1
|
Valdor R, Martinez-Vicente M. The Role of Chaperone-Mediated Autophagy in Tissue Homeostasis and Disease Pathogenesis. Biomedicines 2024; 12:257. [PMID: 38397859 PMCID: PMC10887052 DOI: 10.3390/biomedicines12020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Chaperone-mediated autophagy (CMA) is a selective proteolytic pathway in the lysosomes. Proteins are recognized one by one through the detection of a KFERQ motif or, at least, a KFERQ-like motif, by a heat shock cognate protein 70 (Hsc70), a molecular chaperone. CMA substrates are recognized and delivered to a lysosomal CMA receptor, lysosome-associated membrane protein 2A (LAMP-2A), the only limiting component of this pathway, and transported to the lysosomal lumen with the help of another resident chaperone HSp90. Since approximately 75% of proteins are reported to have canonical, phosphorylation-generated, or acetylation-generated KFERQ motifs, CMA maintains intracellular protein homeostasis and regulates specific functions in the cells in different tissues. CMA also regulates physiologic functions in different organs, and is then implicated in disease pathogenesis related to aging, cancer, and the central nervous and immune systems. In this minireview, we have summarized the most important findings on the role of CMA in tissue homeostasis and disease pathogenesis, updating the recent advances for this Special Issue.
Collapse
Affiliation(s)
- Rut Valdor
- Immunology-Cell Therapy and Hematopoietic Transplant Group, Department of Biochemistry and Molecular Biology B, University of Murcia (UMU), 30100 Murcia, Spain
- Unit of Autophagy, Immune Response and Tolerance in Pathologic Processes, Biomedical Research Institute of Murcia-Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - Marta Martinez-Vicente
- Autophagy and Lysosomal Dysfunction Lab, Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute—CIBERNED, 08035 Barcelona, Spain
| |
Collapse
|
2
|
Borankova K, Krchniakova M, Leck LYW, Kubistova A, Neradil J, Jansson PJ, Hogarty MD, Skoda J. Mitoribosomal synthetic lethality overcomes multidrug resistance in MYC-driven neuroblastoma. Cell Death Dis 2023; 14:747. [PMID: 37973789 PMCID: PMC10654511 DOI: 10.1038/s41419-023-06278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Mitochondria are central for cancer responses to therapy-induced stress signals. Refractory tumors often show attenuated sensitivity to apoptotic signaling, yet clinically relevant molecular actors to target mitochondria-mediated resistance remain elusive. Here, we show that MYC-driven neuroblastoma cells rely on intact mitochondrial ribosome (mitoribosome) processivity and undergo cell death following pharmacological inhibition of mitochondrial translation, regardless of their multidrug/mitochondrial resistance and stem-like phenotypes. Mechanistically, inhibiting mitoribosomes induced the mitochondrial stress-activated integrated stress response (ISR), leading to downregulation of c-MYC/N-MYC proteins prior to neuroblastoma cell death, which could be both rescued by the ISR inhibitor ISRIB. The ISR blocks global protein synthesis and shifted the c-MYC/N-MYC turnover toward proteasomal degradation. Comparing models of various neuroectodermal tumors and normal fibroblasts revealed overexpression of MYC proteins phosphorylated at the degradation-promoting site T58 as a factor that predetermines vulnerability of MYC-driven neuroblastoma to mitoribosome inhibition. Reducing N-MYC levels in a neuroblastoma model with tunable MYCN expression mitigated cell death induction upon inhibition of mitochondrial translation and functionally validated the propensity of neuroblastoma cells for MYC-dependent cell death in response to the mitochondrial ISR. Notably, neuroblastoma cells failed to develop significant resistance to the mitoribosomal inhibitor doxycycline over a long-term repeated (pulsed) selection. Collectively, we identify mitochondrial translation machinery as a novel synthetic lethality target for multidrug-resistant MYC-driven tumors.
Collapse
Affiliation(s)
- Karolina Borankova
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Maria Krchniakova
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Lionel Y W Leck
- Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St. Leonards, NSW, 2065, Australia
| | - Adela Kubistova
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Jakub Neradil
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Patric J Jansson
- Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St. Leonards, NSW, 2065, Australia
| | - Michael D Hogarty
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic.
| |
Collapse
|
3
|
Yao R, Shen J. Chaperone-mediated autophagy: Molecular mechanisms, biological functions, and diseases. MedComm (Beijing) 2023; 4:e347. [PMID: 37655052 PMCID: PMC10466100 DOI: 10.1002/mco2.347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
Chaperone-mediated autophagy (CMA) is a lysosomal degradation pathway that eliminates substrate proteins through heat-shock cognate protein 70 recognition and lysosome-associated membrane protein type 2A-assisted translocation. It is distinct from macroautophagy and microautophagy. In recent years, the regulatory mechanisms of CMA have been gradually enriched, including the newly discovered NRF2 and p38-TFEB signaling, as positive and negative regulatory pathways of CMA, respectively. Normal CMA activity is involved in the regulation of metabolism, aging, immunity, cell cycle, and other physiological processes, while CMA dysfunction may be involved in the occurrence of neurodegenerative disorders, tumors, intestinal disorders, atherosclerosis, and so on, which provides potential targets for the treatment and prediction of related diseases. This article describes the general process of CMA and its role in physiological activities and summarizes the connection between CMA and macroautophagy. In addition, human diseases that concern the dysfunction or protective role of CMA are discussed. Our review deepens the understanding of the mechanisms and physiological functions of CMA and provides a summary of past CMA research and a vision of future directions.
Collapse
Affiliation(s)
- Ruchen Yao
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of Health, Inflammatory Bowel Disease Research CenterShanghaiChina
- Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Institute of Digestive DiseaseShanghaiChina
| | - Jun Shen
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of Health, Inflammatory Bowel Disease Research CenterShanghaiChina
- Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Institute of Digestive DiseaseShanghaiChina
| |
Collapse
|
4
|
Modulating Chaperone-Mediated Autophagy and Its Clinical Applications in Cancer. Cells 2022; 11:cells11162562. [PMID: 36010638 PMCID: PMC9406970 DOI: 10.3390/cells11162562] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Autophagy is a central mechanism for maintaining cellular homeostasis in health and disease as it provides the critical energy through the breakdown and recycling of cellular components and molecules within lysosomes. One of the three types of autophagy is chaperone-mediated autophagy (CMA), a degradation pathway selective for soluble cytosolic proteins that contain a targeting motif related to KFERQ in their amino acid sequence. This motif marks them as CMA substrate and is, in the initial step of CMA, recognised by the heat shock protein 70 (Hsc70). The protein complex is then targeted to the lysosomal membrane where the interaction with the splice variant A of the lysosomal-associated membrane protein-2 (LAMP-2A) results in its unfolding and translocation into the lysosome for degradation. Altered levels of CMA have been reported in a wide range of pathologies including many cancer types that upregulate CMA as part of the pro-tumorigenic phenotype, while in aging a decline is observed and associated with a decrease of LAMP-2 expression. The potential of altering CMA to modify a physiological or pathological process has been firmly established through genetic manipulation in animals and chemical interference with this pathway. However, its use for therapeutic purposes has remained limited. Compounds used to target and modify CMA have been applied successfully to gain a better understanding of its cellular mechanisms, but they are mostly not specific, also influence other autophagic pathways and are associated with high levels of toxicity. Here, we will focus on the molecular mechanisms involved in CMA regulation as well as on potential ways to intersect them, describe modulators successfully used, their mechanism of action and therapeutic potential. Furthermore, we will discuss the potential benefits and drawbacks of CMA modulation in diseases such as cancer.
Collapse
|
5
|
The Interplay between Autophagy and Redox Signaling in Cardiovascular Diseases. Cells 2022; 11:cells11071203. [PMID: 35406767 PMCID: PMC8997791 DOI: 10.3390/cells11071203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen and nitrogen species produced at low levels under normal cellular metabolism act as important signal molecules. However, at increased production, they cause damage associated with oxidative stress, which can lead to the development of many diseases, such as cardiovascular, metabolic, neurodegenerative, diabetes, and cancer. The defense systems used to maintain normal redox homeostasis plays an important role in cellular responses to oxidative stress. The key players here are Nrf2-regulated redox signaling and autophagy. A tight interface has been described between these two processes under stress conditions and their role in oxidative stress-induced diseases progression. In this review, we focus on the role of Nrf2 as a key player in redox regulation in cell response to oxidative stress. We also summarize the current knowledge about the autophagy regulation and the role of redox signaling in this process. In line with the focus of our review, we describe in more detail information about the interplay between Nrf2 and autophagy pathways in myocardium and the role of these processes in cardiovascular disease development.
Collapse
|
6
|
Yuan Z, Wang S, Tan X, Wang D. New Insights into the Mechanisms of Chaperon-Mediated Autophagy and Implications for Kidney Diseases. Cells 2022; 11:cells11030406. [PMID: 35159216 PMCID: PMC8834181 DOI: 10.3390/cells11030406] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Chaperone-mediated autophagy (CMA) is a separate type of lysosomal proteolysis, characterized by its selectivity of substrate proteins and direct translocation into lysosomes. Recent studies have declared the involvement of CMA in a variety of physiologic and pathologic situations involving the kidney, and it has emerged as a potential target for the treatment of kidney diseases. The role of CMA in kidney diseases is context-dependent and appears reciprocally with macroautophagy. Among the renal resident cells, the proximal tubule exhibits a high basal level of CMA activity, and restoration of CMA alleviates the aging-related tubular alternations. The level of CMA is up-regulated under conditions of oxidative stress, such as in acute kidney injury, while it is declined in chronic kidney disease and aging-related kidney diseases, leading to the accumulation of oxidized substrates. Suppressed CMA leads to the kidney hypertrophy in diabetes mellitus, and the increase of CMA contributes to the progress and chemoresistance in renal cell carcinoma. With the progress on the understanding of the cellular functions and uncovering the clinical scenario, the application of targeting CMA in the treatment of kidney diseases is expected.
