1
|
Harhangi MS, Simons SH, Bijma HH, Nguyen A, Nguyen TV, Kaitu’u-Lino T, Reiss IK, Jan Danser A, Broekhuizen M. Placental Endocannabinoid System: Focus on Preeclampsia and Cannabis Use. Hypertension 2025; 82:804-815. [PMID: 40238905 PMCID: PMC12002044 DOI: 10.1161/hypertensionaha.125.24934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND The endocannabinoid system (ECS) plays an important role in the early stages of pregnancy, while cannabis use during pregnancy associates with a greater risk of preeclampsia. This study quantified the placental ECS component mRNA levels in gestational age-matched healthy pregnant women, women with preeclampsia, and women who used cannabis throughout their pregnancy. Next, it compared the effects of the endogenous ECS agonists anandamide and 2-arachidonoylglycerol with those of the cannabinoid receptor type 1 and 2 agonists HU-210 and HU-308 in chorionic plate arteries. METHODS Placental mRNA levels were quantified by quantitative polymerase chain reaction. Vascular reactivity was studied with and without selective cannabinoid receptor type 1 and 2 antagonists. RESULTS mRNA levels of 1,2-diacylglycerol lipase α, responsible for 2-arachidonoylglycerol generation, were lowered in preeclampsia, while mRNA levels of the anandamide-synthesizing enzyme N-acyl phosphatidylethanolamine-specific phospholipase D were upregulated in cannabis users. Anandamide-induced relaxation in healthy pregnancy was mediated via cannabinoid receptors type 1 and 2, while 2-arachidonoylglycerol induced relaxation via cannabinoid receptor type 1. In preeclampsia, the effects of anandamide and 2-arachidonoylglycerol were unaltered but no longer involved cannabinoid receptors, while in cannabis users their effects were absent. HU-210 and HU-308 relaxed healthy, but not preeclamptic vessels. The NO donor sodium nitroprusside similarly relaxed healthy and preeclamptic vessels, while its effects in cannabis users were greatly reduced. CONCLUSIONS The ECS is disturbed in preeclampsia, and endogenous ECS agonists lose their capacity to dilate in cannabis users, while such use also diminishes NO signaling. These data provide mechanistic evidence against cannabis use during pregnancy.
Collapse
Affiliation(s)
- Madhavi S. Harhangi
- Division of Neonatology, Department of Neonatal and Pediatric Intensive Care (M.S.H., S.H.P.S., I.K.M.R., M.B.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (M.S.H., A.H.J.D., M.B.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Division of Obstetrics and Fetal Medicine (M.S.H., H.H.B.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Sinno H.P. Simons
- Division of Neonatology, Department of Neonatal and Pediatric Intensive Care (M.S.H., S.H.P.S., I.K.M.R., M.B.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hilmar H. Bijma
- Division of Obstetrics and Fetal Medicine (M.S.H., H.H.B.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anna Nguyen
- Mercy Hospital for Women, Department of Obstetrics, Gynaecology and Newborn Health, The University of Melbourne, Australia (A.N., T.-V.N., T.K.-L.)
| | - Tuong-Vi Nguyen
- Mercy Hospital for Women, Department of Obstetrics, Gynaecology and Newborn Health, The University of Melbourne, Australia (A.N., T.-V.N., T.K.-L.)
| | - Tu’uhevaha Kaitu’u-Lino
- Mercy Hospital for Women, Department of Obstetrics, Gynaecology and Newborn Health, The University of Melbourne, Australia (A.N., T.-V.N., T.K.-L.)
| | - Irwin K.M. Reiss
- Division of Neonatology, Department of Neonatal and Pediatric Intensive Care (M.S.H., S.H.P.S., I.K.M.R., M.B.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - A.H. Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (M.S.H., A.H.J.D., M.B.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Michelle Broekhuizen
- Division of Neonatology, Department of Neonatal and Pediatric Intensive Care (M.S.H., S.H.P.S., I.K.M.R., M.B.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (M.S.H., A.H.J.D., M.B.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Liu C, Fukui E, Matsumoto H. Molecular and cellular regulators of embryo implantation and their application in improving the implantation potential of IVF-derived blastocysts. Reprod Med Biol 2025; 24:e12633. [PMID: 39866379 PMCID: PMC11759885 DOI: 10.1002/rmb2.12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
Background In vitro fertilization (IVF) and embryo transfer (ET) are widely used in reproductive biology. Despite the transfer of high-quality blastocysts, the implantation rate of IVF-derived blastocysts remains low after ET. Methods This article provides a comprehensive review of current research on embryo implantation regulators and their application to improve the implantation potential of IVF-derived blastocysts. Main Findings The in vivo mouse model revealed selective proteolysis immediately after expression in activated blastocysts, that is, degradation of ERα expression in activated blastocysts regulated by the ubiquitin-proteasome pathway, followed by completion of blastocyst implantation. Treatment of blastocysts to induce appropriate protein expression during in vitro culture prior to ET is a useful approach for improving implantation rates. This approach showed that combined treatment with PRL, EGF, and 4-OH-E2 (PEC) improved the blastocyst implantation rates. Furthermore, arginine and leucine drive reactive oxygen species (ROS)-mediated integrin α5β1 expression and promote blastocyst implantation. Conclusion Findings based on analysis of molecular and cellular regulators are useful for improving the implantation potential of IVF-derived blastocysts. These approaches may help to elucidate the mechanisms underlying the completion of the blastocyst implantation, although further investigation is required to improve the success of implantation and pregnancy.
Collapse
Affiliation(s)
- Chunyan Liu
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiyaTochigiJapan
| | - Emiko Fukui
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiyaTochigiJapan
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiyaTochigiJapan
| | - Hiromichi Matsumoto
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiyaTochigiJapan
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiyaTochigiJapan
| |
Collapse
|
3
|
Rodrigues RJ, Marques JM, Köfalvi A. Cannabis, Endocannabinoids and Brain Development: From Embryogenesis to Adolescence. Cells 2024; 13:1875. [PMID: 39594623 PMCID: PMC11593331 DOI: 10.3390/cells13221875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The endocannabinoid signalling system (ECS) plays a critical role from the very beginning of embryogenesis. Accordingly, the ECS is engaged early on in nervous system development, starting from neurulation, supported by the identification of ECS components-both receptors and enzymes controlling endocannabinoid metabolism-at these early stages. In particular, regarding the brain, the ECS is involved in the tightly regulated sequence of events that comprise brain development, from neurogenesis to neuronal migration, morphological guidance for neuronal connectivity, and synaptic circuitry refinement. The importance of this broad role of the ECS across various brain development processes is further underscored by the growing understanding of the consequences of cannabis exposure at different developmental stages. Despite the considerable knowledge we have on the role of the ECS in brain development, significant gaps in our understanding remain, particularly regarding the long-term impact and underlying mechanisms of cannabis exposure at different developmental stages. This review provides an overview of the current state of knowledge on the role of the ECS throughout brain development, from embryogenesis to adulthood, and discusses the impact of cannabis exposure, especially during adolescence-a critical period of circuitry maturation and refinement coinciding with an increased risk of cannabis use.
Collapse
Affiliation(s)
- Ricardo J. Rodrigues
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Joana M. Marques
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Attila Köfalvi
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
4
|
Davoodi Nik B, Hashemi Karoii D, Favaedi R, Ramazanali F, Jahangiri M, Movaghar B, Shahhoseini M. Differential expression of ion channel coding genes in the endometrium of women experiencing recurrent implantation failures. Sci Rep 2024; 14:19822. [PMID: 39192025 PMCID: PMC11349755 DOI: 10.1038/s41598-024-70778-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Our study probed the differences in ion channel gene expression in the endometrium of women with Recurrent Implantation Failure (RIF) compared to fertile women. We analyzed the relative expression of genes coding for T-type Ca2+, ENaC, CFTR, and KCNQ1 channels in endometrial samples from 20 RIF-affected and 10 control women, aged 22-35, via microarray analysis and quantitative real-time PCR. Additionally, we examined DNA methylation in the regulatory region of KCNQ1 using ChIP real-time PCR. The bioinformatics component of our research included Gene Ontology analysis, protein-protein interaction networks, and signaling pathway mapping to identify key biological processes and pathways implicated in RIF. This led to the discovery of significant alterations in the expression of ion channel genes in RIF women's endometrium, most notably an overexpression of CFTR and reduced expression of SCNN1A, SCNN1B, SCNN1G, CACNA1H, and KCNQ1. A higher DNA methylation level of KCNQ1's regulatory region was also observed in RIF patients. Gene-set enrichment analysis highlighted a significant presence of genes involved with ion transport and membrane potential regulation, particularly in sodium and calcium channel complexes, which are vital for cation movement across cell membranes. Genes were also enriched in broader ion channel and transmembrane transporter complexes, underscoring their potential extensive role in cellular ion homeostasis and signaling. These findings suggest a potential involvement of ion channels in the pathology of implantation failure, offering new insights into the mechanisms behind RIF and possible therapeutic targets.
Collapse
Affiliation(s)
- Bahar Davoodi Nik
- Department of Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Danial Hashemi Karoii
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Raha Favaedi
- Department of Genetics, Reproductive Biomedicine Research Centre, Royan Institute for Reproductive Biomedicine, ACECR, No. 12, Hafez St., Banihashem Sq, Resalat Ave., P.O. Box: 19395-4644, Tehran, Iran
| | - Fariba Ramazanali
- Department of Endocrinology and Female Infertility, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Jahangiri
- Department of Embryology, Reproductive Biomedicine Research Centre, Royan Institute for Reproductive Biomedicine, ACECR, No. 12, Hafez St., Banihashem Sq, Resalat Ave., P.O. Box: 19395-4644, Tehran, Iran
| | - Bahar Movaghar
- Department of Embryology, Reproductive Biomedicine Research Centre, Royan Institute for Reproductive Biomedicine, ACECR, No. 12, Hafez St., Banihashem Sq, Resalat Ave., P.O. Box: 19395-4644, Tehran, Iran.
| | - Maryam Shahhoseini
- Department of Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
- Department of Genetics, Reproductive Biomedicine Research Centre, Royan Institute for Reproductive Biomedicine, ACECR, No. 12, Hafez St., Banihashem Sq, Resalat Ave., P.O. Box: 19395-4644, Tehran, Iran.
| |
Collapse
|
5
|
Podinic T, Limoges L, Monaco C, MacAndrew A, Minhas M, Nederveen J, Raha S. Cannabidiol Disrupts Mitochondrial Respiration and Metabolism and Dysregulates Trophoblast Cell Differentiation. Cells 2024; 13:486. [PMID: 38534330 PMCID: PMC10968792 DOI: 10.3390/cells13060486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Trophoblast differentiation is a crucial process in the formation of the placenta where cytotrophoblasts (CTs) differentiate and fuse to form the syncytiotrophoblast (ST). The bioactive components of cannabis, such as Δ9-THC, are known to disrupt trophoblast differentiation and fusion, as well as mitochondrial dynamics and respiration. However, less is known about the impact of cannabidiol (CBD) on trophoblast differentiation. Due to the central role of mitochondria in stem cell differentiation, we evaluated the impact of CBD on trophoblast mitochondrial function and differentiation. Using BeWo b30 cells, we observed decreased levels of mRNA for markers of syncytialization (GCM1, ERVW1, hCG) following 20 µM CBD treatment during differentiation. In CTs, CBD elevated transcript levels for the mitochondrial and cellular stress markers HSP60 and HSP70, respectively. Furthermore, CBD treatment also increased the lipid peroxidation and oxidative damage marker 4-hydroxynonenal. Mitochondrial membrane potential, basal respiration and ATP production were diminished with the 20 µM CBD treatment in both sub-lineages. mRNA levels for endocannabinoid system (ECS) components (FAAH, NAPEPLD, TRPV1, CB1, CB2, PPARγ) were altered differentially by CBD in CTs and STs. Overall, we demonstrate that CBD impairs trophoblast differentiation and fusion, as well as mitochondrial bioenergetics and redox homeostasis.
