1
|
Livanos I, Votsi C, Michailidou K, Pellerin D, Brais B, Zuchner S, Pantzaris M, Kleopa KA, Zamba Papanicolaou E, Christodoulou K. The FGF14 GAA repeat expansion is a major cause of ataxia in the Cypriot population. Brain Commun 2025; 7:fcae479. [PMID: 39801711 PMCID: PMC11724429 DOI: 10.1093/braincomms/fcae479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/08/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Dominantly inherited intronic GAA repeat expansions in the fibroblast growth factor 14 gene have recently been shown to cause spinocerebellar ataxia 27B. Currently, the pathogenic threshold of (GAA)≥300 repeat units is considered highly penetrant, while (GAA)250-299 is likely pathogenic with reduced penetrance. This study investigated the frequency of the GAA repeat expansion and the phenotypic profile in a Cypriot cohort with unresolved late-onset cerebellar ataxia. We analysed this trinucleotide repeat in 155 patients with late-onset cerebellar ataxia and 227 non-neurological disease controls. The repeat locus was examined by long-range PCR followed by fragment analysis using capillary electrophoresis, agarose gel electrophoresis and automated electrophoresis. A comprehensive comparison of all three electrophoresis techniques was conducted. Additionally, bidirectional repeat-primed PCRs and Sanger sequencing were carried out to confirm the absence of any interruptions or non-GAA motifs in the expanded alleles. The (GAA)≥250 repeat expansion was present in 12 (7.7%) patients. The average age at disease onset was 60 ± 13.5 years. The earliest age of onset was observed in a patient with a (GAA)287 repeat expansion, with ataxia symptoms appearing at 25 years of age. All patients with spinocerebellar ataxia 27B displayed symptoms of gait and appendicular ataxia. Nystagmus was observed in 41.7% of the patients, while 58.3% exhibited dysarthria. Our findings indicate that spinocerebellar ataxia 27B represents the predominant aetiology of autosomal dominant cerebellar ataxia in the Cypriot population, as this is the first dominant repeat expansion ataxia type detected in this population. Given our results and existing research, we propose including fibroblast growth factor 14 GAA repeat expansion testing as a first-tier genetic diagnostic approach for patients with late-onset cerebellar ataxia.
Collapse
Affiliation(s)
- Ioannis Livanos
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- The Cyprus Institute of Neurology and Genetics is a member of the European Reference Network-Rare Neurological Diseases (ERN-RND), Research Management Unit, Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen 72076, Germany
| | - Christina Votsi
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- The Cyprus Institute of Neurology and Genetics is a member of the European Reference Network-Rare Neurological Diseases (ERN-RND), Research Management Unit, Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen 72076, Germany
| | - Kyriaki Michailidou
- The Cyprus Institute of Neurology and Genetics is a member of the European Reference Network-Rare Neurological Diseases (ERN-RND), Research Management Unit, Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen 72076, Germany
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - David Pellerin
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, CanadaH3A 2B4
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London WC1N 3BG, UK
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, CanadaH3A 2B4
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marios Pantzaris
- The Cyprus Institute of Neurology and Genetics is a member of the European Reference Network-Rare Neurological Diseases (ERN-RND), Research Management Unit, Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen 72076, Germany
- Neuroimmunology Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Kleopas A Kleopa
- The Cyprus Institute of Neurology and Genetics is a member of the European Reference Network-Rare Neurological Diseases (ERN-RND), Research Management Unit, Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen 72076, Germany
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Centre for Neuromuscular Disorders, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Eleni Zamba Papanicolaou
- The Cyprus Institute of Neurology and Genetics is a member of the European Reference Network-Rare Neurological Diseases (ERN-RND), Research Management Unit, Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen 72076, Germany
