1
|
Papaioannou I, Dritsoula A, Kang P, Baliga RS, Trinder SL, Cook E, Shiwen X, Hobbs AJ, Denton CP, Abraham DJ, Ponticos M. NKX2-5 regulates vessel remodeling in scleroderma-associated pulmonary arterial hypertension. JCI Insight 2024; 9:e164191. [PMID: 38652537 PMCID: PMC11141943 DOI: 10.1172/jci.insight.164191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
NKX2-5 is a member of the homeobox-containing transcription factors critical in regulating tissue differentiation in development. Here, we report a role for NKX2-5 in vascular smooth muscle cell phenotypic modulation in vitro and in vascular remodeling in vivo. NKX2-5 is upregulated in scleroderma patients with pulmonary arterial hypertension. Suppression of NKX2-5 expression in smooth muscle cells halted vascular smooth muscle proliferation and migration, enhanced contractility, and blocked the expression of extracellular matrix genes. Conversely, overexpression of NKX2-5 suppressed the expression of contractile genes (ACTA2, TAGLN, CNN1) and enhanced the expression of matrix genes (COL1) in vascular smooth muscle cells. In vivo, conditional deletion of NKX2-5 attenuated blood vessel remodeling and halted the progression to hypertension in a mouse chronic hypoxia model. This study revealed that signals related to injury such as serum and low confluence, which induce NKX2-5 expression in cultured cells, is potentiated by TGF-β and further enhanced by hypoxia. The effect of TGF-β was sensitive to ERK5 and PI3K inhibition. Our data suggest a pivotal role for NKX2-5 in the phenotypic modulation of smooth muscle cells during pathological vascular remodeling and provide proof of concept for therapeutic targeting of NKX2-5 in vasculopathies.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Middle Aged
- Cell Proliferation/genetics
- Disease Models, Animal
- Homeobox Protein Nkx-2.5/genetics
- Homeobox Protein Nkx-2.5/metabolism
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/genetics
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Arterial Hypertension/etiology
- Scleroderma, Systemic/pathology
- Scleroderma, Systemic/complications
- Scleroderma, Systemic/metabolism
- Scleroderma, Systemic/genetics
- Transforming Growth Factor beta/metabolism
- Vascular Remodeling
Collapse
Affiliation(s)
- Ioannis Papaioannou
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Athina Dritsoula
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Ping Kang
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Reshma S. Baliga
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Sarah L. Trinder
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Emma Cook
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Xu Shiwen
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Adrian J. Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Christopher P. Denton
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - David J. Abraham
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Markella Ponticos
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| |
Collapse
|
2
|
Papaioannou I, Xu S, Denton CP, Abraham DJ, Ponticos M. STAT3 controls COL1A2 enhancer activation cooperatively with JunB, regulates type I collagen synthesis posttranscriptionally, and is essential for lung myofibroblast differentiation. Mol Biol Cell 2017; 29:84-95. [PMID: 29142074 PMCID: PMC5909935 DOI: 10.1091/mbc.e17-06-0342] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 11/19/2022] Open
Abstract
STAT3 binds the collagen 1α2 enhancer and cooperates with JunB to activate it. We also show that fibroblasts have high basal levels of STAT3 activation, so activation of the enhancer by STAT3 is not affected by IL6. However, IL6 results in protein-level changes. Inhibition of STAT3 blocks collagen production and matrix remodeling. Fibroblast differentiation is a key cellular process that underlies the process of fibrosis, a deadly complication of fibrotic diseases like scleroderma (SSc). This transition coincides with the overproduction of collagen type I (COL1) and other extracellular matrix proteins. High-level expression of the collagen type 1α2 subunit (COL1A2), requires the engagement of a far-upstream enhancer, whose activation is strongly dependent on the AP1 factor JunB. We now report that STAT3 also binds the COL1A2 enhancer and is essential for RNA polymerase recruitment, without affecting JunB binding. STAT3 is required for the increased COL1A2 expression observed in myofibroblasts. We also report that TGFβ partially activates STAT3 and show that inhibiting STAT3 potently blocks TGFβ signaling, matrix remodeling, and TGFβ-induced myofibroblast differentiation. Activation of STAT3 with IL6 transsignaling alone, however, only increased COL1A2 protein expression, leaving COL1A2 mRNA levels unchanged. Our results suggest that activated STAT3 is not the limiting factor for collagen enhancer activation in human lung fibroblasts. Yet, a certain threshold level of STAT3 activity is essential to support activation of the COL1A2 enhancer and TGFβ signaling in fibroblasts. We propose that STAT3 operates at the posttranscriptional as well as the transcriptional level.
Collapse
Affiliation(s)
- Ioannis Papaioannou
- Centre for Rheumatology and Connective Tissue Diseases, Division of Medicine, University College London, London NW3 2PF, United Kingdom
| | - Shiwen Xu
- Centre for Rheumatology and Connective Tissue Diseases, Division of Medicine, University College London, London NW3 2PF, United Kingdom
| | - Christopher P Denton
- Centre for Rheumatology and Connective Tissue Diseases, Division of Medicine, University College London, London NW3 2PF, United Kingdom
| | - David J Abraham
- Centre for Rheumatology and Connective Tissue Diseases, Division of Medicine, University College London, London NW3 2PF, United Kingdom
| | - Markella Ponticos
- Centre for Rheumatology and Connective Tissue Diseases, Division of Medicine, University College London, London NW3 2PF, United Kingdom
| |
Collapse
|
3
|
Li IMH, Horwell AL, Chu G, de Crombrugghe B, Bou-Gharios G. Characterization of Mesenchymal-Fibroblast Cells Using the Col1a2 Promoter/Enhancer. Methods Mol Biol 2017; 1627:139-161. [PMID: 28836200 DOI: 10.1007/978-1-4939-7113-8_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Excessive deposition of extracellular matrix (ECM) is a common hallmark of fibrotic diseases in various organs. Chiefly among this ECM are collagen types I and III, secreted by local fibroblasts, and other mesenchymal cells recruited for repair purposes. In the last two decades, the search for a fibroblast-specific promoter/enhancer has intensified in order to control the regulation of ECM in these cells and limit the scarring of the fibrotic process. In our previous work, we characterized an enhancer region 17 kb upstream of the Col1a2 gene transcription start site. This enhancer in transgenic mice is expressed mainly in mesenchymal cells during development and in adults upon injury. When driving transgenes such as beta-galactosidase or luciferase, this construct acts as an informative reporter of collagen transcription and is predictive of collagen type I deposition. In this chapter, we provide detailed protocols for identifying similar enhancers and using the sequence to generate a construct for transfection and producing transgenic animals. We also provided information on the use of luminescence in transgenic mice, tissue processing, as well as using cre/lox system to obtain conditional gain and loss of function in mice.
Collapse
Affiliation(s)
- Ian M H Li
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Amy L Horwell
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Grace Chu
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | | | - George Bou-Gharios
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
| |
Collapse
|
4
|
Abstract
CCN2 is a profibrotic matricellular protein. CCN2 directly promotes cell adhesion and indirectly promotes fibrosis by activating adhesive signaling in response to growth factors, cytokines, and extracellular matrix. The following protocols will allow the direct assessment of other CCN family members in these processes.
Collapse
Affiliation(s)
- James Hutchenreuther
- Departments of Dentistry and Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, London, ON, Canada, N6A 5C1
| | - Andrew Leask
- Departments of Dentistry and Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, London, ON, Canada, N6A 5C1.
| | - Katherine Thompson
- Departments of Dentistry and Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, London, ON, Canada, N6A 5C1
| |
Collapse
|
5
|
Ikeda T, Fragiadaki M, Shi-wen X, Ponticos M, Khan K, Denton C, Garcia P, Bou-Gharios G, Yamakawa A, Morimoto C, Abraham D. Transforming growth factor- β-induced CUX1 isoforms are associated with fibrosis in systemic sclerosis lung fibroblasts. Biochem Biophys Rep 2016; 7:246-252. [PMID: 28955913 PMCID: PMC5613511 DOI: 10.1016/j.bbrep.2016.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 01/21/2023] Open
Abstract
In the enhancer region of the human type I collagen alpha 2 (COL1A2) gene, we identified cis-elements for the transcription factor CUX1. However, the role of CUX1 in fibrosis remains unclear. Here we investigated the role of CUX1 in the regulation of COL1 expression and delineated the mechanisms underlying the regulation of COL1A2 expression by CUX1 in systemic sclerosis (SSc) lung fibroblasts. The binding of CUX1 to the COL1A2 enhancer region was assessed using electrophoretic mobility shift assays after treatment with transforming growth factor (TGF)-β. Subsequently, the protein expression levels of CUX1 isoforms were determined using Western blotting. Finally, the expression levels of COL1 and fibrosis-related cytokines, including CTGF, ET-1, Wnt1 and β-catenin were determined. The binding of CUX1 isoforms to the COL1A2 enhancer region increased after TGF-β treatment. TGF-β also increased the protein levels of the CUX1 isoforms p200, p150, p110, p75, p30 and p28. Moreover, SSc lung fibroblasts showed higher levels of CUX1 isoforms than normal lung fibroblasts, and treatment of SSc lung fibroblasts with a cathepsin L inhibitor (IW-CHO) decreased COL1 protein expression and reduced cell size, as measured using immunocytochemistry. In SSc and diffuse alveolar damage lung tissue sections, CUX1 localised within α-smooth muscle actin-positive cells. Our results suggested that CUX1 isoforms play vital roles in connective tissue deposition during wound repair and fibrosis.