Collapse
Affiliation(s)
- Tina Podinic
- Graduate Program in Medical Sciences, Department of Pediatrics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada; (T.P.); (L.L.); (C.M.); (A.M.)
| | - Louise Limoges
- Graduate Program in Medical Sciences, Department of Pediatrics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada; (T.P.); (L.L.); (C.M.); (A.M.)
| | - Cristina Monaco
- Graduate Program in Medical Sciences, Department of Pediatrics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada; (T.P.); (L.L.); (C.M.); (A.M.)
| | - Andie MacAndrew
- Graduate Program in Medical Sciences, Department of Pediatrics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada; (T.P.); (L.L.); (C.M.); (A.M.)
| | - Mahek Minhas
- Department of Pediatrics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada; (M.M.); (J.N.)
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Joshua Nederveen
- Department of Pediatrics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada; (M.M.); (J.N.)
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Sandeep Raha
- Graduate Program in Medical Sciences, Department of Pediatrics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada; (T.P.); (L.L.); (C.M.); (A.M.)
| |
Collapse
|
6
|
Aikawa S, Hirota Y. Roles of lipid mediators in early pregnancy events. Reprod Med Biol 2024; 23:e12597. [PMID: 39010880 PMCID: PMC11247399 DOI: 10.1002/rmb2.12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Background Early pregnancy events, including embryo implantation, are critical for maintaining a healthy pregnancy and facilitating childbirth. Despite numerous signaling pathways implicated in establishing early pregnancy, a comprehensive understanding of implantation remains elusive. Methods This paper provides a comprehensive review of the current research on lipids in the context of early pregnancy, with a particular focus on feto-maternal communications. Main Findings Embryo implantation entails direct interaction between uterine tissues and embryos. Introducing embryos triggers significant changes in uterine epithelial morphology and stromal differentiation, facilitating embryo implantation through communication with uterine tissue. Studies employing genetic models and chemical compounds targeting enzymes and receptors have elucidated the crucial roles of lipid mediators-prostaglandins, lysophosphatidic acid, sphingosine-1-phosphate, and cannabinoids-in early pregnancy events. Conclusion Given the high conservation of lipid synthases and receptors across species, lipid mediators likely play pivotal roles in rodents and humans. Further investigations into lipids hold promise for developing novel diagnostic and therapeutic approaches for infertility in humans.
Collapse
Affiliation(s)
- Shizu Aikawa
- Department of Obstetrics and Gynecology Graduate School of Medicine, The University of Tokyo Tokyo Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology Graduate School of Medicine, The University of Tokyo Tokyo Japan
| |
Collapse
|
7
|
Pařízek A, Suchopár J, Laštůvka Z, Alblová M, Hill M, Dušková M. The Endocannabinoid System and Its Relationship to Human Reproduction. Physiol Res 2023; 72:S365-S380. [PMID: 38116770 DOI: 10.33549/physiolres.935229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
The endocannabinoid system is among the most important regulators of human reproduction. It already applies at the level of the sperm and the egg, plays an important role in the fertilization of the egg, its implantation, regulates the function of the placenta and participates in childbirth. The aim of this work is to summarize the knowledge accumulated so far and to show that the endocannabinoid system must be perfectly regulated in order to maintain a physiological pregnancy from implantation to delivery. Only an exceptional interplay of enzymes such as NAPE-PDL or FAAH, endogenous cannabinoids and cannabinoid receptors CB1 and CB2 can ensure the proper functioning of the reproductive organs and thus lead to delivery on time. Changes in the endocannabinoid system can lead to a number of pathological conditions, e.g., during blastocyst implantation, retardation of embryo development, impaired placental function or miscarriage. Soon, we can expect not only an understanding of all the regulatory events associated with the endocannabinoid system and other regulatory systems that participate in reproduction, but also several possibilities for pharmacotherapeutic interventions that can modify the formation, degradation and effect of endocannabinoids. It cannot be ruled out that some components of the endocannabinoid system could become a marker for monitoring pregnancy and childbirth.
Collapse
Affiliation(s)
- A Pařízek
- Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
8
|
Black T, Baccetto SL, Barnard IL, Finch E, McElroy DL, Austin-Scott FVL, Greba Q, Michel D, Zagzoog A, Howland JG, Laprairie RB. Characterization of cannabinoid plasma concentration, maternal health, and cytokine levels in a rat model of prenatal Cannabis smoke exposure. Sci Rep 2023; 13:21070. [PMID: 38030657 PMCID: PMC10687022 DOI: 10.1038/s41598-023-47861-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023] Open
Abstract
Cannabis sativa has gained popularity as a "natural substance", leading many to falsely assume that it is not harmful. This assumption has been documented amongst pregnant mothers, many of whom consider Cannabis use during pregnancy as benign. The purpose of this study was to validate a Cannabis smoke exposure model in pregnant rats by determining the plasma levels of cannabinoids and associated metabolites in the dams after exposure to either Cannabis smoke or injected cannabinoids. Maternal and fetal cytokine and chemokine profiles were also assessed after exposure. Pregnant Sprague-Dawley rats were treated daily from gestational day 6-20 with either room air, i.p. vehicle, inhaled high-Δ9-tetrahydrocannabinol (THC) (18% THC, 0.1% cannabidiol [CBD]) smoke, inhaled high-CBD (0.7% THC, 13% CBD) smoke, 3 mg/kg i.p. THC, or 10 mg/kg i.p. CBD. Our data reveal that THC and CBD, but not their metabolites, accumulate in maternal plasma after repeated exposures. Injection of THC or CBD was associated with fewer offspring and increased uterine reabsorption events. For cytokines and chemokines, injection of THC or CBD up-regulated several pro-inflammatory cytokines compared to control or high-THC smoke or high-CBD smoke in placental and fetal brain tissue, whereas smoke exposure was generally associated with reduced cytokine and chemokine concentrations in placental and fetal brain tissue compared to controls. These results support existing, but limited, knowledge on how different routes of administration contribute to inconsistent manifestations of cannabinoid-mediated effects on pregnancy. Smoked Cannabis is still the most common means of human consumption, and more preclinical investigation is needed to determine the effects of smoke inhalation on developmental and behavioural trajectories.
Collapse
Affiliation(s)
- Tallan Black
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Sarah L Baccetto
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Ilne L Barnard
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Emma Finch
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Dan L McElroy
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Faith V L Austin-Scott
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Deborah Michel
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Ayat Zagzoog
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada.
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
9
|
Deng W, Zhong Z, Tong Y, Liu J, Wang X, Xu L, Li Y, Chen X, Wei Q, Rao J. 4D DIA-PRM proteomic study identifying modulated pathways and biomarkers associated with pelvic organ prolapse. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1230:123916. [PMID: 37922782 DOI: 10.1016/j.jchromb.2023.123916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Pelvic organ prolapse (POP) is a highly disabling condition that negatively affects the quality of life of millions of women worldwide. However, the underlying mechanisms associated with the development and progression of the disease remain poorly understood. Here, an untargeted four-dimensional data-independent acquisition (4D DIA)-based proteomics approach was applied to vaginal wall tissue samples from POP (n = 19) and control (n = 8) patients to identify potential diagnostic biomarker(s) for POP and examine the molecular mechanisms underlying the disease. Of the 5713 tissue proteins that were detected, 1957 proteins were significantly changed in POP patients. Further bioinformatics analysis revealed that multiple biological processes including protein digestion & absorption, retrograde endocannabinoid signaling, tyrosine metabolism, and nucleotide metabolism were significantly enriched and associated with the pathogenesis of POP. Interestingly, 16 of these differentially expressed proteins associated with four pathways were also identified by targeted parallel reaction monitoring (PRM) proteomics analysis on the same 27 tissue samples. Changes in 94 % (15/16) of these proteins were consistent with the 4D DIA data. Furthermore, most proteins displayed good diagnostic accuracy with high area under the curve (AUC) values (AUC>0.8). Specifically, five proteins including ELN, COL6A2, ENTPD1, AOC3, and COX7A2 distinguished between POP and control patients with very high accuracy (AUC ≥ 0.95) in both 4D DIA and PRM analyses, and may therefore be potential diagnostic biomarkers for POP. In summary, the present study not only provided several potential biomarker(s) for effective POP diagnosis, but extended our knowledge of the key regulatory pathways associated with the disease.
Collapse
Affiliation(s)
- Wei Deng
- Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China; Jiangxi Provincial Maternal and Child Health Hospital, Nanchang 330006, Jiangxi Province, China
| | - Zhifeng Zhong
- Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Yuehong Tong
- Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Jun Liu
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang 330006, Jiangxi Province, China
| | - Xiaofen Wang
- Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Lili Xu
- Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Yufeng Li
- Department of Joint Surgery, People's Hospital of Ganxian District, Ganzhou, Jiangxi, 341100, China
| | - Xiaodan Chen
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, Jiangxi Province, China
| | - Qingfeng Wei
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, Jiangxi Province, China.
| | - Jun Rao
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, Jiangxi Province, China.
| |
Collapse
|
10
|
Bockmann EC, Brito R, Madeira LF, da Silva Sampaio L, de Melo Reis RA, França GR, Calaza KDC. The Role of Cannabinoids in CNS Development: Focus on Proliferation and Cell Death. Cell Mol Neurobiol 2023; 43:1469-1485. [PMID: 35925507 PMCID: PMC11412427 DOI: 10.1007/s10571-022-01263-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022]
Abstract
The active principles of Cannabis sativa are potential treatments for several diseases, such as pain, seizures and anorexia. With the increase in the use of cannabis for medicinal purposes, a more careful assessment of the possible impacts on embryonic development becomes necessary. Surveys indicate that approximately 3.9% of pregnant women use cannabis in a recreational and/or medicinal manner. However, although the literature has already described the presence of endocannabinoid system components since the early stages of CNS development, many of their physiological effects during this stage have not yet been established. Moreover, it is still uncertain how the endocannabinoid system can be altered in terms of cell proliferation and cell fate, neural migration, neural differentiation, synaptogenesis and particularly cell death. In relation to cell death in the CNS, knowledge about the effects of cannabinoids is scarce. Thus, the present work aims to review the role of the endocannabinoid system in different aspects of CNS development and discuss possible side effects or even opportunities for treating some conditions in the development of this tissue.
Collapse
Affiliation(s)
- Eduardo Cosendey Bockmann
- Instituto de Biologia, Departamento de Neurobiologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Rafael Brito
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Lucianne Fragel Madeira
- Instituto de Biologia, Departamento de Neurobiologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Luzia da Silva Sampaio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Augusto de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme Rapozeiro França
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Karin da Costa Calaza
- Instituto de Biologia, Departamento de Neurobiologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Emerging Roles of Endocannabinoids as Key Lipid Mediators for a Successful Pregnancy. Int J Mol Sci 2023; 24:ijms24065220. [PMID: 36982295 PMCID: PMC10048990 DOI: 10.3390/ijms24065220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, Cannabis use/misuse for treating pregnancy-related symptoms and other chronic conditions has increased among pregnant women, favored by decriminalization and/or legalization of its recreational uses in addition to its easy accessibility. However, there is evidence that prenatal Cannabis exposure might have adverse consequences on pregnancy progression and a deleterious impact on proper neurodevelopmental trajectories in the offspring. Maternal Cannabis use could interfere with the complex and finely controlled role performed by the endocannabinoid system in reproductive physiology, impairing multiple gestational processes from blastocyst implantation to parturition, with long-lasting intergenerational effects. In this review, we discuss current clinical and preclinical evidence regarding the role of endocannabinoids in development, function, and immunity of the maternal–fetal interface, focusing on the impact of Cannabis constituents on each of these gestational processes. We also discuss the intrinsic limitations of the available studies and the future perspectives in this challenging research field.
Collapse
|
12
|
Cáceres D, Ochoa M, González-Ortiz M, Bravo K, Eugenín J. Effects of Prenatal Cannabinoids Exposure upon Placenta and Development of Respiratory Neural Circuits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:199-232. [PMID: 37466775 DOI: 10.1007/978-3-031-32554-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Cannabis use has risen dangerously during pregnancy in the face of incipient therapeutic use and a growing perception of safety. The main psychoactive compound of the Cannabis sativa plant is the phytocannabinoid delta-9-tetrahydrocannabinol (A-9 THC), and its status as a teratogen is controversial. THC and its endogenous analogues, anandamide (AEA) and 2-AG, exert their actions through specific receptors (eCBr) that activate intracellular signaling pathways. CB1r and CB2r, also called classic cannabinoid receptors, together with their endogenous ligands and the enzymes that synthesize and degrade them, constitute the endocannabinoid system. This system is distributed ubiquitously in various central and peripheral tissues. Although the endocannabinoid system's most studied role is controlling the release of neurotransmitters in the central nervous system, the study of long-term exposure to cannabinoids on fetal development is not well known and is vital for understanding environmental or pathological embryo-fetal or postnatal conditions. Prenatal exposure to cannabinoids in animal models has induced changes in placental and embryo-fetal organs. Particularly, cannabinoids could influence both neural and nonneural tissues and induce embryo-fetal pathological conditions in critical processes such as neural respiratory control. This review aims at the acute and chronic effects of prenatal exposure to cannabinoids on placental function and the embryo-fetal neurodevelopment of the respiratory pattern. The information provided here will serve as a theoretical framework to critically evaluate the teratogen effects of the consumption of cannabis during pregnancy.
