1
|
Olgar Y, Durak A, Bitirim CV, Tuncay E, Turan B. Insulin acts as an atypical KCNQ1/KCNE1-current activator and reverses long QT in insulin-resistant aged rats by accelerating the ventricular action potential repolarization through affecting the β 3 -adrenergic receptor signaling pathway. J Cell Physiol 2021; 237:1353-1371. [PMID: 34632595 DOI: 10.1002/jcp.30597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Insufficient-heart function is associated with myocardial insulin resistance in the elderly, particularly associated with long-QT, in a dependency on dysfunctional KCNQ1/KCNE1-channels. So, we aimed to examine the contribution of alterations in KCNQ1/KCNE1-current (IKs ) to the aging-related remodeling of the heart as well as the role of insulin treatment on IKs in the aged rats. Prolonged late-phase action potential (AP) repolarization of ventricular cardiomyocytes from insulin-resistant 24-month-old rats was significantly reversed by in vitro treatment of insulin or PKG inhibitor (in vivo, as well) via recovery in depressed IKs . Although the protein level of either KCNQ1 or KCNE1 in cardiomyocytes was not affected with aging, PKG level was significantly increased in those cells. The inhibited IKs in β3 -ARs-stimulated cells could be reversed with a PKG inhibitor, indicating the correlation between PKG-activation and β3 -ARs activation. Furthermore, in vivo treatment of aged rats, characterized by β3 -ARs activation, with either insulin or a PKG inhibitor for 2 weeks provided significant recoveries in IKs , prolonged late phases of APs, prolonged QT-intervals, and low heart rates without no effect on insulin resistance. In vivo insulin treatment provided also significant recovery in increased PKG and decreased PIP2 level, without the insulin effect on the KCNQ1 level in β3 -ARs overexpressed cells. The inhibition of IKs in aged-rat cardiomyocytes seems to be associated with activated β3 -ARs dependent remodeling in the interaction between KCNQ1 and KCNE1. Significant recoveries in ventricular-repolarization of insulin-treated aged cardiomyocytes via recovery in IKs strongly emphasize two important issues: (1) IKs can be a novel target in aging-associated remodeling in the heart and insulin may be a cardioprotective agent in the maintenance of normal heart function during the aging process. (2) This study is one of the first to demonstrate insulin's benefits on long-QT in insulin-resistant aged rats by accelerating the ventricular AP repolarization through reversing the depressed IKs via affecting the β3 -ARs signaling pathway and particularly affecting activated PKG.
Collapse
Affiliation(s)
- Yusuf Olgar
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Aysegul Durak
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | | | - Erkan Tuncay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.,Department of Biophysics, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
2
|
Qadri I, Choudhury M, Rahman SM, Knotts TA, Janssen RC, Schaack J, Iwahashi M, Puljak L, Simon FR, Kilic G, Fitz JG, Friedman JE. Increased phosphoenolpyruvate carboxykinase gene expression and steatosis during hepatitis C virus subgenome replication: role of nonstructural component 5A and CCAAT/enhancer-binding protein β. J Biol Chem 2012; 287:37340-51. [PMID: 22955269 DOI: 10.1074/jbc.m112.384743] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection greatly increases the risk for type 2 diabetes and nonalcoholic steatohepatitis; however, the pathogenic mechanisms remain incompletely understood. Here we report gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) transcription and associated transcription factors are dramatically up-regulated in Huh.8 cells, which stably express an HCV subgenome replicon. HCV increased activation of cAMP response element-binding protein (CREB), CCAAT/enhancer-binding protein (C/EBPβ), forkhead box protein O1 (FOXO1), and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and involved activation of the cAMP response element in the PEPCK promoter. Infection with dominant-negative CREB or C/EBPβ-shRNA significantly reduced or normalized PEPCK expression, with no change in PGC-1α or FOXO1 levels. Notably, expression of HCV nonstructural component NS5A in Huh7 or primary hepatocytes stimulated PEPCK gene expression and glucose output in HepG2 cells, whereas a deletion in NS5A reduced PEPCK expression and lowered cellular lipids but was without effect on insulin resistance, as demonstrated by the inability of insulin to stimulate mobilization of a pool of insulin-responsive vesicles to the plasma membrane. HCV-replicating cells demonstrated increases in cellular lipids with insulin resistance at the level of the insulin receptor, increased insulin receptor substrate 1 (Ser-312), and decreased Akt (Ser-473) activation in response to insulin. C/EBPβ-RNAi normalized lipogenic genes sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor γ, and liver X receptor α but was unable to reduce accumulation of triglycerides in Huh.8 cells or reverse the increase in ApoB expression, suggesting a role for increased lipid retention in steatotic hepatocytes. Collectively, these data reveal an important role of NS5A, C/EBPβ, and pCREB in promoting HCV-induced gluconeogenic gene expression and suggest that increased C/EBPβ and NS5A may be essential components leading to increased gluconeogenesis associated with HCV infection.