Collapse
Affiliation(s)
- Tetsurou Ikeda
- Royal Free and University College Medical School, London, UK
- Imperial College School of Medicine, London, UK
- University of Tokyo, Institute of Medical Science, Tokyo, Japan
| | | | - Xu Shi-wen
- Royal Free and University College Medical School, London, UK
| | | | - Korsa Khan
- Royal Free and University College Medical School, London, UK
| | | | - Patricia Garcia
- Royal Free and University College Medical School, London, UK
| | | | - Akio Yamakawa
- University of Tokyo, Institute of Medical Science, Tokyo, Japan
| | - Chikao Morimoto
- University of Tokyo, Institute of Medical Science, Tokyo, Japan
| | - David Abraham
- Royal Free and University College Medical School, London, UK
| |
Collapse
|
6
|
Babarinde IA, Saitou N. Genomic Locations of Conserved Noncoding Sequences and Their Proximal Protein-Coding Genes in Mammalian Expression Dynamics. Mol Biol Evol 2016; 33:1807-17. [PMID: 27017584 DOI: 10.1093/molbev/msw058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Experimental studies have found the involvement of certain conserved noncoding sequences (CNSs) in the regulation of the proximal protein-coding genes in mammals. However, reported cases of long range enhancer activities and inter-chromosomal regulation suggest that proximity of CNSs to protein-coding genes might not be important for regulation. To test the importance of the CNS genomic location, we extracted the CNSs conserved between chicken and four mammalian species (human, mouse, dog, and cattle). These CNSs were confirmed to be under purifying selection. The intergenic CNSs are often found in clusters in gene deserts, where protein-coding genes are in paucity. The distribution pattern, ChIP-Seq, and RNA-Seq data suggested that the CNSs are more likely to be regulatory elements and not corresponding to long intergenic noncoding RNAs. Physical distances between CNS and their nearest protein coding genes were well conserved between human and mouse genomes, and CNS-flanking genes were often found in evolutionarily conserved genomic neighborhoods. ChIP-Seq signal and gene expression patterns also suggested that CNSs regulate nearby genes. Interestingly, genes with more CNSs have more evolutionarily conserved expression than those with fewer CNSs. These computationally obtained results suggest that the genomic locations of CNSs are important for their regulatory functions. In fact, various kinds of evolutionary constraints may be acting to maintain the genomic locations of CNSs and protein-coding genes in mammals to ensure proper regulation.
Collapse
Affiliation(s)
- Isaac Adeyemi Babarinde
- Department of Genetics, Graduate University for Advanced Studies, Mishima, Japan Division of Population Genetics, National Institute of Genetics, Mishima, Japan
| | - Naruya Saitou
- Department of Genetics, Graduate University for Advanced Studies, Mishima, Japan Division of Population Genetics, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
7
|
Leask A. Matrix remodeling in systemic sclerosis. Semin Immunopathol 2015; 37:559-63. [PMID: 26141607 DOI: 10.1007/s00281-015-0508-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/16/2015] [Indexed: 12/15/2022]
Abstract
Systemic sclerosis (SSc, scleroderma) is an often-fatal disease characterized by connective tissue fibrosis of skin and internal organs. In scleroderma, there is an excessive production and accumulation of extracellular matrix (ECM) components resulting from an increase in collagen synthesis and matrix stability. Understanding how this how excessive ECM is produced and remodeled may represent a novel therapeutic approach. In this review, the transcription factors and collagen-modifying enzymes underlying collagen overexpression and enhancing stability in SSc are discussed. Moreover, the role of matrix stiffness in promoting fibrosis via a feed-forward mechanism is discussed. Indeed, the emerging evidence is that enhanced ECM remodeling resulting in increased ECM stiffness may be sufficient in itself to sustain persistence fibrosis in SSc.
Collapse
Affiliation(s)
- Andrew Leask
- Department of Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada,
| |
Collapse
|
8
|
Ponticos M, Papaioannou I, Xu S, Holmes AM, Khan K, Denton CP, Bou-Gharios G, Abraham DJ. Failed degradation of JunB contributes to overproduction of type I collagen and development of dermal fibrosis in patients with systemic sclerosis. Arthritis Rheumatol 2015; 67:243-53. [PMID: 25303440 PMCID: PMC4312903 DOI: 10.1002/art.38897] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 09/25/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The excessive deposition of extracellular matrix, including type I collagen, is a key aspect in the pathogenesis of connective tissue diseases such as systemic sclerosis (SSc; scleroderma). To further our understanding of the mechanisms governing the dysregulation of type I collagen production in SSc, we investigated the role of the activator protein 1 (AP-1) family of transcription factors in regulating COL1A2 transcription. METHODS The expression and nuclear localization of AP-1 family members (c-Jun, JunB, JunD, Fra-1, Fra-2, and c-Fos) were examined by immunohistochemistry and Western blotting in dermal biopsy specimens and explanted skin fibroblasts from patients with diffuse cutaneous SSc and healthy controls. Gene activation was determined by assessing the interaction of transcription factors with the COL1A2 enhancer using transient transfection of reporter gene constructs, electrophoretic mobility shift assays, chromatin immunoprecipitation analysis, and RNA interference involving knockdown of individual AP-1 family members. Inhibition of fibroblast mammalian target of rapamycin (mTOR), Akt, and glycogen synthase kinase 3β (GSK-3β) signaling pathways was achieved using small-molecule pharmacologic inhibitors. RESULTS Binding of JunB to the COL1A2 enhancer was observed, with its coalescence directed by activation of gene transcription through the proximal promoter. Knockdown of JunB reduced enhancer activation and COL1A2 expression in response to transforming growth factor β. In SSc dermal fibroblasts, increased mTOR/Akt signaling was associated with inactivation of GSK-3β, leading to blockade of JunB degradation and, thus, constitutively high expression of JunB. CONCLUSION In patients with SSc, the accumulation of JunB resulting from altered mTOR/Akt signaling and a failure of proteolytic degradation underpins the aberrant overexpression of type I collagen. These findings identify JunB as a potential target for antifibrotic therapy in SSc.
Collapse
|
9
|
Lo Cascio L, Liu K, Nakamura H, Chu G, Lim NH, Chanalaris A, Saklatvala J, Nagase H, Bou-Gharios G. Generation of a mouse line harboring a Bi-transgene expressing luciferase and tamoxifen-activatable creER(T2) recombinase in cartilage. Genesis 2013; 52:110-9. [PMID: 24339176 DOI: 10.1002/dvg.22734] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 12/07/2013] [Accepted: 12/10/2013] [Indexed: 01/25/2023]
Abstract
We have used an aggrecan gene enhancer to generate a transgenic murine line (Acan-CreER-Ires-Luc) expressing firefly luciferase and tamoxifen activatable Cre recombinase (Cre-ER(T2) ). The expression and efficiency of the inducible Cre recombinase activity were tested in double transgenic mice created by crossing the Acan-CreER-Ires-Luc line with a Rosa26-lacZ reporter mouse. The expression pattern of the transgene of our line was restricted to cartilage from embryonic to adult stages. β-galactosidase staining was observed in growth plate, articular cartilage, as well as fibrocartilage of meniscus, trachea, and intervertebral discs. Similar staining was observed in a previously described Agc1 (tm(IRES-creERT2)) murine line. The presence of luciferase in our transgene allows the visualization of the transgene expression in live animals. Weekly measurements from 2 to 8 weeks of age showed a reduction in luminescence in knee joints between 2 and 4 weeks of age, but stabilization thereafter. Following the surgical induction of osteoarthritis at 12 weeks of age, the level of luminescence remained the same in the knee joints for 8 weeks. This Acan-CreER-Ires-Luc murine line allows indirect monitoring of the transcriptional activity of the Acan gene via expression of luciferase, while the inducible Cre recombinase activity facilitates studies involving gain or loss of gene expression in cartilage.