Collapse
Affiliation(s)
- Daniela Cáceres
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Martín Ochoa
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Marcelo González-Ortiz
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Karina Bravo
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Facultad de Ingeniería, Universidad Autónoma de Chile, Providencia, Chile
| | - Jaime Eugenín
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
13
|
Campbell MA, Iyer P, Kaufman F, Kim A, Moran F, Niknam Y, Wu L, Sandy MS, Zeise L. Animal evidence considered in determination of cannabis smoke and Δ 9 -tetrahydrocannabinol as causing reproductive toxicity (developmental endpoint); Part I. somatic development. Birth Defects Res 2022; 114:1143-1154. [PMID: 36177831 DOI: 10.1002/bdr2.2099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES On December 11, 2019, California's Developmental and Reproductive Toxicant Identification Committee (DARTIC) met to consider the addition of cannabis smoke and Δ9 -THC to the Proposition 65 list as causing reproductive toxicity (developmental endpoint). As the lead state agency for implementing Proposition 65, the Office of Environmental Health Hazard Assessment (OEHHA) reviewed and summarized the relevant scientific literature in the form of a hazard identification document (HID). Here we provide reviews based on the HID: shortened, revised, and reformatted for a larger audience. METHODS While the HID included both human and animal data, this set of three reviews will highlight the animal-derived data pertaining to somatic development (Part I), neurodevelopmental effects (Part II), and proposed neurodevelopmental mechanisms of action (Part III). RESULTS Endogenous cannabinoids (eCBs) and their receptors serve many critical functions in normal development. Δ9 -THC can interfere with these functions. Mechanistic studies employed techniques including: blocking Δ9 -THC binding to endocannabinoid (EC) receptors, inhibiting Δ9 -THC metabolism, and/or using animals expressing knockout mutations of EC receptors. Apical somatic effects of cannabis smoke or Δ9 -THC reported in whole animal studies included decreases in offspring viability and growth. Mechanistic studies discussed in Part I focused on Δ9 -THC effects on early embryos and implantation, immune development, and bone growth. CONCLUSIONS In reaching its decision to list cannabis and Δ9 -THC as a developmental toxicant under California's Proposition 65, the DARTIC considered biological plausibility and the consistency of mechanistic information with effects reported in human and whole animal studies.
Collapse
Affiliation(s)
- Marlissa A Campbell
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA
| | - Poorni Iyer
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA
| | - Farla Kaufman
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA
| | - Allegra Kim
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA
| | - Francisco Moran
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA
| | - Yassaman Niknam
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA
| | - Lily Wu
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA
| |
Collapse
|
14
|
Przybycień P, Gąsior-Perczak D, Placha W. Cannabinoids and PPAR Ligands: The Future in Treatment of Polycystic Ovary Syndrome Women with Obesity and Reduced Fertility. Cells 2022; 11:cells11162569. [PMID: 36010645 PMCID: PMC9406585 DOI: 10.3390/cells11162569] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Cannabinoids (CBs) are used to treat chronic pain, chemotherapy-induced nausea and vomiting, and multiple sclerosis spasticity. Recently, the medicinal use of CBs has attracted increasing interest as a new therapeutic in many diseases. Data indicate a correlation between CBs and PPARs via diverse mechanisms. Both the endocannabinoid system (ECS) and peroxisome proliferator-activated receptors (PPARs) may play a significant role in PCOS and PCOS related disorders, especially in disturbances of glucose-lipid metabolism as well as in obesity and fertility. Taking into consideration the ubiquity of PCOS in the human population, it seems indispensable to search for new potential therapeutic targets for this condition. The aim of this review is to examine the relationship between metabolic disturbances and obesity in PCOS pathology. We discuss current and future therapeutic interventions for PCOS and related disorders, with emphasis on the metabolic pathways related to PCOS pathophysiology. The link between the ECS and PPARs is a promising new target for PCOS, and we examine this relationship in depth.
Collapse
Affiliation(s)
- Piotr Przybycień
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 31-034 Krakow, Poland
- Endocrinology Clinic, Holycross Cancer Centre, 25-734 Kielce, Poland
| | - Danuta Gąsior-Perczak
- Endocrinology Clinic, Holycross Cancer Centre, 25-734 Kielce, Poland
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
| | - Wojciech Placha
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 31-034 Krakow, Poland
- Correspondence: ; Tel.: +48-12-422-74-00
| |
Collapse
|
15
|
Bortoletto P, Prabhu M. Impact of Tobacco and Marijuana on Infertility and Early Reproductive Wastage. Clin Obstet Gynecol 2022; 65:360-375. [PMID: 35125388 DOI: 10.1097/grf.0000000000000689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reducing exposure to tobacco and marijuana during preconception and early pregnancy is a critical area of intervention for obstetricians, gynecologists, and other reproductive health care professionals. Beyond the deleterious personal health effects, both substances have been extensively associated with short-term and long-term detrimental effects to gametogenesis, fecundity, as well as tissue level effects in the reproductive tracts. When tobacco and marijuana do not impair the ability to achieve pregnancy, an increasing body of literature suggests either may be associated with increased risk of early pregnancy loss and reproductive wastage. In this review, we will discuss what is known about how tobacco and marijuana affect the male and female reproductive systems and highlight how these consequences may impair attempts at successful conception and pregnancy continuation beyond the first trimester.
Collapse
Affiliation(s)
- Pietro Bortoletto
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine
| | - Malavika Prabhu
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York
| |
Collapse
|
16
|
Kozakiewicz ML, Zhang J, Leone-Kabler S, Yamaleyeva LM, McDonald AG, Brost BC, Howlett AC. Differential Expression of CB 1 Cannabinoid Receptor and Cannabinoid Receptor Interacting Protein 1a in Labor. Cannabis Cannabinoid Res 2022; 7:279-288. [PMID: 33998898 PMCID: PMC9225407 DOI: 10.1089/can.2020.0107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: The endocannabinoid system is present in multiple organ systems and is involved in smooth muscle regulation, immune function, neuroendocrine modulation, and metabolism of tissues. Limited data are available regarding the presence and role of this system in reproductive tissues. Components of the endocannabinoid system have been identified in myometrial and placental tissues. However, no study has investigated differential expression of the endocannabinoid system in labor. Objectives: The purpose of this study was to identify and quantify two components of the endocannabinoid system, the CB1 cannabinoid receptor and cannabinoid receptor interacting protein 1a (CRIP1a) in uterine and placental tissues, and to determine if there is differential expression in tissues exposed to labor. We hypothesized that CB1 cannabinoid receptor concentration would be altered in uterine and placental tissue exposed to labor compared with tissues not exposed to labor. Study Design: Uterine and placental tissue samples were collected in nine laboring and 11 nonlaboring women undergoing cesarean delivery. CB1 cannabinoid receptor and CRIP1a presence and quantification were evaluated using western blot, immunohistochemistry, and real-time quantitative polymerase chain reaction. Statistical comparisons of laboring and nonlaboring subjects were made for uterine and placental tissue using a Mann-Whitney test. Results: Immunohistochemistry demonstrated positive staining for CB1 cannabinoid receptors and CRIP1a in uterine tissue. The protein abundance of CB1 cannabinoid receptor in uterine tissue was significantly lower in tissues exposed to labor (p=0.01). The protein abundance of CRIP1a was lower in uterine tissue exposed to labor but did not reach statistical significance (p=0.06). mRNA expression of CB1 cannabinoid receptor (p=0.20) and CRIP1a (p=0.63) did not differ in labored compared with nonlabored uterine tissues. Conclusions: Our findings of diminished protein density of CB1 cannabinoid receptor in uterine tissue exposed to labor support the hypothesis that the endocannabinoid system plays a role in parturition. Our data add to the growing body of evidence indicating the endocannabinoid system is of importance for successful reproduction and support the need for additional research investigating this complex system as it pertains to labor. ClinicalTrials.gov ID: NCT03752021.
Collapse
Affiliation(s)
- Melissa L. Kozakiewicz
- Section on Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jie Zhang
- Section on Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sandra Leone-Kabler
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Liliya M. Yamaleyeva
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest School of Medicine BioTech Place, Winston-Salem, North Carolina, USA
| | - Anna G. McDonald
- Department of Pathology, Perinatal/Autopsy Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Brian C. Brost
- Section on Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Allyn C. Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
17
|
Yang T, Zhao J, Liu F, Li Y. Lipid metabolism and endometrial receptivity. Hum Reprod Update 2022; 28:858-889. [PMID: 35639910 DOI: 10.1093/humupd/dmac026] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity has now been recognized as a high-risk factor for reproductive health. Although remarkable advancements have been made in ART, a considerable number of infertile obese women still suffer from serial implantation failure, despite the high quality of embryos transferred. Although obesity has long been known to exert various deleterious effects on female fertility, the underlying mechanisms, especially the roles of lipid metabolism in endometrial receptivity, remain largely elusive. OBJECTIVE AND RATIONALE This review summarizes current evidence on the impacts of several major lipids and lipid-derived mediators on the embryonic implantation process. Emerging methods for evaluating endometrial receptivity, for example transcriptomic and lipidomic analysis, are also discussed. SEARCH METHODS The PubMed and Embase databases were searched using the following keywords: (lipid or fatty acid or prostaglandin or phospholipid or sphingolipid or endocannabinoid or lysophosphatidic acid or cholesterol or progesterone or estrogen or transcriptomic or lipidomic or obesity or dyslipidemia or polycystic ovary syndrome) AND (endometrial receptivity or uterine receptivity or embryo implantation or assisted reproductive technology or in vitro fertilization or embryo transfer). A comprehensive literature search was performed on the roles of lipid-related metabolic pathways in embryo implantation published between January 1970 and March 2022. Only studies with original data and reviews published in English were included in this review. Additional information was obtained from references cited in the articles resulting from the literature search. OUTCOMES Recent studies have shown that a fatty acids-related pro-inflammatory response in the embryo-endometrium boundary facilitates pregnancy via mediation of prostaglandin signaling. Phospholipid-derived mediators, for example endocannabinoids, lysophosphatidic acid and sphingosine-1-phosphate, are associated with endometrial receptivity, embryo spacing and decidualization based on evidence from both animal and human studies. Progesterone and estrogen are two cholesterol-derived steroid hormones that synergistically mediate the structural and functional alterations in the uterus ready for blastocyst implantation. Variations in serum cholesterol profiles throughout the menstrual cycle imply a demand for steroidogenesis at the time of window of implantation (WOI). Since 2002, endometrial transcriptomic analysis has been serving as a diagnostic tool for WOI dating. Numerous genes that govern lipid homeostasis have been identified and, based on specific alterations of lipidomic signatures differentially expressed in WOI, lipidomic analysis of endometrial fluid provides a possibility for non-invasive diagnosis of lipids alterations during the WOI. WIDER IMPLICATIONS Given that lipid metabolic dysregulation potentially plays a role in infertility, a better understanding of lipid metabolism could have significant clinical implications for the diagnosis and treatment of female reproductive disorders.
