, Tersteegen A, Marquardt P, Kaasch AJ, Zautner AE. Chimaeribacter arupi a new member of the Yersineacea family has the characteristics of a human pathogen. Front Cell Infect Microbiol 2023; 13:1277522. [PMID: 37868348 PMCID: PMC10587679 DOI: 10.3389/fcimb.2023.1277522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023] Open
Abstract
Chimaeribacter arupi (heterotypic synonym: "Nissabacter archeti") is a facultative anaerobic, newly described Gram-negative rod and belongs to the Yersineacea family. Here, we report the case of a 19-month-old female infant patient who presented to the emergency unit with somnolence and fever. C. arupi was isolated from a positive blood culture, taken via an implanted Broviac catheter, proving a bloodstream infection by the pathogen. The objective of this study was to utilize whole genome sequencing to assess the genes encoding potential virulence associated factors, which may play a role in host tropism, tissue invasion and the subsequent stages in the pathogenesis of a bloodstream infection with C. arupi. The genome of the isolate was completely sequenced employing Illumina MiSeq and Nanopore MinION sequencing and the presumptive virulence associated factors and antimicrobial resistance genes were investigated in more detail. Additionally, we performed metabolic profiling and susceptibility testing by microdilution. The presence of predicted TcfC-like α-Pili suggests that C. arupi is highly adapted to humans as a host. It utilizes flagellar and type IV pili-mediated motility, as well as a number of γ1-pili and a σ-pilus, which may be used to facilitate biofilm formation and adherence to host epithelia. Additionally, long polar fimbriae may aid in tissue invasion. The bacterium possesses antioxidant factors, which may enable temporary survival in phagolysosomes, and a capsule that potentially provides protection from phagocytosis. It may acquire iron ions from erythrocytes through the type 6 secretion system and hemolysins. Furthermore, the isolate exhibits beta-lactamase-mediated penicillin and aminopenicillin resistance. Based on the analysis of the whole genome, we conclude that C. arupi possesses virulence factors associated with tissue invasion and may thus be a potential opportunistic pathogen of bloodstream infections.
Collapse
Affiliation(s)
- Matthias Riediger
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Katharina Hoffmann
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Riekje Isberner
- Universitätskinderklinik, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Annika Dreyer
- Institut für Medizinische Mikrobiologie und Virologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Aljoscha Tersteegen
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Pauline Marquardt
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Achim J. Kaasch
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Center for Health and Medical Prevention, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Andreas E. Zautner
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Center for Health and Medical Prevention, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
6
|
Wang Z, Zhao A, Qiao J, Yu J, He F, Bi Y, Yu L, Wang X. Engineering Escherichia coli MG1655 to Efficiently Produce 3-Deacyl-4'-monophosphoryl Lipid A. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13376-13390. [PMID: 37656614 DOI: 10.1021/acs.jafc.3c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Monophosphoryl lipid A, derived from Salmonella minnesota R595, has been used in various adjuvant formulations. Escherichia coli can produce lipid A, but its structure is different. In this study, E. coli MG1655 has been engineered to efficiently produce the monophosphoryl lipid A. First, 126 genes relevant to the biosynthesis of the fimbriae, flagella, and ECA were deleted in MG1655, resulting in WQM027. Second, the genes pldA, mlaA, and mlaC related to the phospholipid transport system, the gene ptsG related to the carbohydrate phosphotransferase system, and the gene eptA encoding phosphoethanolamine transferase for lipid A modification were further deleted from WQM027, resulting in MW020. Third, lpxE from Francisella novicida and pagP and pagL from Salmonella were overexpressed in pFT24, resulting in pTEPL. pTEPL was transformed into MW020, resulting in MW020/pTEPL. Finally, fabI encoding an enoyl-ACP reductase was deleted from the genome of MW020/pTEPL, resulting in MW021/pTEPL. MW021/pTEPL could produce 85.31 mg/L of lipid A species after 26 h of fed-batch fermentation. Mainly two monophosphoryl lipid A species were produced in MW021/pTEPL, one is 3-deacyl-2-acyloxyacyl-4'-monophosphoryl lipid A and the other is 3-deacyl-4'-monophosphoryl lipid A. E. coli MW021/pTEPL constructed in this study could be an ideal host for the industrial production of monophosphoryl lipid A.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Aizhen Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jing Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fenfang He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yibing Bi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Letong Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Hewawaduge C, Senevirathne A, Sivasankar C, Lee JH. The impact of lipid A modification on biofilm and related pathophysiological phenotypes, endotoxicity, immunogenicity, and protection of Salmonella Typhimurium. Vet Microbiol 2023; 282:109759. [PMID: 37104940 DOI: 10.1016/j.vetmic.2023.109759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/02/2023] [Accepted: 04/22/2023] [Indexed: 04/29/2023]
Abstract
This study presents the engineering of a less endotoxic Salmonella Typhimurium strain by manipulating the lipid-A structure of the lipopolysaccharide (LPS) component. Salmonella lipid A was dephosphorylated by using lpxE from Francisella tularensis. The 1-phosphate group from lipid-A was removed selectively, resulting in a close analog of monophosphoryl lipid A. We observed a significant impact of ∆pagL on major virulence factors such as biofilm formation, motility, persistency, and immune evasion. In correlation with biofilm and motility retardation, adhesion and invasion were elevated but with reduced intracellular survival, a favorable phenotype prospect of a vaccine strain. Western blotting and silver staining confirmed the absence of the O-antigen and truncated lipid-A core in the detoxified Salmonella mutant. In vitro and in vivo studies demonstrated that the dephosphorylated Salmonella mutant mediated lower pro-inflammatory cytokine secretion than the wild-type strain. The vaccine strains were present in the spleen and liver for five days and were cleared from the organs by day seven. However, the wild-type strain persisted in the spleen, liver, and brain, leading to sepsis-induced death. Histological evaluations of tissue samples further confirmed the reduced endotoxic activity of the detoxified Salmonella mutant. The detoxification strategy did not compromise the level of protective immunity, as the vaccine strain could enhance humoral and cellular immune responses and protect against the wild-type challenge in immunized mice.
Collapse
Affiliation(s)
- Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596 Iksan, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596 Iksan, Republic of Korea
| | - Chandran Sivasankar
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596 Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596 Iksan, Republic of Korea.
| |
Collapse
|
8
|
Thapa HB, Ebenberger SP, Schild S. The Two Faces of Bacterial Membrane Vesicles: Pathophysiological Roles and Therapeutic Opportunities. Antibiotics (Basel) 2023; 12:1045. [PMID: 37370364 PMCID: PMC10295235 DOI: 10.3390/antibiotics12061045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial membrane vesicles (MVs) are nanosized lipid particles secreted by lysis or blebbing mechanisms from Gram-negative and -positive bacteria. It is becoming increasingly evident that MVs can promote antimicrobial resistance but also provide versatile opportunities for therapeutic exploitation. As non-living facsimiles of parent bacteria, MVs can carry multiple bioactive molecules such as proteins, lipids, nucleic acids, and metabolites, which enable them to participate in intra- and interspecific communication. Although energetically costly, the release of MVs seems beneficial for bacterial fitness, especially for pathogens. In this review, we briefly discuss the current understanding of diverse MV biogenesis routes affecting MV cargo. We comprehensively highlight the physiological functions of MVs derived from human pathogens covering in vivo adaptation, colonization fitness, and effector delivery. Emphasis is given to recent findings suggesting a vicious cycle of MV biogenesis, pathophysiological function, and antibiotic therapy. We also summarize potential therapeutical applications, such as immunotherapy, vaccination, targeted delivery, and antimicrobial potency, including their experimental validation. This comparative overview identifies common and unique strategies for MV modification used along diverse applications. Thus, the review summarizes timely aspects of MV biology in a so far unprecedented combination ranging from beneficial function for bacterial pathogen survival to future medical applications.