Collapse
Affiliation(s)
- Leandro Lo Cascio
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ponticos M, Smith BD. Extracellular matrix synthesis in vascular disease: hypertension, and atherosclerosis. J Biomed Res 2013; 28:25-39. [PMID: 24474961 PMCID: PMC3904172 DOI: 10.7555/jbr.27.20130064] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/28/2013] [Accepted: 06/18/2013] [Indexed: 12/18/2022] Open
Abstract
Extracellular matrix (ECM) within the vascular network provides both a structural and regulatory role. The ECM is a dynamic composite of multiple proteins that form structures connecting cells within the network. Blood vessels are distended by blood pressure and, therefore, require ECM components with elasticity yet with enough tensile strength to resist rupture. The ECM is involved in conducting mechanical signals to cells. Most importantly, ECM regulates cellular function through chemical signaling by controlling activation and bioavailability of the growth factors. Cells respond to ECM by remodeling their microenvironment which becomes dysregulated in vascular diseases such hypertension, restenosis and atherosclerosis. This review examines the cellular and ECM components of vessels, with specific emphasis on the regulation of collagen type I and implications in vascular disease.
Collapse
Affiliation(s)
- Markella Ponticos
- Centre for Rheumatology & Connective Tissue Diseases, Division of Medicine-Inflammation, Royal Free & University College Medical School, University College London, London NW3 2PF, UK
| | - Barbara D Smith
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
11
|
Sadler T, Scarpa M, Rieder F, West G, Stylianou E. Cytokine-induced chromatin modifications of the type I collagen alpha 2 gene during intestinal endothelial-to-mesenchymal transition. Inflamm Bowel Dis 2013; 19:1354-64. [PMID: 23635716 PMCID: PMC3684204 DOI: 10.1097/mib.0b013e318281f37a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Fibrosis of the intestine is currently an irreversible complication of inflammatory bowel disease; yet, little is understood of the underlying pathogenesis and antifibrotic strategies remain elusive. To develop effective therapies, knowledge of the mechanism of transcription and excessive deposition of type I collagen, a hallmark of fibrosis, is needed. We have shown previously that endothelial-to-mesenchymal transition (EndoMT) contributes to the pool of intestinal fibrotic cells and that a cytokine cocktail (interleukin 1-β, tumor necrosis factor α, and transforming growth factor β) induces collagen I alpha 2 (COL1A2) mRNA and protein. METHODS Chromatin immunoprecipitation assays on pure cultures of human intestinal mucosal endothelial cells undergoing EndoMT were performed with antibodies to specific histone modifications and RNA polymerase II. Reverse transcriptase-PCR was used to quantify the levels of Col1A2 and endothelial-specific von Willebrand factor (vWF) mRNA. RESULTS We showed that cytokines induce selective chromatin modifications (histone 4 hyperacetylation, and hypermethylation of histone 3) and phosphorylated RNA polymerase II at the COL1A2 promoter. Hypoacetylated and hypomethylated histone 3 was detected on the repressed vWF gene. Prolonged exposure to cytokines (16 days) retained hyperacetylation of select lysines in H4 on the COL1A2 promoter. Removal of cytokines after 16 days and continued culture for 10 days showed persistent hyperacetylation at lysine 16 in histone H4. CONCLUSIONS This is the first study to show that COL1A2 gene expression is associated with cytokine-induced, temporally ordered, and persistent chromatin modifications and suggests that these are important determinants of gene expression in EndoMT and intestinal fibrosis.
Collapse
Affiliation(s)
- Tammy Sadler
- Department of Pathobiology, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Melania Scarpa
- Department of Pathobiology, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA,Melania Scarpa, current address: Istituto Oncologico Veneto, I.R.C.C.S., Padua, Italy
| | - Florian Rieder
- Department of Pathobiology, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA,Department of Gastroenterology & Hepatology, Digestive Disease Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, 44195, USA
| | - Gail West
- Department of Pathobiology, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Eleni Stylianou
- Department of Pathobiology, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA,Department of Gastroenterology & Hepatology, Digestive Disease Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, 44195, USA,To who correspondence should be addressed: Dr. Eleni Stylianou, B.Sc. Ph.D., Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC-22, Cleveland, OH 44195. Tel: 216-445-7156; Fax: 216-636-0104,
| |
Collapse
|
12
|
Derrett-Smith EC, Dooley A, Khan K, Shi-wen X, Abraham D, Denton CP. Systemic vasculopathy with altered vasoreactivity in a transgenic mouse model of scleroderma. Arthritis Res Ther 2010; 12:R69. [PMID: 20398328 PMCID: PMC2888224 DOI: 10.1186/ar2986] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/14/2010] [Accepted: 04/15/2010] [Indexed: 01/25/2023] Open
Abstract
Introduction Vasculopathy, including altered vasoreactivity and abnormal large vessel biomechanics, is a hallmark of systemic sclerosis (SSc). However, the pathogenic link with other aspects of the disease is less clear. To assess the potential role of transforming growth factor beta (TGF-β) overactivity in driving these cardiovascular abnormalities, we studied a novel transgenic mouse model characterized by ligand-dependent activation of TGF-β signaling in fibroblasts. Methods The transgenic mouse strain Tβ RIIΔk-fib is characterized by balanced ligand-dependent upregulation of TGF-β signaling. Aortic and cardiac tissues were examined with histologic, biochemical, and isolated organ bath studies. Vascular and perivascular architecture was examined by hematoxylin and eosin (H&E) and special stains including immunostaining for TGF-β1 and phospho-Smad2/3 (pSmad2/3). Confirmatory aortic smooth muscle cell proliferation, phenotype, and functional assays, including signaling responses to exogenous TGF-β and endothelin-1, were performed. Aortic ring contractile responses to direct and receptor-mediated stimulation were assessed. Results Aortic ring contractility and relaxation were diminished compared with wild-type controls, and this was associated with aortic adventitial fibrosis confirmed histologically and with Sircol assay. TGF-β1 and pSmad 2/3 expression was increased in the adventitia and smooth muscle layer of the aorta. Aortic smooth muscle cells from transgenic animals showed significant upregulation of TGF-β- responsive genes important for cytoskeletal function, such as transgelin and smoothelin, which were then resistant to further stimulation with exogenous TGF-β1. These cells promoted significantly more contraction of free floating type I collagen lattices when compared with the wild-type, but were again resistant to exogenous TGF-β1 stimulation. Aortic ring responses to receptor-mediated contraction were reduced in the transgenic animals. Specifically, bosentan reduced endothelin-mediated contraction in wild-type animals, but had no effect in transgenic animals, and endothelin axis gene expression was altered in transgenic animals. Transgenic mice developed cardiac fibrosis. Conclusions The histologic, biochemical, and functional phenotype of this transgenic mouse model of scleroderma offers insight into the altered biomechanical properties previously reported for large elastic arteries in human SSc and suggests a role for perturbed TGF-β and endothelin activity in this process.
Collapse
Affiliation(s)
- Emma C Derrett-Smith
- Centre for Rheumatology and Connective Tissue Diseases, UCL Medical School, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | | | | | | | | | | |
Collapse
|
13
|
Ponticos M, Harvey C, Ikeda T, Abraham D, Bou-Gharios G. JunB mediates enhancer/promoter activity of COL1A2 following TGF-beta induction. Nucleic Acids Res 2009; 37:5378-89. [PMID: 19561194 PMCID: PMC2760791 DOI: 10.1093/nar/gkp544] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transcriptional control of the genes coding for collagen type I is regulated by a complex interaction between a distal enhancer and a proximal promoter. In this study, we have dissected the molecular mechanism of this interaction by defining a specific sequence within the enhancer that respond in fibroblasts to transforming growth factor-β (TGF-β). We show that TGF-β activates COL1A2 gene via a non-canonical (Smad-independent) signalling pathway, which requires enhancer/promoter co-operation. This interaction involves exchange of cJun/Jun B transcription factor occupancy of a critical enhancer site resulting in the stabilization of enhancer/promoter coalescence. Moreover, using transgenesis, we show that interference in this mechanism results in the abolition of COL1A2 fibroblast expression in vivo. These data are therefore relevant to the control of collagen type I in vivo both in embryonic development, in adult connective tissue homeostasis, and in tissue repair and scarring pathologies.