- Centre for Neuromuscular Disorders, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Neuroepidemiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Kyproula Christodoulou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- The Cyprus Institute of Neurology and Genetics is a member of the European Reference Network-Rare Neurological Diseases (ERN-RND), Research Management Unit, Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen 72076, Germany
| |
Collapse
|
2
|
Udine E, Finch NA, DeJesus-Hernandez M, Jackson JL, Baker MC, Saravanaperumal SA, Wieben E, Ebbert MTW, Shah J, Petrucelli L, Rademakers R, Oskarsson B, van Blitterswijk M. Targeted long-read sequencing to quantify methylation of the C9orf72 repeat expansion. Mol Neurodegener 2024; 19:99. [PMID: 39709476 DOI: 10.1186/s13024-024-00790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND The gene C9orf72 harbors a non-coding hexanucleotide repeat expansion known to cause amyotrophic lateral sclerosis and frontotemporal dementia. While previous studies have estimated the length of this repeat expansion in multiple tissues, technological limitations have impeded researchers from exploring additional features, such as methylation levels. METHODS We aimed to characterize C9orf72 repeat expansions using a targeted, amplification-free long-read sequencing method. Our primary goal was to determine the presence and subsequent quantification of observed methylation in the C9orf72 repeat expansion. In addition, we measured the repeat length and purity of the expansion. To do this, we sequenced DNA extracted from blood for 27 individuals with an expanded C9orf72 repeat. RESULTS For these individuals, we obtained a total of 7,765 on-target reads, including 1,612 fully covering the expanded allele. Our in-depth analysis revealed that the expansion itself is methylated, with great variability in total methylation levels observed, as represented by the proportion of methylated CpGs (13 to 66%). Interestingly, we demonstrated that the expanded allele is more highly methylated than the wild-type allele (P-Value = 2.76E-05) and that increased methylation levels are observed in longer repeat expansions (P-Value = 1.18E-04). Furthermore, methylation levels correlate with age at collection (P-Value = 3.25E-04) as well as age at disease onset (P-Value = 0.020). Additionally, we detected repeat lengths up to 4,088 repeats (~ 25 kb) and found that the expansion contains few interruptions in the blood. CONCLUSIONS Taken together, our study demonstrates robust ability to quantify methylation of the expanded C9orf72 repeat, capturing differences between individuals harboring this expansion and revealing clinical associations.
Collapse
Affiliation(s)
- Evan Udine
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - NiCole A Finch
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Jazmyne L Jackson
- Fels Cancer Institute for Personalized Medicine, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Eric Wieben
- Genome Analysis Core, Mayo Clinic, Rochester, MN, USA
| | - Mark T W Ebbert
- Department of Neuroscience, University of Kentucky Sanders-Brown Center on Aging, Lexington, KY, USA
| | - Jaimin Shah
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
| | | | - Marka van Blitterswijk
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
3
|
Mosbach V, Puccio H. A multiple animal and cellular models approach to study frataxin deficiency in Friedreich Ataxia. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119809. [PMID: 39134123 DOI: 10.1016/j.bbamcr.2024.119809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Friedreich's ataxia (FA) is one of the most frequent inherited recessive ataxias characterized by a progressive sensory and spinocerebellar ataxia. The main causative mutation is a GAA repeat expansion in the first intron of the frataxin (FXN) gene which leads to a transcriptional silencing of the gene resulting in a deficit in FXN protein. The nature of the mutation (an unstable GAA expansion), as well as the multi-systemic nature of the disease (with neural and non-neural sites affected) make the generation of models for Friedreich's ataxia quite challenging. Over the years, several cellular and animal models for FA have been developed. These models are all complementary and possess their own strengths to investigate different aspects of the disease, such as the epigenetics of the locus or the pathophysiology of the disease, as well as being used to developed novel therapeutic approaches. This review will explore the recent advancements in the different mammalian models developed for FA.