Collapse
|
7
|
Le S, Fu X, Pang M, Zhou Y, Yin G, Zhang J, Fan D. The Antioxidative Role of Chaperone-Mediated Autophagy as a Downstream Regulator of Oxidative Stress in Human Diseases. Technol Cancer Res Treat 2022; 21:15330338221114178. [PMID: 36131551 PMCID: PMC9500268 DOI: 10.1177/15330338221114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) plays an important role in regulating a variety of cellular functions by selectively degrading damaged or functional proteins in the cytoplasm. One of the cellular processes in which CMA participates is the oxidative stress response. Oxidative stress regulates CMA activity, while CMA protects cells from oxidative damage by degrading oxidized proteins and preventing the accumulation of excessive reactive oxygen species (ROS). Changes in CMA activity have been found in many human diseases, and oxidative stress is also involved. Therefore, understanding the interaction mechanism of ROS and CMA will provide new targets for disease treatment. In this review, we discuss the role of CMA in combatting oxidative stress during the development of different conditions, such as aging, neurodegeneration, liver diseases, infections, pulmonary disorders, and cancers.
Collapse
Affiliation(s)
- Shuangshuang Le
- Guangxi Key Laboratory of Bio-Targeting Theranostics, National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, 74626Guangxi Medical University, Nanning, China.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| | - Xin Fu
- Guangxi Key Laboratory of Bio-Targeting Theranostics, National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, 74626Guangxi Medical University, Nanning, China.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| | - Maogui Pang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| | - Yao Zhou
- Guangxi Key Laboratory of Bio-Targeting Theranostics, National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, 74626Guangxi Medical University, Nanning, China.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| | - Guoqing Yin
- Department of Oncology, 572481Xianyang Hospital of Yan'an University, Xianyang, China
| | - Jie Zhang
- Department of Oncology, 572481Xianyang Hospital of Yan'an University, Xianyang, China
| | - Daiming Fan
- Guangxi Key Laboratory of Bio-Targeting Theranostics, National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, 74626Guangxi Medical University, Nanning, China.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Gómez-Sintes R, Arias E. Chaperone-mediated autophagy and disease: Implications for cancer and neurodegeneration. Mol Aspects Med 2021; 82:101025. [PMID: 34629183 DOI: 10.1016/j.mam.2021.101025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 02/07/2023]
Abstract
Chaperone-mediated autophagy (CMA) is a proteolytic process whereby selected intracellular proteins are degraded inside lysosomes. Owing to its selectivity, CMA participates in the modulation of specific regulatory proteins, thereby playing an important role in multiple cellular processes. Studies conducted over the last two decades have enabled the molecular characterization of this autophagic pathway and the design of specific experimental models, and have underscored the importance of CMA in a range of physiological processes beyond mere protein quality control. Those findings also indicate that decreases in CMA function with increasing age may contribute to the pathogenesis of age-associated diseases, including neurodegeneration and cancer. In the context of neurological diseases, CMA impairment is thought to contribute to the accumulation of misfolded/aggregated proteins, a process central to the pathogenesis of neurodegenerative diseases. CMA therefore constitutes a potential therapeutic target, as its induction accelerates the clearance of pathogenic proteins, promoting cell survival. More recent evidence has highlighted the important and complex role of CMA in cancer biology. While CMA induction may limit tumor development, experimental evidence also indicates that inhibition of this pathway can attenuate the growth of established tumors and improve the response to cancer therapeutics. Here, we describe and discuss the evidence supporting a role of impaired CMA function in neurodegeneration and cancer, as well as future research directions to evaluate the potential of this pathway as a target for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Raquel Gómez-Sintes
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas CIB-CSIC, 28040, Madrid, Spain; Department of Developmental and Molecular Biology & Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Esperanza Arias
- Department of Medicine, Marion Bessin Liver Research Center & Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
9
|
Nguyen D, Yang K, Chiao L, Deng Y, Zhou X, Zhang Z, Zeng SX, Lu H. Inhibition of tumor suppressor p73 by nerve growth factor receptor via chaperone-mediated autophagy. J Mol Cell Biol 2021; 12:700-712. [PMID: 32285119 PMCID: PMC7749740 DOI: 10.1093/jmcb/mjaa017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/06/2019] [Accepted: 01/13/2020] [Indexed: 01/08/2023] Open
Abstract
The tumor suppressr p73 is a homolog of p53 and is capable of inducing cell cycle arrest and apoptosis. Here, we identify nerve growth factor receptor (NGFR, p75NTR, or CD271) as a novel negative p73 regulator. p73 activates NGFR transcription, which, in turn, promotes p73 degradation in a negative feedback loop. NGFR directly binds to p73 central DNA-binding domain and suppresses p73 transcriptional activity as well as p73-mediated apoptosis in cancer cells. Surprisingly, we uncover a previously unknown mechanism of NGFR-facilitated p73 degradation through the chaperone-mediated autophagy (CMA) pathway. Collectively, our studies demonstrate a new oncogenic function for NGFR in inactivating p73 activity by promoting its degradation through the CMA.
Collapse
Affiliation(s)
- Daniel Nguyen
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Kun Yang
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lucia Chiao
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yun Deng
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.,Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Xiang Zhou
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.,Institute of Biomedical Sciences, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Zhen Zhang
- Department of Radiation Oncology, Shanghai Cancer Center, Department of Oncology, Shanghai Medical School, Fudan University, Shanghai 200032, China
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
10
|
Andrade-Tomaz M, de Souza I, Ribeiro Reily Rocha C, Rodrigues Gomes L. The Role of Chaperone-Mediated Autophagy in Cell Cycle Control and Its Implications in Cancer. Cells 2020; 9:cells9092140. [PMID: 32971884 PMCID: PMC7565978 DOI: 10.3390/cells9092140] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/19/2020] [Accepted: 09/19/2020] [Indexed: 12/11/2022] Open
Abstract
The cell cycle involves a network of proteins that modulate the sequence and timing of proliferation events. Unregulated proliferation is the most fundamental hallmark of cancer; thus, changes in cell cycle control are at the heart of malignant transformation processes. Several cellular processes can interfere with the cell cycle, including autophagy, the catabolic pathway involved in degradation of intracellular constituents in lysosomes. According to the mechanism used to deliver cargo to the lysosome, autophagy can be classified as macroautophagy (MA), microautophagy (MI), or chaperone-mediated autophagy (CMA). Distinct from other autophagy types, CMA substrates are selectively recognized by a cytosolic chaperone, one-by-one, and then addressed for degradation in lysosomes. The function of MA in cell cycle control, and its influence in cancer progression, are already well-established. However, regulation of the cell cycle by CMA, in the context of tumorigenesis, has not been fully addressed. This review aims to present and debate the molecular mechanisms by which CMA can interfere in the cell cycle, in the context of cancer. Thus, cell cycle modulators, such as MYC, hypoxia-inducible factor-1 subunit alpha (HIF-1α), and checkpoint kinase 1 (CHK1), regulated by CMA activity will be discussed. Finally, the review will focus on how CMA dysfunction may impact the cell cycle, and as consequence promote tumorigenesis.
Collapse
Affiliation(s)
- Marina Andrade-Tomaz
- Departamento de Oncologia Clínica e Experimental, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04037-003, SP, Brazil; (M.A.-T.); (I.d.S.); (C.R.R.R.)
| | - Izadora de Souza
- Departamento de Oncologia Clínica e Experimental, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04037-003, SP, Brazil; (M.A.-T.); (I.d.S.); (C.R.R.R.)
| | - Clarissa Ribeiro Reily Rocha
- Departamento de Oncologia Clínica e Experimental, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04037-003, SP, Brazil; (M.A.-T.); (I.d.S.); (C.R.R.R.)
| | - Luciana Rodrigues Gomes
- Laboratório de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-001, SP, Brazil
- Correspondence: ; Tel.: +55-11-2627-3755
| |
Collapse
|
11
|
Abstract
Chaperone-mediated autophagy (CMA) was the first studied process that indicated that degradation of intracellular components by the lysosome can be selective - a concept that is now well accepted for other forms of autophagy. Lysosomes can degrade cellular cytosol in a nonspecific manner but can also discriminate what to target for degradation with the involvement of a degradation tag, a chaperone and a sophisticated mechanism to make the selected proteins cross the lysosomal membrane through a dedicated translocation complex. Recent studies modulating CMA activity in vivo using transgenic mouse models have demonstrated that selectivity confers on CMA the ability to participate in the regulation of multiple cellular functions. Timely degradation of specific cellular proteins by CMA modulates, for example, glucose and lipid metabolism, DNA repair, cellular reprograming and the cellular response to stress. These findings expand the physiological relevance of CMA beyond its originally identified role in protein quality control and reveal that CMA failure with age may aggravate diseases, such as ageing-associated neurodegeneration and cancer.