Collapse
Affiliation(s)
- Markella Ponticos
- Department of Medicine, Centre for Rheumatology, University College London Royal Free Campus, London NW3 2PF, UK
| | | | | | | | | |
Collapse
|
14
|
Abstract
Uncontrolled production of collagen I is the main feature of liver fibrosis. Following a fibrogenic stimulus such as alcohol, hepatic stellate cells (HSC) transform into an activated collagen-producing cell. In alcoholic liver disease, numerous changes in gene expression are associated with HSC activation, including the induction of several intracellular signaling cascades, which help maintain the activated phenotype and control the fibrogenic and proliferative state of the cell. Detailed analyses for understanding the molecular basis of the collagen I gene regulation have revealed a complex process involving reactive oxygen species (ROS) as key mediators. Less is known, however, about the contribution of reactive nitrogen species (RNS). In addition, a series of cytokines, growth factors, and chemokines, which activate extracellular matrix (ECM)-producing cells through paracrine and autocrine loops, contribute to the fibrogenic response.
Collapse
Affiliation(s)
- R. Urtasun
- Mount Sinai School of Medicine, Box 1123, Department of Medicine/Division of Liver Diseases, 1425 Madison Avenue, Room 11-76, New York, NY 10029, USA
| | - L. Conde de la Rosa
- Mount Sinai School of Medicine, Box 1123, Department of Medicine/Division of Liver Diseases, 1425 Madison Avenue, Room 11-76, New York, NY 10029, USA
| | - N. Nieto
- Mount Sinai School of Medicine, Box 1123, Department of Medicine/Division of Liver Diseases, 1425 Madison Avenue, Room 11-76, New York, NY 10029, USA
| |
Collapse
|
15
|
Homeobox Gene Prx1 Is Expressed in Activated Hepatic Stellate Cells and Transactivates Collagen α1(I) Promoter. Exp Biol Med (Maywood) 2008; 233:286-96. [DOI: 10.3181/0707-rm-177] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatic stellate cells (HSCs) are mesenchymal cells of the liver, which are normally in quiescent state and synthesize tracing amounts of extracellular matrix proteins. Upon fibrogenic stimulus, HSCs become activated and increase synthesis of type I collagen 50–100 fold. Prx1 and Prx2 are two homeobox transcription factors which are required for mesenchymal tissue formation during embryogenesis. The present study shows that Prx1 mRNA is expressed in in vivo and in vitro activated HSCs, but not in quiescent HSCs. Prx1 is also expressed in fibrotic livers, while it is undetectable in normal livers. Overexpression of Prx1a in quiescent HSCs cultured in vitro induced collagen α1(I) mRNA and TGFβ3 mRNA expression. Prx1 transactivated TGFβ3 promoter 3 fold in transient transfection experiments. In the whole liver, Prx1a induced expression of collagen α1(I), α2(I), α1(III) and α-smooth muscle mRNAs, which are the markers of activation of HSCs. Prx1 also increased expression of collagen α1(I) mRNA after acute liver injury. This suggests that Prx1a promotes activation of HSCs and expression of type I collagen. Several regions in the collagen α1(I) promoter were identified which mediate transcriptional induction by Prx1. The regions are scattered throughout the promoter and individually have modest effects; however, the cumulative effect of all sequences is >50 fold. This is the first description of the effects of Prx1 in HSCs and in the liver, and identification of the two Prx1 target genes, which play a pivotal role in development of liver fibrosis, is a novel finding for liver pathophysiology.
Collapse
|
16
|
Bocciardi R, Giorda R, Buttgereit J, Gimelli S, Divizia MT, Beri S, Garofalo S, Tavella S, Lerone M, Zuffardi O, Bader M, Ravazzolo R, Gimelli G. Overexpression of the C-type natriuretic peptide (CNP) is associated with overgrowth and bone anomalies in an individual with balanced t(2;7) translocation. Hum Mutat 2007; 28:724-31. [PMID: 17373680 DOI: 10.1002/humu.20511] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Longitudinal bone growth is determined by the process of endochondral ossification in the cartilaginous growth plate, which is located at both ends of vertebrae and long bones and involves many systemic hormones and local regulators. We report the molecular characterization of a de novo balanced t(2;7)(q37.1;q21.3) translocation in a young female with Marfanoid habitus and skeletal anomalies. The translocation was characterized by fluorescence in situ hybridization (FISH), checked for other abnormalities by array-comparative genomic hybridization (CGH), and finally, the breakpoints were cloned, sequenced, and compared. Biochemical dosage was applied to study the possible mechanisms that may cause the proposita's phenotype. The breakpoint on chromosome 2 disrupts the hypothetical gene MGC42174 (HUGO-approved symbol DIS3L2) and is located in the proximity of the NPPC gene coding for C-type natriuretic peptide (CNP), a molecule that regulates endochondral bone growth. CNP plasma concentration was doubled in the proband compared to five normal controls, while NPPC was substantially overexpressed in her fibroblasts. A transgenic mouse generated to target NPPC overexpression in bone showed a phenotype highly reminiscent of the patient's phenotype. The breakpoint on chromosome 7 is localized proximally at about 75 kb from the COL1A2 gene. The COL1A2 allele on the derivative chromosome was strongly underexpressed in fibroblasts, but total collagen was not significantly different from controls. Several evidences support the conclusion that the proband's abnormal phenotype is associated with C-type natriuretic peptide overexpression.
Collapse
Affiliation(s)
- Renata Bocciardi
- Laboratory of Molecular Genetics, G. Gaslini Institute, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nieto N. Ethanol and fish oil induce NFkappaB transactivation of the collagen alpha2(I) promoter through lipid peroxidation-driven activation of the PKC-PI3K-Akt pathway. Hepatology 2007; 45:1433-45. [PMID: 17538965 DOI: 10.1002/hep.21659] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNLABELLED To analyze whether fish oil, as a source of polyunsaturated fatty acids from the n-3 series, could synergize with ethanol to promote collagen I upregulation in vivo, collagen alpha2(I) promoter-betaGal (COL1A2-betaGal) transgenic mice were fed a diet enriched in fish oil in the presence of ethanol (ethanol group) or dextrose (control group). Ethanol-fed mice showed mild steatosis, increased alanine aminotransferase (ALT), aspartate aminotransferase (AST), nonsterified fatty acids, and plasma alcohol levels along with elevated cytochrome P450 2E1 activity, lipid peroxidation end products, and low glutathione (GSH) levels, which suggested enhanced oxidant stress and liver injury. Increased transactivation of the COL1A2 promoter assessed by betaGal activity was shown in vivo and by transfection with deletion constructs for the collagen alpha1(I) promoter (COL1A1) and COL1A2 promoters in vitro. Transcriptional regulation of both COL1A1 and COL1A2 promoters was validated by nuclear in vitro transcription run-on, northern blot analysis, and quantitative polymerase chain reaction, which was followed by the subsequent upregulation of collagen I protein with no changes in matrix metalloproteinase 13 (MMP 13). To further analyze the potential mechanism for collagen I upregulation, an in vitro coculture model was designed with primary stellate cells seeded on the bottom plate of a Boyden chamber and the rest of the liver cells plated on a cell culture insert, and fish oil or fish oil plus ethanol were added. The combination of fish oil plus ethanol increased nuclear factor kappaB binding to the COL1A2 promoter both in vivo and in the cocultures and also resulted in increased phosphorylation of protein kinase C, activation of PI3 kinase, and phosphorylation of Akt. The in vitro addition of vitamin E prevented such activation and collagen I increase. Furthermore, inhibitors of all 3 kinases blocked the increase in collagen I and NFkappaB binding to the COL1A2 promoter; the latter was also prevented by vitamin E. CONCLUSION These results suggest that fish oil (mainly n-3 polyunsaturated fatty acids [PUFAs]) can synergize with ethanol to induce collagen I, transactivating the COL1A2 promoter through a lipid peroxidation-PKC-PI3K-Akt-NFkappaB-driven mechanism in the absence of overt steatosis and inflammation.