Collapse
Affiliation(s)
- Valentine Mosbach
- Institut NeuroMyoGene-PGNM UCBL-CNRS UMR5261 INSERM U1315, Lyon, France
| | - Hélène Puccio
- Institut NeuroMyoGene-PGNM UCBL-CNRS UMR5261 INSERM U1315, Lyon, France.
| |
Collapse
|
4
|
Pellerin D, Del Gobbo GF, Couse M, Dolzhenko E, Nageshwaran SK, Cheung WA, Xu IRL, Dicaire MJ, Spurdens G, Matos-Rodrigues G, Stevanovski I, Scriba CK, Rebelo A, Roth V, Wandzel M, Bonnet C, Ashton C, Agarwal A, Peter C, Hasson D, Tsankova NM, Dewar K, Lamont PJ, Laing NG, Renaud M, Houlden H, Synofzik M, Usdin K, Nussenzweig A, Napierala M, Chen Z, Jiang H, Deveson IW, Ravenscroft G, Akbarian S, Eberle MA, Boycott KM, Pastinen T, Brais B, Zuchner S, Danzi MC. A common flanking variant is associated with enhanced stability of the FGF14-SCA27B repeat locus. Nat Genet 2024; 56:1366-1370. [PMID: 38937606 PMCID: PMC11440897 DOI: 10.1038/s41588-024-01808-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
The factors driving or preventing pathological expansion of tandem repeats remain largely unknown. Here, we assessed the FGF14 (GAA)·(TTC) repeat locus in 2,530 individuals by long-read and Sanger sequencing and identified a common 5'-flanking variant in 70.34% of alleles analyzed (3,463/4,923) that represents the phylogenetically ancestral allele and is present on all major haplotypes. This common sequence variation is present nearly exclusively on nonpathogenic alleles with fewer than 30 GAA-pure triplets and is associated with enhanced stability of the repeat locus upon intergenerational transmission and increased Fiber-seq chromatin accessibility.
Collapse
Affiliation(s)
- David Pellerin
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Giulia F Del Gobbo
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Madeline Couse
- Centre for Computational Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | - Sathiji K Nageshwaran
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neurogenetics Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Warren A Cheung
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Isaac R L Xu
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marie-Josée Dicaire
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Guinevere Spurdens
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Igor Stevanovski
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, New South Wales, Australia
| | - Carolin K Scriba
- Centre for Medical Research University of Western Australia and Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Adriana Rebelo
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Virginie Roth
- Laboratoire de Génétique, CHRU de Nancy, Nancy, France
| | | | - Céline Bonnet
- Laboratoire de Génétique, CHRU de Nancy, Nancy, France
- INSERM-U1256 NGERE, Université de Lorraine, Nancy, France
| | - Catherine Ashton
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Aman Agarwal
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cyril Peter
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Hasson
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nadejda M Tsankova
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ken Dewar
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Phillipa J Lamont
- Department of Neurology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Nigel G Laing
- Centre for Medical Research University of Western Australia and Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Mathilde Renaud
- Laboratoire de Génétique, CHRU de Nancy, Nancy, France
- Service de Neurologie, CHRU de Nancy, Nancy, France
- Service de Génétique Clinique, CHRU de Nancy, Nancy, France
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Matthis Synofzik
- Division of Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Marek Napierala
- Department of Neurology, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ira W Deveson
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Gianina Ravenscroft
- Centre for Medical Research University of Western Australia and Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Schahram Akbarian
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- UMKC School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matt C Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
5
|
Rajan-Babu IS, Dolzhenko E, Eberle MA, Friedman JM. Sequence composition changes in short tandem repeats: heterogeneity, detection, mechanisms and clinical implications. Nat Rev Genet 2024; 25:476-499. [PMID: 38467784 DOI: 10.1038/s41576-024-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/13/2024]
Abstract
Short tandem repeats (STRs) are a class of repetitive elements, composed of tandem arrays of 1-6 base pair sequence motifs, that comprise a substantial fraction of the human genome. STR expansions can cause a wide range of neurological and neuromuscular conditions, known as repeat expansion disorders, whose age of onset, severity, penetrance and/or clinical phenotype are influenced by the length of the repeats and their sequence composition. The presence of non-canonical motifs, depending on the type, frequency and position within the repeat tract, can alter clinical outcomes by modifying somatic and intergenerational repeat stability, gene expression and mutant transcript-mediated and/or protein-mediated toxicities. Here, we review the diverse structural conformations of repeat expansions, technological advances for the characterization of changes in sequence composition, their clinical correlations and the impact on disease mechanisms.