Collapse
Affiliation(s)
- Tianli Yang
- Reproductive Medicine Center, Xiangya Hospital of Central South University, Changsha, P.R. China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, P.R. China
| | - Jing Zhao
- Reproductive Medicine Center, Xiangya Hospital of Central South University, Changsha, P.R. China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, P.R. China
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Yanping Li
- Reproductive Medicine Center, Xiangya Hospital of Central South University, Changsha, P.R. China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, P.R. China
| |
Collapse
|
18
|
Misner MJ, Taborek A, Dufour J, Sharifi L, Khokhar JY, Favetta LA. Effects of Delta-9 Tetrahydrocannabinol (THC) on Oocyte Competence and Early Embryonic Development. FRONTIERS IN TOXICOLOGY 2022; 3:647918. [PMID: 35295104 PMCID: PMC8915882 DOI: 10.3389/ftox.2021.647918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/26/2021] [Indexed: 12/17/2022] Open
Abstract
Recent changes in legal status and public perception of cannabis have contributed to an increase use amongst women of reproductive age. Concurrently, there is inadequate evidence-based knowledge to guide clinical practice regarding cannabis and its effects on fertility and early embryonic development. This study aimed to evaluate the effects of the primary psychoactive component of cannabis, delta-9 tetrahydrocannabinol (THC), during oocyte maturation, and its impact on the developing embryo. Bovine oocytes were matured in vitro for 24 h under clinically relevant doses of THC mimicking plasma levels achieved after therapeutic (0.032 μM) and recreational (0.32 and 3.2 μM) cannabis use. THC-treated oocytes were assessed for development and quality parameters at both the oocyte and embryo level. Characteristics of oocytes treated with cannabinoid receptor antagonists were also assessed. Oocytes treated with 0.32 and 3.2 μM THC, were significantly less likely to reach metaphase II (p < 0.01) and consequently had lower cleavage rates at day 2 post-fertilization (p < 0.0001). Treatment with cannabinoid receptor antagonists restored this effect (p < 0.05). Oocytes that did reach MII showed no differences in spindle morphology. Oocytes treated with 0.032 μM THC had significantly lower connexin mRNA (p < 0.05) (correlated with decreased quality), but this was not confirmed at the protein level. At the blastocyst stage there were no significant differences in developmental rates or the proportion of trophectoderm to inner cell mass cells between the control and treatment groups. These blastocysts, however, displayed an increased level of apoptosis in the 0.32 and 3.2 μM groups (p < 0.0001). Our findings suggest a possible disruptive effect of cannabis on oocyte maturation and early embryonic development.
Collapse
Affiliation(s)
- Megan J Misner
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Afton Taborek
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Jaustin Dufour
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Lea Sharifi
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Jibran Y Khokhar
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Laura A Favetta
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
19
|
Almeida MM, Dias-Rocha CP, Calviño C, Trevenzoli IH. Lipid endocannabinoids in energy metabolism, stress and developmental programming. Mol Cell Endocrinol 2022; 542:111522. [PMID: 34843899 DOI: 10.1016/j.mce.2021.111522] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) regulates brain development and function, energy metabolism and stress in a sex-, age- and tissue-dependent manner. The ECS comprises mainly the bioactive lipid ligands anandamide (AEA) and 2-aracdonoylglycerol (2-AG), cannabinoid receptors 1 and 2 (CB1 and CB2), and several metabolizing enzymes. The endocannabinoid tonus is increased in obesity, stimulating food intake and a preference for fat, reward, and lipid accumulation in peripheral tissues, as well as favoring a positive energy balance. Energy balance and stress responses share adaptive mechanisms regulated by the ECS that seem to underlie the complex relationship between feeding and emotional behavior. The ECS is also a key regulator of development. Environmental insults (diet, toxicants, and stress) in critical periods of developmental plasticity, such as gestation, lactation and adolescence, alter the ECS and may predispose individuals to the development of chronic diseases and behavioral changes in the long term. This review is focused on the ECS and the developmental origins of health and disease (DOHaD).
Collapse
Affiliation(s)
- Mariana Macedo Almeida
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | | | - Camila Calviño
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Isis Hara Trevenzoli
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
20
|
Bariani MV, Correa F, Rubio APD, Wolfson ML, Schander JA, Cella M, Aisemberg J, Franchi AM. Maternal obesity reverses the resistance to LPS-induced adverse pregnancy outcome and increases female offspring metabolic alterations in cannabinoid receptor 1 knockout mice. J Nutr Biochem 2021; 96:108805. [PMID: 34147601 DOI: 10.1016/j.jnutbio.2021.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022]
Abstract
Maternal overnutrition negatively impacts the offspring's health leading to an increased risk of developing chronic diseases or metabolic syndrome in adulthood. What we eat affects the endocannabinoid system (eCS) activity, which in turn modulates lipogenesis and fatty acids utilization in hepatic, muscle, and adipose tissues. This study aimed to evaluate the transgenerational effect of maternal obesity on cannabinoid receptor 1 knock-out (CB1 KO) animals in combination with a postnatal obesogenic diet on the development of metabolic disturbances on their offspring. CB1 KO mice were fed a control diet (CD) or a high-fat diet (HFD; 33% more energy from fat) for 3 months. Offspring born to control and obese mothers were also fed with CD or HFD. We observed that pups born to an HFD-fed mother presented higher postnatal weight, lower hepatic fatty acid amide hydrolase activity, and increased blood cholesterol levels when compared to the offspring born to CD-fed mothers. When female mice born to HFD-fed CB1 KO mothers were exposed to an HFD, they gained more weight, presented elevated blood cholesterol levels, and more abdominal adipose tissue accumulation than control-fed adult offspring. The eCS is involved in several reproductive physiological processes. Interestingly, we showed that CB1 KO mice in gestational day 15 presented resistance to LPS-induced deleterious effects on pregnancy outcome, which was overcome when these mice were obese. Our results suggest that an HFD in CB1 receptor-deficient mice contributes to a "nutritional programming" of the offspring resulting in increased susceptibility to metabolic challenges both perinatally and during adulthood.
Collapse
Affiliation(s)
- María Victoria Bariani
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Correa
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Paula Domínguez Rubio
- Departamento de Química Biológica. Intendente Güiraldes, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica. Intendente Güiraldes, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Manuel Luis Wolfson
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Aylen Schander
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maximiliano Cella
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Aisemberg
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Ana María Franchi
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
21
|
The Impact of Early Life Exposure to Cannabis: The Role of the Endocannabinoid System. Int J Mol Sci 2021; 22:ijms22168576. [PMID: 34445282 PMCID: PMC8395329 DOI: 10.3390/ijms22168576] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 01/14/2023] Open
Abstract
Cannabis use during pregnancy has continued to rise, particularly in developed countries, as a result of the trend towards legalization and lack of consistent, evidence-based knowledge on the matter. While there is conflicting data regarding whether cannabis use during pregnancy leads to adverse outcomes such as stillbirth, preterm birth, low birthweight, or increased admission to neonatal intensive care units, investigations into long-term effects on the offspring’s health are limited. Historically, studies have focused on the neurobehavioral effects of prenatal cannabis exposure on the offspring. The effects of cannabis on other physiological aspects of the developing fetus have received less attention. Importantly, our knowledge about cannabinoid signaling in the placenta is also limited. The endocannabinoid system (ECS) is present at early stages of development and represents a potential target for exogenous cannabinoids in utero. The ECS is expressed in a broad range of tissues and influences a spectrum of cellular functions. The aim of this review is to explore the current evidence surrounding the effects of prenatal exposure to cannabinoids and the role of the ECS in the placenta and the developing fetus.
Collapse
|
22
|
Corsi DJ, Murphy MS, Cook J. The Effects of Cannabis on Female Reproductive Health Across the Life Course. Cannabis Cannabinoid Res 2021; 6:275-287. [PMID: 33998877 PMCID: PMC8380785 DOI: 10.1089/can.2020.0065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Cannabis is commonly used for its medicinal and therapeutic benefits and is also widely used as a recreational drug. Cannabis use has been increasing in Canada, including among Canadian women of reproductive age. Post-legalization, further increases in cannabis use are expected due to increased availability and lowered perceptions of harm. Although cannabinoids are well known for their effects on the central and peripheral nervous systems, endocannabinoid receptors have also been characterized throughout the female reproductive tract. Cannabinoids may affect many aspects of female reproductive health, including fertility, pregnancy outcomes with neonatal implications, and menopause. Purpose: To provide a comprehensive review of trends in cannabis use among women and review the impact of cannabis across the female reproductive lifespan. Methods: We searched PubMed and Cochrane Library databases using keywords and MeSH terms. Included studies reported the potential impact of cannabinoids on female fertility, pregnancy, transmission to breast milk, neonatal outcomes, and menopause. Results: The existing literature is primarily concentrated on the effect of cannabis use in pregnancy and breastfeeding, with little exploration of its impact on fertility and in later life. Studies are limited in number, with small sample sizes, and are hampered by methodological challenges related to confounding and other potential biases. Conclusions: There remain critical gaps in the literature about the potential risks of cannabis use, particularly in vulnerable populations, including pregnant women, women who are breastfeeding, and their infants. Given the rise in the prevalence of cannabis use, new, robust investigations into the consequences of cannabis exposure on female reproductive health are needed.
Collapse
Affiliation(s)
- Daniel J. Corsi
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- Better Outcomes Registry & Network (BORN) Ontario, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Canada
| | - Malia S.Q. Murphy
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Jocelynn Cook
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Canada
- Society of Obstetricians and Gynaecologists of Canada, Ottawa, Canada
| |
Collapse
|
23
|
Costa L, Moreia-Pinto B, Felgueira E, Ribeiro A, Rebelo I, Fonseca BM. The major endocannabinoid anandamide (AEA) induces apoptosis of human granulosa cells. Prostaglandins Leukot Essent Fatty Acids 2021; 171:102311. [PMID: 34126378 DOI: 10.1016/j.plefa.2021.102311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022]
Abstract
The endocannabinoid system (ECS) plays a crucial role in human reproduction. Changes in anandamide (AEA) levels affect reproductive events and has already been suggested as biomarker of reproductive potential of male and female gametes. Although cannabinoid-receptor 1 (CB1) was already identified in human granulosa cells (hGCs) the ECS was not characterized on granulosa cells line COV434 nor the effects of AEA on GCs viability and function depicted. Therefore, the aim of this study was to characterize the ECS elements and explore the effects of AEA on both COV434 and hGCs. Our results revealed that hGCs express the full enzymatic machinery responsible for AEA metabolism as well as cannabinoid receptors. In addition, AEA induced a reduction in both COV434 and hGCs viability in a concentration and time-dependent manner. Nevertheless, the effects of AEA in cell viability was independent of either CB1 or CB2 receptors. There was no ROS release in both cell models; however, AEA induced morphological changes, presenting chromatin condensation at 72 h, and variation on mitochondrial membrane potential. Moreover, AEA induced an increase in caspase -3/-7 activities in both cell models, but in hGCs there was also an increase in caspase 8 activity. This study supports the idea that ECS balance is crucial for folliculogenesis and oocyte quality as dysregulated AEA levels may compromise female fertility.