Collapse
Affiliation(s)
- Natalia Nieto
- Department of Medicine, Division of Liver Diseases, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA.
| |
Collapse
|
18
|
Nieto N. Oxidative-stress and IL-6 mediate the fibrogenic effects of [corrected] Kupffer cells on stellate cells. Hepatology 2006; 44:1487-501. [PMID: 17133487 DOI: 10.1002/hep.21427] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The impact of Kupffer cells (KCs) on the hepatic stellate cell (HSC) fibrogenic response was examined in an in vitro coculture model of primary KCs and HSCs. Coculture with KCs induced a more activated phenotype and greater proliferation compared to HSC cultured alone. Similar results were obtained on Matrigel which maintains HSCs quiescent. The effect of KCs on HSC collagen I involved transcriptional regulation, as determined by nuclear in vitro transcription run-on assays, promoter studies, and Northern blot analysis, while stability of the COL1A1 and COL1A2 mRNA were similar. The minimal COL1A1 and COL1A2 promoter regions responsible for the KC effects were localized to the -515 and -378 base pair (bp) regions, respectively. Intracellular and extracellular collagen I protein, H2O2, and IL-6 increased in a time-dependent fashion, especially for HSCs in coculture. Catalase prevented these effects as well as the transactivation of both collagen promoters. The rate of collagen I protein synthesis and intracellular collagen I degradation remained similar but the t(1/2) of the secreted collagen I was lower for HSC in coculture. MMP13, a protease that degrades extracellular collagen I, decreased in the cocultures, while TIMP1, a MMP13 inhibitor, increased; and these effects were prevented by catalase, anti-IL-6, and siRNA-IL-6. Cocultured HSC showed elevated phosphorylation of p38 which when inhibited by catalase, anti-IL-6, and siRNA-IL-6 it blocked TIMP1 upregulation and collagen I accumulation. In conclusion, these results unveil a novel dual mechanism mediated by H2O2 and IL-6 by which KCs may modulate the fibrogenic response in HSCs.
Collapse
Affiliation(s)
- Natalia Nieto
- Department of Medicine, Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
19
|
Tanaka S, Ramirez F. The first intron of the human alpha2(I) collagen gene (COL1A2) contains a novel interferon-gamma responsive element. Matrix Biol 2006; 26:185-9. [PMID: 17142024 DOI: 10.1016/j.matbio.2006.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/19/2006] [Accepted: 10/20/2006] [Indexed: 11/28/2022]
Abstract
Cell transfection assays have shown that several transcription factors can mediate interferon-gamma (INF-gamma) inhibition of the human alpha2(I) collagen gene (COL1A2) by binding distinct cis-acting elements in the proximal promoter. Recent transgenic work, on the other hand, has identified a strong repressor in the first intron of COL1A2 that includes a binding site for interferon regulatory factors (IRFs). Here we present evidence from cell transfection experiments indicating that this IRF-binding site (IF3) is a novel target of the pathways elicited by INF-gamma to blunt transcription from the COL1A2 promoter. First, we showed that INF-gamma stimulates the production of IRF-1 transcripts, as well as the formation of an IRF-1 containing complex at the FI3 element. Second, we demonstrated that IRF-1 over-expression inhibits COL1A2 promoter activity specifically through the action of FI3, in addition to decreasing the steady-state levels of the endogenous COL1A2 mRNA. Third, we documented that INF-gamma treatment of cultured fibroblasts increases binding of IRF-1 to FI3 in the endogenous COL1A2 gene. Together our findings further extend the list of transcription factors involved in INF-gamma inhibition of COL1A2 gene expression.
Collapse
Affiliation(s)
- Shizuko Tanaka
- Laboratory of Genetics and Organogenesis, Research Division of the Hospital for Special Surgery, and Department Physiology and Biophysics at Weill Medical College of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|
20
|
Ramirez F, Tanaka S, Bou-Gharios G. Transcriptional regulation of the human alpha2(I) collagen gene (COL1A2), an informative model system to study fibrotic diseases. Matrix Biol 2006; 25:365-72. [PMID: 16815696 DOI: 10.1016/j.matbio.2006.05.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 04/23/2006] [Accepted: 04/24/2006] [Indexed: 11/23/2022]
Abstract
During the past two decades, the human pro-alpha2(I) collagen gene (COL1A2) has emerged as an informative model in which to study the general principles that govern the transcriptional control of extracellular matrix deposition in normal and fibrotic conditions. Multiple studies have in fact delineated the genomic regions, cis-acting elements and trans-acting factors implicated in constitutive, cytokine-modulated and tissue-specific expression of COL1A2. These functional components are integrated into a regulatory network that consists of the proximal promoter, far-upstream enhancer and downstream repressor, and which operates according to two mechanisms. The first mechanism is one in which combinatorial interactions among promoter-bound proteins determine transcriptional outcome in different cellular and experimental contexts. The other mechanism is one whereby cooperative assembly of protein complexes at distantly located DNA elements directs spatiotemporal specificity. These transcriptional studies have also an additional value in translational research, in that they are providing the conceptual means to develop new animal models of and therapeutic strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Francesco Ramirez
- Child Health Institute of New Jersey, Robert W. Johnson Medical School, New Brunswick, NJ 08901, USA.
| | | | | |
Collapse
|
21
|
Alexakis C, Maxwell P, Bou-Gharios G. Organ-specific collagen expression: implications for renal disease. Nephron Clin Pract 2005; 102:e71-5. [PMID: 16286786 DOI: 10.1159/000089684] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chronic kidney disease is characterized by progressive accumulation of extracellular matrix and scarring, leading to the loss of kidney function. Excess deposition of the collagen family of proteins is the hallmark of kidney fibrosis. In this review, we survey the collagens that are associated with renal disease and we highlight the use of a transgenic approach to identify cis-acting sequences in the collagen type I promoter which are capable of directing collagen type I expression specifically in the kidney. Ultimately it may be possible to use this approach to halt the accumulation of collagen selectively in this organ.
Collapse
Affiliation(s)
- Catherine Alexakis
- Renal Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
| | | | | |
Collapse
|
22
|
Antoniv TT, Tanaka S, Sudan B, De Val S, Liu K, Wang L, Wells DJ, Bou-Gharios G, Ramirez F. Identification of a repressor in the first intron of the human alpha2(I) collagen gene (COL1A2). J Biol Chem 2005; 280:35417-23. [PMID: 16091368 DOI: 10.1074/jbc.m502681200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The human and mouse genes that code for the alpha2 chain of collagen I (COL1A2 and Col1a2, respectively) share a common chromatin structure and nearly identical proximal promoter and far upstream enhancer sequences. Despite these homologies, species-specific differences have been reported regarding the function of individual cis-acting elements, such as the first intron sequence. In the present study, we have investigated the transcriptional contribution of the unique open chromatin site in the first intron of COL1A2 using a transgenic mouse model. DNase I footprinting identified a cluster of three distinct areas of nuclease protection (FI1-3) that span from nucleotides +647 to +760, relative to the transcription start site, and which contain consensus sequences for GATA and interferon regulatory factor (IRF) transcription factors. Gel mobility shift and chromatin immunoprecipitation assays corroborated this last finding by documenting binding of GATA-4 and IRF-1 and IRF-2 to the first intron sequence. Moreover, a short sequence encompassing the three footprints was found to inhibit expression of transgenic constructs containing the COL1A2 proximal promoter and far upstream enhancer in a position-independent manner. Mutations inserted into each of the footprints restored transgenic expression to different extents. These results therefore indicated that the unique open chromatin site of COL1A2 corresponds to a repressor, the activity of which seems to be mediated by the concerted action of GATA and IRF proteins. More generally, the study reiterated the existence of species-specific difference in the regulatory networks of the mammalian alpha2(I) collagen coding genes.
Collapse
Affiliation(s)
- Taras T Antoniv
- Laboratory of Genetics and Organogenesis, Research Division of the Hospital for Special Surgery, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nieto N, Cederbaum AI. S-adenosylmethionine blocks collagen I production by preventing transforming growth factor-beta induction of the COL1A2 promoter. J Biol Chem 2005; 280:30963-74. [PMID: 15983038 DOI: 10.1074/jbc.m503569200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To study the anti-fibrogenic mechanisms of S-adenosylmethionine (AdoMet), transgenic mice harboring the -17 kb to +54 bp of the collagen alpha2 (I) promoter (COL1A2) cloned upstream from the beta-gal reporter gene were injected with carbon tetrachloride (CCl4) to induce fibrosis and coadministered either AdoMet or saline. Control groups received AdoMet or mineral oil. AdoMet lowered the pathology in CCl4-treated mice as shown by transaminase levels, hematoxylin and eosin, Masson's trichrome staining, and collagen I expression. beta-Galactosidase activity indicated activation of the COL1A2 promoter in stellate cells from CCl4-treated mice and repression of such activation by AdoMet. Lipid peroxidation, transforming growth factor-beta (TGFbeta) expression, and decreases in glutathione levels were prevented by AdoMet. Incubation of primary stellate cells with AdoMet down-regulated basal and TGFbeta-induced collagen I and alpha-smooth muscle actin proteins. AdoMet metabolites down-regulated collagen I protein and mRNA levels. AdoMet repressed basal and TGFbeta-induced reporter activity in stellate cells transfected with COL1A2 promoter deletion constructs. AdoMet blocked TGFbeta induction of the -378 bp region of the COL1A2 promoter and prevented the phosphorylation of extracellular signal-regulated kinase 1/2 and the binding of Sp1 to the TGFbeta-responsive element. These observations unveil a novel mechanism by which AdoMet could ameliorate liver fibrosis.