Collapse
Affiliation(s)
- Ishtiaq Qadri
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Evidence for sustained ATP release from liver cells that is not mediated by vesicular exocytosis. Purinergic Signal 2011; 7:435-46. [PMID: 21630025 DOI: 10.1007/s11302-011-9240-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022] Open
Abstract
Extracellular ATP regulates many important cellular functions in the liver by stimulating purinergic receptors. Recent studies have shown that rapid exocytosis of ATP-enriched vesicles contributes to ATP release from liver cells. However, this rapid ATP release is transient, and ceases in ~30 s after the exposure to hypotonic solution. The purpose of these studies was to assess the role of vesicular exocytosis in sustained ATP release. An exposure to hypotonic solution evoked sustained ATP release that persisted for more than 15 min after the exposure. Using FM1-43 (N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide) fluorescence to measure exocytosis, we found that hypotonic solution stimulated a transient increase in FM1-43 fluorescence that lasted ~2 min. Notably, the rate of FM1-43 fluorescence and the magnitude of ATP release were not correlated, indicating that vesicular exocytosis may not mediate sustained ATP release from liver cells. Interestingly, mefloquine potently inhibited sustained ATP release, but did not inhibit an increase in FM1-43 fluorescence evoked by hypotonic solution. Consistent with these findings, when exocytosis of ATP-enriched vesicles was specifically stimulated by 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), mefloquine failed to inhibit ATP release evoked by NPPB. Thus, mefloquine can pharmacologically dissociate sustained ATP release and vesicular exocytosis. These results suggest that a distinct mefloquine-sensitive membrane ATP transport may contribute to sustained ATP release from liver cells. This novel mechanism of membrane ATP transport may play an important role in the regulation of purinergic signaling in liver cells.
Collapse
|
4
|
Dolovcak S, Waldrop SL, Fitz JG, Kilic G. 5-Nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) stimulates cellular ATP release through exocytosis of ATP-enriched vesicles. J Biol Chem 2009; 284:33894-903. [PMID: 19808682 DOI: 10.1074/jbc.m109.046193] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells release ATP in response to physiologic stimuli. Extracellular ATP regulates a broad range of important cellular functions by activation of the purinergic receptors in the plasma membrane. The purpose of these studies was to assess the role of vesicular exocytosis in cellular ATP release. FM1-43 fluorescence was used to measure exocytosis and bioluminescence to measure ATP release in HTC rat hepatoma and Mz-Cha-1 human cholangiocarcinoma cells. Exposure to a Cl(-) channel inhibitor 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) (50-300 microM) stimulated a 5-100-fold increase in extracellular ATP levels within minutes of the exposure. This rapid response was not a result of changes in cell viability or Cl(-) channel activity. NPPB also potently stimulated ATP release in HEK293 cells and HEK293 cells expressing a rat P2X7 receptor indicating that P2X7 receptors are not involved in stimulation of ATP release by NPPB. In all cells studied, NPPB rapidly stimulated vesicular exocytosis that persisted many minutes after the exposure. The kinetics of NPPB-evoked exocytosis and ATP release were similar. Furthermore, the magnitudes of NPPB-evoked exocytosis and ATP release were correlated (correlation coefficient 0.77), indicating that NPPB may stimulate exocytosis of a pool of ATP-enriched vesicles. These findings provide further support for the concept that vesicular exocytosis plays an important role in cellular ATP release and suggest that NPPB can be used as a biochemical tool to specifically stimulate ATP release through exocytic mechanisms.
Collapse
Affiliation(s)
- Svjetlana Dolovcak
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9151, USA
| | | | | | | |
Collapse
|
5
|
Johnson JR, Jiang H, Smith BD. Zinc(II)-Coordinated Oligotyrosine: A New Class of Cell Penetrating Peptide. Bioconjug Chem 2008; 19:1033-9. [DOI: 10.1021/bc700466z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James R. Johnson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 USA
| | - Hua Jiang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 USA
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 USA
| |
Collapse
|
6
|
Nicolas CS, Park KH, El Harchi A, Camonis J, Kass RS, Escande D, Mérot J, Loussouarn G, Le Bouffant F, Baró I. IKs response to protein kinase A-dependent KCNQ1 phosphorylation requires direct interaction with microtubules. Cardiovasc Res 2008; 79:427-35. [PMID: 18390900 DOI: 10.1093/cvr/cvn085] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS KCNQ1 (alias KvLQT1 or Kv7.1) and KCNE1 (alias IsK or minK) co-assemble to form the voltage-activated K(+) channel responsible for I(Ks)-a major repolarizing current in the human heart-and their dysfunction promotes cardiac arrhythmias. The channel is a component of larger macromolecular complexes containing known and undefined regulatory proteins. Thus, identification of proteins that modulate its biosynthesis, localization, activity, and/or degradation is of great interest from both a physiological and pathological point of view. METHODS AND RESULTS Using a yeast two-hybrid screening, we detected a direct interaction between beta-tubulin and the KCNQ1 N-terminus. The interaction was confirmed by co-immunoprecipitation of beta-tubulin and KCNQ1 in transfected COS-7 cells and in guinea pig cardiomyocytes. Using immunocytochemistry, we also found that they co-localized in cardiomyocytes. We tested the effects of microtubule-disrupting and -stabilizing agents (colchicine and taxol, respectively) on the KCNQ1-KCNE1 channel activity in COS-7 cells by means of the permeabilized-patch configuration of the patch-clamp technique. None of these agents altered I(Ks). In addition, colchicine did not modify the current response to osmotic challenge. On the other hand, the I(Ks) response to protein kinase A (PKA)-mediated stimulation depended on microtubule polymerization in COS-7 cells and in cardiomyocytes. Strikingly, KCNQ1 channel and Yotiao phosphorylation by PKA-detected by phospho-specific antibodies-was maintained, as was the association of the two partners. CONCLUSION We propose that the KCNQ1-KCNE1 channel directly interacts with microtubules and that this interaction plays a major role in coupling PKA-dependent phosphorylation of KCNQ1 with I(Ks) activation.