Collapse
Affiliation(s)
- L Costa
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Portugal; Unidade de Medicina da Reprodução Dra. Ingeborg Chaves, Centro Hospitalar de Vila Nova de Gaia/Espinho, Portugal
| | - B Moreia-Pinto
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Portugal
| | - E Felgueira
- Unidade de Medicina da Reprodução Dra. Ingeborg Chaves, Centro Hospitalar de Vila Nova de Gaia/Espinho, Portugal
| | - A Ribeiro
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Portugal
| | - I Rebelo
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Portugal.
| | - B M Fonseca
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Portugal
| |
Collapse
|
24
|
Mumford SL, Flannagan KS, Radoc JG, Sjaarda LA, Zolton JR, Metz TD, Plowden TC, Perkins NJ, DeVilbiss EA, Andriessen VC, A C PS, Kim K, Yisahak SF, Freeman JR, Alkhalaf Z, Silver RM, Schisterman EF. Cannabis use while trying to conceive: a prospective cohort study evaluating associations with fecundability, live birth and pregnancy loss. Hum Reprod 2021; 36:1405-1415. [PMID: 33421071 DOI: 10.1093/humrep/deaa355] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 11/19/2020] [Indexed: 11/15/2022] Open
Abstract
STUDY QUESTION Is cannabis use assessed via urinary metabolites and self-report during preconception associated with fecundability, live birth and pregnancy loss? SUMMARY ANSWER Preconception cannabis use was associated with reduced fecundability among women with a history of pregnancy loss attempting pregnancy despite an increased frequency of intercourse. WHAT IS KNOWN ALREADY Cannabis use continues to rise despite limited evidence of safety during critical windows of pregnancy establishment. While existing studies suggest that self-reported cannabis use is not associated with fecundability, self-report may not be reliable. STUDY DESIGN, SIZE, DURATION A prospective cohort study was carried out including 1228 women followed for up to six cycles while attempting pregnancy (2006 to 2012), and throughout pregnancy if they conceived. PARTICIPANTS/MATERIALS, SETTING, METHODS Women aged 18-40 years with a history of pregnancy loss (n = 1228) were recruited from four clinical centers. Women self-reported preconception cannabis use at baseline and urinary tetrahydrocannabinol metabolites were measured throughout preconception and early pregnancy (up to four times during the study: at baseline, after 6 months of follow-up or at the beginning of the conception cycle, and weeks 4 and 8 of pregnancy). Time to hCG-detected pregnancy, and incidence of live birth and pregnancy loss were prospectively assessed. Fecundability odds ratios (FOR) and 95% CI were estimated using discrete time Cox proportional hazards models, and risk ratios (RRs) and 95% CI using log-binomial regression adjusting for age, race, BMI, education level, baseline urine cotinine, alcohol use and antidepressant use. MAIN RESULTS AND THE ROLE OF CHANCE Preconception cannabis use was 5% (62/1228), based on combined urinary metabolite measurements and self-report, and 1.3% (11/789) used cannabis during the first 8 weeks of gestation based on urinary metabolites only. Women with preconception cannabis use had reduced fecundability (FOR 0.59; 95% CI 0.38, 0.92). Preconception cannabis use was also associated with increased frequency of intercourse per cycle (9.4 ± 7 versus 7.5 ± 7 days; P = 0.02) and higher LH (percentage change 64%, 95% CI 3, 161) and higher LH:FSH ratio (percentage change 39%, 95% CI 7, 81). There were also suggestive, though imprecise, associations with anovulation (RR 1.92, 95% CI 0.88, 4.18), and live birth (42% (19/45) cannabis users versus 55% (578/1043) nonusers; RR 0.80, 95% CI 0.57, 1.12). No associations were observed between preconception cannabis use and pregnancy loss (RR 0.81, 95% CI 0.46, 1.42). Similar results were observed after additional adjustment for parity, income, employment status and stress. We were unable to estimate associations between cannabis use during early pregnancy and pregnancy loss due to limited sample size. LIMITATIONS, REASONS FOR CAUTION Owing to the relatively few cannabis users in our study, we had limited ability to make conclusions regarding live birth and pregnancy loss, and were unable to account for male partner use. While results were similar after excluding smokers, alcohol use and any drug use in the past year, some residual confounding may persist due to these potential co-exposures. WIDER IMPLICATIONS OF THE FINDINGS These findings highlight potential risks on fecundability among women attempting pregnancy with a history of pregnancy loss and the need for expanded evidence regarding the reproductive health effects of cannabis use in the current climate of increasing legalization. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (Contract numbers: HHSN267200603423, HHSN267200603424, HHSN267200603426, HHSN275201300023I). Jeannie G. Radoc has been funded by the National Institutes of Health Medical Research Scholars Program, a public-private partnership supported jointly by the National Institutes of Health and generous contributions to the Foundation for the National Institutes of Health from the Doris Duke Charitable Foundation (DDCF Grant # 2014194), Genentech, Elsevier, and other private donors. The authors report no conflict of interest in this work and have nothing to disclose. TRIAL REGISTRATION NUMBER Clinicaltrials.gov NCT00467363.
Collapse
Affiliation(s)
- S L Mumford
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20817, USA
| | - K S Flannagan
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20817, USA
| | - J G Radoc
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20817, USA
| | - L A Sjaarda
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20817, USA
| | - J R Zolton
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20817, USA
| | - T D Metz
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20817, USA
| | - T C Plowden
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20817, USA
| | - N J Perkins
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20817, USA
| | - E A DeVilbiss
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20817, USA
| | - V C Andriessen
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20817, USA
| | - Purdue-Smithe A C
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20817, USA
| | - K Kim
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20817, USA
| | - S F Yisahak
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20817, USA
| | - J R Freeman
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20817, USA
| | - Z Alkhalaf
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20817, USA
| | - R M Silver
- Department of Obstetrics and Gynecology, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | - E F Schisterman
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20817, USA
| |
Collapse
|
25
|
Song CG, Kang X, Yang F, Du WQ, Zhang JJ, Liu L, Kang JJ, Jia N, Yue H, Fan LY, Wu SX, Jiang W, Gao F. Endocannabinoid system in the neurodevelopment of GABAergic interneurons: implications for neurological and psychiatric disorders. Rev Neurosci 2021; 32:803-831. [PMID: 33781002 DOI: 10.1515/revneuro-2020-0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/20/2021] [Indexed: 02/07/2023]
Abstract
In mature mammalian brains, the endocannabinoid system (ECS) plays an important role in the regulation of synaptic plasticity and the functioning of neural networks. Besides, the ECS also contributes to the neurodevelopment of the central nervous system. Due to the increase in the medical and recreational use of cannabis, it is inevitable and essential to elaborate the roles of the ECS on neurodevelopment. GABAergic interneurons represent a group of inhibitory neurons that are vital in controlling neural network activity. However, the role of the ECS in the neurodevelopment of GABAergic interneurons remains to be fully elucidated. In this review, we provide a brief introduction of the ECS and interneuron diversity. We focus on the process of interneuron development and the role of ECS in the modulation of interneuron development, from the expansion of the neural stem/progenitor cells to the migration, specification and maturation of interneurons. We further discuss the potential implications of the ECS and interneurons in the pathogenesis of neurological and psychiatric disorders, including epilepsy, schizophrenia, major depressive disorder and autism spectrum disorder.
Collapse
Affiliation(s)
- Chang-Geng Song
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China.,Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Xin Kang
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Fang Yang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Wan-Qing Du
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Jia-Jia Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Long Liu
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Jun-Jun Kang
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Ning Jia
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Hui Yue
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Lu-Yu Fan
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Sheng-Xi Wu
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Fang Gao
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| |
Collapse
|
26
|
Maia J, Fonseca BM, Teixeira N, Correia-da-Silva G. The fundamental role of the endocannabinoid system in endometrium and placenta: implications in pathophysiological aspects of uterine and pregnancy disorders. Hum Reprod Update 2020; 26:586-602. [PMID: 32347309 PMCID: PMC7317288 DOI: 10.1093/humupd/dmaa005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The endocannabinoid system (ECS) consists of the cannabinoid receptors CB1 and CB2, the main endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) and their metabolic enzymes N-acylphosphatidylethanolamine-specific phospholipase D, fatty acid amide hydrolase, diacylglycerol lipase and monoacylglycerol lipase. This system is involved in the modulation of essential physiological processes. Its role in the reproductive system has become significantly important in recent years, given its major role in events such as gametogenesis, decidualisation, implantation and placentation. OBJECTIVE AND RATIONALE In this paper, we review the literature and summarize the role of the ECS elements in reproduction and their potential as early markers for diagnosis of reproductive disorders or as pharmacological targets for treatment. SEARCH METHODS Original research and review papers published from 1964 to June 2019 were selected in terms of relevance, reliability and quality by searching PubMed, MEDLINE and Web of Science, using the following search terms: endocannabinoid system and endometriosis; endocannabinoid system and ectopic pregnancy; endocannabinoid system and miscarriage; endocannabinoid system and pre-eclampsia; endocannabinoid system and endometrial cancer; endocannabinoid system and reproduction; endocannabinoid, endometrium; placenta; N-acylethanolamines; anandamide; 2-arachidonoylglycerol; and cannabinoids. OUTCOMES This review demonstrates relevant information concerning ECS alterations in endometriosis, ectopic pregnancy, miscarriage, pre-eclampsia and endometrial cancer. We highlight the importance of the endocannabinoids in endometrial and placental physiology and pathophysiology, from studies in vitro and in vivo and in clinical observations. The most studied of the endogenous cannabinoids is AEA. The levels of AEA were increased in plasma of patients with endometriosis and miscarriage, as well as in the fallopian tube of women with ectopic pregnancy and in endometrial biopsies of endometrial cancer. Changes in the pattern of expression of the cannabinoid receptor CB1 were also observed in endometrial biopsies of endometriosis, fallopian tube and decidua of patients with ectopic pregnancy and pre-eclamptic placenta. Moreover, alterations in CB2 expression have been reported in association with endometrial cancer. In general, studies on the cannabinoid signalling through CB2 and on the biological activities of the other major endocannabinoid, namely 2-AG, as well as its metabolic enzymes are scarce and avidly required. WIDER IMPLICATIONS The pathophysiological mechanisms involved in the described endometrial and placental pathologies are still unclear and lack the means for an early diagnosis. Based on current evidence, though alterations in ECS are demonstrated at tissue level, it is difficult to associate plasmatic changes in AEA with specific endometrial and placental diseases. Thus, pairing alterations in AEA levels with 2-AG and/or other endocannabinoid-like molecules may provide more accurate and early diagnoses. In addition, patients may benefit from new therapies that target the ECS and endocannabinoid signalling.
Collapse
Affiliation(s)
- J Maia
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - BM Fonseca
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - N Teixeira
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - G Correia-da-Silva
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
27
|
Cecconi S, Rapino C, Di Nisio V, Rossi G, Maccarrone M. The (endo)cannabinoid signaling in female reproduction: What are the latest advances? Prog Lipid Res 2019; 77:101019. [PMID: 31862482 DOI: 10.1016/j.plipres.2019.101019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Cannabis extracts like marijuana have the highest consumption rate worldwide. Yet, their societal acceptance as recreational and therapeutic drugs could represent a serious hazard to female human reproduction, because cannabis ingredients [termed (phyto)cannabinoids] can perturb an endogenous system of lipid signals known as endocannabinoids. Accumulated evidence on animal models and humans has demonstrated a crucial role of these endogenous signals on different aspects of female reproduction, where they act through an ensamble of proteins that synthesize, transport, degrade and traffic them. Several reports have recently evidenced the potential role of endocannabinoids as biomarkers of female infertility for disease treatment and prevention, as well as their possible epigenetic effects on pregnancy. The purpose of this review is to provide an update of data collected in the last decade on the effects of cannabinoids and endocannabinoids on female reproductive events, from development and maturation of follicles and oocytes, to fertilization, oviductal transport, implantation and labor. In this context, a particular attention has been devoted to the ovary and the production of fertilizable oocytes, because recent studies have addressed this hot topic with conflicting results among species.
Collapse
Affiliation(s)
- Sandra Cecconi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Cinzia Rapino
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy.
| | - Valentina Di Nisio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Gianna Rossi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy; European Center for Brain Research (CERC)/Santa Lucia Foundation, Via del Fosso di Fiorano, 64 - 00143 Rome, Italy.
| |
Collapse
|
28
|
Myosalpinx Contractions Are Essential for Egg Transport Along the Oviduct and Are Disrupted in Reproductive Tract Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:265-294. [DOI: 10.1007/978-981-13-5895-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Li Y, Bian F, Sun X, Dey SK. Mice Missing Cnr1 and Cnr2 Show Implantation Defects. Endocrinology 2019; 160:938-946. [PMID: 30776303 PMCID: PMC6435011 DOI: 10.1210/en.2019-00024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/10/2019] [Indexed: 12/21/2022]
Abstract
Cannabinoid/endocannabinoid signaling is primarily mediated by cannabinoid receptor type 1 (CB1; encoded by Cnr1) and/or type 2 (CB2; encoded by Cnr2). Here, we show that Cnr1-/-Cnr2-/- mice are subfertile as a result of compromised implantation. Upon implantation, the epithelium is smooth and adhered to the blastocyst trophectoderm within the implantation chamber (crypt) in wild-type mice, whereas the epithelium in Cnr1-/-Cnr2-/- mice is ruffled, which compromises appropriate blastocyst-uterine interactions. The suboptimal implantation leads to higher incidence of pregnancy failure in Cnr1-/-Cnr2-/- mice. Histological analysis revealed heightened edema around the implantation chamber in these deleted females. With the use of a reporter mouse line, we observed that CB2 is present on endothelial cells of uterine blood vessels, and its absence leads to blood vessel leakage during implantation. These results suggest that appropriately regulated uterine edema is important to optimal implantation.