Collapse
Affiliation(s)
- Natalia Nieto
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | |
Collapse
|
24
|
Fabbro C, de Gemmis P, Braghetta P, Colombatti A, Volpin D, Bonaldo P, Bressan GM. Analysis of Regulatory Regions of Emilin1 Gene and Their Combinatorial Contribution to Tissue-specific Transcription. J Biol Chem 2005; 280:15749-60. [PMID: 15705587 DOI: 10.1074/jbc.m412548200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The location of regions that regulate transcription of the murine Emilin1 gene was investigated in a DNA fragment of 16.8 kb, including the entire gene and about 8.7 and 0.6 kb of 5'- and 3'-flanking sequences, respectively. The 8.7-kb segment contains the 5'-end of the putative 2310015E02Rik gene and the sequence that separates it from Emilin1, whereas the 0.6-kb fragment covers the region between Emilin1 and Ketohexokinase genes. Sequence comparison between species identified several conserved regions in the 5'-flanking sequence. Most of them contained chromatin DNase I-hypersensitive sites, which were located at about -950 (HS1), -3100 (HS2), -4750 (HS3), and -5150 (HS4) in cells expressing Emilin1 mRNA. Emilin1 transcription initiates at multiple sites, the major of which correspond to two Initiator sequences. Promoter assays suggest that core promoter activity was mainly dependent on Initiator1 and on Sp1-binding sites close to the Initiators. Moreover, one important regulatory region was contained between -1 and -169 bp and a second one between -630 bp and -1.1 kb. The latter harbors a putative binding site for transcription factor AP1 matching the location of HS1. The function of different regions was studied by expressing lacZ constructs in transgenic mice. The results show that the 16.8-kb segment contains regulatory sequences driving high level transcription in all the tissues where Emilin1 is expressed. Moreover, the data suggest that transcription in different tissues is achieved through combinatorial cooperation between various regions, rather than being dependent on a single cis-activating region specific for each tissue.
Collapse
Affiliation(s)
- Carla Fabbro
- Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, 35131 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Denton CP, Abraham DJ. Transgenic analysis of scleroderma: understanding key pathogenic events in vivo. Autoimmun Rev 2004; 3:285-93. [PMID: 15246024 DOI: 10.1016/j.autrev.2003.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 10/13/2003] [Indexed: 10/26/2022]
Abstract
Modern molecular genetic methods have allowed better understanding of established mouse models of scleroderma and also facilitated the development of new and better defined mouse strains for investigating the pathogenesis of the disease. The best characterized scleroderma animal model is the type 1 tight skin mouse (Tsk1). Backcrossing these animals with other mutant strains has been informative. These experiments implicate the IL-4 ligand-receptor axis in the development of skin fibrosis. Parallel expression analysis of genes using microarrays has provided insight into novel mediators of fibrosis including the C-C chemokine MCP-3. Other experiments suggest that embryonically defined fibroblast-specific regulatory elements may be targets for activation in this model. The same lineage-specific elements have been used to selectively activate TGF beta signaling pathways in fibrosis to generate a novel model for scleroderma and also have been used to develop systems for ligand-dependent fibroblast-specific genetic recombination that will allow further analysis key candidate genes implicated in scleroderma pathogenesis. Better mouse models will improve understanding of this intractable rheumatic disease and can be expected to ultimately lead to improved treatments and outcome.
Collapse
MESH Headings
- Animals
- Chemokine CCL7
- Crosses, Genetic
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Fibrosis
- Forecasting
- Gene Expression
- Genes, Reporter
- Humans
- Mice
- Mice, Inbred Strains
- Mice, Mutant Strains
- Mice, Transgenic
- Models, Biological
- Monocyte Chemoattractant Proteins/genetics
- Monocyte Chemoattractant Proteins/metabolism
- Receptors, Interleukin-4/genetics
- Receptors, Interleukin-4/metabolism
- Recombination, Genetic
- Scleroderma, Systemic/immunology
- Scleroderma, Systemic/metabolism
- Scleroderma, Systemic/pathology
- Signal Transduction
- Transforming Growth Factor beta/metabolism
Collapse
|
26
|
Tanaka S, Antoniv TT, Liu K, Wang L, Wells DJ, Ramirez F, Bou-Gharios G. Cooperativity between far upstream enhancer and proximal promoter elements of the human {alpha}2(I) collagen (COL1A2) gene instructs tissue specificity in transgenic mice. J Biol Chem 2004; 279:56024-31. [PMID: 15516691 DOI: 10.1074/jbc.m411406200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Interaction between the proximal (-378) promoter and the far upstream (-20 kb) enhancer is essential for tissue-specific expression of the human alpha2(I) collagen gene (COL1A2) in transgenic mice. Previous in vitro studies have shown that three Sp1 binding sites (around -300) are part of a cytokine-responsive element and that two TC-rich boxes (around -160 and -125) and a CBF/NFY consensus sequence (around -80) confer optimal promoter activity by interacting among themselves and with the upstream Sp1 sites. Here we report that mutations of the Sp1 binding sites, TC-rich boxes or CBF/NFY consensus sequence lead to reduced transgene activity, thus underscoring the functional interdependence of the proximal promoter elements. Loss of the Sp1 binding sites was associated with loss of transgene expression in osteoblasts, whereas elimination of the CBF/NFY binding site (alone or in combination with the TC-rich boxes) was correlated with a lack of activity in the ventral fascia and head dermis and musculature. Additionally, transgene expression in skin fascia fibroblasts depended on the integrity of the Sp1 binding sites and TC-rich boxes, and on their physical configuration. Evidence is also presented suggesting cooperativity between cis-acting elements of the far upstream enhancer and proximal promoter in assembling tissue-specific protein complexes. This study thus reiterates the complex and highly combinatorial nature of the regulatory network governing COL1A2 transcription in vivo.
Collapse
Affiliation(s)
- Shizuko Tanaka
- Laboratory of Genetics and Organogenesis, Research Division of the Hospital for Special Surgery, Weill Medical College of Cornell University, 535 East 70th Street, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Ponticos M, Partridge T, Black CM, Abraham DJ, Bou-Gharios G. Regulation of collagen type I in vascular smooth muscle cells by competition between Nkx2.5 and deltaEF1/ZEB1. Mol Cell Biol 2004; 24:6151-61. [PMID: 15226419 PMCID: PMC434261 DOI: 10.1128/mcb.24.14.6151-6161.2004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A major component of the vessel wall of large arteries and veins is the extracellular matrix (ECM), which consists of collagens, elastin, and proteoglycans. Collagen type I is one of the most abundant of the ECM proteins. We have previously shown that the pro-collagen type I alpha 2 gene contains an enhancer which confers tissue-specific expression in the majority of collagen-producing cells, including blood vessels. In this paper, we delineate a specific vascular smooth muscle cell (vSMC) element: a 100-bp sequence around -16.6 kb upstream of the transcription start site that regulates collagen expression exclusively in vSMCs. Furthermore, we show that the expression is activated through the binding of the homeodomain protein Nkx2.5, which is further potentiated in the presence of GATA6. In contrast, this element was repressed by the binding of the zinc-finger protein deltaEF1/ZEB1. We propose a model of regulation where the activating transcription factor Nkx2.5 and the repressor deltaEF1/ZEB1 compete for an overlapping DNA binding site. This element is important in understanding the molecular mechanisms of vessel remodeling and is a potential target for intervention in vascular diseases where there is excessive deposition of collagen in the vessel wall.