Collapse
Affiliation(s)
- Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
12
|
Regulation of the Expression of DAPK1 by SUMO Pathway. Biomolecules 2019; 9:biom9040151. [PMID: 30999631 PMCID: PMC6523460 DOI: 10.3390/biom9040151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/07/2019] [Accepted: 04/15/2019] [Indexed: 01/11/2023] Open
Abstract
Death Associated Protein Kinase 1 (DAPK1) is an important signaling kinase mediating the biological effect of multiple natural biomolecules such as IFN-γ, TNF-α, curcumin, etc. DAPK1 is degraded through both ubiquitin-proteasomal and lysosomal degradation pathways. To investigate the crosstalk between these two DAPK1 degradation pathways, we carried out a screen using a set of ubiquitin E2 siRNAs at the presence of Tuberous Sclerous 2 (TSC2) and identified that the small ubiquitin-like molecule (SUMO) pathway is able to regulate the protein levels of DAPK1. Inhibition of the SUMO pathway enhanced DAPK1 protein levels and the minimum domain of DAPK1 protein required for this regulation is the kinase domain, suggesting that the SUMO pathway regulates DAPK1 protein levels independent of TSC2. Suppression of the SUMO pathway did not enhance DAPK1 protein stability. In addition, mutation of the potential SUMO conjugation sites on DAPK1 kinase domain did not alter its protein stability or response to SUMO pathway inhibition. These data suggested that the SUMO pathway does not regulate DAPK1 protein degradation. The exact molecular mechanism underlying this regulation is yet to be discovered.
Collapse
|
13
|
Luo Y, Wu MY, Deng BQ, Huang J, Hwang SH, Li MY, Zhou CY, Zhang QY, Yu HB, Zhao DK, Zhang G, Qin L, Peng A, Hammock BD, Liu JY. Inhibition of soluble epoxide hydrolase attenuates a high-fat diet-mediated renal injury by activating PAX2 and AMPK. Proc Natl Acad Sci U S A 2019; 116:5154-5159. [PMID: 30804206 PMCID: PMC6421466 DOI: 10.1073/pnas.1815746116] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A high-fat diet (HFD) causes obesity-associated morbidities involved in macroautophagy and chaperone-mediated autophagy (CMA). AMPK, the mediator of macroautophage, has been reported to be inactivated in HFD-caused renal injury. However, PAX2, the mediator for CMA, has not been reported in HFD-caused renal injury. Here we report that HFD-caused renal injury involved the inactivation of Pax2 and Ampk, and the activation of soluble epoxide hydrolase (sEH), in a murine model. Specifically, mice fed on an HFD for 2, 4, and 8 wk showed time-dependent renal injury, the significant decrease in renal Pax2 and Ampk at both mRNA and protein levels, and a significant increase in renal sEH at mRNA, protein, and molecular levels. Also, administration of an sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)urea, significantly attenuated the HFD-caused renal injury, decreased renal sEH consistently at mRNA and protein levels, modified the renal levels of sEH-mediated epoxyeicosatrienoic acids (EETs) and dihydroxyeicosatrienoic acids (DHETs) as expected, and increased renal Pax2 and Ampk at mRNA and/or protein levels. Furthermore, palmitic acid (PA) treatment caused significant increase in Mcp-1, and decrease in both Pax2 and Ampk in murine renal mesangial cells (mRMCs) time- and dose-dependently. Also, 14(15)-EET (a major substrate of sEH), but not its sEH-mediated metabolite 14,15-DHET, significantly reversed PA-induced increase in Mcp-1, and PA-induced decrease in Pax2 and Ampk. In addition, plasmid construction revealed that Pax2 may positively regulate Ampk transcriptionally in mRMCs. This study provides insights into and therapeutic target for the HFD-mediated renal injury.
Collapse
Affiliation(s)
- Ying Luo
- Center for Nephrology and Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China
| | - Ming-Yu Wu
- Center for Nephrology and Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China
| | - Bing-Qing Deng
- Center for Nephrology and Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China
| | - Jian Huang
- Center for Nephrology and Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China
| | - Sung Hee Hwang
- Department of Entomology and Nematology, University of California, Davis, CA 95616
- Comprehensive Cancer Center, University of California, Davis, CA 95616
| | - Meng-Yuan Li
- Center for Nephrology and Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China
| | - Chun-Yu Zhou
- Center for Nephrology and Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China
| | - Qian-Yun Zhang
- Center for Nephrology and Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China
| | - Hai-Bo Yu
- Center for Nephrology and Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China
| | - Da-Ke Zhao
- Center for Nephrology and Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003
| | - Ling Qin
- Center for Nephrology and Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China
| | - Ai Peng
- Center for Nephrology and Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, CA 95616;
- Comprehensive Cancer Center, University of California, Davis, CA 95616
| | - Jun-Yan Liu
- Center for Nephrology and Metabolomics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China;
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, People's Republic of China
| |
Collapse
|
14
|
Withers JB, Li ES, Vallery TK, Yario TA, Steitz JA. Two herpesviral noncoding PAN RNAs are functionally homologous but do not associate with common chromatin loci. PLoS Pathog 2018; 14:e1007389. [PMID: 30383841 PMCID: PMC6233925 DOI: 10.1371/journal.ppat.1007389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/13/2018] [Accepted: 10/05/2018] [Indexed: 01/08/2023] Open
Abstract
During lytic replication of Kaposi’s sarcoma-associated herpesvirus (KSHV), a nuclear viral long noncoding RNA known as PAN RNA becomes the most abundant polyadenylated transcript in the cell. Knockout or knockdown of KSHV PAN RNA results in loss of late lytic viral gene expression and, consequently, reduction of progeny virion release from the cell. Here, we demonstrate that knockdown of PAN RNA from the related Rhesus macaque rhadinovirus (RRV) phenocopies that of KSHV PAN RNA. These two PAN RNA homologs, although lacking significant nucleotide sequence conservation, can functionally substitute for each other to rescue phenotypes associated with the absence of PAN RNA expression. Because PAN RNA is exclusively nuclear, previous studies suggested that it directly interacts with host and viral chromatin to modulate gene expression. We studied KSHV and RRV PAN RNA homologs using capture hybridization analysis of RNA targets (CHART) and observed their association with host chromatin, but the loci differ between PAN RNA homologs. Accordingly, we find that KSHV PAN RNA is undetectable in chromatin following cell fractionation. Thus, modulation of gene expression at specific chromatin loci appears not to be the primary, nor the pertinent function of this viral long noncoding RNA. PAN RNA represents a cautionary tale for the investigation of RNA association with chromatin whereby cross-linking of DNA spatially adjacent to an abundant nuclear RNA gives the appearance of specific interactions. Similarly, PAN RNA expression does not affect viral transcription factor complex expression or activity, which is required for generation of the late lytic viral mRNAs. Rather, we provide evidence for an alternative model of PAN RNA function whereby knockdown of KSHV or RRV PAN RNA results in compromised nuclear mRNA export thereby reducing the cytoplasmic levels of viral mRNAs available for production of late lytic viral proteins. Herpesviruses produce noncoding RNAs, some of which are essential to the viral life cycle. One such noncoding RNA from Kaposi’s sarcoma-associated herpesvirus is the polyadenylated, nuclear (PAN) RNA, which is required for production and release of progeny virions from infected cells. In this study, we demonstrate that although lacking nucleotide sequence conservation, PAN RNAs from two related viruses–when knocked down–exhibit the same phenotype, loss of late lytic viral gene expression and progeny virion production. Moreover, they can functionally substitute for each other to rescue this phenotype. We demonstrate that, in contrast to published literature, the reduction in viral gene expression upon PAN RNA knockdown is not due to loss of PAN RNA association with conserved, specific chromatin loci, nor does PAN RNA expression affect the viral transcription factor complex required for generation of the late lytic viral mRNAs. We present data suggesting that PAN RNA instead serves as a binding platform to sequester cellular proteins that are mislocalized to the nucleoplasm. These herpesviral noncoding RNAs can serve as models for the mechanistic study of human noncoding RNAs.
Collapse
Affiliation(s)
- Johanna B. Withers
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Eric S. Li
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Tenaya K. Vallery
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Therese A. Yario
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Joan A. Steitz
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
15
|
Vps34/PI3KC3 deletion in kidney proximal tubules impairs apical trafficking and blocks autophagic flux, causing a Fanconi-like syndrome and renal insufficiency. Sci Rep 2018; 8:14133. [PMID: 30237523 PMCID: PMC6148293 DOI: 10.1038/s41598-018-32389-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/01/2018] [Indexed: 12/21/2022] Open
Abstract
Kidney proximal tubular cells (PTCs) are highly specialized for ultrafiltrate reabsorption and serve as paradigm of apical epithelial differentiation. Vps34/PI3-kinase type III (PI3KC3) regulates endosomal dynamics, macroautophagy and lysosomal function. However, its in vivo role in PTCs has not been evaluated. Conditional deletion of Vps34/PI3KC3 in PTCs by Pax8-Cre resulted in early (P7) PTC dysfunction, manifested by Fanconi-like syndrome, followed by kidney failure (P14) and death. By confocal microscopy, Vps34∆/∆ PTCs showed preserved apico-basal specification (brush border, NHERF-1 versus Na+/K+-ATPase, ankyrin-G) but basal redistribution of late-endosomes/lysosomes (LAMP-1) and mis-localization to lysosomes of apical recycling endocytic receptors (megalin, cubilin) and apical non-recycling solute carriers (NaPi-IIa, SGLT-2). Defective endocytosis was confirmed by Texas-red-ovalbumin tracing and reduced albumin content. Disruption of Rab-11 and perinuclear galectin-3 compartments suggested mechanistic clues for defective receptor recycling and apical biosynthetic trafficking. p62-dependent autophagy was triggered yet abortive (p62 co-localization with LC3 but not LAMP-1) and PTCs became vacuolated. Impaired lysosomal positioning and blocked autophagy are known causes of cell stress. Thus, early trafficking defects show that Vps34 is a key in vivo component of molecular machineries governing apical vesicular trafficking, thus absorptive function in PTCs. Functional defects underline the essential role of Vps34 for PTC homeostasis and kidney survival.