Collapse
Affiliation(s)
- Indhu-Shree Rajan-Babu
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada.
| | | | | | - Jan M Friedman
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Dong YN, Mercado-Ayón E, Coulman J, Flatley L, Ngaba LV, Adeshina MW, Lynch DR. The Regulation of the Disease-Causing Gene FXN. Cells 2024; 13:1040. [PMID: 38920668 PMCID: PMC11202134 DOI: 10.3390/cells13121040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease caused in almost all patients by expanded guanine-adenine-adenine (GAA) trinucleotide repeats within intron 1 of the FXN gene. This results in a relative deficiency of frataxin, a small nucleus-encoded mitochondrial protein crucial for iron-sulfur cluster biogenesis. Currently, there is only one medication, omaveloxolone, available for FRDA patients, and it is limited to patients 16 years of age and older. This necessitates the development of new medications. Frataxin restoration is one of the main strategies in potential treatment options as it addresses the root cause of the disease. Comprehending the control of frataxin at the transcriptional, post-transcriptional, and post-translational stages could offer potential therapeutic approaches for addressing the illness. This review aims to provide a general overview of the regulation of frataxin and its implications for a possible therapeutic treatment of FRDA.
Collapse
Affiliation(s)
- Yi Na Dong
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Jennifer Coulman
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Liam Flatley
- The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lucie Vanessa Ngaba
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Miniat W. Adeshina
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David R. Lynch
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Pellerin D, Danzi MC, Renaud M, Houlden H, Synofzik M, Zuchner S, Brais B. Spinocerebellar ataxia 27B: A novel, frequent and potentially treatable ataxia. Clin Transl Med 2024; 14:e1504. [PMID: 38279833 PMCID: PMC10819088 DOI: 10.1002/ctm2.1504] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 01/29/2024] Open
Abstract
Hereditary ataxias, especially when presenting sporadically in adulthood, present a particular diagnostic challenge owing to their great clinical and genetic heterogeneity. Currently, up to 75% of such patients remain without a genetic diagnosis. In an era of emerging disease-modifying gene-stratified therapies, the identification of causative alleles has become increasingly important. Over the past few years, the implementation of advanced bioinformatics tools and long-read sequencing has allowed the identification of a number of novel repeat expansion disorders, such as the recently described spinocerebellar ataxia 27B (SCA27B) caused by a (GAA)•(TTC) repeat expansion in intron 1 of the fibroblast growth factor 14 (FGF14) gene. SCA27B is rapidly gaining recognition as one of the most common forms of adult-onset hereditary ataxia, with several studies showing that it accounts for a substantial number (9-61%) of previously undiagnosed cases from different cohorts. First natural history studies and multiple reports have already outlined the progression and core phenotype of this novel disease, which consists of a late-onset slowly progressive pan-cerebellar syndrome that is frequently associated with cerebellar oculomotor signs, such as downbeat nystagmus, and episodic symptoms. Furthermore, preliminary studies in patients with SCA27B have shown promising symptomatic benefits of 4-aminopyridine, an already marketed drug. This review describes the current knowledge of the genetic and molecular basis, epidemiology, clinical features and prospective treatment strategies in SCA27B.
Collapse
Affiliation(s)
- David Pellerin
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and InstituteMcGill UniversityMontrealQuebecCanada
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and NeurosurgeryUniversity College LondonLondonUK
| | - Matt C. Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Mathilde Renaud
- INSERM‐U1256 NGEREUniversité de LorraineNancyFrance
- Service de Neurologie, CHRU de NancyNancyFrance
- Service de Génétique Clinique, CHRU de NancyNancyFrance
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and NeurosurgeryUniversity College LondonLondonUK
| | - Matthis Synofzik
- Division of Translational Genomics of Neurodegenerative DiseasesHertie‐Institute for Clinical Brain Research and Center of Neurology, University of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and InstituteMcGill UniversityMontrealQuebecCanada
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
8
|
Pellerin D, Gobbo GD, Couse M, Dolzhenko E, Dicaire MJ, Rebelo A, Roth V, Wandzel M, Bonnet C, Ashton C, Lamont PJ, Laing NG, Renaud M, Ravenscroft G, Houlden H, Synofzik M, Eberle MA, Boycott KM, Pastinen T, Brais B, Zuchner S, Danzi MC. A common flanking variant is associated with enhanced meiotic stability of the FGF14 -SCA27B locus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540430. [PMID: 37425777 PMCID: PMC10327060 DOI: 10.1101/2023.05.11.540430] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The factors driving initiation of pathological expansion of tandem repeats remain largely unknown. Here, we assessed the FGF14 -SCA27B (GAA)•(TTC) repeat locus in 2,530 individuals by long-read and Sanger sequencing and identified a 5'-flanking 17-bp deletion-insertion in 70.34% of alleles (3,463/4,923). This common sequence variation was present nearly exclusively on alleles with fewer than 30 GAA-pure repeats and was associated with enhanced meiotic stability of the repeat locus.