Collapse
|
7
|
Puljak L, Parameswara V, Dolovcak S, Waldrop SL, Emmett D, Esser V, Fitz JG, Kilic G. Evidence for AMPK-dependent regulation of exocytosis of lipoproteins in a model liver cell line. Exp Cell Res 2008; 314:2100-9. [PMID: 18405894 DOI: 10.1016/j.yexcr.2008.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 02/20/2008] [Accepted: 03/03/2008] [Indexed: 11/29/2022]
Abstract
5'-AMP-activated kinase (AMPK) plays a key role in the regulation of cellular lipid metabolism. The contribution of vesicular exocytosis to this regulation is not known. Accordingly, we studied the effects of AMPK on exocytosis and intracellular lipid content in a model liver cell line. Activation of AMPK by metformin or 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) increased the rates of constitutive exocytosis by about 2-fold. Stimulation of exocytosis by AMPK occurred within minutes, and persisted after overnight exposure to metformin or AICAR. Activation of AMPK also increased the amount of triacylglycerol (TG) and apolipoprotein B (apoB) secreted from lipid-loaded cells. These effects were accompanied by a decrease in the intracellular lipid content indicating that exocytosis of lipoproteins was involved in these lipid-lowering effects. While AMPK increased the rates of fatty acid oxidation (FAO), the lipid-lowering effects were quantitatively significant even after inhibition of FAO with R-etomoxir. These results suggest that hepatic AMPK stimulates constitutive exocytosis of lipoproteins, which may function in parallel with FAO to regulate intracellular lipid content.
Collapse
Affiliation(s)
- Livia Puljak
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Dallas TX 75390-9151, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Brown SG, Gallacher M, Olver RE, Wilson SM. The regulation of selective and nonselective Na+ conductances in H441 human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2008; 294:L942-54. [PMID: 18310228 DOI: 10.1152/ajplung.00240.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Analysis of membrane currents recorded from hormone-deprived H441 cells showed that the membrane potential (V(m)) in single cells (approximately -80 mV) was unaffected by lowering [Na+]o or [Cl(-)]o, indicating that cellular Na+ and Cl(-) conductances (GNa and GCl, respectively) are negligible. Although insulin (20 nM, approximately 24 h) and dexamethasone (0.2 microM, approximately 24 h) both depolarized Vm by approximately 20 mV, the response to insulin reflected a rise in GCl mediated via phosphatidylinositol 3-kinase (PI3K) whereas dexamethasone acted by inducing a serum- and glucocorticoid-regulated kinase 1 (SGK1)-dependent rise in GNa. Although insulin stimulation/PI3K-P110 alpha expression did not directly increase GNa, these maneuvers augmented the dexamethasone-induced conductance. The glucocorticoid/SGK1-induced GNa in single cells discriminated poorly between Na+ and K+ (PNa/PK approximately 0.6), was insensitive to amiloride (1 mM), but was partially blocked by LaCl3 (La3+; 1 mM, approximately 80%), pimozide (0.1 mM, approximately 40%), and dichlorobenzamil (15 microM, approximately 15%). Cells growing as small groups, on the other hand, expressed an amiloride-sensitive (10 microM), selective GNa that displayed the same pattern of hormonal regulation as the nonselective conductance in single cells. These data therefore 1) confirm that H441 cells can express selective or nonselective GNa (14, 48), 2) show that these conductances are both induced by glucocorticoids/SGK1 and subject to PI3K-dependent regulation, and 3) establish that cell-cell contact is vitally important to the development of Na+ selectivity and amiloride sensitivity.
Collapse
Affiliation(s)
- Sean G Brown
- Lung Membrane Transport Group, Division of Maternal and Child Health Sciences, Ninewells Hospital and Medical School, Univ. of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | | | | | | |
Collapse
|
9
|
Ca(2+) -permeable channels in the hepatocyte plasma membrane and their roles in hepatocyte physiology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:651-72. [PMID: 18291110 DOI: 10.1016/j.bbamcr.2008.01.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 01/16/2008] [Accepted: 01/17/2008] [Indexed: 01/24/2023]
Abstract
Hepatocytes are highly differentiated and spatially polarised cells which conduct a wide range of functions, including intermediary metabolism, protein synthesis and secretion, and the synthesis, transport and secretion of bile acids. Changes in the concentrations of Ca(2+) in the cytoplasmic space, endoplasmic reticulum (ER), mitochondria, and other intracellular organelles make an essential contribution to the regulation of these hepatocyte functions. While not yet fully understood, the spatial and temporal parameters of the cytoplasmic Ca(2+) signals and the entry of Ca(2+) through Ca(2+)-permeable channels in the plasma membrane are critical to the regulation by Ca(2+) of hepatocyte function. Ca(2+) entry across the hepatocyte plasma membrane has been studied in hepatocytes in situ, in isolated hepatocytes and in liver cell lines. The types of Ca(2+)-permeable channels identified are store-operated, ligand-gated, receptor-activated and stretch-activated channels, and these may vary depending on the animal species studied. Rat liver cell store-operated Ca(2+) channels (SOCs) have a high selectivity for Ca(2+) and characteristics similar to those of the Ca(2+) release activated Ca(2+) channels in lymphocytes and mast cells. Liver cell SOCs are activated by a decrease in Ca(2+) in a sub-region of the ER enriched in type1 IP(3) receptors. Activation requires stromal interaction molecule type 1 (STIM1), and G(i2alpha,) F-actin and PLCgamma1 as facilitatory proteins. P(2x) purinergic channels are the only ligand-gated Ca(2+)-permeable channels in the liver cell membrane identified so far. Several types of receptor-activated Ca(2+) channels have been identified, and some partially characterised. It is likely that TRP (transient receptor potential) polypeptides, which can form Ca(2+)- and Na(+)-permeable channels, comprise many hepatocyte receptor-activated Ca(2+)-permeable channels. A number of TRP proteins have been detected in hepatocytes and in liver cell lines. Further experiments are required to characterise the receptor-activated Ca(2+) permeable channels more fully, and to determine the molecular nature, mechanisms of activation, and precise physiological functions of each of the different hepatocyte plasma membrane Ca(2+) permeable channels.