Collapse
Affiliation(s)
- Himadri B. Thapa
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stephan P. Ebenberger
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Field of Excellence Biohealth, University of Graz, 8010 Graz, Austria
| |
Collapse
|
9
|
Wang Z, Zhao A, Wang C, Huang D, Yu J, Yu L, Wu Y, Wang X. Metabolic engineering of Escherichia coli to efficiently produce monophosphoryl lipid A. Biotechnol Appl Biochem 2023. [PMID: 36659840 DOI: 10.1002/bab.2443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/08/2023] [Indexed: 01/21/2023]
Abstract
Monophosphoryl lipid A (MPL), mainly isolated from Salmonella minnesota R595, has been used as adjuvant in several vaccines. In this study, an Escherichia coli strain that can efficiently produce the MPL has been constructed. The gene clusters related to the biosynthesis of O-antigen, core oligosaccharide, enterobacterial common antigen, and colanic acid were sequentially removed to save the carbon source and to increase the activity of PagP in E. coli MG1655. Then, the genes pldA, mlaA, and mlaC related to the phospholipid transport system were further deleted, resulting in the strain MW012. Finally, the genes lpxE from Francisella novicida and pagP and pagL from Salmonella were overexpressed in MW012 to modify the structure of lipid A, resulting in the strain MW012/pWEPL. Lipid A species were isolated from MW012/pWEPL and analyzed by thin-layer chromatography and liquid chromatography-mass spectrometry. The results showed that mainly two MPL species were produced in E. coli MW012/pWEPL, one is hexa-acylated, and the other is penta-acylated. More importantly, the proportion of the hexa-acylated MPL, which is the most effective component of lipid A vaccine adjuvant, reached 75%. E. coli MW012/pWEPL constructed in this study provided a good alternative for the production of lipid A vaccine adjuvant MPL.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Aizhen Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chenhui Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Danyang Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jing Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Letong Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yuanming Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Hassan M, Flanagan TW, Kharouf N, Bertsch C, Mancino D, Haikel Y. Antimicrobial Proteins: Structure, Molecular Action, and Therapeutic Potential. Pharmaceutics 2022; 15:pharmaceutics15010072. [PMID: 36678702 PMCID: PMC9864823 DOI: 10.3390/pharmaceutics15010072] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
Second- and third-line treatments of patients with antibiotic-resistant infections can have serious side effects, such as organ failure with prolonged care and recovery. As clinical practices such as cancer therapies, chronic disease treatment, and organ transplantation rely on the ability of available antibiotics to fight infection, the increased resistance of microbial pathogens presents a multifaceted, serious public health concern worldwide. The pipeline of traditional antibiotics is exhausted and unable to overcome the continuously developing multi-drug resistance. To that end, the widely observed limitation of clinically utilized antibiotics has prompted researchers to find a clinically relevant alternate antimicrobial strategy. In recent decades, the discovery of antimicrobial peptides (AMPs) as an excellent candidate to overcome antibiotic resistance has received further attention, particularly from scientists, health professionals, and the pharmaceutical industry. Effective AMPs are characterized by a broad spectrum of antimicrobial activities, high pathogen specificity, and low toxicity. In addition to their antimicrobial activity, AMPs have been found to be involved in a variety of biological functions, including immune regulation, angiogenesis, wound healing, and antitumor activity. This review provides a current overview of the structure, molecular action, and therapeutic potential of AMPs.
Collapse
Affiliation(s)
- Mohamed Hassan
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Correspondence: ; Tel.: +1-504-339-2671
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Naji Kharouf
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
| | - Christelle Bertsch
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
| | - Davide Mancino
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
| | - Youssef Haikel
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
| |
Collapse
|
11
|
Zeczycki TN, Milton ME, Jung D, Thompson RJ, Jaimes FE, Hondros AD, Palethorpe S, Melander C, Cavanagh J. 2-Aminoimidazole Analogs Target PhoP Altering DNA Binding Activity and Affect Outer Membrane Stability in Gram-Negative Bacteria. Biochemistry 2022; 61:2948-2960. [DOI: 10.1021/acs.biochem.2c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Tonya N. Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Morgan E. Milton
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - David Jung
- Agile Sciences Inc., 617 Hutton Street, Raleigh, North Carolina27606, United States
| | - Richele J. Thompson
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Felicia E. Jaimes
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Alexander D. Hondros
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Samantha Palethorpe
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - John Cavanagh
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| |
Collapse
|
12
|
Hamame A, Davoust B, Cherak Z, Rolain JM, Diene SM. Mobile Colistin Resistance ( mcr) Genes in Cats and Dogs and Their Zoonotic Transmission Risks. Pathogens 2022; 11:698. [PMID: 35745552 PMCID: PMC9230929 DOI: 10.3390/pathogens11060698] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Pets, especially cats and dogs, represent a great potential for zoonotic transmission, leading to major health problems. The purpose of this systematic review was to present the latest developments concerning colistin resistance through mcr genes in pets. The current study also highlights the health risks of the transmission of colistin resistance between pets and humans. Methods: We conducted a systematic review on mcr-positive bacteria in pets and studies reporting their zoonotic transmission to humans. Bibliographic research queries were performed on the following databases: Google Scholar, PubMed, Scopus, Microsoft Academic, and Web of Science. Articles of interest were selected using the PRISMA guideline principles. Results: The analyzed articles from the investigated databases described the presence of mcr gene variants in pets including mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-8, mcr-9, and mcr-10. Among these articles, four studies reported potential zoonotic transmission of mcr genes between pets and humans. The epidemiological analysis revealed that dogs and cats can be colonized by mcr genes that are beginning to spread in different countries worldwide. Overall, reported articles on this subject highlight the high risk of zoonotic transmission of colistin resistance genes between pets and their owners. Conclusions: This review demonstrated the spread of mcr genes in pets and their transmission to humans, indicating the need for further measures to control this significant threat to public health. Therefore, we suggest here some strategies against this threat such as avoiding zoonotic transmission.
Collapse
Affiliation(s)
- Afaf Hamame
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Bernard Davoust
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Zineb Cherak
- Faculté des Sciences de la Nature et de la Vie, Université Batna-2, Route de Constantine, Fésdis, Batna 05078, Algeria;
| | - Jean-Marc Rolain
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Seydina M. Diene
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| |
Collapse
|
13
|
Valvano MA. Remodelling of the Gram-negative bacterial Kdo 2-lipid A and its functional implications. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35394417 DOI: 10.1099/mic.0.001159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The lipopolysaccharide (LPS) is a characteristic molecule of the outer leaflet of the Gram-negative bacterial outer membrane, which consists of lipid A, core oligosaccharide, and O antigen. The lipid A is embedded in outer membrane and provides an efficient permeability barrier, which is particularly important to reduce the permeability of antibiotics, toxic cationic metals, and antimicrobial peptides. LPS, an important modulator of innate immune responses ranging from localized inflammation to disseminated sepsis, displays a high level of structural and functional heterogeneity, which arise due to regulated differences in the acylation of the lipid A and the incorporation of non-stoichiometric modifications in lipid A and the core oligosaccharide. This review focuses on the current mechanistic understanding of the synthesis and assembly of the lipid A molecule and its most salient non-stoichiometric modifications.
Collapse
Affiliation(s)
- Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| |
Collapse
|
14
|
Coordination of Phosphate and Magnesium Metabolism in Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:135-150. [PMID: 35288878 DOI: 10.1007/978-3-030-91623-7_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The majority of cellular phosphate (PO4-3; Pi) exists as nucleoside triphosphates, mainly adenosine triphosphate (ATP), and ribosomal RNA (rRNA). ATP and rRNA are also the largest cytoplasmic reservoirs of magnesium (Mg2+), the most abundant divalent cation in living cells. The co-occurrence of these ionic species in the cytoplasm is not coincidental. Decades of work in the Pi and Mg2+ starvation responses of two model enteric bacteria, Escherichia coli and Salmonella enterica, have led to the realization that the metabolisms of Pi and Mg2+ are interconnected. Bacteria must acquire these nutrients in a coordinated manner to achieve balanced growth and avoid loss of viability. In this chapter, we will review how bacteria sense and respond to fluctuations in environmental and intracellular Pi and Mg2+ levels. We will also discuss how these two compounds are functionally linked, and how cells elicit physiological responses to maintain their homeostasis.
Collapse
|
15
|
Shprung T, Wani NA, Wilmes M, Mangoni ML, Bitler A, Shimoni E, Sahl HG, Shai Y. Opposing Effects of PhoPQ and PmrAB on the Properties of Salmonella enterica serovar Typhimurium: Implications on Resistance to Antimicrobial Peptides. Biochemistry 2021; 60:2943-2955. [PMID: 34547893 PMCID: PMC8638962 DOI: 10.1021/acs.biochem.1c00287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The increasing number of resistant
bacteria is a major threat worldwide,
leading to the search for new antibiotic agents. One of the leading
strategies is the use of antimicrobial peptides (AMPs), cationic and
hydrophobic innate immune defense peptides. A major target of AMPs
is the bacterial membrane. Notably, accumulating data suggest that
AMPs can activate the two-component systems (TCSs) of Gram-negative
bacteria. These include PhoP-PhoQ (PhoPQ) and PmrA-PmrB (PmrAB), responsible
for remodeling of the bacterial cell surface. To better understand
this mechanism, we utilized bacteria deficient either in one system
alone or in both and biophysical tools including fluorescence spectroscopy,
single-cell atomic force microscopy, electron microscopy, and mass
spectrometry (MoskowitzS. M.;2012, 56, 1019−103022106224; ChengH. Y.;2010, 17, 6020653976). Our data suggested that the two systems have opposing
effects on the properties of Salmonella enterica. The knockout of PhoPQ made the bacteria more susceptible to AMPs
by making the surface less rigid, more polarized, and permeable with
a slightly more negatively charged cell wall. In addition, the periplasmic
space is thinner. In contrast, the knockout of PmrAB did not affect
its susceptibility, while it made the bacterial outer layer very rigid,
less polarized, and less permeable than the other two mutants, with
a negatively charged cell wall similar to the WT. Overall, the data
suggest that the coexistence of systems with opposing effects on the
biophysical properties of the bacteria contribute to their membrane
flexibility, which, on the one hand, is important to accommodate changing
environments and, on the other hand, may inhibit the development of
meaningful resistance to AMPs.