Collapse
|
9
|
Rafehi H, Read J, Szmulewicz DJ, Davies KC, Snell P, Fearnley LG, Scott L, Thomsen M, Gillies G, Pope K, Bennett MF, Munro JE, Ngo KJ, Chen L, Wallis MJ, Butler EG, Kumar KR, Wu KHC, Tomlinson SE, Tisch S, Malhotra A, Lee-Archer M, Dolzhenko E, Eberle MA, Roberts LJ, Fogel BL, Brüggemann N, Lohmann K, Delatycki MB, Bahlo M, Lockhart PJ. An intronic GAA repeat expansion in FGF14 causes the autosomal-dominant adult-onset ataxia SCA50/ATX-FGF14. Am J Hum Genet 2023; 110:105-119. [PMID: 36493768 PMCID: PMC9892775 DOI: 10.1016/j.ajhg.2022.11.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/19/2022] [Indexed: 12/13/2022] Open
Abstract
Adult-onset cerebellar ataxias are a group of neurodegenerative conditions that challenge both genetic discovery and molecular diagnosis. In this study, we identified an intronic (GAA) repeat expansion in fibroblast growth factor 14 (FGF14). Genetic analysis of 95 Australian individuals with adult-onset ataxia identified four (4.2%) with (GAA)>300 and a further nine individuals with (GAA)>250. PCR and long-read sequence analysis revealed these were pure (GAA) repeats. In comparison, no control subjects had (GAA)>300 and only 2/311 control individuals (0.6%) had a pure (GAA)>250. In a German validation cohort, 9/104 (8.7%) of affected individuals had (GAA)>335 and a further six had (GAA)>250, whereas 10/190 (5.3%) control subjects had (GAA)>250 but none were (GAA)>335. The combined data suggest (GAA)>335 are disease causing and fully penetrant (p = 6.0 × 10-8, OR = 72 [95% CI = 4.3-1,227]), while (GAA)>250 is likely pathogenic with reduced penetrance. Affected individuals had an adult-onset, slowly progressive cerebellar ataxia with variable features including vestibular impairment, hyper-reflexia, and autonomic dysfunction. A negative correlation between age at onset and repeat length was observed (R2 = 0.44, p = 0.00045, slope = -0.12) and identification of a shared haplotype in a minority of individuals suggests that the expansion can be inherited or generated de novo during meiotic division. This study demonstrates the power of genome sequencing and advanced bioinformatic tools to identify novel repeat expansions via model-free, genome-wide analysis and identifies SCA50/ATX-FGF14 as a frequent cause of adult-onset ataxia.