Collapse
|
10
|
Abstract
Primary canalicular bile undergoes a process of fluidization and alkalinization along the biliary tract that is influenced by several factors including hormones, innervation/neuropeptides, and biliary constituents. The excretion of bicarbonate at both the canaliculi and the bile ducts is an important contributor to the generation of the so-called bile-salt independent flow. Bicarbonate is secreted from hepatocytes and cholangiocytes through parallel mechanisms which involve chloride efflux through activation of Cl- channels, and further bicarbonate secretion via AE2/SLC4A2-mediated Cl-/HCO3- exchange. Glucagon and secretin are two relevant hormones which seem to act very similarly in their target cells (hepatocytes for the former and cholangiocytes for the latter). These hormones interact with their specific G protein-coupled receptors, causing increases in intracellular levels of cAMP and activation of cAMP-dependent Cl- and HCO3- secretory mechanisms. Both hepatocytes and cholangiocytes appear to have cAMP-responsive intracellular vesicles in which AE2/SLC4A2 colocalizes with cell specific Cl- channels (CFTR in cholangiocytes and not yet determined in hepatocytes) and aquaporins (AQP8 in hepatocytes and AQP1 in cholangiocytes). cAMP-induced coordinated trafficking of these vesicles to either canalicular or cholangiocyte lumenal membranes and further exocytosis results in increased osmotic forces and passive movement of water with net bicarbonate-rich hydrocholeresis.
Collapse
Affiliation(s)
- Jesús-M Banales
- Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, University of Navarra School of Medicine, Clinica Universitaria and CIMA, Avda. Pio XII 55, E-31008 Pamplona, Spain
| | | | | |
Collapse
|
11
|
Pujals S, Fernández-Carneado J, López-Iglesias C, Kogan MJ, Giralt E. Mechanistic aspects of CPP-mediated intracellular drug delivery: relevance of CPP self-assembly. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:264-79. [PMID: 16545772 DOI: 10.1016/j.bbamem.2006.01.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 01/03/2006] [Accepted: 01/04/2006] [Indexed: 02/03/2023]
Abstract
In recent years, cell-penetrating peptides have proven to be an efficient intracellular delivery system. The mechanism for CPP internalisation, which first involves interaction with the extracellular matrix, is followed in most cases by endocytosis and finally, depending on the type of endocytosis, an intracellular fate is reached. Delivery of cargo attached to a CPP requires endosomal release, for which different methods have recently been proposed. Positively charged amino acids, hydrophobicity and/or amphipathicity are common to CPPs. Moreover, some CPPs can self-assemble. Herein is discussed the role of self assembly in the cellular uptake of CPPs. Sweet Arrow Peptide (SAP) CPP has been shown to aggregate by CD and TEM (freeze-fixation/freeze-drying), although the internalised species have yet to be identified as either the monomer or an aggregate.
Collapse
Affiliation(s)
- Sílvia Pujals
- Institut de Recerca Biomèdica de Barcelona, Parc Científic de Barcelona, Josep Samitier 1-5, E-08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
12
|
Vessey JP, Shi C, Jollimore CA, Stevens KT, Coca-Prados M, Barnes S, Kelly ME. Hyposmotic activation of ICl,swell in rabbit nonpigmented ciliary epithelial cells involves increased ClC-3 trafficking to the plasma membrane. Biochem Cell Biol 2005; 82:708-18. [PMID: 15674438 DOI: 10.1139/o04-107] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In mammalian nonpigmented ciliary epithelial (NPE) cells, hyposmotic stimulation leading to cell swelling activates an outwardly rectifying Cl(-) conductance (I(Cl,swell)), which, in turn, results in regulatory volume decrease. The aim of this study was to determine whether increased trafficking of intracellular ClC-3 Cl channels to the plasma membrane could contribute to the I(Cl,swell) following hyposmotic stimulation. Our results demonstrate that hyposmotic stimulation reversibly activates an outwardly rectifying Cl(-) current that is inhibited by phorbol-12-dibutyrate and niflumic acid. Transfection with ClC-3 antisense, but not sense, oligonucleotides reduced ClC-3 expression as well as I(Cl,swell). Intracellular dialysis with 2 different ClC-3 antibodies abolished activation of I(Cl,swell). Immunofluorescence microscopy showed that hyposmotic stimulation increased ClC-3 immunoreactivity at the plasma membrane. To determine whether this increased expression of ClC-3 at the plasma membrane could be due to increased vesicular trafficking, we examined membrane dynamics with the fluorescent membrane dye FM1-43. Hyposmotic stimulation rapidly increased the rate of exocytosis, which, along with ICl,swell, was inhibited by the phosphoinositide-3-kinase inhibitor wortmannin and the microtubule disrupting agent, nocodazole. These findings suggest that ClC-3 channels contribute to I(Cl,swell) following hyposmotic stimulation through increased trafficking of channels to the plasma membrane.