Collapse
Affiliation(s)
- Tal Shprung
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naiem Ahmad Wani
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miriam Wilmes
- Pharmaceutical Microbiology Section, Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences A. Rossi Fanelli, Faculty of Pharmacy and Medicine, Sapienza University of Rome, CU27, 00185 Roma, Italy
| | - Arkadi Bitler
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hans-Georg Sahl
- Pharmaceutical Microbiology Section, Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Yechiel Shai
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
16
|
Groisman EA, Duprey A, Choi J. How the PhoP/PhoQ System Controls Virulence and Mg 2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiol Mol Biol Rev 2021; 85:e0017620. [PMID: 34191587 PMCID: PMC8483708 DOI: 10.1128/mmbr.00176-20] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The PhoP/PhoQ two-component system governs virulence, Mg2+ homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites. The investigation of PhoP/PhoQ has uncovered novel forms of signal transduction and the physiological consequences of regulon evolution.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
17
|
Recombinant Pseudomonas bio-nanoparticles induce protection against pneumonic Pseudomonas aeruginosa infection. Infect Immun 2021; 89:e0039621. [PMID: 34310892 DOI: 10.1128/iai.00396-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To develop an effective Pseudomonas aeruginosa (PA) outer-membrane-vesicles (OMVs) vaccine, we eliminated multiple virulence factors from a wild-type P. aeruginosa PA103 strain (PA103) to generate a recombinant strain, PA-m14. The PA-m14 strain was tailored with a pSMV83 plasmid encoding the pcrV-hitAT fusion gene to produce OMVs. The recombinant OMVs enclosed increased amounts of PcrV-HitAT bivalent antigen (PH) (termed OMV-PH) and exhibited reduced toxicity compared to the OMVs from PA103. Intramuscular vaccination with OMV-PH from PA-m14(pSMV83) afforded 70% protection against intranasal challenge with 6.5 × 106 CFU (∼30 LD50) of PA103, while immunization using OMVs without the PH antigen (termed OMV-NA) or the PH antigen alone failed to offer effective protection against the same challenge. Further immune analysis showed that the OMV-PH immunization significantly stimulated potent antigen-specific humoral and T-cell (Th1/Th17) responses in comparison to the PH or OMV-NA immunization in mice, which can effectively hinder PA infection. Undiluted anti-sera from OMV-PH-immunized mice displayed significant opsonophagocytic killing of WT PA103 compared to antisera from PH antigen- or OMV-NA-immunized mice. Moreover, the OMV-PH immunization afforded significant antibody-indentpednet cross-protection to mice against PAO1 and a clinical isolate AMC-PA10 strains. Collectively, the recombinant PA OMV delivering the PH bivalent antigen exhibits high immunogenicity and would be a promising next-generation vaccine candidate against PA infection.
Collapse
|
18
|
Increased Production of Outer Membrane Vesicles by Salmonella Interferes with Complement-Mediated Innate Immune Attack. mBio 2021; 12:e0086921. [PMID: 34061589 PMCID: PMC8262969 DOI: 10.1128/mbio.00869-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial outer membrane vesicles (OMVs) enriched with bioactive proteins, toxins, and virulence factors play a critical role in host-pathogen and microbial interactions. The two-component system PhoP-PhoQ (PhoPQ) of Salmonella enterica orchestrates the remodeling of outer membrane lipopolysaccharide (LPS) molecules and concomitantly upregulates OMV production. In this study, we document a novel use of nanoparticle tracking analysis to determine bacterial OMV size and number. Among the PhoPQ-activated genes tested, pagC expression had the most significant effect on the upregulation of OMV production. We provide the first evidence that PhoPQ-mediated upregulation of OMV production contributes to bacterial survival by interfering with complement activation. OMVs protected bacteria in a dose-dependent manner, and bacteria were highly susceptible to complement-mediated killing in their absence. OMVs from bacteria expressing PagC bound to complement component C3b in a dose-dependent manner and inactivated it by recruiting complement inhibitor Factor H. As we also found that Factor H binds to PagC, we propose that PagC interferes with complement-mediated killing of Salmonella in the following two steps: first by engaging Factor H, and second, through the production of PagC-enriched OMVs that divert and inactivate the complement away from the bacteria. Since PhoPQ activation occurs intracellularly, the resultant increase in PagC expression and OMV production is suggested to contribute to the local and systemic spread of Salmonella released from dying host cells that supports the infection of new cells. IMPORTANCE Bacterial outer membrane vesicles (OMVs) mediate critical bacterium-bacterium and host-microbial interactions that influence pathogenesis through multiple mechanisms, including the elicitation of inflammatory responses, delivery of virulence factors, and enhancement of biofilm formation. As such, there is a growing interest in understanding the underlying mechanisms of OMV production. Recent studies have revealed that OMV biogenesis is a finely tuned physiological process that requires structural organization and selective sorting of outer membrane components into the vesicles. In Salmonella, outer membrane remodeling and OMV production are tightly regulated by its PhoPQ system. In this study, we demonstrate that PhoPQ-regulated OMV production plays a significant role in defense against host innate immune attack. PhoPQ-activated PagC expression recruits the complement inhibitor Factor H and degrades the active C3 component of complement. Our results provide valuable insight into the combination of tools and environmental signals that Salmonella employs to evade complement-mediated lysis, thereby suggesting a strong evolutionary adaptation of this facultative intracellular pathogen to protect itself during its extracellular stage in the host.
Collapse
|
19
|
Hower S, McCormack R, Bartra SS, Alonso P, Podack ER, Shembade N, Plano GV. LPS modifications and AvrA activity of Salmonella enterica serovar Typhimurium are required to prevent Perforin-2 expression by infected fibroblasts and intestinal epithelial cells. Microb Pathog 2021; 154:104852. [PMID: 33762201 DOI: 10.1016/j.micpath.2021.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Cellular Perforin-2 (MPEG1) is a pore-forming MACPF family protein that plays a critical role in the defense against bacterial pathogens. Macrophages, neutrophils, and several other cell types that are part of the front line of innate defenses constitutively express high levels of Perforin-2; whereas, most other cell types must be induced to express Perforin-2 by interferons (α, β and γ) and/or PAMPs such as LPS. In this study, we demonstrate that many bacterial pathogens can limit the expression of Perforin-2 in cells normally inducible for Perforin-2 expression, while ordinarily commensal or non-pathogenic bacteria triggered high levels of Perforin-2 expression in these same cell types. The mechanisms by which pathogens suppress Perforin-2 expression was explored further using Salmonella enterica serovar Typhimurium and cultured MEFs as well as intestinal epithelial cell lines. These studies identified multiple factors required to minimize the expression of Perforin-2 in cell types inducible for Perforin-2 expression. These included the PmrAB and PhoPQ two-component systems, select LPS modification enzymes and the Type III secretion effector protein AvrA.
Collapse
Affiliation(s)
- Suzanne Hower
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ryan McCormack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Sara Schesser Bartra
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Patricia Alonso
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Eckhard R Podack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - Noula Shembade
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
20
|
Avila-Calderón ED, Ruiz-Palma MDS, Aguilera-Arreola MG, Velázquez-Guadarrama N, Ruiz EA, Gomez-Lunar Z, Witonsky S, Contreras-Rodríguez A. Outer Membrane Vesicles of Gram-Negative Bacteria: An Outlook on Biogenesis. Front Microbiol 2021; 12:557902. [PMID: 33746909 PMCID: PMC7969528 DOI: 10.3389/fmicb.2021.557902] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
Outer membrane vesicles (OMVs) from Gram-negative bacteria were first described more than 50 years ago. However, the molecular mechanisms involved in biogenesis began to be studied only in the last few decades. Presently, the biogenesis and molecular mechanisms for their release are not completely known. This review covers the most recent information on cellular components involved in OMV biogenesis, such as lipoproteins and outer membrane proteins, lipopolysaccharide, phospholipids, quorum-sensing molecules, and flagella.
Collapse
Affiliation(s)
- Eric Daniel Avila-Calderón
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico.,Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, CINVESTAV-IPN, México City, Mexico
| | - María Del Socorro Ruiz-Palma
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico.,División Químico Biológicas, Universidad Tecnológica de Tecámac, Tecámac, Mexico
| | - Ma Guadalupe Aguilera-Arreola
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Norma Velázquez-Guadarrama
- Unidad de Investigación en enfermedades infecciosas, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Enrico A Ruiz
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Zulema Gomez-Lunar
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Sharon Witonsky
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Araceli Contreras-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| |
Collapse
|
21
|
Kawahara K. Variation, Modification and Engineering of Lipid A in Endotoxin of Gram-Negative Bacteria. Int J Mol Sci 2021; 22:2281. [PMID: 33668925 PMCID: PMC7956469 DOI: 10.3390/ijms22052281] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Lipid A of Gram-negative bacteria is known to represent a central role for the immunological activity of endotoxin. Chemical structure and biosynthetic pathways as well as specific receptors on phagocytic cells had been clarified by the beginning of the 21st century. Although the lipid A of enterobacteria including Escherichia coli share a common structure, other Gram-negative bacteria belonging to various classes of the phylum Proteobacteria and other taxonomical groups show wide variety of lipid A structure with relatively decreased endotoxic activity compared to that of E. coli. The structural diversity is produced from the difference of chain length of 3-hydroxy fatty acids and non-hydroxy fatty acids linked to their hydroxyl groups. In some bacteria, glucosamine in the backbone is substituted by another amino sugar, or phosphate groups bound to the backbone are modified. The variation of structure is also introduced by the enzymes that can modify electrostatic charges or acylation profiles of lipid A during or after its synthesis. Furthermore, lipid A structure can be artificially modified or engineered by the disruption and introduction of biosynthetic genes especially those of acyltransferases. These technologies may produce novel vaccine adjuvants or antagonistic drugs derived from endotoxin in the future.