Collapse
Affiliation(s)
- Haloom Rafehi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Justin Read
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia,Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Parkville, VIC, Australia
| | - David J. Szmulewicz
- Cerebellar Ataxia Clinic, Eye and Ear Hospital, Melbourne, VIC, Australia,The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Kayli C. Davies
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia,Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Penny Snell
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Liam G. Fearnley
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia,Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Liam Scott
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Mirja Thomsen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Greta Gillies
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Kate Pope
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Mark F. Bennett
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia,Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Jacob E. Munro
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Kathie J. Ngo
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Luke Chen
- Alfred Hospital, Department of Neurology, Melbourne, VIC, Australia
| | - Mathew J. Wallis
- Clinical Genetics Service, Austin Health, Melbourne, VIC, Australia,Department of Medicine, University of Melbourne, Austin Health, Melbourne, VIC, Australia,School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | | | - Kishore R. Kumar
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia,Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Concord, NSW, Australia,Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Kathy HC. Wu
- School of Medicine, University of New South Wales, Sydney, NSW, Australia,Clinical Genomics, St Vincent’s Hospital, Darlinghurst, NSW, Australia,Discipline of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia,School of Medicine, University of Notre Dame, Sydney, NSW, Australia
| | - Susan E. Tomlinson
- School of Medicine, University of Notre Dame, Sydney, NSW, Australia,Department of Neurology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Stephen Tisch
- School of Medicine, University of New South Wales, Sydney, NSW, Australia,Department of Neurology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Abhishek Malhotra
- Department of Neuroscience, University Hospital Geelong, Geelong, VIC, Australia
| | - Matthew Lee-Archer
- Launceston General Hospital, Tasmanian Health Service, Launceston, TAS, Australia
| | | | | | - Leslie J. Roberts
- Department of Neurology and Neurological Research, St. Vincent’s Hospital, Melbourne, VIC, Australia
| | - Brent L. Fogel
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA,Departments of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany,Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Martin B. Delatycki
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia,Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Parkville, VIC, Australia,Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Paul J. Lockhart
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia,Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Parkville, VIC, Australia,Corresponding author
| |
Collapse
|
10
|
Matos-Rodrigues G, van Wietmarschen N, Wu W, Tripathi V, Koussa NC, Pavani R, Nathan WJ, Callen E, Belinky F, Mohammed A, Napierala M, Usdin K, Ansari AZ, Mirkin SM, Nussenzweig A. S1-END-seq reveals DNA secondary structures in human cells. Mol Cell 2022; 82:3538-3552.e5. [PMID: 36075220 PMCID: PMC9547894 DOI: 10.1016/j.molcel.2022.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/25/2022] [Accepted: 08/04/2022] [Indexed: 11/15/2022]
Abstract
DNA becomes single stranded (ssDNA) during replication, transcription, and repair. Transiently formed ssDNA segments can adopt alternative conformations, including cruciforms, triplexes, and quadruplexes. To determine whether there are stable regions of ssDNA in the human genome, we utilized S1-END-seq to convert ssDNA regions to DNA double-strand breaks, which were then processed for high-throughput sequencing. This approach revealed two predominant non-B DNA structures: cruciform DNA formed by expanded (TA)n repeats that accumulate in microsatellite unstable human cancer cell lines and DNA triplexes (H-DNA) formed by homopurine/homopyrimidine mirror repeats common across a variety of cell lines. We show that H-DNA is enriched during replication, that its genomic location is highly conserved, and that H-DNA formed by (GAA)n repeats can be disrupted by treatment with a (GAA)n-binding polyamide. Finally, we show that triplex-forming repeats are hotspots for mutagenesis. Our results identify dynamic DNA secondary structures in vivo that contribute to elevated genome instability.
Collapse
Affiliation(s)
| | | | - Wei Wu
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Veenu Tripathi
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Natasha C Koussa
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Raphael Pavani
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - William J Nathan
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Frida Belinky
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ashraf Mohammed
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Marek Napierala
- Department of Neurology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aseem Z Ansari
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
11
|
Masnovo C, Lobo AF, Mirkin SM. Replication dependent and independent mechanisms of GAA repeat instability. DNA Repair (Amst) 2022; 118:103385. [PMID: 35952488 PMCID: PMC9675320 DOI: 10.1016/j.dnarep.2022.103385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/20/2022]
Abstract
Trinucleotide repeat instability is a driver of human disease. Large expansions of (GAA)n repeats in the first intron of the FXN gene are the cause Friedreich's ataxia (FRDA), a progressive degenerative disorder which cannot yet be prevented or treated. (GAA)n repeat instability arises during both replication-dependent processes, such as cell division and intergenerational transmission, as well as in terminally differentiated somatic tissues. Here, we provide a brief historical overview on the discovery of (GAA)n repeat expansions and their association to FRDA, followed by recent advances in the identification of triplex H-DNA formation and replication fork stalling. The main body of this review focuses on the last decade of progress in understanding the mechanism of (GAA)n repeat instability during DNA replication and/or DNA repair. We propose that the discovery of additional mechanisms of (GAA)n repeat instability can be achieved via both comparative approaches to other repeat expansion diseases and genome-wide association studies. Finally, we discuss the advances towards FRDA prevention or amelioration that specifically target (GAA)n repeat expansions.