Collapse
Affiliation(s)
- John P Vessey
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4H7, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Li XL, Man K, Ng KT, Sun CK, Lo CM, Fan ST. The influence of phosphatidylinositol 3-kinase/Akt pathway on the ischemic injury during rat liver graft preservation. Am J Transplant 2005; 5:1264-75. [PMID: 15888030 DOI: 10.1111/j.1600-6143.2005.00877.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We aimed to investigate the role of phosphatidylinositol 3 (PI3)-kinase/Akt pathway on ischemic injury. Rat liver grafts were preserved in UW solution with different treatments and were compared by 1-week survival rates and morphological changes with those of the control group. PI3-kinase/Akt was significantly activated at the sites of Thr 308 and Ser 473 in the preserved grafts. Downstream target proteins, glycogen synthase kinase-3beta (GSK-3beta) and caspase-9, were inactivated. However, survival signal transduction from Akt to Bad was blocked by calcium release after activation of PI3-kinase/Akt. Significant activation of caspase-12, -3 and -7 contributed to cell apoptosis and severe ischemic injury was shown after 7 h of preservation by UW solution with insulin. Downregulation of phospho-Akt at Thr 308 and Ser 473 was due to partial inhibition of PI3-kinase/Akt pathway by LY294002. Activation of GSK-3beta and inactivation of caspase-12 and Bad could be found in the LY294002 groups in which the liver grafts showed less ischemic injury. Higher 1-week survival rates in the heparin, LY294002, and glucagon groups confirmed the dysregulation of the pathway. In conclusion, PI3-kinase/Akt pathway was dysregulated and contributed to ischemic injury during preservation. Heparin and LY294002 could improve graft viability by maintaining calcium homeostasis during preservation.
Collapse
Affiliation(s)
- Xian Liang Li
- Centre for the Study of Liver Disease and Department of Surgery, The University of Hong Kong, Pokfulam, Republic of China.
| | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Raúl A Marinelli
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina.
| | | | | |
Collapse
|
15
|
Puljak L, Pagliassotti MJ, Wei Y, Qadri I, Parameswara V, Esser V, Fitz JG, Kilic G. Inhibition of cellular responses to insulin in a rat liver cell line. A role for PKC in insulin resistance. J Physiol 2005; 563:471-82. [PMID: 15649984 PMCID: PMC1665596 DOI: 10.1113/jphysiol.2004.080333] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The initial response of liver cells to insulin is mediated through exocytosis of Cl- channel-containing vesicles and a subsequent opening of plasma membrane Cl- channels. Intracellular accumulation of fatty acids leads to profound defects in metabolism, and is closely associated with insulin resistance. It is not known whether the activity of Cl- channels is altered in insulin resistance and by which mechanisms. We studied the effects of fatty acid accumulation on Cl- channel opening in a model liver cell line. Overnight treatment with amiodarone increased the fat content by approximately 2-fold, and the rates of gluconeogenesis by approximately 5-fold. The ability of insulin to suppress gluconeogenesis was markedly reduced indicating that amiodarone treatment induces insulin resistance. Western blot analysis showed that these cells express the same number of insulin receptors as control cells. However, insulin failed to activate exocytosis and Cl- channel opening. These inhibitory effects were mimicked in control cells by exposures to arachidonic acid (15 microm). Further studies demonstrated that fatty acids stimulate the PKC activity, and inhibition of PKC partially restored exocytosis and Cl- channel opening in insulin-resistant cells. Accordingly, activation of PKC with PMA in control cells potently inhibited the insulin responses. These results suggest that stimulation of PKC activity in insulin resistance contributes to the inhibition of cellular responses to insulin in liver cells.
Collapse
Affiliation(s)
- Livia Puljak
- Department of Internal Medicine, University of Texas South-western Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8887, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Keeton RA, Runge SW, Moran WM. Constitutive apical membrane recycling in Aplysia enterocytes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2004; 301:857-66. [PMID: 15673107 DOI: 10.1002/jez.a.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In Aplysia californica enterocytes, alanine-stimulated Na+ absorption increases both apical membrane exocytosis and fractional capacitance (fCa; a measure of relative apical membrane surface area). These increases are thought to reduce membrane tension during periods of nutrient absorption that cause the enterocytes to swell osmotically. In the absence of alanine, exocytosis and fCa are constant. These findings imply equal rates of constitutive endocytosis and exocytosis and constitutive recycling of the apical plasma membrane. Thus, the purpose of this study was to confirm and determine the relative extent of constitutive apical membrane recycling in Aplysia enterocytes. Biotinylated lectins are commonly used to label plasma membranes and to investigate plasma membrane recycling. Of fourteen biotinylated lectins tested, biotinylated wheat germ agglutinin (bWGA) bound preferentially to the enterocytes apical surface. Therefore, we used bWGA, avidin D (which binds tightly to biotin), and the UV fluorophore 7-amino-4-methylcoumarin-3-acetic acid (AMCA)-conjugated avidin D to assess the extent of constitutive apical membrane recycling. A temperature-dependent (20 vs. 4 degrees C) experimental protocol employed the use of two tissues from each of five snails and resulted in a approximately 60% difference in apical surface fluorescence intensity. Because the extent of membrane recycling is proportional to the difference in surface fluorescence intensity, this difference reveals a relatively high rate of constitutive apical membrane recycling in Aplysia enterocytes.