Collapse
Affiliation(s)
- Kazuyoshi Kawahara
- Department of Biosciences, College of Science and Engineering, Kanto Gakuin University, Yokohama, Kanagawa 236-8501, Japan
| |
Collapse
|
22
|
Outer Membrane Lipid Secretion and the Innate Immune Response to Gram-Negative Bacteria. Infect Immun 2020; 88:IAI.00920-19. [PMID: 32253250 DOI: 10.1128/iai.00920-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer that consists of inner leaflet phospholipids and outer leaflet lipopolysaccharides (LPS). The asymmetric character and unique biochemistry of LPS molecules contribute to the OM's ability to function as a molecular permeability barrier that protects the bacterium against hazards in the environment. Assembly and regulation of the OM have been extensively studied for understanding mechanisms of antibiotic resistance and bacterial defense against host immunity; however, there is little knowledge on how Gram-negative bacteria release their OMs into their environment to manipulate their hosts. Discoveries in bacterial lipid trafficking, OM lipid homeostasis, and host recognition of microbial patterns have shed new light on how microbes secrete OM vesicles (OMVs) to influence inflammation, cell death, and disease pathogenesis. Pathogens release OMVs that contain phospholipids, like cardiolipins, and components of LPS molecules, like lipid A endotoxins. These multiacylated lipid amphiphiles are molecular patterns that are differentially detected by host receptors like the Toll-like receptor 4/myeloid differentiation factor 2 complex (TLR4/MD-2), mouse caspase-11, and human caspases 4 and 5. We discuss how lipid ligands on OMVs engage these pattern recognition receptors on the membranes and in the cytosol of mammalian cells. We then detail how bacteria regulate OM lipid asymmetry, negative membrane curvature, and the phospholipid-to-LPS ratio to control OMV formation. The goal is to highlight intersections between OM lipid regulation and host immunity and to provide working models for how bacterial lipids influence vesicle formation.
Collapse
|
23
|
Di Somma A, Moretta A, Canè C, Cirillo A, Duilio A. Antimicrobial and Antibiofilm Peptides. Biomolecules 2020; 10:E652. [PMID: 32340301 PMCID: PMC7226136 DOI: 10.3390/biom10040652] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
The increasing onset of multidrug-resistant bacteria has propelled microbiology research towards antimicrobial peptides as new possible antibiotics from natural sources. Antimicrobial peptides are short peptides endowed with a broad range of activity against both Gram-positive and Gram-negative bacteria and are less prone to trigger resistance. Besides their activity against planktonic bacteria, many antimicrobial peptides also show antibiofilm activity. Biofilms are ubiquitous in nature, having the ability to adhere to virtually any surface, either biotic or abiotic, including medical devices, causing chronic infections that are difficult to eradicate. The biofilm matrix protects bacteria from hostile environments, thus contributing to the bacterial resistance to antimicrobial agents. Biofilms are very difficult to treat, with options restricted to the use of large doses of antibiotics or the removal of the infected device. Antimicrobial peptides could represent good candidates to develop new antibiofilm drugs as they can act at different stages of biofilm formation, on disparate molecular targets and with various mechanisms of action. These include inhibition of biofilm formation and adhesion, downregulation of quorum sensing factors, and disruption of the pre-formed biofilm. This review focuses on the proprieties of antimicrobial and antibiofilm peptides, with a particular emphasis on their mechanism of action, reporting several examples of peptides that over time have been shown to have activity against biofilm.
Collapse
Affiliation(s)
- Angela Di Somma
- Dipartimento di Scienze Chimiche, Università Federico II, 80126 Naples, Italy; (A.D.S.); (C.C.)
- Istituto Nazionale Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| | - Antonio Moretta
- Dipartimento di Scienze, Università degli Studi della Basilicata, 85100 Potenza, Italy;
| | - Carolina Canè
- Dipartimento di Scienze Chimiche, Università Federico II, 80126 Naples, Italy; (A.D.S.); (C.C.)
| | | | - Angela Duilio
- Dipartimento di Scienze Chimiche, Università Federico II, 80126 Naples, Italy; (A.D.S.); (C.C.)
| |
Collapse
|
24
|
Liu Q, Li P, Luo H, Curtiss R, Kong Q. Attenuated Salmonella Typhimurium expressing Salmonella Paratyphoid A O-antigen induces protective immune responses against two Salmonella strains. Virulence 2019; 10:82-96. [PMID: 31874075 PMCID: PMC6363073 DOI: 10.1080/21505594.2018.1559673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/26/2018] [Accepted: 12/09/2018] [Indexed: 12/17/2022] Open
Abstract
Salmonella enterica serovar Paratyphi A is the main causative agent of paratyphoid fever in many Asian countries. As paratyphoid is spread by the fecal-oral route, the most effective means of controlling S. Paratyphi A infection is through the availability of clean water supplies and working sanitation services. Because sanitation facilities improve slowly in these poor areas and antibiotic resistance is severe, the development of a safe and effective vaccine remains a priority for controlling the spread of paratyphoid disease. In this study, we investigated the strategy of heterologous O-antigenic O2 serotype (S. Paratyphi A characterized) conversion in S. Typhimurium to prevent paratyphoid infections. A series of S. Typhimurium mutants were constructed with replacement of abe, wzxB1 and wbaVB1 genes with respective prt-tyvA1, wzxA1 and wbaVA1, and the results showed that only three genes including prt, wbaVA1 and wzxA1 from S. Paratyphi A presence enable S. Typhimurium to sufficiently express O2 antigen polysaccharide. We also constructed a series of live attenuated S. Typhimurium vaccine candidates expressing heterologous O2 O-antigens, and a mouse model was used to evaluate the immunogenicity of live vaccines. ELISA data showed that vaccine candidates could induce a comparatively high level of S. Paratyphi A and/or S. Typhimurium LPS-specific IgG and IgA responses in murine model, and IgG2a levels were consistently higher than IgG1 levels. Moreover, the functional properties of serum antibodies were evaluated using in vitro C3 complement deposition and opsonophagocytic assays. Our work highlights the potential for developing S. Typhimurium live vaccines against S. Paratyphi A.
Collapse
Affiliation(s)
- Qing Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Pei Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Hongyan Luo
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Qingke Kong
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
25
|
Anandan A, Vrielink A. Structure and function of lipid A-modifying enzymes. Ann N Y Acad Sci 2019; 1459:19-37. [PMID: 31553069 DOI: 10.1111/nyas.14244] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/30/2022]
Abstract
Lipopolysaccharides are complex molecules found in the cell envelop of many Gram-negative bacteria. The toxic activity of these molecules has led to the terminology of endotoxins. They provide bacteria with structural integrity and protection from external environmental conditions, and they interact with host signaling receptors to induce host immune responses. Bacteria have evolved enzymes that act to modify lipopolysaccharides, particularly the lipid A region of the molecule, to enable the circumvention of host immune system responses. These modifications include changes to lipopolysaccharide by the addition of positively charged sugars, such as N-Ara4N, and phosphoethanolamine (pEtN). Other modifications include hydroxylation, acylation, and deacylation of fatty acyl chains. We review the two-component regulatory mechanisms for enzymes that carry out these modifications and provide details of the structures of four enzymes (PagP, PagL, pEtN transferases, and ArnT) that modify the lipid A portion of lipopolysaccharides. We focus largely on the three-dimensional structures of these enzymes, which provide an understanding of how their substrate binding and catalytic activities are mediated. A structure-function-based understanding of these enzymes provides a platform for the development of novel therapeutics to treat antibiotic resistance.
Collapse
Affiliation(s)
- Anandhi Anandan
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
26
|
|
27
|
Identification of PGN_1123 as the Gene Encoding Lipid A Deacylase, an Enzyme Required for Toll-Like Receptor 4 Evasion, in Porphyromonas gingivalis. J Bacteriol 2019; 201:JB.00683-18. [PMID: 30782639 DOI: 10.1128/jb.00683-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/12/2019] [Indexed: 01/09/2023] Open
Abstract
Removal of one acyl chain from bacterial lipid A by deacylase activity is a mechanism used by many pathogenic bacteria to evade the host's Toll-like receptor 4 (TLR4)-mediated innate immune response. In Porphyromonas gingivalis, a periodontal pathogen, lipid A deacylase activity converts a majority of the initially synthesized penta-acylated lipid A, a TLR4 agonist, to tetra-acylated structures, which effectively evade TLR4 sensing by being either inert or antagonistic at TLR4. In this paper, we report successful identification of the gene that encodes the P. gingivalis lipid A deacylase enzyme. This gene, PGN_1123 in P. gingivalis 33277, is highly conserved within P. gingivalis, and putative orthologs are phylogenetically restricted to the Bacteroidetes phylum. Lipid A of ΔPGN_1123 mutants is penta-acylated and devoid of tetra-acylated structures, and the mutant strain provokes a strong TLR4-mediated proinflammatory response, in contrast to the negligible response elicited by wild-type P. gingivalis Heterologous expression of PGN_1123 in Bacteroides thetaiotaomicron promoted lipid A deacylation, confirming that PGN_1123 encodes the lipid A deacylase enzyme.IMPORTANCE Periodontitis, commonly referred to as gum disease, is a chronic inflammatory condition that affects a large proportion of the population. Porphyromonas gingivalis is a bacterium closely associated with periodontitis, although how and if it is a cause for the disease are not known. It has a formidable capacity to dampen the host's innate immune response, enabling its persistence in diseased sites and triggering microbial dysbiosis in animal models of infection. P. gingivalis is particularly adept at evading the host's TLR4-mediated innate immune response by modifying the structure of lipid A, the TLR4 ligand. In this paper, we report identification of the gene encoding lipid A deacylase, a key enzyme that modifies lipid A to TLR4-evasive structures.