Collapse
|
16
|
Design and development of a robust photo-responsive block copolymer framework for tunable nucleic acid delivery and efficient gene silencing. Polym J 2018. [DOI: 10.1038/s41428-018-0077-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Choi JH, Wang W, Park D, Kim SH, Kim KT, Min KT. IRES-mediated translation of cofilin regulates axonal growth cone extension and turning. EMBO J 2018; 37:embj.201695266. [PMID: 29440227 DOI: 10.15252/embj.201695266] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/19/2017] [Accepted: 01/05/2018] [Indexed: 11/09/2022] Open
Abstract
In neuronal development, dynamic rearrangement of actin promotes axonal growth cone extension, and spatiotemporal translation of local mRNAs in response to guidance cues directs axonal growth cone steering, where cofilin plays a critical role. While regulation of cofilin activity is well studied, regulatory mechanism for cofilin mRNA translation in neurons is unknown. In eukaryotic cells, proteins can be synthesized by cap-dependent or cap-independent mechanism via internal ribosome entry site (IRES)-mediated translation. IRES-mediated translation has been reported in various pathophysiological conditions, but its role in normal physiological environment is poorly understood. Here, we report that 5'UTR of cofilin mRNA contains an IRES element, and cofilin is predominantly translated by IRES-mediated mechanism in neurons. Furthermore, we show that IRES-mediated translation of cofilin is required for both axon extension and axonal growth cone steering. Our results provide new insights into the function of IRES-mediated translation in neuronal development.
Collapse
Affiliation(s)
- Jung-Hyun Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Wei Wang
- Department of Biological Sciences, School of Life Sciences, Ulsan, Korea.,National Creative Research Initiative Center for Proteostasis, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Dongkeun Park
- Department of Biological Sciences, School of Life Sciences, Ulsan, Korea.,National Creative Research Initiative Center for Proteostasis, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Sung-Hoon Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea .,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - Kyung-Tai Min
- Department of Biological Sciences, School of Life Sciences, Ulsan, Korea .,National Creative Research Initiative Center for Proteostasis, Ulsan National Institute of Science and Technology, Ulsan, Korea
| |
Collapse
|
18
|
Ruigrok MJR, Maggan N, Willaert D, Frijlink HW, Melgert BN, Olinga P, Hinrichs WLJ. siRNA-Mediated RNA Interference in Precision-Cut Tissue Slices Prepared from Mouse Lung and Kidney. AAPS JOURNAL 2017; 19:1855-1863. [PMID: 28895093 DOI: 10.1208/s12248-017-0136-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023]
Abstract
Small interfering RNA (siRNA)-mediated RNAi interference (RNAi) is a powerful post-transcriptional gene silencing mechanism which can be used to study the function of genes in vitro (cell cultures) and in vivo (animal models). However, there is a translational gap between these models. Hence, there is a need for novel experimental models that combine the advantages of in vitro and in vivo models (e.g., simplicity, flexibility, throughput, and representability) to study the effects of siRNA. This need may be addressed by precision-cut tissue slices (PCTS), which represent an ex vivo model that mimics the structural and functional characteristics of a whole organ. The goal of this study was to investigate whether self-deliverable siRNA (Accell siRNA) can be used in precision-cut lung slices (PCLuS) and precision-cut kidney slices (PCKS) to achieve RNAi ex vivo. PCLuS and PCKS were prepared from mouse tissue, and they were subsequently incubated up to 48 h with no siRNA (untransfected), non-targeting Accell siRNA, or Gapdh-targeting Accell siRNA. Significant Gapdh mRNA silencing was achieved (PCLuS ~ 55%; PCKS ~ 40%) without compromising the viability and morphology of slices. Fluorescence microscopy confirmed that Accell siRNA diffused into PCLuS and PCKS. Spontaneous inflammation upon incubation was observed in PCLuS and PCKS as shown by a higher mRNA expression of pro-inflammatory cytokines Il1b, Il6, and Tnfa, although Accell siRNA appeared to diminish this response in PCLuS after 24 h. In conclusion, this ex vivo transfection model can be used to evaluate the effects of siRNA in relevant biological environments.
Collapse
Affiliation(s)
- Mitchel J R Ruigrok
- Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Nalinie Maggan
- Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Delphine Willaert
- Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Henderik W Frijlink
- Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Barbro N Melgert
- Groningen Research Institute of Pharmacy, Department of Pharmacokinetics, Toxicology, and Targeting, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Peter Olinga
- Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | - Wouter L J Hinrichs
- Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
19
|
Fernández-Fernández MR, Gragera M, Ochoa-Ibarrola L, Quintana-Gallardo L, Valpuesta JM. Hsp70 - a master regulator in protein degradation. FEBS Lett 2017; 591:2648-2660. [PMID: 28696498 DOI: 10.1002/1873-3468.12751] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 12/31/2022]
Abstract
Proteostasis, the controlled balance of protein synthesis, folding, assembly, trafficking and degradation, is a paramount necessity for cell homeostasis. Impaired proteostasis is a hallmark of ageing and of many human diseases. Molecular chaperones are essential for proteostasis in eukaryotic cells, and their function has traditionally been linked to protein folding, assembly and disaggregation. More recent findings suggest that chaperones also contribute to key steps in protein degradation. In particular, Hsp70 has an essential role in substrate degradation through the ubiquitin-proteasome system, as well as through different autophagy pathways. Accumulated knowledge suggests that the fate of an Hsp70 substrate is dictated by the combination of partners (cochaperones and other chaperones) that interact with Hsp70 in a given cell context.
Collapse
Affiliation(s)
| | - Marcos Gragera
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
20
|
Greco CT, Muir VG, Epps TH, Sullivan MO. Efficient tuning of siRNA dose response by combining mixed polymer nanocarriers with simple kinetic modeling. Acta Biomater 2017; 50:407-416. [PMID: 28063990 PMCID: PMC5317101 DOI: 10.1016/j.actbio.2017.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/01/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022]
Abstract
Two of the most prominent challenges that limit the clinical success of siRNA therapies are a lack of control over cargo release from the delivery vehicle and an incomplete understanding of the link between gene silencing dynamics and siRNA dosing. Herein, we address these challenges through the formulation of siRNA polyplexes containing light-responsive polymer mixtures, whose varied compositions and triggered release behavior provide enhanced gene silencing and controlled dose responses that can be predicted by simple kinetic models. Through the straightforward mixing of two block copolymers, the level of gene knockdown was easily optimized to achieve the maximum level of GAPDH protein silencing in NIH/3T3 cells (~70%) using a single siRNA dose. The kinetic model was used to describe the dynamic changes in mRNA and protein concentrations in response to siRNA treatment. These predictions enabled the application of a second dose of siRNA to maximally suppress gene expression over multiple days, leading to a further 50% reduction in protein levels relative to those measured following a single dose. Furthermore, polyplexes remained dormant in cells until exposed to the photo-stimulus, demonstrating the complete control over siRNA activity as well as the stability of the nanocarriers. Thus, this work demonstrates that pairing advances in biomaterials design with simple kinetic modeling provides new insight into gene silencing dynamics and presents a powerful strategy to control gene expression through siRNA delivery. STATEMENT OF SIGNIFICANCE Our manuscript describes two noteworthy impacts: (1) we designed mixed polymer formulations to enhance gene silencing, and (2) we simultaneously developed a simple kinetic model for determining optimal siRNA dose responses to maintain silencing over several days. These advances address critical challenges in siRNA delivery and provide new opportunities in therapeutics development. The structure-function relationships prevalent in these formulations were established to enable tuning and forecasting of nanocarrier efficiency a priori, leading to siRNA dosing regimens able to maximally suppress gene expression. Our advances are significant because the mixed polymer formulations provide a straightforward and scalable approach to tailor siRNA delivery regimens. Moreover, the implementation of accurate dosing frameworks addresses a major knowledge gap that has hindered clinical implementation of siRNA.
Collapse
Affiliation(s)
- Chad T Greco
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Victoria G Muir
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Thomas H Epps
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
21
|
Protein stabilization improves STAT3 function in autosomal dominant hyper-IgE syndrome. Blood 2016; 128:3061-3072. [PMID: 27799162 DOI: 10.1182/blood-2016-02-702373] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022] Open
Abstract
Autosomal dominant hyper-IgE syndrome (AD-HIES) is caused by dominant-negative mutations in STAT3; however, the molecular basis for mutant STAT3 allele dysfunction is unclear and treatment remains supportive. We hypothesized that AD-HIES mutations decrease STAT3 protein stability and that mutant STAT3 activity can be improved by agents that increase chaperone protein activity. We used computer modeling to characterize the effect of STAT3 mutations on protein stability. We measured STAT3 protein half-life (t1/2) and determined levels of STAT3 phosphorylated on tyrosine (Y) 705 (pY-STAT3) and mRNA levels of STAT3 gene targets in Epstein-Barr virus-transformed B (EBV) cells, human peripheral blood mononuclear cells (PBMCs), and mouse splenocytes incubated without or with chaperone protein modulators-HSF1A, a small-molecule TRiC modulator, or geranylgeranylacetone (GGA), a drug that upregulates heat shock protein (HSP) 70 and HSP90. Computer modeling predicted that 81% of AD-HIES mutations are destabilizing. STAT3 protein t1/2 in EBV cells from AD-HIES patients with destabilizing STAT3 mutations was markedly reduced. Treatment of EBV cells containing destabilizing STAT3 mutations with either HSF1A or GGA normalized STAT3 t1/2, increased pY-STAT3 levels, and increased mRNA levels of STAT3 target genes up to 79% of control. In addition, treatment of human PBMCs or mouse splenocytes containing destabilizing STAT3 mutations with either HSF1A or GGA increased levels of cytokine-activated pY-STAT3 within human CD4+ and CD8+ T cells and numbers of IL-17-producing CD4+ mouse splenocytes, respectively. Thus, most AD-HIES STAT3 mutations are destabilizing; agents that modulate chaperone protein function improve STAT3 stability and activity in T cells and may provide a specific treatment.