Collapse
MESH Headings
- Animals
- Embryo Implantation/genetics
- Female
- Infertility, Female/genetics
- Infertility, Female/metabolism
- Mice
- Mice, Knockout
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/physiology
- Uterus/metabolism
Collapse
Affiliation(s)
- Yingju Li
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Fenghua Bian
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Xiaofei Sun
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Correspondence: Sudhansu K. Dey, PhD, or Xiaofei Sun, PhD, Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, MLC 7045, 3333 Burnet Avenue, Cincinnati, Ohio 45229. E-mail: or
| | - Sudhansu K Dey
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Correspondence: Sudhansu K. Dey, PhD, or Xiaofei Sun, PhD, Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, MLC 7045, 3333 Burnet Avenue, Cincinnati, Ohio 45229. E-mail: or
| |
Collapse
|
30
|
Decreased Expression of Cannabinoid Receptors in the Eutopic and Ectopic Endometrium of Patients with Adenomyosis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5468954. [PMID: 30800671 PMCID: PMC6360557 DOI: 10.1155/2019/5468954] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/08/2019] [Indexed: 01/12/2023]
Abstract
Objective Adenomyosis is a common gynecologic benign disease that may have a life-long negative impact on women. Previous studies have indicated that the endocannabinoid system may participate in the progress of endometriosis. Our research aims to analyze the expression patterns of the typical cannabinoid receptors (CB1 and CB2), the main constituents of the endocannabinoid system, in endometrial samples derived from patients diagnosed as adenomyosis or not. Methods Eutopic and corresponding ectopic endometrium from 45 premenopausal women diagnosed as adenomyosis and normal endometrium from 34 age-matched women lacking evidence of adenomyosis were examined by immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR) to determine the CB1 and CB2 expression levels. Results In either the proliferative or the secretory phase, CB1 and CB2 protein and mRNA levels were both significantly lower in the eutopic and ectopic endometrium of adenomyosis when compared with normal endometrium. For women with adenomyosis, CB1 and CB2 protein and mRNA levels were much lower in the ectopic endometrium than the eutopic in both phases of the cycle. Both CB1 and CB2 protein and mRNA levels were increased during the secretory phase in normal endometrium, while CB1 lost its cyclic variation in the eutopic and ectopic endometrium from patients diagnosed as adenomyosis. Conclusion The decreased expression of CB1 and CB2 in the eutopic and ectopic endometrium from patients diagnosed as adenomyosis suggests that cannabinoid receptors may participate in the pathogenesis of adenomyosis.
Collapse
|
31
|
Bukiya AN. Physiology of the Endocannabinoid System During Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1162:13-37. [PMID: 31332732 DOI: 10.1007/978-3-030-21737-2_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The endocannabinoid (eCB) system comprises endogenously produced cannabinoids (CBs), enzymes of their production and degradation, and CB-sensing receptors and transporters. The eCB system plays a critical role in virtually all stages of animal development. Studies on eCB system components and their physiological role have gained increasing attention with the rising legalization and medical use of marijuana products. The latter represent exogenous interventions that target the eCB system. This chapter summarizes knowledge in the field of CB contribution to gametogenesis, fertilization, embryo implantation, fetal development, birth, and adolescence-equivalent periods of ontogenesis. The material is complemented by the overview of data from our laboratory documenting the functional presence of the eCB system within cerebral arteries of baboons at different stages of development.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
32
|
Implantation loss induced by ethanolamine in the rat is ameliorated by a choline-supplemented diet. Reprod Toxicol 2018; 78:102-110. [DOI: 10.1016/j.reprotox.2018.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/14/2022]
|
33
|
Ramírez-Reveco A, Villarroel-Espíndola F, Rodríguez-Gil JE, Concha II. Neuronal signaling repertoire in the mammalian sperm functionality. Biol Reprod 2017; 96:505-524. [PMID: 28339693 DOI: 10.1095/biolreprod.116.144154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/24/2017] [Indexed: 12/14/2022] Open
Abstract
The common embryonic origin has been a recurrent explanation to understand the presence of "neural receptors" in sperm. However, this designation has conditioned a bias marked by the classical neurotransmission model, dismissing the possibility that neurotransmitters can play specific roles in the sperm function by themselves. For instance, the launching of acrosome reaction, a fundamental sperm function, includes several steps that recall the process of presynaptic secretion. Unlike of postsynaptic neuron, whose activation is mediated by molecular interaction between neurotransmitter and postsynaptic receptors, the oocyte activation is not mediated by receptors, but by cytosolic translocation of sperm phospholipase (PLCζ). Thus, the sperm has a cellular design to access and activate the oocyte and restore the ploidy of the species by an "allogenic pronuclear fusion." At subcellular level, the events controlling sperm function, particularly the capacitation process, are activated by chemical signals that trigger ion fluxes, sterol oxidation, synthesis of cyclic adenosine monophosphate, protein kinase A activation, tyrosine phosphorylations and calcium signaling, which correspond to second messengers similar to those associated with exocytosis and growth cone guidance in neurons. Classically, the sperm function associated with neural signals has been analyzed as a unidimensional approach (single ligand-receptor effect). However, the in vivo sperm are exposed to multidimensional signaling context, for example, the GABAergic, monoaminergic, purinergic, cholinergic, and melatoninergic, to name a few. The aim of this review is to present an overview of sperm functionality associated with "neuronal signaling" and possible cellular and molecular mechanisms involved in their regulation.
Collapse
Affiliation(s)
- Alfredo Ramírez-Reveco
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Franz Villarroel-Espíndola
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Department of Pathology and Pediatric Pathology, Yale University, New Haven, Connecticut, USA
| | - Joan E Rodríguez-Gil
- Unitat de Reproducció Animal, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Ilona I Concha
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
34
|
Correa F, Wolfson ML, Valchi P, Aisemberg J, Franchi AM. Endocannabinoid system and pregnancy. Reproduction 2017; 152:R191-R200. [PMID: 27798285 DOI: 10.1530/rep-16-0167] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/04/2016] [Indexed: 01/12/2023]
Abstract
The endocannabinoid system (eCS), is a complex system, comprising the main endogenous ligands anandamide and 2-arachidonoyl glycerol, the cannabinoid receptors CB1 and CB2 and the biosynthetic and degrading enzymes. Cumulative evidence shows that the eCS plays an important role in reproduction, from egg fertilization to parturition. Therefore, alterations in this system, either by recreation/therapeutic use of cannabis or deregulation of the endogenous cannabinoids, might lead to adverse pregnancy outcomes, including retardation in embryo development, poor blastocyst implantation, inhibition of decidualization, miscarriage and compromised placentation. Nevertheless, the molecular mechanisms by which the eCS participates in different stages of pregnancy remain poorly understood. In this review, we will examine the evidence from animal and human studies to support the role of the eCS in implantation, early-to-late pregnancy and placentation as well as the difficulties of targeting this system for treatment of female infertility.
Collapse
Affiliation(s)
- Fernando Correa
- Center for Pharmacological and Botanical StudiesNational Research Council, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Manuel L Wolfson
- Center for Pharmacological and Botanical StudiesNational Research Council, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Paula Valchi
- Center for Pharmacological and Botanical StudiesNational Research Council, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Julieta Aisemberg
- Center for Pharmacological and Botanical StudiesNational Research Council, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Ana María Franchi
- Center for Pharmacological and Botanical StudiesNational Research Council, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
35
|
Matsumoto H. Molecular and cellular events during blastocyst implantation in the receptive uterus: clues from mouse models. J Reprod Dev 2017. [PMID: 28638003 PMCID: PMC5649093 DOI: 10.1262/jrd.2017-047] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The success of implantation is an interactive process between the blastocyst and the uterus. Synchronized development of embryos with uterine differentiation to a receptive state is necessary to complete pregnancy. The period of uterine receptivity for implantation is limited and referred to as the “implantation window”, which is regulated by ovarian steroid hormones. Implantation process is complicated due to the many signaling molecules in the hierarchical mechanisms with the embryo-uterine dialogue. The mouse is widely used in animal research, and is uniquely suited for reproductive studies, i.e., having a large litter size and brief estrous cycles. This review first describes why the mouse is the preferred model for implantation studies, focusing on uterine morphology and physiological traits, and then highlights the knowledge on uterine receptivity and the hormonal regulation of blastocyst implantation in mice. Our recent study revealed that selective proteolysis in the activated blastocyst is associated with the completion of blastocyst implantation after embryo transfer. Furthermore, in the context of blastocyst implantation in the mouse, this review discusses the window of uterine receptivity, hormonal regulation, uterine vascular permeability and angiogenesis, the delayed-implantation mouse model, morphogens, adhesion molecules, crosslinker proteins, extracellular matrix, and matricellular proteins. A better understanding of uterine and blastocyst biology during the peri-implantation period should facilitate further development of reproductive technology.
Collapse
Affiliation(s)
- Hiromichi Matsumoto
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Tochigi 321-8505, Japan.,Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
| |
Collapse
|
36
|
Oltrabella F, Melgoza A, Nguyen B, Guo S. Role of the endocannabinoid system in vertebrates: Emphasis on the zebrafish model. Dev Growth Differ 2017; 59:194-210. [PMID: 28516445 DOI: 10.1111/dgd.12351] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 03/18/2017] [Accepted: 03/24/2017] [Indexed: 12/15/2022]
Abstract
The endocannabinoid system (eCBs), named after the plant Cannabis sativa, comprises cannabinoid receptors, endogenous ligands known as "endocannabinoids", and enzymes involved in the biosynthesis and degradation of these ligands, as well as putative transporters for these ligands. ECBs proteins and small molecules have been detected in early embryonic stages of many vertebrate models. As a result, cannabinoid receptors and endogenous as well as exogenous cannabinoids influence development and behavior in many vertebrate species. Understanding the precise mechanisms of action for the eCBs will provide an invaluable guide towards elucidation of vertebrate development and will also help delineate how developmental exposure to marijuana might impact health and cognitive/executive functioning in adulthood. Here we review the developmental roles of the eCBs in vertebrates, focusing our attention on the zebrafish model. Since little is known regarding the eCBs in zebrafish, we provide new data on the expression profiles of eCBs genes during development and in adult tissue types of this model organism. We also highlight exciting areas for future investigations, including the synaptic regulation of eCBs, its role in reward and addiction, and in nervous system development and plasticity.
Collapse
Affiliation(s)
- Francesca Oltrabella
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, 94158-2811, USA
| | - Adam Melgoza
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, 94158-2811, USA.,Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, California, 94158-2811, USA
| | - Brian Nguyen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, 94158-2811, USA.,Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, 94720-3104, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, 94158-2811, USA.,Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, California, 94158-2811, USA.,Institute for Human Genetics, University of California, San Francisco, California, 94158-2811, USA
| |
Collapse
|
37
|
López-Cardona AP, Pérez-Cerezales S, Fernández-González R, Laguna-Barraza R, Pericuesta E, Agirregoitia N, Gutiérrez-Adán A, Agirregoitia E. CB 1 cannabinoid receptor drives oocyte maturation and embryo development via PI3K/Akt and MAPK pathways. FASEB J 2017; 31:3372-3382. [PMID: 28428264 DOI: 10.1096/fj.201601382rr] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/05/2017] [Indexed: 11/11/2022]
Abstract
Endocannabinoids have been recognized as mediators of practically all reproductive events in mammals. However, little is known about the role of this system in oocyte maturation. In a mouse model, we observed that activation of cannabinoid receptor 1 (CB1) during in vitro oocyte maturation modulated the phosphorylation status of Akt and ERK1/2 and enhanced the subsequent embryo production. In the absence of CB1, in vivo oocyte maturation was impaired and embryo development delayed. Cannabinoid receptor 2 (CB2) was unable to rescue these effects. Finally, we confirmed abnormal oocyte maturation rather than impaired embryonic transport through the oviduct in CB1 knockouts. Our data suggest that cannabinoid agonists may be useful in vitro maturation supplements. For in vitro fertilization patients intolerant to gonadotropins, this could be a promising and only option.-López-Cardona, A. P., Pérez-Cerezales, S., Fernández-González, R., Laguna-Barraza, R., Pericuesta, E., Agirregoitia, N., Gutiérrez-Adán, A., Agirregoitia, E. CB1 cannabinoid receptor drives oocyte maturation and embryo development via PI3K/Akt and MAPK pathways.