Collapse
|
28
|
Abstract
The cell envelope is the first line of defense between a bacterium and the world-at-large. Often, the initial steps that determine the outcome of chemical warfare, bacteriophage infections, and battles with other bacteria or the immune system greatly depend on the structure and composition of the bacterial cell surface. One of the most studied bacterial surface molecules is the glycolipid known as lipopolysaccharide (LPS), which is produced by most Gram-negative bacteria. Much of the initial attention LPS received in the early 1900s was owed to its ability to stimulate the immune system, for which the glycolipid was commonly known as endotoxin. It was later discovered that LPS also creates a permeability barrier at the cell surface and is a main contributor to the innate resistance that Gram-negative bacteria display against many antimicrobials. Not surprisingly, these important properties of LPS have driven a vast and still prolific body of literature for more than a hundred years. LPS research has also led to pioneering studies in bacterial envelope biogenesis and physiology, mostly using Escherichia coli and Salmonella as model systems. In this review, we will focus on the fundamental knowledge we have gained from studies of the complex structure of the LPS molecule and the biochemical pathways for its synthesis, as well as the transport of LPS across the bacterial envelope and its assembly at the cell surface.
Collapse
|
29
|
Plasmid-Mediated Colistin Resistance in Salmonella enterica: A Review. Microorganisms 2019; 7:microorganisms7020055. [PMID: 30791454 PMCID: PMC6406434 DOI: 10.3390/microorganisms7020055] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 11/16/2022] Open
Abstract
Colistin is widely used in food-animal production. Salmonella enterica is a zoonotic pathogen, which can pass from animal to human microbiota through the consumption of contaminated food, and cause disease, often severe, especially in young children, elderly and immunocompromised individuals. Recently, plasmid-mediated colistin resistance was recognised; mcr-like genes are being identified worldwide. Colistin is not an antibiotic used to treat Salmonella infections, but has been increasingly used as one of the last treatment options for carbapenem resistant Enterobacteria in human infections. The finding of mobilizable mcr-like genes became a global concern due to the possibility of horizontal transfer of the plasmid that often carry resistance determinants to beta-lactams and/or quinolones. An understanding of the origin and dissemination of mcr-like genes in zoonotic pathogens such as S. enterica will facilitate the management of colistin use and target interventions to prevent further spread. The main objective of this review was to collect epidemiological data about mobilized colistin resistance in S. enterica, describing the mcr variants, identified serovars, origin of the isolate, country and other resistance genes located in the same genetic platform.
Collapse
|
30
|
Klein G, Raina S. Regulated Assembly of LPS, Its Structural Alterations and Cellular Response to LPS Defects. Int J Mol Sci 2019; 20:ijms20020356. [PMID: 30654491 PMCID: PMC6358824 DOI: 10.3390/ijms20020356] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/21/2022] Open
Abstract
Distinguishing feature of the outer membrane (OM) of Gram-negative bacteria is its asymmetry due to the presence of lipopolysaccharide (LPS) in the outer leaflet of the OM and phospholipids in the inner leaflet. Recent studies have revealed the existence of regulatory controls that ensure a balanced biosynthesis of LPS and phospholipids, both of which are essential for bacterial viability. LPS provides the essential permeability barrier function and act as a major virulence determinant. In Escherichia coli, more than 100 genes are required for LPS synthesis, its assembly at inner leaflet of the inner membrane (IM), extraction from the IM, translocation to the OM, and in its structural alterations in response to various environmental and stress signals. Although LPS are highly heterogeneous, they share common structural elements defining their most conserved hydrophobic lipid A part to which a core polysaccharide is attached, which is further extended in smooth bacteria by O-antigen. Defects or any imbalance in LPS biosynthesis cause major cellular defects, which elicit envelope responsive signal transduction controlled by RpoE sigma factor and two-component systems (TCS). RpoE regulon members and specific TCSs, including their non-coding arm, regulate incorporation of non-stoichiometric modifications of LPS, contributing to LPS heterogeneity and impacting antibiotic resistance.
Collapse
Affiliation(s)
- Gracjana Klein
- Unit of Bacterial Genetics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Satish Raina
- Unit of Bacterial Genetics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
31
|
Lipid A Remodeling Is a Pathoadaptive Mechanism That Impacts Lipopolysaccharide Recognition and Intracellular Survival of Burkholderia pseudomallei. Infect Immun 2018; 86:IAI.00360-18. [PMID: 30037795 PMCID: PMC6204721 DOI: 10.1128/iai.00360-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022] Open
Abstract
Burkholderia pseudomallei causes the severe disease melioidosis. The bacterium subverts the host immune system and replicates inside cells, and host mortality results primarily from sepsis-related complications. Burkholderia pseudomallei causes the severe disease melioidosis. The bacterium subverts the host immune system and replicates inside cells, and host mortality results primarily from sepsis-related complications. Lipopolysaccharide (LPS) is a major virulence factor and mediator of sepsis that many pathogens capable of intracellular growth modify to reduce their immunological “footprint.” The binding strength of B. pseudomallei LPS for human LPS binding protein (hLBP) was measured using surface plasmon resonance. The structures of lipid A isolated from B. pseudomallei under different temperatures were analyzed by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS), and the gene expression of two lipid A remodeling genes, lpxO and pagL, was investigated. The LPS was characterized for its ability to trigger tumor necrosis factor alpha (TNF-α) release and to activate caspase-11-triggered pyroptosis by introduction of LPS into the cytosol. Lipid A from long-term chronic-infection isolates was isolated and characterized by MALDI-TOF MS and also by the ability to trigger caspase-11-mediated cell death. Lipid A from B. pseudomallei 1026b lpxO and pagL mutants were characterized by positive- and negative-mode MALDI-TOF MS to ultimately identify their role in lipid A structural modifications. Replication of lpxO and pagL mutants and their complements within macrophages showed that lipid A remodeling can effect growth in host cells and activation of caspase-11-mediated cytotoxicity.
Collapse
|
32
|
Homologous Recombination in Core Genomes Facilitates Marine Bacterial Adaptation. Appl Environ Microbiol 2018; 84:AEM.02545-17. [PMID: 29572211 DOI: 10.1128/aem.02545-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/20/2018] [Indexed: 01/01/2023] Open
Abstract
Acquisition of ecologically relevant genes is common among ocean bacteria, but whether it has a major impact on genome evolution in marine environments remains unknown. Here, we analyzed the core genomes of 16 phylogenetically diverse and ecologically relevant bacterioplankton lineages, each consisting of up to five genomes varying at the strain level. Statistical approaches identified from each lineage up to ∼50 loci showing anomalously high divergence at synonymous sites, which is best explained by recombination with distantly related organisms. The enriched gene categories in these outlier loci match well with the characteristics previously identified as the key phenotypes of these lineages. Examples are antibiotic synthesis and detoxification in Phaeobacter inhibens, exopolysaccharide production in Alteromonas macleodii, hydrocarbon degradation in Marinobacter hydrocarbonoclasticus, and cold adaptation in Pseudoalteromonas haloplanktis Intriguingly, the outlier loci feature polysaccharide catabolism in Cellulophaga baltica but not in Cellulophaga lytica, consistent with their primary habitat preferences in macroalgae and beach sands, respectively. Likewise, analysis of Prochlorococcus showed that photosynthesis-related genes listed in the outlier loci are found only in the high-light-adapted ecotype and not in the low-light adapted ecotype. These observations strongly suggest that recombination with distant relatives is a key mechanism driving the ecological diversification among marine bacterial lineages.IMPORTANCE Acquisition of new metabolic genes has been known as an important mechanism driving bacterial evolution and adaptation in the ocean, but acquisition of novel alleles of existing genes and its potential ecological role have not been examined. Guided by population genetic theories, our genomic analysis showed that divergent allele acquisition is prevalent in phylogenetically diverse marine bacterial lineages and that the affected loci often encode metabolic functions that underlie the known ecological roles of the lineages under study.
Collapse
|
33
|
Song X, Li C, Qi K, Tu J, Liu H, Xue T. The role of the outer membrane protein gene ybjX in the pathogenicity of avian pathogenic Escherichia coli. Avian Pathol 2018. [DOI: 10.1080/03079457.2018.1448053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Xiangjun Song
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Chunxiao Li
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Hongmei Liu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Ting Xue
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People’s Republic of China
| |
Collapse
|
34
|
Xiao X, Sankaranarayanan K, Khosla C. Biosynthesis and structure-activity relationships of the lipid a family of glycolipids. Curr Opin Chem Biol 2017; 40:127-137. [PMID: 28942130 DOI: 10.1016/j.cbpa.2017.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 10/18/2022]
Abstract
Lipopolysaccharide (LPS), a glycolipid found in the outer membrane of Gram-negative bacteria, is a potent elicitor of innate immune responses in mammals. A typical LPS molecule is composed of three different structural domains: a polysaccharide called the O-antigen, a core oligosaccharide, and Lipid A. Lipid A is the amphipathic glycolipid moiety of LPS. It stimulates the immune system by tightly binding to Toll-like receptor 4. More recently, Lipid A has also been shown to activate intracellular caspase-4 and caspase-5. An impressive diversity is observed in Lipid A structures from different Gram-negative bacteria, and it is well established that subtle changes in chemical structure can result in dramatically different immune activities. For example, Lipid A from Escherichia coli is highly toxic to humans, whereas a biosynthetic precursor called Lipid IVA blocks this toxic activity, and monophosphoryl Lipid A from Salmonella minnesota is a vaccine adjuvant. Thus, an understanding of structure-activity relationships in this glycolipid family could be used to design useful immunomodulatory agents. Here we review the biosynthesis, modification, and structure-activity relationships of Lipid A.