Collapse
Affiliation(s)
- Chiara Masnovo
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Ayesha F Lobo
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
12
|
Grosso V, Marcolungo L, Maestri S, Alfano M, Lavezzari D, Iadarola B, Salviati A, Mariotti B, Botta A, D’Apice MR, Novelli G, Delledonne M, Rossato M. Characterization of FMR1 Repeat Expansion and Intragenic Variants by Indirect Sequence Capture. Front Genet 2021; 12:743230. [PMID: 34646309 PMCID: PMC8504923 DOI: 10.3389/fgene.2021.743230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022] Open
Abstract
Traditional methods for the analysis of repeat expansions, which underlie genetic disorders, such as fragile X syndrome (FXS), lack single-nucleotide resolution in repeat analysis and the ability to characterize causative variants outside the repeat array. These drawbacks can be overcome by long-read and short-read sequencing, respectively. However, the routine application of next-generation sequencing in the clinic requires target enrichment, and none of the available methods allows parallel analysis of long-DNA fragments using both sequencing technologies. In this study, we investigated the use of indirect sequence capture (Xdrop technology) coupled to Nanopore and Illumina sequencing to characterize FMR1, the gene responsible of FXS. We achieved the efficient enrichment (> 200×) of large target DNA fragments (~60-80 kbp) encompassing the entire FMR1 gene. The analysis of Xdrop-enriched samples by Nanopore long-read sequencing allowed the complete characterization of repeat lengths in samples with normal, pre-mutation, and full mutation status (> 1 kbp), and correctly identified repeat interruptions relevant for disease prognosis and transmission. Single-nucleotide variants (SNVs) and small insertions/deletions (indels) could be detected in the same samples by Illumina short-read sequencing, completing the mutational testing through the identification of pathogenic variants within the FMR1 gene, when no typical CGG repeat expansion is detected. The study successfully demonstrated the parallel analysis of repeat expansions and SNVs/indels in the FMR1 gene at single-nucleotide resolution by combining Xdrop enrichment with two next-generation sequencing approaches. With the appropriate optimization necessary for the clinical settings, the system could facilitate both the study of genotype-phenotype correlation in FXS and enable a more efficient diagnosis and genetic counseling for patients and their relatives.