Collapse
|
22
|
Greco CT, Epps TH, Sullivan MO. Mechanistic Design of Polymer Nanocarriers to Spatiotemporally Control Gene Silencing. ACS Biomater Sci Eng 2016; 2:1582-1594. [DOI: 10.1021/acsbiomaterials.6b00336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chad T. Greco
- Department of Chemical and Biomolecular Engineering and ‡Department of Materials Science
and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Thomas H. Epps
- Department of Chemical and Biomolecular Engineering and ‡Department of Materials Science
and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Millicent O. Sullivan
- Department of Chemical and Biomolecular Engineering and ‡Department of Materials Science
and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
23
|
Protein degradation in a LAMP-2-deficient B-lymphoblastoid cell line from a patient with Danon disease. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1423-32. [PMID: 27130438 DOI: 10.1016/j.bbadis.2016.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 03/31/2016] [Accepted: 04/22/2016] [Indexed: 12/23/2022]
Abstract
Danon disease, a condition characterized by cardiomyopathy, myopathy, and intellectual disability, is caused by mutations in the LAMP-2 gene. Lamp-2A protein, generated by alternative splicing from the Lamp-2 pre-mRNA, is reported to be the lysosomal membrane receptor essential for the chaperone-mediated autophagic pathway (CMA) aimed to selective protein targeting and translocation into the lysosomal lumen for degradation. To study the relevance of Lamp-2 in protein degradation, a lymphoblastoid cell line was obtained by EBV transformation of B-cells from a Danon patient. The derived cell line showed no significant expression of Lamp-2 protein. The steady-state mRNA and protein levels of alpha-synuclein, IΚBα, Rcan1, and glyceraldehyde-3-phosphate dehydrogenase, four proteins reported to be selective substrates of the CMA pathway, were similar in control and Lamp-2-deficient cells. Inhibition of protein synthesis showed that the half-life of alpha-synuclein, IΚBα, and Rcan1 was similar in control and Lamp-2-deficient cells, and its degradation prevented by proteasome inhibitors. Both in control and Lamp-2-deficient cells, induction of CMA and macroautophagy by serum and aminoacid starvation of cells for 8h produced a similar decrease in IΚBα and Rcan1 protein levels and was prevented by the addition of lysosome and autophagy inhibitors. In conclusion, the results presented here showed that Lamp-2 deficiency in human lymphoblastoid cells did not modify the steady-state levels or the degradation of several protein substrates reported as selective substrates of the CMA pathway.
Collapse
|
24
|
Hepatitis C Virus-Induced Degradation of Cell Death-Inducing DFFA-Like Effector B Leads to Hepatic Lipid Dysregulation. J Virol 2016; 90:4174-85. [PMID: 26865724 DOI: 10.1128/jvi.02891-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/03/2016] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Individuals chronically infected with hepatitis C virus (HCV) commonly exhibit hepatic intracellular lipid accumulation, termed steatosis. HCV infection perturbs host lipid metabolism through both cellular and virus-induced mechanisms, with the viral core protein playing an important role in steatosis development. We have recently identified a liver protein, the cell death-inducing DFFA-like effector B (CIDEB), as an HCV entry host dependence factor that is downregulated by HCV infection in a cell culture model. In this study, we investigated the biological significance and molecular mechanism of this downregulation. HCV infection in a mouse model downregulated CIDEB in the liver tissue, and knockout of the CIDEB gene in a hepatoma cell line results in multiple aspects of lipid dysregulation that can contribute to hepatic steatosis, including reduced triglyceride secretion, lower lipidation of very-low-density lipoproteins, and increased lipid droplet (LD) stability. The potential link between CIDEB downregulation and steatosis is further supported by the requirement of the HCV core and its LD localization for CIDEB downregulation, which utilize a proteolytic cleavage event that is independent of the cellular proteasomal degradation of CIDEB. IMPORTANCE Our data demonstrate that HCV infection of human hepatocytesin vitroandin vivoresults in CIDEB downregulation via a proteolytic cleavage event. Reduction of CIDEB protein levels by HCV or gene editing, in turn, leads to multiple aspects of lipid dysregulation, including LD stabilization. Consequently, CIDEB downregulation may contribute to HCV-induced hepatic steatosis.
Collapse
|
25
|
Shiba H, Yabu T, Sudayama M, Mano N, Arai N, Nakanishi T, Hosono K. Sequential steps of macroautophagy and chaperone-mediated autophagy are involved in the irreversible process of posterior silk gland histolysis during metamorphosis of Bombyx mori. ACTA ACUST UNITED AC 2016; 219:1146-53. [PMID: 26944491 DOI: 10.1242/jeb.130815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/31/2016] [Indexed: 12/19/2022]
Abstract
To elucidate the degradation process of the posterior silk gland during metamorphosis of the silkworm ITALIC! Bombyx mori, tissues collected on the 6th day after entering the 5th instar (V6), prior to spinning (PS), during spinning (SP) and after cocoon formation (CO) were used to analyze macroautophagy, chaperone-mediated autophagy (CMA) and the adenosine triphosphate (ATP)-dependent ubiquitin proteasome. Immediately after entering metamorphosis stage PS, the levels of ATP and phosphorylated p70S6 kinase protein decreased spontaneously and continued to decline at SP, followed by a notable restoration at CO. In contrast, phosphorylated AMP-activated protein kinase α (AMPKα) showed increases at SP and CO. Most of the Atg8 protein was converted to form II at all stages. The levels of ubiquitinated proteins were high at SP and CO, and low at PS. The proteasome activity was high at V6 and PS but low at SP and CO. In the isolated lysosome fractions, levels of Hsc70/Hsp70 protein began to increase at PS and continued to rise at SP and CO. The lysosomal cathepsin B/L activity showed a dramatic increase at CO. Our results clearly demonstrate that macroautophagy occurs before entering the metamorphosis stage and strongly suggest that the CMA pathway may play an important role in the histolysis of the posterior silk gland during metamorphosis.
Collapse
Affiliation(s)
- Hajime Shiba
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Takeshi Yabu
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Makoto Sudayama
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Nobuhiro Mano
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Naoto Arai
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Teruyuki Nakanishi
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Kuniaki Hosono
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
26
|
Tasset I, Cuervo AM. Role of chaperone-mediated autophagy in metabolism. FEBS J 2016; 283:2403-13. [PMID: 26854402 DOI: 10.1111/febs.13677] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 01/27/2016] [Accepted: 02/04/2016] [Indexed: 12/20/2022]
Abstract
Different types of autophagy coexist in most mammalian cells, and each of them fulfills very specific tasks in intracellular degradation. Some of these autophagic pathways contribute to cellular metabolism by directly hydrolyzing intracellular lipid stores and glycogen. Chaperone-mediated autophagy (CMA), in contrast, is a selective form of autophagy that can only target proteins for lysosomal degradation. Consequently, it was expected that the only possible contribution of this pathway to cellular metabolism would be by providing free amino acids resulting from protein breakdown. However, recent studies have demonstrated that disturbance in CMA leads to important alterations in glucose and lipid metabolism and in overall organism energetics. Here, we describe the unique mechanisms by which CMA contributes to the regulation of cellular metabolism and discuss the possible implications of these previously unknown functions of CMA for the pathogenesis of common metabolic diseases.
Collapse
Affiliation(s)
- Inmaculada Tasset
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
27
|
Cai Z, Zeng W, Tao K, E Z, Wang B, Yang Q. Chaperone-mediated autophagy: roles in neuroprotection. Neurosci Bull 2015. [PMID: 26206599 DOI: 10.1007/s12264-015-1540-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Chaperone-mediated autophagy (CMA), one of the main pathways of lysosomal proteolysis, is characterized by the selective targeting and direct translocation into the lysosomal lumen of substrate proteins containing a targeting motif biochemically related to the pentapeptide KFERQ. Along with the other two lysosomal pathways, macro- and micro-autophagy, CMA is essential for maintaining cellular homeostasis and survival by selectively degrading misfolded, oxidized, or damaged cytosolic proteins. CMA plays an important role in pathologies such as cancer, kidney disorders, and neurodegenerative diseases. Neurons are post-mitotic and highly susceptible to dysfunction of cellular quality-control systems. Maintaining a balance between protein synthesis and degradation is critical for neuronal functions and homeostasis. Recent studies have revealed several new mechanisms by which CMA protects neurons through regulating factors critical for their viability and homeostasis. In the current review, we summarize recent advances in the understanding of the regulation and physiology of CMA with a specific focus on its possible roles in neuroprotection.
Collapse
Affiliation(s)
- Zhibiao Cai
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | | | | | | | | | | |
Collapse
|
28
|
Ball RL, Knapp CM, Whitehead KA. Lipidoid Nanoparticles for siRNA Delivery to the Intestinal Epithelium: In Vitro Investigations in a Caco-2 Model. PLoS One 2015; 10:e0133154. [PMID: 26192592 PMCID: PMC4508104 DOI: 10.1371/journal.pone.0133154] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/24/2015] [Indexed: 02/07/2023] Open
Abstract
Short interfering ribonucleic acid (siRNA) therapeutics show promise for the treatment of intestinal diseases by specifically suppressing the expression of disease relevant proteins. Recently, a class of lipid-like materials termed "lipidoids" have been shown to potently deliver siRNA to the liver and immune cells. Here, we seek to establish the utility of lipidoid nanoparticles (LNPs) in the context of siRNA delivery to the intestinal epithelium. Initial studies demonstrated that the siRNA-loaded LNPs mediated potent, dose dependent, and durable gene silencing in Caco-2 intestinal epithelial cells, with a single 10 nM dose depressing GAPDH mRNA expression for one week. Transfection with siRNA-loaded LNPs did not induce significant cytotoxicity in Caco-2 cells or alter intestinal barrier function. Protein silencing was confirmed by Western blotting, with the lowest levels of GAPDH protein expression observed five days post-transfection. Together, these data underscore the potential of LNPs for the treatment of intestinal disorders.