Collapse
Affiliation(s)
- Xirui Xiao
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
| | | | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States; Stanford ChEM-H, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
35
|
Volgers C, Savelkoul PHM, Stassen FRM. Gram-negative bacterial membrane vesicle release in response to the host-environment: different threats, same trick? Crit Rev Microbiol 2017; 44:258-273. [PMID: 28741415 DOI: 10.1080/1040841x.2017.1353949] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bacteria are confronted with a multitude of stressors when occupying niches within the host. These stressors originate from host defense mechanisms, other bacteria during niche competition or result from physiological challenges such as nutrient limitation. To counteract these stressors, bacteria have developed a stress-induced network to mount the adaptations required for survival. These stress-induced adaptations include the release of membrane vesicles from the bacterial envelope. Membrane vesicles can provide bacteria with a plethora of immediate and ultimate benefits for coping with environmental stressors. This review addresses how membrane vesicles aid Gram-negative bacteria to cope with host-associated stress factors, focusing on vesicle biogenesis and the physiological functions. As many of the pathways, that drive vesicle biogenesis, confer we propose that shedding of membrane vesicles by Gram-negative bacteria entails an integrated part of general stress responses.
Collapse
Affiliation(s)
- Charlotte Volgers
- a Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM) , Maastricht University Medical Centre , Maastricht , The Netherlands
| | - Paul H M Savelkoul
- a Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM) , Maastricht University Medical Centre , Maastricht , The Netherlands.,b Department of Medical Microbiology and Infection Control , VU University Medical Center , Amsterdam , The Netherlands
| | - Frank R M Stassen
- a Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM) , Maastricht University Medical Centre , Maastricht , The Netherlands
| |
Collapse
|
36
|
Rangarajan M, Aduse-Opoku J, Hashim A, McPhail G, Luklinska Z, Haurat MF, Feldman MF, Curtis MA. LptO (PG0027) Is Required for Lipid A 1-Phosphatase Activity in Porphyromonas gingivalis W50. J Bacteriol 2017; 199:e00751-16. [PMID: 28320881 PMCID: PMC5424252 DOI: 10.1128/jb.00751-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/09/2017] [Indexed: 01/27/2023] Open
Abstract
Porphyromonas gingivalis produces outer membrane vesicles (OMVs) rich in virulence factors, including cysteine proteases and A-LPS, one of the two lipopolysaccharides (LPSs) produced by this organism. Previous studies had suggested that A-LPS and PG0027, an outer membrane (OM) protein, may be involved in OMV formation. Their roles in this process were examined by using W50 parent and the ΔPG0027 mutant strains. Inactivation of PG0027 caused a reduction in the yield of OMVs. Lipid A from cells and OMVs of P. gingivalis W50 and the ΔPG0027 mutant strains were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Lipid A from W50 cells contained bis-P-pentaacyl, mono-P-pentaacyl, mono-P-tetraacyl, non-P-pentaacyl, and non-P-tetraacyl species, whereas lipid A from ΔPG0027 mutant cells contained only phosphorylated species; nonphosphorylated species were absent. MALDI-TOF/TOF tandem MS of mono-P-pentaacyl (m/z 1,688) and mono-P-tetraacyl (m/z 1,448) lipid A from ΔPG0027 showed that both contained lipid A 1-phosphate, suggesting that the ΔPG0027 mutant strain lacked lipid A 1-phosphatase activity. The total phosphatase activities in the W50 and the ΔPG0027 mutant strains were similar, whereas the phosphatase activity in the periplasm of the ΔPG0027 mutant was lower than that in W50, supporting a role for PG0027 in lipid A dephosphorylation. W50 OMVs were enriched in A-LPS, and its lipid A did not contain nonphosphorylated species, whereas lipid A from the ΔPG0027 mutant (OMVs and cells) contained similar species. Thus, OMVs in P. gingivalis are apparently formed in regions of the OM enriched in A-LPS devoid of nonphosphorylated lipid A. Conversely, dephosphorylation of lipid A through a PG0027-dependent process is required for optimal formation of OMVs. Hence, the relative proportions of nonphosphorylated and phosphorylated lipid A appear to be crucial for OMV formation in this organism.IMPORTANCE Gram-negative bacteria produce outer membrane vesicles (OMVs) by "blebbing" of the outer membrane (OM). OMVs can be used offensively as delivery systems for virulence factors and defensively to aid in the colonization of a host and in the survival of the bacterium in hostile environments. Earlier studies using the oral anaerobe Porphyromonas gingivalis as a model organism to study the mechanism of OMV formation suggested that the OM protein PG0027 and one of the two lipopolysaccharides (LPSs) synthesized by this organism, namely, A-LPS, played important roles in OMV formation. We suggest a novel mechanism of OMV formation in P. gingivalis involving dephosphorylation of lipid A of A-LPS controlled/regulated by PG0027, which causes destabilization of the OM, resulting in blebbing and generation of OMVs.
Collapse
Affiliation(s)
- Minnie Rangarajan
- Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Joseph Aduse-Opoku
- Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Ahmed Hashim
- Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Graham McPhail
- Cellular Pathology, Barts Health NHS Trust, London, United Kingdom
| | - Zofia Luklinska
- Nanovision Centre, Advanced Electron Microscopy, School of Engineering & Materials Science, Queen Mary University of London, London, United Kingdom
| | - M Florencia Haurat
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mario F Feldman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Michael A Curtis
- Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
37
|
The Type II Secretion System of Legionella pneumophila Dampens the MyD88 and Toll-Like Receptor 2 Signaling Pathway in Infected Human Macrophages. Infect Immun 2017; 85:IAI.00897-16. [PMID: 28138020 DOI: 10.1128/iai.00897-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/24/2017] [Indexed: 12/25/2022] Open
Abstract
Previously, we reported that mutants of Legionella pneumophila lacking a type II secretion (T2S) system elicit higher levels of cytokines (e.g., interleukin-6 [IL-6]) following infection of U937 cells, a human macrophage-like cell line. We now show that this effect of T2S is also manifest upon infection of human THP-1 macrophages and peripheral blood monocytes but does not occur during infection of murine macrophages. Supporting the hypothesis that T2S acts to dampen the triggering of an innate immune response, we observed that the mitogen-activated protein kinase (MAPK) and nuclear transcription factor kappa B (NF-κB) pathways are more highly stimulated upon infection with the T2S mutant than upon infection with the wild type. By using short hairpin RNA to deplete proteins involved in specific pathogen-associated molecular pattern (PAMP) recognition pathways, we determined that the dampening effect of the T2S system was not dependent on nucleotide binding oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible protein I (RIG-I)-like receptors (RLRs), double-stranded RNA (dsRNA)-dependent protein kinase receptor (PKR), or TIR domain-containing adaptor inducing interferon beta (TRIF) signaling or an apoptosis-associated speck-like protein containing a CARD (ASC)- or caspase-4-dependent inflammasome. However, the dampening effect of T2S on IL-6 production was significantly reduced upon gene knockdown of myeloid differentiation primary response 88 (MyD88), TANK binding kinase 1 (TBK1), or Toll-like receptor 2 (TLR2). These data indicate that the L. pneumophila T2S system dampens the signaling of the TLR2 pathway in infected human macrophages. We also document the importance of PKR, TRIF, and TBK1 in cytokine secretion during L. pneumophila infection of macrophages.
Collapse
|
38
|
Kawasaki K, Ernst RK, Miller SI. Purification and characterization of deacylated and/or palmitoylated lipid A species unique to Salmonella enterica serovar Typhimurium. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110010101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Salmonella enterica serovar Typhimurium virulence gene products PhoP/PhoQ sense host microenvironments to regulate the expression of a lipid A 3- O-deacylase, PagL, and a lipid A palmitoyltransferase, PagP. Therefore, deacylation and/or palmitoylation of lipid A could occur in Salmonellae adapted to host environments. The PhoP/PhoQ-regulated modification of lipid A alters host recognition and signaling, and may play an important role in host defense against Salmonellae infection. Here we report the purification and characterization of modified lipid A species. Deacylated lipid A, deacylated and palmitoylated lipid A, and palmitoylated lipid A species were generated in Escherichia coli cells heterologously expressing salmonellae PagL and/or PagP, and then purified by sequential thin-layer chromatography. The purified lipid A species showed m/z values that correspond to single lipid A species on mass spectrometry analysis. The modified lipid A species showed reduced ability to induce cellular signaling through Toll-like receptor 4, suggesting a specific function of the lipid A modifications in the pathogenesis of salmonellae infection.