Collapse
Affiliation(s)
- Angela Patricia López-Cardona
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.,Groupo de Investigación (G.I.)-Biogénesis, Universidad de Antioquia, Medellín, Colombia
| | - Serafín Pérez-Cerezales
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Raúl Fernández-González
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Ricardo Laguna-Barraza
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Eva Pericuesta
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Naiara Agirregoitia
- Department of Physiology, Faculty of Medicine and Nursing University of the Basque Country (UPV/EHU), Leioa, Bizkaia
| | - Alfonso Gutiérrez-Adán
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Ekaitz Agirregoitia
- Department of Physiology, Faculty of Medicine and Nursing University of the Basque Country (UPV/EHU), Leioa, Bizkaia
| |
Collapse
|
38
|
Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev 2016; 96:1593-659. [DOI: 10.1152/physrev.00002.2016] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.
Collapse
Affiliation(s)
- Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| |
Collapse
|
39
|
Friedrich J, Khatib D, Parsa K, Santopietro A, Gallicano GI. The grass isn't always greener: The effects of cannabis on embryological development. BMC Pharmacol Toxicol 2016; 17:45. [PMID: 27680736 PMCID: PMC5041313 DOI: 10.1186/s40360-016-0085-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/24/2016] [Indexed: 12/14/2022] Open
Abstract
With the increasing publicity of marijuana due to recent legislation, it is pertinent that the effects of fetal exposure to the drug are assessed. While in utero cannabis exposure has been associated with early pregnancy failure, birth defects and developmental delay, the mechanisms of such outcomes are largely unexplained. Furthermore, the use of cannabinoids in cancer treatment via growth inhibition and apoptosis may indicate how cannabis exposure likely harms a growing fetus. Cannabinoid signaling is required for proper pre-implantation development, embryo transport to the uterus, and uterine receptivity during implantation. In post-implantation development, cannabinoid signaling functions in a multitude of pathways, including, but not limited to, folic acid, VEGF, PCNA, MAPK/ERK, and BDNF. Disrupting the normal activity of these pathways can significantly alter many vital in utero processes, including angiogenesis, cellular replication, tissue differentiation, and neural cognitive development. This paper aims to demonstrate the effects of cannabis exposure on a developing embryo in order to provide a molecular explanation for the adverse outcomes associated with cannabis use during pregnancy.
Collapse
Affiliation(s)
- Joseph Friedrich
- Department of Biochemistry and Molecular & Cellular biology, Georgetown University Medical Center, 3900 reservoir Rd. NW, Med/Dent Building NE205, Washington DC, 20057, USA
| | - Dara Khatib
- Department of Biochemistry and Molecular & Cellular biology, Georgetown University Medical Center, 3900 reservoir Rd. NW, Med/Dent Building NE205, Washington DC, 20057, USA
| | - Keon Parsa
- Department of Biochemistry and Molecular & Cellular biology, Georgetown University Medical Center, 3900 reservoir Rd. NW, Med/Dent Building NE205, Washington DC, 20057, USA
| | - Ariana Santopietro
- Department of Biochemistry and Molecular & Cellular biology, Georgetown University Medical Center, 3900 reservoir Rd. NW, Med/Dent Building NE205, Washington DC, 20057, USA
| | - G Ian Gallicano
- Department of Biochemistry and Molecular & Cellular biology, Georgetown University Medical Center, 3900 reservoir Rd. NW, Med/Dent Building NE205, Washington DC, 20057, USA.
| |
Collapse
|
40
|
Richardson KA, Hester AK, McLemore GL. Prenatal cannabis exposure - The "first hit" to the endocannabinoid system. Neurotoxicol Teratol 2016; 58:5-14. [PMID: 27567698 DOI: 10.1016/j.ntt.2016.08.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/25/2016] [Accepted: 08/19/2016] [Indexed: 12/18/2022]
Abstract
As more states and countries legalize medical and/or adult recreational marijuana use, the incidences of prenatal cannabis exposure (PCE) will likely increase. While young people increasingly view marijuana as innocuous, marijuana preparations have been growing in potency in recent years, potentially creating global clinical, public health, and workforce concerns. Unlike fetal alcohol spectrum disorder, there is no phenotypic syndrome associated with PCE. There is also no preponderance of evidence that PCE causes lifelong cognitive, behavioral, or functional abnormalities, and/or susceptibility to subsequent addiction. However, there is compelling circumstantial evidence, based on the principles of teratology and fetal malprogramming, suggesting that pregnant women should refrain from smoking marijuana. The usage of marijuana during pregnancy perturbs the fetal endogenous cannabinoid signaling system (ECSS), which is present and active from the early embryonic stage, modulating neurodevelopment and continuing this role into adulthood. The ECSS is present in virtually every brain structure and organ system, and there is also evidence that this system is important in the regulation of cardiovascular processes. Endocannabinoids (eCBs) undergird a broad spectrum of processes, including the early stages of fetal neurodevelopment and uterine implantation. Delta-9-tetrahydrocannabinol (THC), the psychoactive chemical in cannabis, enters maternal circulation, and readily crosses the placental membrane. THC binds to CB receptors of the fetal ECSS, altering neurodevelopment and possibly rewiring ECSS circuitry. In this review, we discuss the Double-Hit Hypothesis as it relates to PCE. We contend that PCE, similar to a neurodevelopmental teratogen, delivers the first hit to the ECSS, which is compromised in such a way that a second hit (i.e., postnatal stressors) will precipitate the emergence of a specific phenotype. In summary, we conclude that perturbations of the intrauterine milieu via the introduction of exogenous CBs alter the fetal ECSS, predisposing the offspring to abnormalities in cognition and altered emotionality. Based on recent experimental evidence that we will review here, we argue that young women who become pregnant should immediately take a "pregnant pause" from using marijuana.
Collapse
Affiliation(s)
- Kimberlei A Richardson
- Howard University College of Medicine, Department of Pharmacology, 520 W Street, NW, Suite 3408, Washington, DC 20059, United States.
| | - Allison K Hester
- Howard University College of Medicine, Department of Pharmacology, 520 W Street, NW, Suite 3408, Washington, DC 20059, United States.
| | - Gabrielle L McLemore
- Morgan State University, Department of Biology-SCMMS, 1700 East Cold Spring Lane, Baltimore, MD 21251, United States.
| |
Collapse
|
41
|
Cupini LM, Bari M, Battista N, Argirò G, Finazzi-Agrò A, Calabresi P, Maccarrone M. Biochemical Changes in Endocannabinoid System are Expressed in Platelets of Female but not Male Migraineurs. Cephalalgia 2016; 26:277-81. [PMID: 16472333 DOI: 10.1111/j.1468-2982.2005.01031.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The endogenous cannabinoid anandamide (AEA) plays important roles in modulating pain. Head pain is an almost universal human experience, yet primary headache disorders, such as migraine without aura (MoA) or episodic tension-type headache (ETTH), can represent a serious threat to well-being when frequent and disabling. We assessed the discriminating role of endocannabinoids among patients with ETTH or MoA, and control subjects. We measured the activity of AEA hydrolase and AEA transporter, and the level of cannabinoid receptors in peripheral platelets from MoA, ETTH and healthy controls. Sixty-nine headache patients and 36 controls were selected. Diagnosis of headache type was made according to the International Headache Society criteria. We observed significant sex differences concerning AEA membrane transporter and fatty acid amide hydrolase activity in all groups. An increase in the activity of AEA hydrolase and AEA transporter was found in female but not male migraineurs. Cannabinoid receptors were the same in all groups. Here we show that the endocannabinoid system in human platelets is altered in female but not male migraneurs. Our results suggest that in migraineur women an increased AEA degradation by platelets, and hence a reduced concentration of AEA in blood, might reduce the pain threshold and possibly explain the prevalence of migraine in women. The involvement of the endocannabinoid system in migraine is new and broadens our knowledge of this widespread and multifactorial disease.
Collapse
Affiliation(s)
- L M Cupini
- Centro Cefalee, Clinica Neurologica, Ospedale S. Eugenio, Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|
42
|
Wolfson ML, Muzzio DO, Ehrhardt J, Franchi AM, Zygmunt M, Jensen F. Expression analysis of cannabinoid receptors 1 and 2 in B cells during pregnancy and their role on cytokine production. J Reprod Immunol 2016; 116:23-7. [PMID: 27163857 DOI: 10.1016/j.jri.2016.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/27/2016] [Accepted: 05/01/2016] [Indexed: 12/29/2022]
Abstract
The endocannabinoid system consists in a family of lipids that binds to and activates cannabinoid receptors. There are two receptors so far described, the cannabinoid receptor 1 (CB1) and 2 (CB2). In the context of pregnancy, the endocannabinoid system was shown participates in different key aspects of reproductive events. B-lymphocytes are pleiotropic cells belonging to the adaptive arm of the immune system. Besides immunoglobulin production, B-lymphocytes were recently shown to be actively involved in antigen presentation as well as cytokine production, thus playing a central role in immunity. In this study we first aimed to characterize the expression of CB1 and CB2 receptors in B cells during pregnancy and then analyze the impact of their activation in term of cytokine production by B cells from pregnant and non-pregnant mice. We observed that the expression of CB1 and CB2 receptors in B-lymphocytes is differentially regulated during pregnancy. While CB2 expression is down regulated CB1 is augmented in B-lymphocytes of pregnant mice. Additionally, the treatment of activated B-lymphocytes with specific CB1 and CB2 agonists, showed a different response in term of cytokine production. Particularly, CB1 against boosted the production of the anti-inflammatory cytokine IL-10 by activated B-lymphocytes from pregnant mice.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- Cells, Cultured
- Female
- Gene Expression Regulation
- Humans
- Immune Tolerance
- Interleukin-10/metabolism
- Lymphocyte Activation
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Pregnancy
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- M L Wolfson
- Laboratory of Physiopathology of Pregnancy and Labor, Center for Pharmacological and Botanical Studies, National Research Council, School of Medicine, University of Buenos Aires, Argentina
| | - D O Muzzio
- Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| | - J Ehrhardt
- Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| | - A M Franchi
- Laboratory of Physiopathology of Pregnancy and Labor, Center for Pharmacological and Botanical Studies, National Research Council, School of Medicine, University of Buenos Aires, Argentina
| | - M Zygmunt
- Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| | - F Jensen
- Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany; Laboratory for Immunology of Pregnancy, Center for Pharmacological and Botanical Studies (CEFYBO-CONICET-UBA), Buenos Aires, Argentina; Institute of Health Sciences, National University Arturo Jauretche, Buenos Aires, Argentina.
| |
Collapse
|
43
|
Agirregoitia E, Totorikaguena L, Expósito A, Mendoza R, Matorras R, Agirregoitia N. Dynamic of expression and localization of cannabinoid-degrading enzymes FAAH and MGLL in relation to CB1 during meiotic maturation of human oocytes. Cell Tissue Res 2016; 365:393-401. [PMID: 26948343 DOI: 10.1007/s00441-016-2381-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/19/2016] [Indexed: 12/11/2022]
Abstract
The endogenous cannabinoid system has been characterized in some female reproductive organs but little is known about the expression and localization pattern of cannabinoid-degrading enzymes in relation to the CB1 cannabinoid receptor in human oocytes. In this study, we focus on the investigation of the presence and differential distribution of fatty acid amide hydrolase (FAAH) and monoglyceride lipase (MGLL) in relation to CB1 during the maturation of human oocytes. We used a total of 290 human oocytes not suitable for in vitro fertilization/intracytoplasmic sperm injection (ICSI): germinal-vesicle (GV) and metaphase-I (MI) stages and metaphase-II (MII) oocytes that had not developed into an embryo after ICSI. Cannabinoid-degrading enzymes and the cannabinoid CB1 receptor were present in human oocytes. Specifically, FAAH was detected in the periphery of the oocyte from the GV to MI stage and co-localized with CB1. Later, by the MII stage, FAAH was spread within the oocyte, whereas MGLL immunostaining was homogeneous across the oocyte at all stages of maturation and only overlapped with CB1 at the GV stage. This coordinated redistribution of cannabinoid system proteins suggests a role for this system in the maturation of the female gamete.