Collapse
Affiliation(s)
- Rebecca L. Ball
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Christopher M. Knapp
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Kathryn A. Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
29
|
Krenn MA, Schürz M, Teufl B, Uchida K, Eckl PM, Bresgen N. Ferritin-stimulated lipid peroxidation, lysosomal leak, and macroautophagy promote lysosomal "metastability" in primary hepatocytes determining in vitro cell survival. Free Radic Biol Med 2015; 80:48-58. [PMID: 25532933 DOI: 10.1016/j.freeradbiomed.2014.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/27/2014] [Accepted: 12/04/2014] [Indexed: 12/12/2022]
Abstract
Several pathologies are associated with elevated levels of serum ferritin, for which growth inhibitory properties have been reported; however, the underlying mechanisms are still poorly defined. Previously we have described cytotoxic properties of isoferritins released from primary hepatocytes in vitro, which induce apoptosis in an iron and oxidative stress-dependent mode. Here we show that this ferritin species stimulates endosome clustering and giant endosome formation in primary hepatocytes accompanied by enhanced lysosomal membrane permeability (LMP). In parallel, protein modification by lipid peroxidation-derived 4-hydroxynonenal (HNE) is strongly promoted by ferritin, the HNE-modified proteins (HNE-P) showing remarkable aggregation. Emphasizing the prooxidant context, GSH is rapidly depleted and the GSH/GSSG ratio is substantially declining in ferritin-treated cells. Furthermore, ferritin triggers a transient upregulation of macroautophagy which is abolished by iron chelation and apparently supports HNE-P clearance. Macroautophagy inhibition by 3-methyladenine strongly amplifies ferritin cytotoxicity in a time- and concentration-dependent mode, suggesting an important role of macroautophagy on cellular responses to ferritin endocytosis. Moreover, pointing at an involvement of lysosomal proteolysis, ferritin cytotoxicity and lysosome fragility are aggravated by the protease inhibitor leupeptin. In contrast, EGF which suppresses ferritin-induced cell death attenuates ferritin-mediated LMP. In conclusion, we propose that HNE-P accumulation, lysosome dysfunction, and macroautophagy stimulated by ferritin endocytosis provoke lysosomal "metastability" in primary hepatocytes which permits cell survival as long as in- and extrinsic determinants (e.g., antioxidant availability, damage repair, EGF signaling) keep the degree of lysosomal destabilization below cell death-inducing thresholds.
Collapse
Affiliation(s)
- Margit A Krenn
- University of Salzburg, Department of Cell Biology, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | - Melanie Schürz
- University of Salzburg, Department of Cell Biology, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | - Bernhard Teufl
- University of Salzburg, Department of Cell Biology, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | - Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Peter M Eckl
- University of Salzburg, Department of Cell Biology, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | - Nikolaus Bresgen
- University of Salzburg, Department of Cell Biology, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria.
| |
Collapse
|
30
|
Koliwer J, Park M, Bauch C, von Zastrow M, Kreienkamp HJ. The golgi-associated PDZ domain protein PIST/GOPC stabilizes the β1-adrenergic receptor in intracellular compartments after internalization. J Biol Chem 2015; 290:6120-9. [PMID: 25614626 DOI: 10.1074/jbc.m114.605725] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Many G-protein-coupled receptors carry C-terminal ligand motifs for PSD-95/discs large/ZO-1 (PDZ) domains; via interaction with PDZ domain-containing scaffold proteins, this allows for integration of receptors into signaling complexes. However, the presence of PDZ domain proteins attached to intracellular membranes suggests that PDZ-type interactions may also contribute to subcellular sorting of receptors. The protein interacting specifically with Tc10 (PIST; also known as GOPC) is a trans-Golgi-associated protein that interacts through its single PDZ domain with a variety of cell surface receptors. Here we show that PIST controls trafficking of the interacting β1-adrenergic receptor both in the anterograde, biosynthetic pathway and during postendocytic recycling. Overexpression and knockdown experiments show that PIST leads to retention of the receptor in the trans-Golgi network (TGN), to the effect that overexpressed PIST reduces activation of the MAPK pathway by β1-adrenergic receptor (β1AR) agonists. Receptors can be released from retention in the TGN by coexpression of the plasma membrane-associated scaffold PSD-95, which allows for transport of receptors to the plasma membrane. Stimulation of β1 receptors and activation of the cAMP pathway lead to relocation of PIST from the TGN to an endosome-like compartment. Here PIST colocalizes with SNX1 and the internalized β1AR and protects endocytosed receptors from lysosomal degradation. In agreement, β1AR levels are decreased in hippocampi of PIST-deficient mice. Our data suggest that PIST contributes to the fine-tuning of β1AR sorting both during biosynthetic and postendocytic trafficking.
Collapse
Affiliation(s)
- Judith Koliwer
- From the Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg 20246, Germany and
| | - Minjong Park
- Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California at San Francisco School of Medicine, San Francisco, California 94158
| | - Carola Bauch
- From the Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg 20246, Germany and
| | - Mark von Zastrow
- Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California at San Francisco School of Medicine, San Francisco, California 94158
| | - Hans-Jürgen Kreienkamp
- From the Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg 20246, Germany and
| |
Collapse
|
31
|
Luo W, Mayeux J, Gutierrez T, Russell L, Getahun A, Müller J, Tedder T, Parnes J, Rickert R, Nitschke L, Cambier J, Satterthwaite AB, Garrett-Sinha LA. A balance between B cell receptor and inhibitory receptor signaling controls plasma cell differentiation by maintaining optimal Ets1 levels. THE JOURNAL OF IMMUNOLOGY 2014; 193:909-920. [PMID: 24929000 DOI: 10.4049/jimmunol.1400666] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Signaling through the BCR can drive B cell activation and contribute to B cell differentiation into Ab-secreting plasma cells. The positive BCR signal is counterbalanced by a number of membrane-localized inhibitory receptors that limit B cell activation and plasma cell differentiation. Deficiencies in these negative signaling pathways may cause autoantibody generation and autoimmune disease in both animal models and human patients. We have previously shown that the transcription factor Ets1 can restrain B cell differentiation into plasma cells. In this study, we tested the roles of the BCR and inhibitory receptors in controlling the expression of Ets1 in mouse B cells. We found that Ets1 is downregulated in B cells by BCR or TLR signaling through a pathway dependent on PI3K, Btk, IKK2, and JNK. Deficiencies in inhibitory pathways, such as a loss of the tyrosine kinase Lyn, the phosphatase Src homology region 2 domain-containing phosphatase 1 (SHP1) or membrane receptors CD22 and/or Siglec-G, result in enhanced BCR signaling and decreased Ets1 expression. Restoring Ets1 expression in Lyn- or SHP1-deficient B cells inhibits their enhanced plasma cell differentiation. Our findings indicate that downregulation of Ets1 occurs in response to B cell activation via either BCR or TLR signaling, thereby allowing B cell differentiation and that the maintenance of Ets1 expression is an important function of the inhibitory Lyn → CD22/SiglecG → SHP1 pathway in B cells.
Collapse
Affiliation(s)
- Wei Luo
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Jessica Mayeux
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Toni Gutierrez
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Lisa Russell
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Andrew Getahun
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Jennifer Müller
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Thomas Tedder
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Jane Parnes
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Robert Rickert
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Lars Nitschke
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - John Cambier
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Anne B Satterthwaite
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| |
Collapse
|
32
|
Szwergold BS. Maillard reactions in hyperthermophilic archaea: implications for better understanding of non-enzymatic glycation in biology. Rejuvenation Res 2014; 16:259-72. [PMID: 23634960 DOI: 10.1089/rej.2012.1401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Maillard reactions are an unavoidable feature of life that appear to be damaging to cell and organisms. Consequently, all living systems must have ways to protect themselves against this process. As of 2012, several such defense mechanisms have been identified. They are all enzymatic and were found in mesophilic organisms. To date, no systematic study of Maillard reactions and the relevant defense mechanisms has been conducted in thermophiles (50°C-80°C) or hyperthermophiles (80°C-120°C). This is surprisingly because Maillard reactions become significantly faster and potent with increasing temperatures. This review examines this neglected issue in two well-defined sets of hyperthermophiles. My analysis suggests that hyperthermophiles cope with glycation stress by several mechanisms: • Absence of glycation-prone head groups (such as ethanoalamine) from hyperthermophilic phospholipids • Protection of reactive carbohydrates and labile metabolic intermediates by substrate channeling. • Conversion of excess reactive sugars such as glucose to non-reactive compounds including trehalose, di-myo-inositol-phosphate and mannosylglycerate. • Detoxification of methylglyoxal and other ketoaldehydes by conversion to inert products through a variety of reductases and dehydrogenases. • Scavenging of the remaining carbonyls by nucleophilic amines, including a variety of novel polyamines. Disruption of the Maillard process at its early stages, rather than repair of damage caused by it at later stages, appears to be the preferred strategy in the organisms examined. The most unique among these mechanisms appears to be a polyamine-based scavenging system. Undertaking research of the Maillard process in hyperthermophiles is important in its own right and is also likely to provide new insights for the control of these reactions in humans, especially in diseases such as diabetes mellitus.