Collapse
Affiliation(s)
- Kiyoshi Kawasaki
- Department of Microbiology, University of Washington, Seattle, Washington, USA,
| | - Robert K. Ernst
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Samuel I. Miller
- Department of Microbiology, University of Washington, Seattle, Washington, USA, Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
39
|
Kawasaki K, Ernst RK, Miller SI. Deacylation and palmitoylation of lipid A by Salmonellae outer membrane enzymes modulate host signaling through Toll-like receptor 4. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519040100061001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Salmonella typhimurium virulence gene products, PhoP/PhoQ sense host micro-environments to regulate the expression of a lipid A 3- O-deacylase, PagL, and a lipid A palmitoyltransferase, PagP. Therefore, deacylation and/or palmitoylation of lipid A could occur in Salmonellae adapted to host environments. The acylation state of lipid A can alter host recognition and signaling by Toll-like receptor (TLR) 4, and may play an important role in host defenses against Salmonellae infection. Deacylated lipid A, deacylated and palmitoylated lipid A, palmitoylated lipid A, and unmodified lipid A species were purified, and the activity was examined using cell lines expressing recombinant human or mouse TLR4. Compared with unmodified lipid A, the modified lipid A species are 10—100-fold less active. These results suggest that PagL and PagP modify lipid A to reduce TLR4-signaling as part of Salmonellae adaptation to the host environment.
Collapse
Affiliation(s)
- Kiyoshi Kawasaki
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Robert K. Ernst
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Samuel I. Miller
- Department of Microbiology, University of Washington, Seattle, Washington, USA, Department of Genome Sciences, University of Washington, Seattle, Washington, USA,
| |
Collapse
|
40
|
Rustam T, McClean S, Newcombe J, McFadden J, Eales-Reynolds LJ. Reduced toxicity of lipo-oligosaccharide from a phoP mutant of Neisseria meningitidis: an in vitro demonstration. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120010401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PhoP is part of a two-component regulatory system, which we have previously demonstrated in Neisseria meningitidis and shown to be an important regulator of virulence in an in vivo model. The phoP mutant clearly induced cross-species reactive antibodies and lacks the obvious toxic effects of the wild-type strain. In the current study, we demonstrate distinct differences between the wild-type and mutant strains in an in vitro model of toxicity. At concentrations likely to be present early in an infection, the mutant was more efficient at stimulating an inflammatory response than the wild-type. However, at the concentrations likely to be found at the site of a fulminant infection, the mutant showed significantly weaker ability to stimulate the release of pro-inflammatory cytokines and the production of reactive oxygen and nitrogen intermediates. SDS-PAGE analysis of the isolated LOS from the wild-type and mutant showed a difference in the level of expression of two major species of LOS, a finding which was supported by preliminary MALDI-TOF analysis. These results suggest that the altered toxicity of the mutant may be due to the increased expression of a conformationally altered LOS species, which shows less affinity and avidity for the cellular receptors responsible for the inflammatory response to endotoxin.
Collapse
Affiliation(s)
- Tarick Rustam
- Institute for Biological and Biomolecular Science, University of Portsmouth, Hampshire, UK
| | - Stephen McClean
- School of Biomedical Sciences, University of Ulster, Coleraine, Co Londonderry, UK
| | - Jane Newcombe
- School of Biomedical and Molecular Science, University of Surrey, Guildford, UK
| | - Johnjoe McFadden
- School of Biomedical and Molecular Science, University of Surrey, Guildford, UK
| | | |
Collapse
|
41
|
Trent MS, Stead CM, Tran AX, Hankins JV. Invited review: Diversity of endotoxin and its impact on pathogenesis. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120040201] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lipopolysaccharide or LPS is localized to the outer leaflet of the outer membrane and serves as the major surface component of the bacterial cell envelope. This remarkable glycolipid is essential for virtually all Gram-negative organisms and represents one of the conserved microbial structures responsible for activation of the innate immune system. For these reasons, the structure, function, and biosynthesis of LPS has been an area of intense research. The LPS of a number of bacteria is composed of three distinct regions — lipid A, a short core oligosaccharide, and the O-antigen polysaccharide. The lipid A domain, also known as endotoxin, anchors the molecule in the outer membrane and is the bioactive component recognized by TLR4 during human infection. Overall, the biochemical synthesis of lipid A is a highly conserved process; however, investigation of the lipid A structures of various organisms shows an impressive amount of diversity. These differences can be attributed to the action of latent enzymes that modify the canonical lipid A molecule. Variation of the lipid A domain of LPS serves as one strategy utilized by Gram-negative bacteria to promote survival by providing resistance to components of the innate immune system and helping to evade recognition by TLR4. This review summarizes the biochemical machinery required for the production of diverse lipid A structures of human pathogens and how structural modification of endotoxin impacts pathogenesis.
Collapse
Affiliation(s)
- M. Stephen Trent
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA,
| | - Christopher M. Stead
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - An X. Tran
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jessica V. Hankins
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
42
|
Elhenawy W, Bording-Jorgensen M, Valguarnera E, Haurat MF, Wine E, Feldman MF. LPS Remodeling Triggers Formation of Outer Membrane Vesicles in Salmonella. mBio 2016; 7:e00940-16. [PMID: 27406567 PMCID: PMC4958258 DOI: 10.1128/mbio.00940-16] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/09/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Outer membrane vesicles (OMV) are proposed to mediate multiple functions during pathogenesis and symbiosis. However, the mechanisms responsible for OMV formation remain poorly understood. It has been shown in eukaryotic membranes that lipids with an inverted-cone shape favor the formation of positive membrane curvatures. Based on these studies, we formulated the hypothesis that lipid A deacylation might impose shape modifications that result in the curvature of the outer membrane (OM) and subsequent OMV formation. We tested the effect of lipid A remodeling on OMV biogenesis employing Salmonella enterica serovar Typhimurium as a model organism. Expression of the lipid A deacylase PagL resulted in increased vesiculation, without inducing an envelope stress response. Mass spectrometry analysis revealed profound differences in the patterns of lipid A in OM and OMV, with accumulation of deacylated lipid A forms exclusively in OMV. OMV biogenesis by intracellular bacteria upon macrophage infection was drastically reduced in a pagL mutant strain. We propose a novel mechanism for OMV biogenesis requiring lipid A deacylation in the context of a multifactorial process that involves the orchestrated remodeling of the outer membrane. IMPORTANCE The role of lipid remodeling in vesiculation is well documented in eukaryotes. Similarly, bacteria produce membrane-derived vesicles; however, the molecular mechanisms underlying their production are yet to be determined. In this work, we investigated the role of outer membrane remodeling in OMV biogenesis in S Typhimurium. We showed that the expression of the lipid A deacylase PagL results in overvesiculation with deacylated lipid A accumulation exclusively in OMV. An S Typhimurium ΔpagL strain showed a significant reduction in intracellular OMV secretion relative to the wild-type strain. Our results suggest a novel mechanism for OMV biogenesis that involves outer membrane remodeling through lipid A modification. Understanding how OMV are produced by bacteria is important to advance our understanding of the host-pathogen interactions.
Collapse
Affiliation(s)
- Wael Elhenawy
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Ezequiel Valguarnera
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, St. Louis, Missouri, USA
| | - M Florencia Haurat
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Eytan Wine
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Mario F Feldman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
43
|
Maldonado RF, Sá-Correia I, Valvano MA. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol Rev 2016; 40:480-93. [PMID: 27075488 PMCID: PMC4931227 DOI: 10.1093/femsre/fuw007] [Citation(s) in RCA: 401] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/23/2015] [Accepted: 03/10/2016] [Indexed: 12/16/2022] Open
Abstract
The Gram-negative bacterial lipopolysaccharide (LPS) is a major component of the outer membrane that plays a key role in host-pathogen interactions with the innate immune system. During infection, bacteria are exposed to a host environment that is typically dominated by inflammatory cells and soluble factors, including antibiotics, which provide cues about regulation of gene expression. Bacterial adaptive changes including modulation of LPS synthesis and structure are a conserved theme in infections, irrespective of the type or bacteria or the site of infection. In general, these changes result in immune system evasion, persisting inflammation and increased antimicrobial resistance. Here, we review the modifications of LPS structure and biosynthetic pathways that occur upon adaptation of model opportunistic pathogens (Pseudomonas aeruginosa, Burkholderia cepacia complex bacteria, Helicobacter pylori and Salmonella enterica) to chronic infection in respiratory and gastrointestinal sites. We also discuss the molecular mechanisms of these variations and their role in the host-pathogen interaction.
Collapse
Affiliation(s)
- Rita F. Maldonado
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| | - Miguel A. Valvano
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
- Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
44
|
Basheer SM, Bouchez V, Novikov A, Augusto LA, Guiso N, Caroff M. Structure activity characterization of Bordetella petrii lipid A, from environment to human isolates. Biochimie 2016; 120:87-95. [DOI: 10.1016/j.biochi.2015.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/06/2015] [Indexed: 11/30/2022]
|
45
|
Sweet CR, Watson RE, Landis CA, Smith JP. Temperature-Dependence of Lipid A Acyl Structure in Psychrobacter cryohalolentis and Arctic Isolates of Colwellia hornerae and Colwellia piezophila. Mar Drugs 2015; 13:4701-20. [PMID: 26264000 PMCID: PMC4557000 DOI: 10.3390/md13084701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 12/21/2022] Open
Abstract
Lipid A is a fundamental Gram-negative outer membrane component and the essential element of lipopolysaccharide (endotoxin), a potent immunostimulatory molecule. This work describes the metabolic adaptation of the lipid A acyl structure by Psychrobacter cryohalolentis at various temperatures in its facultative psychrophilic growth range, as characterized by MALDI-TOF MS and FAME GC-MS. It also presents the first elucidation of lipid A structure from the Colwellia genus, describing lipid A from strains of Colwellia hornerae and Colwellia piezophila, which were isolated as primary cultures from Arctic fast sea ice and identified by 16S rDNA sequencing. The Colwellia strains are obligate psychrophiles, with a growth range restricted to 15 °C or less. As such, these organisms have less need for fluidity adaptation in the acyl moiety of the outer membrane, and they do not display alterations in lipid A based on growth temperature. Both Psychrobacter and Colwellia make use of extensive single-methylene variation in the size of their lipid A molecules. Such single-carbon variations in acyl size were thought to be restricted to psychrotolerant (facultative) species, but its presence in these Colwellia species shows that odd-chain acyl units and a single-carbon variation in lipid A structure are present in obligate psychrophiles, as well.