Collapse
Affiliation(s)
- Robert Aaron Keeton
- Department of Biology, University of Central Arkansas, Conway, Arkansas 72035-0001, USA
| | | | | |
Collapse
|
17
|
McWilliams RR, Gidey E, Fouassier L, Weed SA, Doctor RB. Characterization of an ankyrin repeat-containing Shank2 isoform (Shank2E) in liver epithelial cells. Biochem J 2004; 380:181-91. [PMID: 14977424 PMCID: PMC1224161 DOI: 10.1042/bj20031577] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 02/13/2004] [Accepted: 02/16/2004] [Indexed: 11/17/2022]
Abstract
Shank proteins are a family of multidomain scaffolding proteins best known for their role in organizing the postsynaptic density region in neurons. Unlike Shank1 and Shank3, Shank2 [also known as Pro-SAP1 (proline-rich synapse-associated protein 1), CortBP1 (cortactin binding protein 1) or Spank-3] has been described as a truncated family member without an N-terminal ankyrin repeat domain. The present study utilized bioinformatics to demonstrate the presence of exons encoding ankyrin repeats in the region preceding the previously described Shank2 gene. cDNA sequencing of mRNA from epithelial cells revealed a novel spliceoform of Shank2, termed Shank2E, that encodes a predicted 200 kDa protein with six N-terminal ankyrin repeats. Shank2 mRNA from epithelial tissues was larger than transcripts in brain. Likewise, the apparent mass of Shank2 protein was larger in epithelial tissues (230 kDa) when compared with brain (165/180 kDa). Immunofluorescence and membrane fractionation found Shank2E concentrated at the apical membrane of liver epithelial cells. In cultured cholangiocytes, co-immunoprecipitation and detergent solubility studies revealed Shank2E complexed with actin and co-distributed with actin in detergent-insoluble lipid rafts. These findings indicate epithelial cells express an ankyrin repeat-containing Shank2 isoform, termed Shank2E, that is poised to co-ordinate actin-dependent events at the apical membrane.
Collapse
Affiliation(s)
- Ryan R McWilliams
- Department of Medicine, University of Colorado Health Sciences Center, Denver, CO 80439, USA
| | | | | | | | | |
Collapse
|
18
|
Gatof D, Kilic G, Fitz JG. Vesicular exocytosis contributes to volume-sensitive ATP release in biliary cells. Am J Physiol Gastrointest Liver Physiol 2004; 286:G538-46. [PMID: 14604861 DOI: 10.1152/ajpgi.00355.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular ATP is a potent autocrine/paracrine signal that regulates a broad range of liver functions through activation of purinergic receptors. In biliary epithelium, increases in cell volume stimulate ATP release through a phosphoinositide 3-kinase (PI3-kinase)-dependent mechanism. Because PI3-kinase also regulates vesicular exocytosis, the purpose of these studies was to determine whether volume-stimulated vesicular exocytosis contributes to cellular ATP release. In a human cholangiocarcinoma cell line, exocytosis was measured by using the plasma membrane marker FM1-43, whereas ATP release was assessed by using a luciferase-luciferin assay. Under basal conditions, cholangiocytes exhibited constitutive exocytosis at a rate of 1.6%/min, and low levels of extracellular ATP were detected at 48.2 arbitrary light units. Increases in cholangiocyte cell volume induced by hypotonic exposure resulted in a 10-fold increase in the rate of exocytosis and a robust 35-fold increase in ATP release. Both vesicular exocytosis and ATP release were proportional to cell volume, and both exhibited similar regulatory properties including: 1) dependence on intact PI3-kinase, 2) attenuation by inhibition of PKC, and 3) potentiation by activation of PKC before hypotonic exposure. These findings demonstrate that increases in cholangiocyte cell volume stimulate ATP release and vesicular exocytosis through similar regulatory paradigms. Functional interactions among cell volume, PKC, and PI3-kinase modulate exocytosis, thereby regulating ATP release and purinergic signaling in cholangiocytes. It is hypothesized that PKC is involved in the recruitment of a volume-sensitive vesicular pool to a readily releasable state.
Collapse
Affiliation(s)
- David Gatof
- Department of Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | |
Collapse
|
19
|
|
20
|
Feranchak AP, Kilic G, Wojtaszek PA, Qadri I, Fitz JG. Volume-sensitive tyrosine kinases regulate liver cell volume through effects on vesicular trafficking and membrane Na+ permeability. J Biol Chem 2003; 278:44632-8. [PMID: 12939281 DOI: 10.1074/jbc.m301958200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In liver cells, the influx of Na+ mediated by nonselective cation (NSC) channels in the plasma membrane contributes importantly to regulation of cell volume. Under basal conditions, channels are closed; but both physiologic (e.g. insulin) and pathologic (e.g. oxidative stress) stimuli that are known to stimulate tyrosine kinases are associated with large increases in membrane Na+ permeability to approximately 80 pA/pF or more. Consequently, the purpose of these studies was to evaluate whether volume-sensitive tyrosine kinases mediate cell volume increases through effects on the activity or distribution of NSC channel proteins. In HTC hepatoma cells, decreases in cell volume evoked by hypertonic exposure increased total cellular tyrosine kinase activity approximately 20-fold. Moreover, hypertonic exposure (320-400 mosM) was followed after a delay by NSC channel activation and partial recovery of cell volume toward basal values (regulatory volume increase (RVI)). The tyrosine kinase inhibitors genistein and erbstatin prevented both NSC channel activation and RVI. Similarly, hypertonic exposure resulted in an increase in p60(c-src) activity, and intracellular dialysis with recombinant p60(c-src) led to activation of NSC currents in the absence of an osmolar gradient. Utilizing FM1-43 fluorescence, exposure to hypertonic media caused a rapid increase in the rate of exocytosis of approximately 40% (p < 0.01), and genistein inhibited both exocytosis and channel activation. These findings indicate that volume-sensitive increases in p60(c-src) and/or related tyrosine kinases play a key role in the regulation of membrane Na+ permeability, suggesting that increases in the NSC conductance may be mediated in part through rapid recruitment of a distinct pool of channel-containing vesicles.