Collapse
|
33
|
Robinson DE, Smith LE, Steele DA, Short RD, Whittle JD. Development of a surface to enhance the effectiveness of fibroblast growth factor 2 (FGF-2). Biomater Sci 2014; 2:875-882. [PMID: 32481820 DOI: 10.1039/c4bm00018h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Growth factors (GFs) play an important role in biological processes such as cell proliferation, differentiation and angiogenesis. GFs are known to bind to glycosaminoglycans (GAGs) in the extracellular matrix, aiding projection from degradation and pooling the GFs for quick response to biological stimuli in vivo. GFs are typically expensive and have a relatively short half-life in culture media, requiring regular replenishment. Here the cooperative binding of GF to a plasma polymerised surface decorated with heparin, and the subsequent culture of primary human dermal fibroblasts (HDFs) is investigated. A simple one-step technique suitable for coating a wide range of different substrates was utilised. Substrates such as culture-ware, scaffolds, bandages and devices for implantation could be coated. The modified surface was compared to standard culture techniques of addition of GF to the media. Results demonstrate that surface bound heparin and FGF-2 have a greater effect on cell proliferation especially at reduced serum concentrations. With performance equivalent to supplementing the media achieved at as little as 1% total FGF-2 added. The protective cooperative effect of FGF-2-GAG bound to modified surface at the interface could lead to reduced costs by reduction of FGF-2 required. Furthermore, for applications such as chronic non-healing wounds, bandages can be produced modified by plasma and decorated with GAGs that could utilise and protect important GFs. This would effectively re-introduce important biomolecules which are protected by GAG binding into a harsh environment.
Collapse
Affiliation(s)
- David E Robinson
- Mawson Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia.
| | | | | | | | | |
Collapse
|
34
|
Abstract
This review focuses on chaperone-mediated autophagy (CMA), one of the proteolytic systems that contributes to degradation of intracellular proteins in lysosomes. CMA substrate proteins are selectively targeted to lysosomes and translocated into the lysosomal lumen through the coordinated action of chaperones located at both sides of the membrane and a dedicated protein translocation complex. The selectivity of CMA permits timed degradation of specific proteins with regulatory purposes supporting a modulatory role for CMA in enzymatic metabolic processes and subsets of the cellular transcriptional program. In addition, CMA contributes to cellular quality control through the removal of damaged or malfunctioning proteins. Here, we describe recent advances in the understanding of the molecular dynamics, regulation and physiology of CMA, and discuss the evidence in support of the contribution of CMA dysfunction to severe human disorders such as neurodegeneration and cancer.
Collapse
|
35
|
Abstract
Chaperone-mediated autophagy (CMA) is a lysosomal proteolytic pathway in which cytosolic substrate proteins contain specific chaperone recognition sequences required for degradation and are translocated directly across the lysosomal membrane for destruction. CMA proteolytic activity has a reciprocal relationship with macroautophagy: CMA is most active in cells in which macroautophagy is least active. Normal renal proximal tubular cells have low levels of macroautophagy, but high basal levels of CMA activity. CMA activity is regulated by starvation, growth factors, oxidative stress, lipids, aging, and retinoic acid signaling. The physiological consequences of changes in CMA activity depend on the substrate proteins present in a given cell type. In the proximal tubule, increased CMA results from protein or calorie starvation and from oxidative stress. Overactivity of CMA can be associated with tubular lysosomal pathology and certain cancers. Reduced CMA activity contributes to protein accumulation in renal tubular hypertrophy, but may contribute to oxidative tissue damage in diabetes and aging. Although there are more questions than answers about the role of high basal CMA activity, this remarkable feature of tubular protein metabolism appears to influence a variety of chronic diseases.
Collapse
Affiliation(s)
- Harold A Franch
- Research Service, Atlanta Veterans Affairs Medical Center, Decatur, GA; and Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA.
| |
Collapse
|
36
|
Fuhrmann DC, Wittig I, Heide H, Dehne N, Brüne B. Chronic hypoxia alters mitochondrial composition in human macrophages. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2750-60. [PMID: 24140568 DOI: 10.1016/j.bbapap.2013.09.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/17/2013] [Accepted: 09/29/2013] [Indexed: 12/19/2022]
Abstract
Hypoxia inducible factors (HIFs) are important mediators of the cellular adaptive response during acute hypoxia. The role of HIF-1 and HIF-2 during prolonged periods of hypoxia, i.e. chronic hypoxia is less defined. Therefore, we used human THP-1 macrophages with a knockdown of either HIF-1α, HIF-2α, or both HIFα-subunits, incubated them for several days under hypoxia (1% O2), and analyzed responses to hypoxia using 2D-DIGE coupled to MS/MS-analysis. Chronic hypoxia was defined as a time point when the early but transient accumulation of HIFα-subunits and mRNA expression of classical HIF target genes returned towards basal levels, with a new steady state that was constant from 72h onwards. From roughly 800 spots, that were regulated comparing normoxia to chronic hypoxia, about 100 proteins were unambiguously assigned during MS/MS-analysis. Interestingly, a number of glycolytic proteins were up-regulated, while a number of inner mitochondrial membrane proteins were down-regulated independently of HIF-1α or HIF-2α. Chronic hypoxic conditions depleted the mitochondrial mass by autophagy, which occurred independently of HIF proteins. Macrophages tolerate periods of chronic hypoxia very well and adaptive responses occur, at least in part, independently of HIF-1α and/or HIF-2α and comprise mitophagy as a pathway of particular importance.
Collapse
|
37
|
Thornalley PJ, Rabbani N. Detection of oxidized and glycated proteins in clinical samples using mass spectrometry--a user's perspective. Biochim Biophys Acta Gen Subj 2013; 1840:818-29. [PMID: 23558060 DOI: 10.1016/j.bbagen.2013.03.025] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 03/17/2013] [Accepted: 03/24/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Proteins in human tissues and body fluids continually undergo spontaneous oxidation and glycation reactions forming low levels of oxidation and glycation adduct residues. Proteolysis of oxidised and glycated proteins releases oxidised and glycated amino acids which, if they cannot be repaired, are excreted in urine. SCOPE OF REVIEW In this review we give a brief background to the classification, formation and processing of oxidised and glycated proteins in the clinical setting. We then describe the application of stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry (LC-MS/MS) for measurement of oxidative and glycation damage to proteins in clinical studies, sources of error in pre-analytic processing, corroboration with other techniques - including how this may be improved - and a systems approach to protein damage analysis for improved surety of analyte estimations. MAJOR CONCLUSIONS Stable isotopic dilution analysis LC-MS/MS provides a robust reference method for measurement of protein oxidation and glycation adducts. Optimised pre-analytic processing of samples and LC-MS/MS analysis procedures are required to achieve this. GENERAL SIGNIFICANCE Quantitative measurement of protein oxidation and glycation adducts provides information on level of exposure to potentially damaging protein modifications, protein inactivation in ageing and disease, metabolic control, protein turnover, renal function and other aspects of body function. Reliable and clinically assessable analysis is required for translation of measurement to clinical diagnostic use. Stable isotopic dilution analysis LC-MS/MS provides a "gold standard" approach and reference methodology to which other higher throughput methods such as immunoassay and indirect methods are preferably corroborated by researchers and those commercialising diagnostic kits and reagents. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
Affiliation(s)
- Paul J Thornalley
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry CV2 2DX, UK; Warwick Systems Biology Centre, Coventry House, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
38
|
Lin PJ, Tam YYC, Hafez I, Sandhu A, Chen S, Ciufolini MA, Nabi IR, Cullis PR. Influence of cationic lipid composition on uptake and intracellular processing of lipid nanoparticle formulations of siRNA. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:233-46. [DOI: 10.1016/j.nano.2012.05.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 05/18/2012] [Accepted: 05/29/2012] [Indexed: 01/12/2023]
|
39
|
Abstract
There is increasing evidence to support a gene economy model that is fully based on the principles of evolution in which a limited number of proteins does not necessarily reflect a finite number of biochemical processes. The concept of 'gene sharing' proposes that a single protein can have alternate functions that are typically attributed to other proteins. GAPDH appears to play this role quite well in that it exhibits more than one function. GAPDH represents the prototype for this new paradigm of protein multi-functionality. The chapter discusses the diverse functions of GAPDH among three broad categories: cell structure, gene expression and signal transduction. Protein function is curiously re-specified given the cell's unique needs. GAPDH provides the cell with the means of linking metabolic activity to various cellular processes. While interpretations may often lead to GAPDH's role in meeting focal energy demands, this chapter discusses several other very distinct GAPDH functions (i.e. membrane fusogenic properties) that are quite different from its ability to catalyze oxidative phosphorylation of the triose, glyceraldehyde 3-phosphate. It is suggested that a single protein participates in multiple processes in the structural organization of the cell, controls the transmission of genetic information (i.e. GAPDH's involvement may not be finite) and mediates intracellular signaling.
Collapse
|
40
|
Tam YYC, Chen S, Zaifman J, Tam YK, Lin PJC, Ansell S, Roberge M, Ciufolini MA, Cullis PR. Small molecule ligands for enhanced intracellular delivery of lipid nanoparticle formulations of siRNA. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 9:665-74. [PMID: 23219877 DOI: 10.1016/j.nano.2012.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/13/2012] [Accepted: 11/20/2012] [Indexed: 11/17/2022]
Abstract
UNLABELLED Gene silencing activity of lipid nanoparticle (LNP) formulations of siRNA requires LNP surface factors promoting cellular uptake. This study aimed to identify small molecules that enhance cellular uptake of LNP siRNA systems, then use them as LNP-associated ligands to improve gene silencing potency. Screening the Canadian Chemical Biology Network molecules for effects on LNP uptake into HeLa cells found that cardiac glycosides like ouabain and strophanthidin caused the highest uptake. Cardiac glycosides stimulate endocytosis on binding to plasma membrane Na(+)/K(+) ATPase found in all mammalian cells, offering the potential to stimulate LNP uptake into various cell types. A PEG-lipid containing strophanthidin at the end of PEG (STR-PEG-lipid) was synthesized and incorporated into LNP. Compared to non-liganded systems, STR-PEG-lipid enhanced LNP uptake in various cell types. Furthermore, this enhanced uptake improved marker gene silencing in vitro. Addition of STR-PEG-lipid to LNP siRNA may have general utility for enhancing gene silencing potency. FROM THE CLINICAL EDITOR In this study, the authors identified small molecules that enhance cellular uptake of lipid nanoparticle siRNA systems, then used them as LNP-associated ligands to improve gene silencing potency.