Collapse
Affiliation(s)
- Charles R Sweet
- Chemistry Department, 572M Holloway Road, United States Naval Academy, Annapolis, MD 21402, USA.
| | - Rebecca E Watson
- Chemistry Department, 572M Holloway Road, United States Naval Academy, Annapolis, MD 21402, USA.
| | - Corinne A Landis
- Chemistry Department, 572M Holloway Road, United States Naval Academy, Annapolis, MD 21402, USA.
| | - Joseph P Smith
- Oceanography Department, 572C Holloway Road, United States Naval Academy, Annapolis, MD 21402, USA.
| |
Collapse
|
46
|
Nuri R, Shprung T, Shai Y. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3089-100. [PMID: 26051126 DOI: 10.1016/j.bbamem.2015.05.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 11/15/2022]
Abstract
Multidrug resistance bacteria are a major concern worldwide. These pathogens cannot be treated with conventional antibiotics and thus alternative therapeutic agents are needed. Antimicrobial peptides (AMPs) are considered to be good candidates for this purpose. Most AMPs are short and positively charged amphipathic peptides, which are found in all known forms of life. AMPs are known to kill bacteria by binding to the negatively charged bacterial surface, and in most cases cause membrane disruption. Resistance toward AMPs can be developed, by modification of bacterial surface molecules, secretion of protective material and up-regulation or elimination of specific proteins. Because of the general mechanisms of attachment and action of AMPs, bacterial resistance to AMPs often involves biophysical and biochemical changes such as surface rigidity, cell wall thickness, surface charge, as well as membrane and cell wall modification. Here we focus on the biophysical, surface and surrounding changes that bacteria undergo in acquiring resistance to AMPs. In addition we discuss the question of whether bacterial resistance to administered AMPs might compromise our innate immunity to endogenous AMPs. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Reut Nuri
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tal Shprung
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
47
|
Liu Q, Li Y, Zhao X, Yang X, Liu Q, Kong Q. Construction of Escherichia coli Mutant with Decreased Endotoxic Activity by Modifying Lipid A Structure. Mar Drugs 2015; 13:3388-406. [PMID: 26023843 PMCID: PMC4483635 DOI: 10.3390/md13063388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/22/2022] Open
Abstract
Escherichia coli BL21 (DE3) and its derivatives are widely used for the production of recombinant proteins, but these purified proteins are always contaminated with lipopolysaccharide (LPS). LPS is recognized by the toll-like receptor 4 and myeloid differentiation factor 2 complex of mammalian immune cells and leads to release of pro-inflammatory cytokines. It is a vital step to remove LPS from the proteins before use for therapeutic purpose. In this study, we constructed BL21 (DE3) ∆msbB28 ∆pagP38 mutant, which produces a penta-acylated LPS with reduced endotoxicity. The plasmids harboring pagL and/or lpxE were then introduced into this mutant to further modify the LPS. The new strain (S004) carrying plasmid pQK004 (pagL and lpxE) produced mono-phosphoryated tetra-acylated lipid A, which induces markedly less production of tumor necrosis factor-α in the RAW264.7 and IL-12 in the THP1, but still retains ability to produce recombinant proteins. This study provides a strategy to decrease endotoxic activity of recombinant proteins purified from E. coli BL21 backgrounds and a feasible approach to modify lipid A structure for alternative purposes such as mono-phosphoryl lipid A (MPL) as vaccine adjuvants.
Collapse
Affiliation(s)
- Qiong Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yanyan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xue Yang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qing Liu
- Department of Bioengineering, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qingke Kong
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
48
|
Reinforcing Lipid A Acylation on the Cell Surface of Acinetobacter baumannii Promotes Cationic Antimicrobial Peptide Resistance and Desiccation Survival. mBio 2015; 6:e00478-15. [PMID: 25991684 PMCID: PMC4442142 DOI: 10.1128/mbio.00478-15] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Acinetobacter baumannii is an emerging Gram-negative pathogen found in hospitals and intensive care units. In order to persist in hospital environments, A. baumannii withstands desiccative conditions and can rapidly develop multidrug resistance to conventional antibiotics. Cationic antimicrobial peptides (CAMPs) have served as therapeutic alternatives because they target the conserved lipid A component of the Gram-negative outer membrane to lyse the bacterial cell. However, many Gram-negative pathogenic bacteria, including A. baumannii, fortify their outer membrane with hepta-acylated lipid A to protect the cell from CAMP-dependent cell lysis. Whereas in Escherichia coli and Salmonella, increased production of the outer membrane acyltransferase PagP results in formation of protective hepta-acylated lipid A, which reinforces the lipopolysaccharide portion of the outer membrane barrier, A. baumannii does not carry a gene that encodes a PagP homolog. Instead, A. baumannii has evolved a PagP-independent mechanism to synthesize protective hepta-acylated lipid A. Taking advantage of a recently adapted A. baumannii genetic recombineering system, we characterized two putative acyltransferases in A. baumannii designated LpxLAb (A. baumannii LpxL) and LpxMAb (A. baumannii LpxM), which transfer one and two lauroyl (C12:0) acyl chains, respectively, during lipid A biosynthesis. Hepta-acylation of A. baumannii lipid A promoted resistance to vertebrate and polymyxin CAMPs, which are prescribed as last-resort treatment options. Intriguingly, our analysis also showed that LpxMAb-dependent acylation of lipid A is essential for A. baumannii desiccation survival, a key resistance mechanism for survival in hospital environments. Compounds that inhibit LpxMAb-dependent hepta-acylation of lipid A could act synergistically with CAMPs to provide innovative transmission prevention strategies and treat multidrug-resistant infections. IMPORTANCE Acinetobacter baumannii infections can be life threatening, and disease can progress in a variety of host tissues. Current antibiotic regimen and disinfectant strategies have failed to limit nosocomial A. baumannii infections. Instead, the rate of A. baumannii infection among health care communities has skyrocketed due to the bacterium's adaptability. Its aptitude for survival over extended periods on inanimate objects, such as catheters, respirators, and surfaces in intensive care units, or on the hands of health care workers and its ability to rapidly develop antibiotic resistance make A. baumannii a threat to health care communities. Emergence of multidrug- and extremely drug-resistant A. baumannii illustrates the ineffectiveness of current prevention and treatment options. Our analysis to understand how A. baumannii resists cationic antimicrobial peptide (CAMP)-mediated and desiccative killing revealed two lipid A acyltransferases that produce protective hepta-acylated lipid A. Our work suggests that inhibiting lipid A biosynthesis by targeting the acyltransferase LpxMAb (A. baumannii LpxM) could provide a novel target to combat this pathogen.
Collapse
|
49
|
Di Lorenzo F, De Castro C, Lanzetta R, Parrilli M, Silipo A, Molinaro A. Lipopolysaccharides as Microbe-associated Molecular Patterns: A Structural Perspective. CARBOHYDRATES IN DRUG DESIGN AND DISCOVERY 2015. [DOI: 10.1039/9781849739993-00038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The lipopolysaccharide (LPS) macromolecule is the major constituent of the external leaflet of the Gram-negative outer membrane, exerting a plethora of biological activities in animals and plants. Among all, it represents a defensive barrier which helps bacteria to resist antimicrobial compounds and external stress factors and is involved in most aspects of host–bacterium interactions such as recognition, adhesion and colonization. One of the most interesting and studied LPS features is its key role in the pathogenesis of Gram-negative infections potentially causing fever or circulatory shock. On the other hand, the LPS acts as a beneficial factor for the host since it is recognized by specific receptors of the host innate immune system; this recognition activates the host defenses culminating, in most cases, in destruction of the pathogen. Most of the biological roles of the LPS are strictly related to its primary structure; thus knowledge of the structural architecture of such a macromolecule, which is different even among bacterial strains belonging to the same species, is a first step but is essential in order to understand the molecular bases of the wide variety of biological activities exerted by LPSs.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Cristina De Castro
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Michelangelo Parrilli
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| |
Collapse
|
50
|
Polymyxin B resistance and biofilm formation in Vibrio cholerae are controlled by the response regulator CarR. Infect Immun 2015; 83:1199-209. [PMID: 25583523 DOI: 10.1128/iai.02700-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Two-component systems play important roles in the physiology of many bacterial pathogens. Vibrio cholerae's CarRS two-component regulatory system negatively regulates expression of vps (Vibrio polysaccharide) genes and biofilm formation. In this study, we report that CarR confers polymyxin B resistance by positively regulating expression of the almEFG genes, whose products are required for glycine and diglycine modification of lipid A. We determined that CarR directly binds to the regulatory region of the almEFG operon. Similarly to a carR mutant, strains lacking almE, almF, and almG exhibited enhanced polymyxin B sensitivity. We also observed that strains lacking almE or the almEFG operon have enhanced biofilm formation. Our results reveal that CarR regulates biofilm formation and antimicrobial peptide resistance in V. cholerae.
Collapse
|