Collapse
Affiliation(s)
- Ekaitz Agirregoitia
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Spain.
| | - Lide Totorikaguena
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Spain
| | - Antonia Expósito
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country, Plaza de Cruces s/n, Barakaldo, 48903, Bizkaia, Spain
| | - Rosario Mendoza
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country, Plaza de Cruces s/n, Barakaldo, 48903, Bizkaia, Spain
| | - Roberto Matorras
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country, Plaza de Cruces s/n, Barakaldo, 48903, Bizkaia, Spain
| | - Naiara Agirregoitia
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Spain
| |
Collapse
|
44
|
Javid FA, Phillips RM, Afshinjavid S, Verde R, Ligresti A. Cannabinoid pharmacology in cancer research: A new hope for cancer patients? Eur J Pharmacol 2016; 775:1-14. [DOI: 10.1016/j.ejphar.2016.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 01/05/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
|
45
|
Pirone A, Lenzi C, Coli A, Giannessi E, Stornelli MR, Miragliotta V. Preferential epithelial expression of type-1 cannabinoid receptor (CB1R) in the developing canine embryo. SPRINGERPLUS 2015; 4:804. [PMID: 26702393 PMCID: PMC4688286 DOI: 10.1186/s40064-015-1616-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 12/13/2015] [Indexed: 12/05/2022]
Abstract
The use of cannabinoid receptor agonists is gaining a strong interest both in human and veterinary medicine. The potential use of cannabimimetic compounds in companion animals was reviewed in 2007 for their role in tissue inflammation and pain. A better knowledge of type-1 cannabinoid receptor (CB1R) expression on the target population may help in risk management in order to prevent unwanted side effects. We used 30-days old canine embryos to describe the distribution of CB1R by means of immunohistochemistry with a commercially available antibody.CB1R immunoreactivity was mainly epithelial and included most structures of central and peripheral nervous system, inner ear, olfactory epithelium and related structures, eye and thyroid. Further investigative research on the role of the endocannabinoid system in the developmental biology field is needed, however, we show that in the canine species we must consider pregnancy as risk condition for developmental abnormalities that may arise upon the use of CB1R receptor agonists.
Collapse
Affiliation(s)
- Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy
| | - Carla Lenzi
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy
| | - Alessandra Coli
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy
| | - Elisabetta Giannessi
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy
| | - Maria Rita Stornelli
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy
| | - Vincenzo Miragliotta
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy
| |
Collapse
|
46
|
Fetal Alcohol Spectrum Disorder: Potential Role of Endocannabinoids Signaling. Brain Sci 2015; 5:456-93. [PMID: 26529026 PMCID: PMC4701023 DOI: 10.3390/brainsci5040456] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/19/2015] [Accepted: 10/19/2015] [Indexed: 12/15/2022] Open
Abstract
One of the unique features of prenatal alcohol exposure in humans is impaired cognitive and behavioral function resulting from damage to the central nervous system (CNS), which leads to a spectrum of impairments referred to as fetal alcohol spectrum disorder (FASD). Human FASD phenotypes can be reproduced in the rodent CNS following prenatal ethanol exposure. Several mechanisms are expected to contribute to the detrimental effects of prenatal alcohol exposure on the developing fetus, particularly in the developing CNS. These mechanisms may act simultaneously or consecutively and differ among a variety of cell types at specific developmental stages in particular brain regions. Studies have identified numerous potential mechanisms through which alcohol can act on the fetus. Among these mechanisms are increased oxidative stress, mitochondrial damage, interference with the activity of growth factors, glia cells, cell adhesion molecules, gene expression during CNS development and impaired function of signaling molecules involved in neuronal communication and circuit formation. These alcohol-induced deficits result in long-lasting abnormalities in neuronal plasticity and learning and memory and can explain many of the neurobehavioral abnormalities found in FASD. In this review, the author discusses the mechanisms that are associated with FASD and provides a current status on the endocannabinoid system in the development of FASD.
Collapse
|
47
|
Spatiotemporal expression of endogenous opioid processing enzymes in mouse uterus at peri-implantation. Cell Tissue Res 2015; 363:555-65. [PMID: 26298082 DOI: 10.1007/s00441-015-2259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
Successful implantation requires intimate interactions between a competent blastocyst and a receptive uterus. We recently demonstrated that the aberrant activation of opioid signaling by exogenous ligands adversely affects preimplantation embryonic development and subsequent implantation in mice. However, the underlying machinery governing the dynamic homeostasis of the endogenous opioid system in the uterus during early pregnancy remains elusive. We now show that all three major endogenous opioid precursors are spatiotemporally expressed in the uterus during early pregnancy. Moreover, we observe the well-coordinated expression of the synthetic enzyme prohormone convertases 1/3 (PC1/3) at lower levels and of its inhibitor proprotein convertase subtilisin/kexin type 1 inhibitor (Pcsk1n) and the degrading enzyme membrane metallo-endopeptidase (MME) at higher levels in the receptive uterus. Both estrogen and progestin tend to reduce the uterine levels of opioid ligand precursors in the ovariectomized mouse model. This tight regulation of the endogenous opioid system by PC1/3, Pcsk1n and MME has been further confirmed in physiologically related pseudopregnancy and delayed implantation mouse models. The coordinated regulation of opioid precursor biosynthesis and metabolism helps to create appropriate opioid signaling ensuring uterine receptivity for implantation. Thus, endogenous uterine opioid levels are primarily determined by the coordinated expressions of PC1/3, Pcsk1n and MME under the influence of ovarian progestin and estrogen. Our findings raise an additional cautionary note regarding the effects of opioid abuse on early pregnancy events.
Collapse
|
48
|
Wolfson ML, Correa F, Leishman E, Vercelli C, Cymeryng C, Blanco J, Bradshaw HB, Franchi AM. Lipopolysaccharide-induced murine embryonic resorption involves changes in endocannabinoid profiling and alters progesterone secretion and inflammatory response by a CB1-mediated fashion. Mol Cell Endocrinol 2015; 411:214-22. [PMID: 25958042 PMCID: PMC4458170 DOI: 10.1016/j.mce.2015.04.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 12/13/2022]
Abstract
Genital tract infections are a common complication of human pregnancy that can result in miscarriage. We have previously shown that a lipopolysaccharide (LPS) induces embryonic resorption in a murine model of inflammatory miscarriage. This is accompanied by a dramatic decrease in systemic progesterone levels associated with a robust pro-inflammatory response that results in embryo resorption. Here, we tested the hypothesis that the endogenous cannabinoid system (eCS), through cannabinoid receptor 1 (CB1), plays a role in regulating progesterone levels and, therefore, the pro-inflammatory response. We show that LPS treatment in pregnant mice causes significant changes in the eCS ligands, which are reversed by progesterone treatment. We further show the CB1-KO mice maintain higher plasma progesterone levels after LPS treatment, which is associated with a feebler uterine inflammatory response and a significant drop in embryo resorption. These data suggest that manipulation of CB1 receptors and/or ligands is a potential therapeutic avenue to decrease infection-induced miscarriage.
Collapse
Affiliation(s)
- Manuel L Wolfson
- Laboratory of Physiopathology of Pregnancy and Labor, Center for Pharmacological and Botanical Studies, National Research Council, School of Medicine, University of Buenos Aires, Argentina.
| | - Fernando Correa
- Laboratory of Physiopathology of Pregnancy and Labor, Center for Pharmacological and Botanical Studies, National Research Council, School of Medicine, University of Buenos Aires, Argentina
| | - Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Claudia Vercelli
- Biomedicine Research Institute of Buenos Aires, Partner Institute of the Max Planck Society (MPSP), National Research Council, Ciudad Autónoma de Buenos Aires (CABA), Buenos Aires, Argentina
| | - Cora Cymeryng
- Laboratory of Molecular Endocrinology, Center for Pharmacological and Botanical Studies, National Research Council, School of Medicine, University of Buenos Aires, Argentina
| | - Julieta Blanco
- Laboratory of Physiopathology of Pregnancy and Labor, Center for Pharmacological and Botanical Studies, National Research Council, School of Medicine, University of Buenos Aires, Argentina
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Ana María Franchi
- Laboratory of Physiopathology of Pregnancy and Labor, Center for Pharmacological and Botanical Studies, National Research Council, School of Medicine, University of Buenos Aires, Argentina
| |
Collapse
|
49
|
Molecular and cellular events involved in the completion of blastocyst implantation. Reprod Med Biol 2015; 15:53-58. [PMID: 29259421 DOI: 10.1007/s12522-015-0222-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/05/2015] [Indexed: 12/19/2022] Open
Abstract
Blastocyst implantation is an interactive process between the embryo and the uterus. The synchronization of embryonic development with uterine differentiation to a receptive state is essential for a successful pregnancy. The period of uterine receptivity for implantation is limited. Although implantation involves the interaction of numerous signaling molecules, our understanding of the hierarchical mechanisms that coordinate with the embryo-uterine dialogue is not yet sufficient to prevent infertility caused by implantation failure. This review highlights our knowledge on uterine receptivity and hormonal regulation of blastocyst implantation in mice. We also discuss the adhesion molecules, cross-linker proteins, extracellular proteins, and matricellular proteins involved in blastocyst implantation. Furthermore, our recent study reveals that selective proteolysis in an activated blastocyst is associated with the completion of blastocyst implantation after embryo transfer. A better understanding of uterine and blastocyst biology during the peri-implantation period would facilitate further development of reproductive technology.
Collapse
|
50
|
Agirregoitia E, Ibarra-Lecue I, Totorikaguena L, Mendoza R, Expósito A, Matorras R, Urigüen L, Agirregoitia N. Dynamics of expression and localization of the cannabinoid system in granulosa cells during oocyte nuclear maturation. Fertil Steril 2015; 104:753-60. [PMID: 26144572 DOI: 10.1016/j.fertnstert.2015.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/09/2015] [Accepted: 06/13/2015] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To describe the expression of cannabinoid receptors CB1 and CB2 and cannabinoid-degrading enzymes fatty acid amide hydrolase (FAAH) and monoglyceride lipase (MGLL) in human granulosa cells and to investigate their differential distribution with respect to CB1 at various stages during the nuclear maturation of the oocyte. DESIGN Analysis of granulosa cells from germinal vesicle (GV), metaphase I (MI), and MII oocytes by quantitative reverse transcriptase-polymerase chain reaction, Western blot, and indirect immunofluorescence assays. SETTING Academic research laboratory. PATIENT(S) Patients from the Human Reproduction Unit of Cruces University Hospital undergoing intracytoplasmic sperm injection. INTERVENTION(S) We analyzed the granulosa cells of 300 oocytes from 53 patients. The oocyte maturation stages were 75 at GV stage, 51 at MI, and 174 at MII. MAIN OUTCOME MEASURE(S) The mRNA and protein expression of CB1, CB2, FAAH, and MGLL and localization in granulosa cells at each oocyte maturation stage. RESULT(S) CB1, FAAH, and MGLL are present in human granulosa cells during oocyte maturation, but the presence of CB2 receptor is not entirely clear in those cells. CB1 and FAAH were detected in the periphery of the granulosa cells from the GV to the MII oocytes, and they colocalized in some portions of the cell membrane. On the other hand, MGLL immunostaining was more homogeneous across the cell and overlapped with CB1 only weakly. CONCLUSION(S) The presence of the cannabinoid system in granulosa cells suggests a possible role of this system in the nuclear maturation of the oocyte.
Collapse
Affiliation(s)
- Ekaitz Agirregoitia
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Leioa, Spain; BioCruces Health Research Institute, Barakaldo, Spain.
| | - Inés Ibarra-Lecue
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Lide Totorikaguena
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Rosario Mendoza
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country, Leioa, Spain; Human Reproduction Unity, Department of Obstetrics and Gynecology, Cruces University Hospital, University of the Basque Country, Barakaldo, Spain
| | - Antonia Expósito
- BioCruces Health Research Institute, Barakaldo, Spain; Human Reproduction Unity, Department of Obstetrics and Gynecology, Cruces University Hospital, University of the Basque Country, Barakaldo, Spain
| | - Roberto Matorras
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country, Leioa, Spain; Human Reproduction Unity, Department of Obstetrics and Gynecology, Cruces University Hospital, University of the Basque Country, Barakaldo, Spain
| | - Leyre Urigüen
- BioCruces Health Research Institute, Barakaldo, Spain; Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country, Leioa, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Naiara Agirregoitia
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Leioa, Spain; BioCruces Health Research Institute, Barakaldo, Spain
| |
Collapse
|