Collapse
Affiliation(s)
- Yuen Yi C Tam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hepatitis C virus (HCV) induces formation of stress granules whose proteins regulate HCV RNA replication and virus assembly and egress. J Virol 2012; 86:11043-56. [PMID: 22855484 DOI: 10.1128/jvi.07101-11] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Stress granules (SGs) are cytoplasmic structures that are induced in response to environmental stress, including viral infections. Here we report that hepatitis C virus (HCV) triggers the appearance of SGs in a PKR- and interferon (IFN)-dependent manner. Moreover, we show an inverse correlation between the presence of stress granules and the induction of IFN-stimulated proteins, i.e., MxA and USP18, in HCV-infected cells despite high-level expression of the corresponding MxA and USP18 mRNAs, suggesting that interferon-stimulated gene translation is inhibited in stress granule-containing HCV-infected cells. Finally, in short hairpin RNA (shRNA) knockdown experiments, we found that the stress granule proteins T-cell-restricted intracellular antigen 1 (TIA-1), TIA1-related protein (TIAR), and RasGAP-SH3 domain binding protein 1 (G3BP1) are required for efficient HCV RNA and protein accumulation at early time points in the infection and that G3BP1 and TIA-1 are required for intracellular and extracellular infectious virus production late in the infection, suggesting that they are required for virus assembly. In contrast, TIAR downregulation decreases extracellular infectious virus titers with little effect on intracellular RNA content or infectivity late in the infection, suggesting that it is required for infectious particle release. Collectively, these results illustrate that HCV exploits the stress granule machinery at least two ways: by inducing the formation of SGs by triggering PKR phosphorylation, thereby downregulating the translation of antiviral interferon-stimulated genes, and by co-opting SG proteins for its replication, assembly, and egress.
Collapse
|
42
|
Kaushik S, Cuervo AM. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 2012; 22:407-17. [PMID: 22748206 DOI: 10.1016/j.tcb.2012.05.006] [Citation(s) in RCA: 604] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 05/27/2012] [Accepted: 05/29/2012] [Indexed: 01/13/2023]
Abstract
All cellular proteins undergo continuous synthesis and degradation. This permanent renewal is necessary to maintain a functional proteome and to allow rapid changes in levels of specific proteins with regulatory purposes. Although for a long time lysosomes were considered unable to contribute to the selective degradation of individual proteins, the discovery of chaperone-mediated autophagy (CMA) changed this notion. Here, we review the characteristics that set CMA apart from other types of lysosomal degradation and the subset of molecules that confer cells the capability to identify individual cytosolic proteins and direct them across the lysosomal membrane for degradation.
Collapse
Affiliation(s)
- Susmita Kaushik
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin Building 504, Bronx, NY 10461, USA
| | | |
Collapse
|
43
|
Abstract
Sulfinamide [RS(O)NH(2)] formation is known to occur upon exposure of cysteine residues to nitroxyl (HNO), which has received recent attention as a potential heart failure therapeutic. Because this modification can alter protein structure and function, we have examined the reactivity of sulfinamides in several systems, including a small organic molecule, peptides, and a protein. Although it has generally been assumed that this thiol to sulfinamide modification is irreversible, we show that sulfinamides can be reduced back to the free thiol in the presence of excess thiol at physiological pH and temperature. We have examined this sulfinamide reduction both in peptides, where a cyclic intermediate analogous to that proposed for asparagine deamidation reactions potentially can contribute, and in a small organic molecule, where the mechanism is restricted to a direct thiolysis. These studies suggest that the contribution from the cyclic intermediate becomes more important in environments with lower dielectric constants. In addition, although sulfinic acid [RS(O)OH] formation is observed upon prolonged incubations in water, reduction of sulfinamides is found to dominate in the presence of thiols. Finally, studies with the cysteine protease, papain, suggest that the reduction of sulfinamide to the free thiol is viable in a protein environment.
Collapse
Affiliation(s)
- Gizem Keceli
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
44
|
Sundberg TB, Darricarrere N, Cirone P, Li X, McDonald L, Mei X, Westlake CJ, Slusarski DC, Beynon RJ, Crews CM. Disruption of Wnt planar cell polarity signaling by aberrant accumulation of the MetAP-2 substrate Rab37. ACTA ACUST UNITED AC 2012; 18:1300-11. [PMID: 22035799 DOI: 10.1016/j.chembiol.2011.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/18/2011] [Accepted: 07/28/2011] [Indexed: 11/25/2022]
Abstract
Identification of methionine aminopeptidase-2 (MetAP-2) as the molecular target of the antiangiogenic compound TNP-470 has sparked interest in N-terminal Met excision's (NME) role in endothelial cell biology. In this regard, we recently demonstrated that MetAP-2 inhibition suppresses Wnt planar cell polarity (PCP) signaling and that endothelial cells depend on this pathway for normal function. Despite this advance, the substrate(s) whose activity is altered upon MetAP-2 inhibition, resulting in loss of Wnt PCP signaling, is not known. Here we identify the small G protein Rab37 as a MetAP-2-specific substrate that accumulates in the presence of TNP-470. A functional role for aberrant Rab37 accumulation in TNP-470's mode of action is demonstrated using a Rab37 point mutant that is resistant to NME, because expression of this mutant phenocopies the effects of MetAP-2 inhibition on Wnt PCP signaling-dependent processes.
Collapse
Affiliation(s)
- Thomas B Sundberg
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Malmo J, Sørgård H, Vårum KM, Strand SP. siRNA delivery with chitosan nanoparticles: Molecular properties favoring efficient gene silencing. J Control Release 2011; 158:261-8. [PMID: 22119955 DOI: 10.1016/j.jconrel.2011.11.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/01/2011] [Accepted: 11/06/2011] [Indexed: 12/20/2022]
Abstract
Chitosan has gained increasing interest for siRNA delivery. Although chitosan covers a family of structurally different polysaccharides, most siRNA delivery studies have been performed with conventional partially N-acetylated chitosans. Herein, the purpose was to identify fundamental chitosan molecular properties favoring siRNA delivery and efficient gene silencing in mammalian cells. Nanoparticles were prepared from well-defined chitosans of various chemical compositions, degrees of polymerization (DP(n)) and chain architectures. Structure-activity relationships were determined by the cellular uptake of siRNA and the knockdown efficiency at mRNA and protein levels. Additionally, the nanoparticle cytotoxicity was evaluated on the basis of cellular metabolic activity and membrane integrity. Our results show that the most efficient gene silencing was achieved using fully de-N-acetylated chitosans with intermediate chain lengths (DP(n) 100-300). These chitosans mediated efficient siRNA delivery at low siRNA concentrations and, in several cell lines, potent long-term silencing of both exogenous and endogenous target genes, with minimal cytotoxicity.
Collapse
Affiliation(s)
- Jostein Malmo
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | | | | | | |
Collapse
|
46
|
Cuervo AM. Chaperone-mediated autophagy: Dice's 'wild' idea about lysosomal selectivity. Nat Rev Mol Cell Biol 2011; 12:535-41. [PMID: 21750569 DOI: 10.1038/nrm3150] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A little over 1 year ago, we lost a bright scientist and a dear colleague who, in his younger years, proposed the 'heretical' idea that lysosomes could selectively degrade cytosolic proteins. That scientist was J. Fred Dice, and his lifetime's discovery was the degradative pathway that we now know as chaperone-mediated autophagy.
Collapse
Affiliation(s)
- Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
47
|
Hubbard VM, Valdor R, Macian F, Cuervo AM. Selective autophagy in the maintenance of cellular homeostasis in aging organisms. Biogerontology 2011; 13:21-35. [PMID: 21461872 DOI: 10.1007/s10522-011-9331-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 03/18/2011] [Indexed: 12/15/2022]
Abstract
Altered cellular homeostasis, accumulation of damaged non-functional organelles and presence of protein inclusions are characteristics shared by almost all types of differentiated cells in aged organisms. Cells rely on quality control mechanisms to prevent the occurrence of these events and the subsequent cellular compromise associated with them. What goes wrong in aging cells? Growing evidence supports gradual malfunctioning with age of the cellular quality control systems. In this review, we focus on autophagy, a catabolic process that contributes to the maintenance of cellular homeostasis through the degradation of unwanted and damaged components in lysosomes. We describe recent advances on the molecular characterization of this process, its different variants and the multiplicity of functions attributed to them. Autophagic dysfunction has been identified in severe human disorders, many of which worsen with age. We comment on the contribution of an adequate autophagic function to longevity, and the negative impact on health-span of the age-dependent decline in autophagic function.
Collapse
Affiliation(s)
- Vanessa M Hubbard
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | |
Collapse
|
48
|
Yabu T, Imamura S, Mohammed MS, Touhata K, Minami T, Terayama M, Yamashita M. Differential gene expression of HSC70/HSP70 in yellowtail cells in response to chaperone-mediated autophagy. FEBS J 2011; 278:673-85. [DOI: 10.1111/j.1742-4658.2010.07989.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Thornalley PJ, Rabbani N. Protein damage in diabetes and uremia—identifying hotspots of proteome damage where minimal modification is amplified to marked pathophysiological effect. Free Radic Res 2010; 45:89-100. [DOI: 10.3109/10715762.2010.534162] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids 2010; 42:1133-42. [DOI: 10.1007/s00726-010-0783-0] [Citation(s) in RCA: 291] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/02/2010] [Indexed: 01/18/2023]
|