Collapse
Affiliation(s)
- Markella Ponticos
- Centre for Rheumatology, Department of Medicine, University College of London, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Abstract
The vascular network is a series of linked conduits of blood vessels composed of the endothelium, a monolayer of cells that adorn the vessel lumen and surrounding layer(s) of mesenchymal cells (vascular smooth muscle, pericytes and fibroblasts). In addition to providing structural support, the mesenchymal cells are essential for vessel contractility. The extracellular matrix is a major constituent of blood vessels and provides a framework in which these various cell types are attached and embedded. The composition and organization of vascular extracellular matrix is primarily controlled by the mesenchymal cells, and is also responsible for the mechanical properties of the vessel wall, forming complex networks of structural proteins which are highly regulated. The extracellular matrix also plays a central role in cellular adhesion, differentiation and proliferation. This review examines the cellular and extracellular matrix components of vessels, with specific emphasis on the regulation of collagen type I and implications in vascular disease.
Collapse
Affiliation(s)
- George Bou-Gharios
- Renal Medicine, Imperial College London, Hammersmith Campus, London, W12 ONN, UK
| | | | | | | |
Collapse
|
29
|
Sabo PJ, Humbert R, Hawrylycz M, Wallace JC, Dorschner MO, McArthur M, Stamatoyannopoulos JA. Genome-wide identification of DNaseI hypersensitive sites using active chromatin sequence libraries. Proc Natl Acad Sci U S A 2004; 101:4537-42. [PMID: 15070753 PMCID: PMC384782 DOI: 10.1073/pnas.0400678101] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Comprehensive identification of sequences that regulate transcription is one of the major goals of genome biology. Focal alteration in chromatin structure in vivo, detectable through hypersensitivity to DNaseI and other nucleases, is the sine qua non of a diverse cast of transcriptional regulatory elements including enhancers, promoters, insulators, and locus control regions. We developed an approach for genome-scale identification of DNaseI hypersensitive sites (HSs) via isolation and cloning of in vivo DNaseI cleavage sites to create libraries of active chromatin sequences (ACSs). Here, we describe analysis of >61,000 ACSs derived from erythroid cells. We observed peaks in the density of ACSs at the transcriptional start sites of known genes at non-gene-associated CpG islands, and, to a lesser degree, at evolutionarily conserved noncoding sequences. Peaks in ACS density paralleled the distribution of DNaseI HSs. ACSs and DNaseI HSs were distributed between both expressed and nonexpressed genes, suggesting that a large proportion of genes reside within open chromatin domains. The results permit a quantitative approximation of the distribution of HSs and classical cis-regulatory sequences in the human genome.
Collapse
Affiliation(s)
- Peter J Sabo
- Department of Molecular Biology, Regulome, Canal View Building, 551 North 34th Street, Seattle, WA 98103, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Ponticos M, Abraham D, Alexakis C, Lu QL, Black C, Partridge T, Bou-Gharios G. Col1a2 enhancer regulates collagen activity during development and in adult tissue repair. Matrix Biol 2004; 22:619-28. [PMID: 15062855 DOI: 10.1016/j.matbio.2003.12.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Revised: 12/03/2003] [Accepted: 12/03/2003] [Indexed: 10/26/2022]
Abstract
An enhancer region in the type I collagen alpha 2 chain (pro-Col1a2) promoter has been previously identified approximately -17 kb away from the transcription start site. This upstream region termed the far-upstream-enhancer contains three DNAse I hypersensitive sites and has been shown to be conserved between mouse and human genes. In this study, we used transgenic mice harbouring the complete promotor sequence of the pro-Col1a2 gene up to -17 kb to examine the role of this enhancer in the expression and regulation of the collagen gene during development and in adult tissues pre and post injury. By careful histological mapping of the collagen type I endogenous gene distribution with that of the transgene driven by the mouse far upstream enhancer, we are able to show that in early days of collagen expression, E8.5-9.5, the endogenous gene preceded transgene expression. However, by E11.5 the overall pattern becomes synchronous with a few exceptions. In adult tissue, both endogenous and transgene expression are attenuated and both are reactivated in parallel in various organs by physical injury or fibrogenic cytokine injection. These findings suggest that the enhancer is central to the activation of the collagen type I and that mice harbouring this enhancer/reporter provide a useful model to follow collagen gene transcription activity and for investigating cellular activity in tissue fibrosis.
Collapse
MESH Headings
- Animals
- Collagen/genetics
- Collagen/metabolism
- Collagen Type I
- Embryo, Mammalian/anatomy & histology
- Embryo, Mammalian/physiology
- Enhancer Elements, Genetic
- Female
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Gestational Age
- Humans
- In Situ Hybridization
- Kidney/anatomy & histology
- Kidney/metabolism
- Kidney/pathology
- Lung/anatomy & histology
- Lung/metabolism
- Lung/pathology
- Mice
- Mice, Transgenic
- Muscle, Skeletal/anatomy & histology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Pregnancy
- Skin/anatomy & histology
- Skin/drug effects
- Skin/metabolism
- Skin/pathology
- Transcription, Genetic
- Transforming Growth Factor beta/pharmacology
- Transforming Growth Factor beta1
Collapse
Affiliation(s)
- Markella Ponticos
- Muscle Cell Biology Group, MRC Clinical Science Centre, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Ong VH, Evans LA, Shiwen X, Fisher IB, Rajkumar V, Abraham DJ, Black CM, Denton CP. Monocyte chemoattractant protein 3 as a mediator of fibrosis: Overexpression in systemic sclerosis and the type 1 tight-skin mouse. ARTHRITIS AND RHEUMATISM 2003; 48:1979-91. [PMID: 12847692 DOI: 10.1002/art.11164] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To determine the gene-expression profile in dermal fibroblasts from type 1 tight-skin (Tsk1) mice, and to examine the expression and potential fibrotic activity of monocyte chemoattractant protein 3 (MCP-3) in Tsk1 mouse and human systemic sclerosis (SSc) skin. METHODS Complementary DNA microarrays (Atlas 1.2) were used to compare Tsk1 fibroblasts with non-Tsk1 littermate cells at 10 days, 6 weeks, and 12 weeks of age. Expression of MCP-3 protein was assessed by Western blotting of fibroblast culture supernatants, and localized in the mouse and human skin biopsy samples by immunohistochemistry. Activation of collagen reporter genes by MCP-3 was explored in transgenic mouse fibroblasts and by transient transfection assays. RESULTS MCP-3 was highly overexpressed by neonatal Tsk1 fibroblasts and by fibroblasts cultured from the lesional skin of patients with early-stage diffuse cutaneous SSc. Immunolocalization confirmed increased expression of MCP-3 in the dermis of 4 of 5 Tsk1 skin samples and 14 of 28 lesional SSc skin samples, compared with that in matched healthy mice (n = 5) and human controls (n = 11). Proalpha2(I) collagen promoter-reporter gene constructs were activated by MCP-3 in transgenic mice and by transient transfection assays. This response was maximal between 16 and 24 hours of culture and mediated via sequences within the proximal promoter. The effects of MCP-3 could be diminished by a neutralizing antibody to transforming growth factor beta. CONCLUSION We demonstrate, for the first time, overexpression of MCP-3 in early-stage SSc and in Tsk1 skin, and suggest a novel role for this protein as a fibrotic mediator activating extracellular matrix gene expression in addition to promoting leukocyte trafficking. This chemokine may be an important early member of the cytokine cascade driving the pathogenesis of SSc.
Collapse
Affiliation(s)
- Voon H Ong
- Royal Free Hospital and University College Medical School, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yata Y, Scanga A, Gillan A, Yang L, Reif S, Breindl M, Brenner DA, Rippe RA. DNase I-hypersensitive sites enhance alpha1(I) collagen gene expression in hepatic stellate cells. Hepatology 2003; 37:267-76. [PMID: 12540776 DOI: 10.1053/jhep.2003.50067] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Liver fibrosis is characterized by a dramatic increase in the expression of type I collagen. Several deoxyribonuclease (DNase) I-hypersensitive sites (HS) have been located in the distal 5'-flanking region of the alpha1(I) collagen gene that are specific to collagen-producing cells. To assess the role of the DNase I-HS in regulating alpha1(I) collagen gene expression in hepatic stellate cells (HSCs), 3 transgenic mouse lines expressing collagen-alpha1(I) reporter genes were used (Krempen et al. Gene Expr 1999;8:151-163). The pCol9GFP transgene contains the collagen gene promoter (-3122 to +111) linked to the green fluorescent protein (GFP) reporter gene. The pCol9GFP-HS4,5 transgene contains HS4,5 and pColGFP-HS8,9 contains HS8,9 positioned upstream of the collagen promoter in pCol9GFP. HSCs isolated from transgenic mice containing pCol9GFPHS4,5 and pColGFP-HS8,9 showed earlier and higher GFP expression patterns than HSCs isolated from pCol9GFP mice. HSCs from pCol9GFP-HS4,5 showed the highest levels of GFP expression and culture-induced expression correlated with induction of the endogenous alpha1(I) collagen gene. After CCl(4) administration, pCol9GFP-HS4,5 mice showed increased GFP expression compared with pCol9GFP mice in both whole liver extracts and isolated HSCs. Several sites for DNA-protein interactions in both HS4 and HS5 were identified that included a binding site for activator protein 1. In conclusion, DNase I-HS4,5 enhance expression of the alpha1(I) collagen gene promoter in HSCs both in vitro and in vivo after a fibrogenic stimulus. The collagen-GFP transgenic mice provide a convenient and reliable model system to investigate the molecular mechanisms controlling increased collagen expression during fibrosis.