Collapse
Affiliation(s)
- Andrew P Feranchak
- Department of Pediatrics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
21
|
Haddad PS, Vallerand D, Mathé L, Benzeroual K, Van de Werve G. Synergistic activation of mitogen-activated protein kinase by insulin and adenosine triphosphate in liver cells: permissive role of Ca2+. Metabolism 2003; 52:590-8. [PMID: 12759889 DOI: 10.1053/meta.2003.50094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have previously demonstrated that insulin and G(q)-coupled receptor agonists individually activate mitogen-activated protein kinase (MAPK) in liver cells and both effects involve an influx of extracellular Ca(2+). Yet, these agonists have opposing physiological actions on hepatocyte glucose metabolism. We thus investigated the interaction between insulin and the P2Y(2) purinergic agonist adenosine triphosphate (ATP) on MAPK in HTC cells, a model hepatocyte cell line, and determined the involvement of cytosolic Ca(2+). Insulin and ATP each induced a dose-dependent phosphorylation of p44/42 MAPK that was partially inhibited by EGTA. However, pretreatment with insulin markedly increased the MAPK phosphorylation response to ATP. This potentiation was canceled by chelation of extracellular Ca(2+) with EGTA. We used patch clamp electrophysiology and fluorescence microscopy to understand the role of intracellular Ca(2+) in this effect. Insulin and ATP, respectively, induced monophasic and multiphasic changes in membrane potential and intracellular Ca(2+) as expected. Pretreatment with 10 nmol/L insulin significantly decreased the initial rapid depolarization (inward nonselective cation current [NSCC]), as well as the compounded Ca(2+) response induced by 100 micro mol/L ATP. However, in Ca(2+)-free conditions, insulin did not modify the Ca(2+) mobilized from internal pools after stimulation with ATP. Upon Ca(2+) readmission, internal store depletion by ATP or thapsigargin doubled the rate of capacitative Ca(2+) influx, whereas insulin increased this influx 1.32-fold. On the other hand, insulin pretreatment counteracted the increased rate of Ca(2+) influx induced by ATP but not by thapsigargin. In summary, insulin counteracts the membrane potential and Ca(2+) responses to ATP in HTC cells. However, insulin and ATP effects on MAPK activation are synergistic and Ca(2+) influx plays a permissive role. Therefore, the opposing metabolic actions of insulin and G(q)-coupled receptor agonists involve an interaction in signaling pathways that resides downstream of Ca(2+) influx.
Collapse
Affiliation(s)
- Pierre S Haddad
- Groupe de recherche en transport membranaire, Départements de Pharmacologie et de Nutrition, Université de Montréal et Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
22
|
Kilic G. Exocytosis in bovine chromaffin cells: studies with patch-clamp capacitance and FM1-43 fluorescence. Biophys J 2002; 83:849-57. [PMID: 12124269 PMCID: PMC1302191 DOI: 10.1016/s0006-3495(02)75213-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In response to physiological stimuli, neuroendocrine cells secrete neurotransmitters through a Ca(2+)-dependent fusion of secretory granules with the plasma membrane. We studied insertion of granules in bovine chromaffin cells using capacitance as a measure of plasma membrane area and fluorescence of a membrane marker FM1-43 as a measure of exocytosis. Intracellular dialysis with [Ca(2+)] (1.5-100 microM) evoked massive exocytosis that was sufficient to double plasma membrane area but did not swell cells. In principle, in the absence of endocytosis, the addition of granule membrane would be anticipated to produce similar increases in the capacitance and FM1-43 fluorescence responses. However, when endocytosis was minimal, the changes in capacitance were markedly larger than the corresponding changes in FM1-43 fluorescence. Moreover, the apparent differences between capacitance and FM1-43 fluorescence changes increased with larger exocytic responses, as more granules fused with the plasma membrane. In experiments in which exocytosis was suppressed, increasing membrane tension by osmotically induced cell swelling increased FM1-43 fluorescence, suggesting that FM1-43 fluorescence is sensitive to changes in the membrane tension. Thus, increasing membrane area through exocytosis does not swell chromaffin cells but may decrease membrane tension.
Collapse
Affiliation(s)
- Gordan Kilic
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| |
Collapse
|
23
|
Doctor RB, Dahl R, Fouassier L, Kilic G, Fitz JG. Cholangiocytes exhibit dynamic, actin-dependent apical membrane turnover. Am J Physiol Cell Physiol 2002; 282:C1042-52. [PMID: 11940520 DOI: 10.1152/ajpcell.00367.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present studies of cholangiocytes used complementary histological, biochemical, and electrophysiological methods to identify a dense population of subapical vesicles, quantify the rates of vesicular trafficking, and assess the contribution of the actin cytoskeleton to membrane trafficking. FM 1-43 fluorescence measured significant basal rates of total exocytosis (1.33 +/- 0.16% plasma membrane/min) in isolated cholangiocytes and apical exocytosis in cholangiocyte monolayers. Cell surface area remained unchanged, indicating that there was a concurrent, equivalent rate of endocytosis. FM 1-43 washout studies showed that 36% of the endocytosed membrane was recycled to the plasma membrane. 8-(4-Chlorophenylthio)adenosine 3',5'-cyclic monophosphate (CPT-cAMP; cAMP analog) increased exocytosis by 71 +/- 31%, whereas the Rp diastereomer of adenosine 3',5'-cyclic monophosphothioate (Rp-cAMPS; protein kinase A inhibitor) diminished basal exocytosis by 53 +/- 11%. A dense population of 140-nm subapical vesicles arose, in part, from apical membrane endocytosis. Phalloidin staining showed that a subpopulation of the endocytosed vesicles was encapsulated by F-actin. Furthermore, membrane trafficking was inhibited by disrupting the actin cytoskeleton with cytochalasin D (51 +/- 13% of control) or jasplakinolide (58 +/- 9% of control). These studies indicate that there is a high rate of vesicular trafficking at the apical membrane of cholangiocytes and suggest that both cAMP and the actin cytoskeleton contribute importantly to these events.
Collapse
Affiliation(s)
- R Brian Doctor
- Division of Gastroenterology/Hepatology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | |
Collapse
|
24
|
Kilic G, Fitz JG. Heterotrimeric G-proteins activate Cl- channels through stimulation of a cyclooxygenase-dependent pathway in a model liver cell line. J Biol Chem 2002; 277:11721-7. [PMID: 11812774 DOI: 10.1074/jbc.m108631200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Circulating hormones produce rapid changes in the Cl(-) permeability of liver cells through activation of plasma membrane receptors coupled to heterotrimeric G-proteins. The resulting effects on intracellular pH, membrane potential, and Cl(-) content are important contributors to the overall metabolic response. Consequently, the purpose of these studies was to evaluate the mechanisms responsible for G-protein-mediated changes in membrane Cl(-) permeability using HTC hepatoma cells as a model. Using patch clamp techniques, intracellular dialysis with 0.3 mm guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) increased membrane conductance from 10 to 260 picosiemens/picofarads due to activation of Ca(2+)-dependent Cl(-) currents that were outwardly rectifying and exhibited slow activation at depolarizing potentials. These effects were mimicked by intracellular AlF(4)(-) (0.03 mm) and inhibited by pertussis toxin (PTX), consistent with current activation through Galpha(i). Studies using defined agonists and inhibitors indicate that Cl(-) channel activation by GTPgammaS occurs through an indomethacin-sensitive pathway involving sequential activation of phospholipase C, mobilization of Ca(2+) from inositol 1,4,5-trisphosphate-sensitive stores, and stimulation of phospholipase A(2) and cyclooxygenase (COX). Accordingly, the conductance responses to GTPgammaS or to intracellular Ca(2+) were inhibited by COX inhibitors. These results indicate that PTX-sensitive G-proteins regulate the Cl(-) permeability of HTC cells through Ca(2+)-dependent stimulation of COX activity. Thus, receptor-mediated activation of Galpha(i) may be essential for hormonal regulation of liver transport and metabolism through COX-dependent opening of a distinct population of plasma membrane Cl(-) channels.
Collapse
Affiliation(s)
- Gordan Kilic
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | |
Collapse
|
25
|
Salvetti F, Cecchetti P, Janigro D, Lucacchini A, Benzi L, Martini C. Insulin permeability across an in vitro dynamic model of endothelium. Pharm Res 2002; 19:445-50. [PMID: 12033378 DOI: 10.1023/a:1015187410909] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE Endothelium insulin permeability was investigated using in vitro, dynamic culture of endothelial cells. METHODS Endothelial cells were cultured in a hollow fiber apparatus and continuously exposed to a flow. Transendothelial electrical resistance and permeability to [14C]sucrose and [14C]inulin were used to monitor the integrity of the endothelial monolayer. RESULTS Under these experimental conditions, measurements of insulin permeability, investigated at increasing hormone concentrations, suggested that the predominant transendothelial insulin fluxes were attributable to bidirectional convective transport rather than to a saturable transport mechanism, in agreement with in vivo experiment results published earlier. Analytical determinations of insulin catabolism demonstrated a low percent of insulin degradation by the endothelium, leading to production of insulin metabolites qualitatively identical to those produced by human monocytes. CONCLUSIONS The findings of this paper indicated that (a) insulin crosses the endothelial monolayer by paracellular "leak" and endothelial insulin receptors have a minor (if any) role in insulin transport; (b) degradation of the hormone by BAEC is minimal; (c) the in vitro, dynamic culture of endothelial cells presented here should represent a valuable transport model system to study permeability mechanisms of insulin and many other drugs.
Collapse
Affiliation(s)
- Francesca Salvetti
- Departimento di Psichiatria, Neurobiologia, Farmacologia e Biotechnologie, Facoltà di Farmacia, Università degli Studi di Pisa, Italy
| | | | | | | | | | | |
Collapse
|