Collapse
Affiliation(s)
- Yutaka Yata
- Department of Medicine, The University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Thornton MA, Zhang C, Kowalska MA, Poncz M. Identification of distal regulatory regions in the human alpha IIb gene locus necessary for consistent, high-level megakaryocyte expression. Blood 2002; 100:3588-96. [PMID: 12393463 DOI: 10.1182/blood-2002-05-1307] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alphaIIb/beta3-integrin receptor is present at high levels only in megakaryocytes and platelets. Its presence on platelets is critical for hemostasis. The tissue-specific nature of this receptor's expression is secondary to the restricted expression of alphaIIb, and studies of the alphaIIb proximal promoter have served as a model of a megakaryocyte-specific promoter. We have examined the alphaIIb gene locus for distal regulatory elements. Sequence comparison between the human (h) and murine (m) alphaIIb loci revealed high levels of conservation at intergenic regions both 5' and 3' to the alphaIIb gene. Additionally, deoxyribonuclease (DNase) I sensitivity mapping defined tissue-specific hypersensitive (HS) sites that coincide, in part, with these conserved regions. Transgenic mice containing various lengths of the h(alpha)IIb gene locus, which included or excluded the various conserved/HS regions, demonstrated that the proximal promoter was sufficient for tissue specificity, but that a region 2.5 to 7.1 kb upstream of the h(alpha)IIb gene was necessary for consistent expression. Another region 2.2 to 7.4 kb downstream of the gene enhanced expression 1000-fold and led to levels of h(alpha)IIb mRNA that were about 30% of the native m(alpha)IIb mRNA level. These constructs also resulted in detectable h(alpha)IIb/m(beta)3 on the platelet surface. This work not only confirms the importance of the proximal promoter of the alphaIIb gene for tissue specificity, but also characterizes the distal organization of the alphaIIb gene locus and provides an initial localization of 2 important regulatory regions needed for the expression of the alphaIIb gene at high levels during megakaryopoiesis.
Collapse
Affiliation(s)
- Michael A Thornton
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | |
Collapse
|
34
|
Zheng B, Zhang Z, Black CM, de Crombrugghe B, Denton CP. Ligand-dependent genetic recombination in fibroblasts : a potentially powerful technique for investigating gene function in fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:1609-17. [PMID: 12000713 PMCID: PMC1850857 DOI: 10.1016/s0002-9440(10)61108-x] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Strategies for conditional induction of transgene expression in mice are likely to be valuable for testing the role of candidate genes in disease pathogenesis. We have developed a system for lineage-specific, ligand-dependent, induction of sustained transgene expression in fibroblastic cells in mice using a chimeric gene encoding the Cre-ER(T) fusion protein, under the control of a fibroblast-specific regulatory sequence from the pro alpha 2(I)collagen gene. Cre-ER(T) operates as a tamoxifen-dependent DNA recombinase to excise fragments flanked by specific LoxP consensus sequences. To test efficiency and ligand dependency of this strategy, Cre-ER(T)-expressing mice were backcrossed with heterozygous ROSA26-LacZ reporter mice, in which a floxed-STOP cassette has been introduced upstream of a bacterial beta-galactosidase (LacZ) reporter gene at a ubiquitously expressed locus. Constitutive or tamoxifen-induced LacZ expression was examined in embryonic, neonatal, and adult compound-transgenic mice. When pregnant ROSA26-LacZ females received a single dose of tamoxifen, high-level expression of LacZ in the skin was demonstrable from 24 hours after injection in double-transgenic embryos harboring both the Cre-ER(T) transgene and the target ROSA26-LacZ allele. High-level expression of LacZ was also induced postnatally by tamoxifen specifically in dermal and visceral fibroblasts. By allowing efficient embryonic or postnatal modification of alleles that have been targeted to incorporate LoxP sites, or to switch on transgenes cloned downstream of the floxed-STOP cassette, this system will allow fibroblast-specific genetic perturbations to be induced at predetermined embryonic or postnatal time points. This should greatly assist in in vivo functional studies of candidate genes in fibrotic diseases such as systemic sclerosis.
Collapse
Affiliation(s)
- Bing Zheng
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
35
|
De Val S, Ponticos M, Antoniv TT, Wells DJ, Abraham D, Partridge T, Bou-Gharios G. Identification of the key regions within the mouse pro-alpha 2(I) collagen gene far-upstream enhancer. J Biol Chem 2002; 277:9286-92. [PMID: 11756428 DOI: 10.1074/jbc.m111040200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Studies using transgenic mice have shown that the mouse pro-alpha2(I) collagen gene contains a far-upstream enhancer, which directs expression in the majority of collagen I-producing cells during development and in response to tissue injury. In this study, we have investigated the minimal functional region required for the enhancer effect and studied the role of the three hypersensitive sites (HS3-HS5) that overlap this region. The results of deletion experiments indicate that the minimal functional unit of this enhancer is a 1.5-kb region between -17.0 and -15.45 kb from the transcription start site. This region includes the core sequences of HS3 and HS4 but not HS5. The HS4 sequences are essential for the functional integrity of the enhancer, whereas HS3 represents tissue-specific elements that direct expression in mesenchymal cells of internal tissues and body wall muscles. The HS3 region appears to bind a complex of transcription factors illustrated by large regions of protected sequences. A 400-bp sequence located between -17.0 and -16.6 is also essential for the enhancer because its deletion results in increased susceptibility to the chromatin environment.
Collapse
Affiliation(s)
- Sarah De Val
- Medical Research Council Clinical Sciences Centre, Imperial College, Hammersmith Campus, London W12 ONN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
36
|
McGaha TL, Phelps RG, Spiera H, Bona C. Halofuginone, an inhibitor of type-I collagen synthesis and skin sclerosis, blocks transforming-growth-factor-beta-mediated Smad3 activation in fibroblasts. J Invest Dermatol 2002; 118:461-70. [PMID: 11874485 DOI: 10.1046/j.0022-202x.2001.01690.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Halofuginone is a drug that has been shown to have an antifibrotic property in vitro and in vivo. Whereas halofuginone shows promise as a therapeutic agent for a variety of diseases including scleroderma, liver cirrhosis, cystic fibrosis, and certain types of cancer, the mechanism of action remains unknown. Using the tight skin mouse (TSK) model for scleroderma, we evaluated the ability of halofuginone to inhibit spontaneous development of dermal fibrosis. We found that administration of a low dose of halofuginone both in adult and newborn animals for 60 d prevented the development of cutaneous hyperplasia (dermal fibrosis). In vitro halofuginone was found to reduce the amount of collagen synthesized by fibroblasts. This effect was due to a reduction in the promoter activity of the type-I collagen genes as treatment of fibroblast cultures with 10(-8) M halofuginone reduced the level of alpha2(I) collagen message detectible by northern blot and greatly reduced the activity of a reporter construct under control of the -3200 to +54 bp alpha2(I) collagen promoter. In addition, analysis of transforming growth factor beta signaling pathways in fibroblasts revealed that halofuginone inhibited transforming-growth-factor-beta-induced upregulation of collagen protein and activity of the alpha2(I) collagen promoter. Further we found that halofuginone blocked the phosphorylation and subsequent activation of Smad3 after transforming growth factor beta stimulation. Apparently the inhibitory property was specific to Smad3 as there was no inhibitory effect on the activation of Smad2 after stimulation with transforming growth factor beta. Our results demonstrate that halofuginone is a specific inhibitor of type-I collagen synthesis and may elicit its effect via interference with the transforming growth factor beta signaling pathway.
Collapse
Affiliation(s)
- Tracy L McGaha
- Department of Microbiology, The Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|