Collapse
Affiliation(s)
- Valentina Grosso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Luca Marcolungo
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Simone Maestri
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Denise Lavezzari
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Barbara Iadarola
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alessandro Salviati
- Department of Biotechnology, University of Verona, Verona, Italy
- GENARTIS srl, Verona, Italy
| | - Barbara Mariotti
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome "Tor Vergata", Rome, Italy
| | | | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome "Tor Vergata", Rome, Italy
- IRCCS Neuromed Mediterranean Neurological Institute, Pozzilli, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Verona, Italy
- GENARTIS srl, Verona, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
- GENARTIS srl, Verona, Italy
| |
Collapse
|
13
|
Nethisinghe S, Kesavan M, Ging H, Labrum R, Polke JM, Islam S, Garcia-Moreno H, Callaghan MF, Cavalcanti F, Pook MA, Giunti P. Interruptions of the FXN GAA Repeat Tract Delay the Age at Onset of Friedreich's Ataxia in a Location Dependent Manner. Int J Mol Sci 2021; 22:7507. [PMID: 34299126 PMCID: PMC8307455 DOI: 10.3390/ijms22147507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 12/03/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a comparatively rare autosomal recessive neurological disorder primarily caused by the homozygous expansion of a GAA trinucleotide repeat in intron 1 of the FXN gene. The repeat expansion causes gene silencing that results in deficiency of the frataxin protein leading to mitochondrial dysfunction, oxidative stress and cell death. The GAA repeat tract in some cases may be impure with sequence variations called interruptions. It has previously been observed that large interruptions of the GAA repeat tract, determined by abnormal MboII digestion, are very rare. Here we have used triplet repeat primed PCR (TP PCR) assays to identify small interruptions at the 5' and 3' ends of the GAA repeat tract through alterations in the electropherogram trace signal. We found that contrary to large interruptions, small interruptions are more common, with 3' interruptions being most frequent. Based on detection of interruptions by TP PCR assay, the patient cohort (n = 101) was stratified into four groups: 5' interruption, 3' interruption, both 5' and 3' interruptions or lacking interruption. Those patients with 3' interruptions were associated with shorter GAA1 repeat tracts and later ages at disease onset. The age at disease onset was modelled by a group-specific exponential decay model. Based on this modelling, a 3' interruption is predicted to delay disease onset by approximately 9 years relative to those lacking 5' and 3' interruptions. This highlights the key role of interruptions at the 3' end of the GAA repeat tract in modulating the disease phenotype and its impact on prognosis for the patient.
Collapse
Affiliation(s)
- Suran Nethisinghe
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; (S.N.); (M.K.); (H.G.); (H.G.-M.)
| | - Maheswaran Kesavan
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; (S.N.); (M.K.); (H.G.); (H.G.-M.)
| | - Heather Ging
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; (S.N.); (M.K.); (H.G.); (H.G.-M.)
| | - Robyn Labrum
- Neurogenetics Service, Rare and Inherited Disease Laboratory, London North Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3BH, UK; (R.L.); (J.M.P.)
| | - James M. Polke
- Neurogenetics Service, Rare and Inherited Disease Laboratory, London North Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3BH, UK; (R.L.); (J.M.P.)
| | - Saiful Islam
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK;
| | - Hector Garcia-Moreno
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; (S.N.); (M.K.); (H.G.); (H.G.-M.)
| | - Martina F. Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK;
| | - Francesca Cavalcanti
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council (CNR), 87050 Mangone, Italy;
| | - Mark A. Pook
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
- Synthetic Biology Theme, Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; (S.N.); (M.K.); (H.G.); (H.G.-M.)
| |
Collapse
|
14
|
Zhang J, Fakharzadeh A, Pan F, Roland C, Sagui C. Atypical structures of GAA/TTC trinucleotide repeats underlying Friedreich's ataxia: DNA triplexes and RNA/DNA hybrids. Nucleic Acids Res 2020; 48:9899-9917. [PMID: 32821947 PMCID: PMC7515735 DOI: 10.1093/nar/gkaa665] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 11/13/2022] Open
Abstract
Expansion of the GAA/TTC repeats in the first intron of the FXN gene causes Friedreich's ataxia. Non-canonical structures are linked to this expansion. DNA triplexes and R-loops are believed to arrest transcription, which results in frataxin deficiency and eventual neurodegeneration. We present a systematic in silico characterization of the possible DNA triplexes that could be assembled with GAA and TTC strands; the two hybrid duplexes [r(GAA):d(TTC) and d(GAA):r(UUC)] in an R-loop; and three hybrid triplexes that could form during bidirectional transcription when the non-template DNA strand bonds with the hybrid duplex (collapsed R-loops, where the two DNA strands remain antiparallel). For both Y·R:Y and R·R:Y DNA triplexes, the parallel third strand orientation is more stable; both parallel and antiparallel protonated d(GA+A)·d(GAA):d(TTC) triplexes are stable. Apparent contradictions in the literature about the R·R:Y triplex stability is probably due to lack of molecular resolution, since shifting the third strand by a single nucleotide alters the stability ranking. In the collapsed R-loops, antiparallel d(TTC+)·d(GAA):r(UUC) is unstable, while parallel d(GAA)·r(GAA):d(TTC) and d(GA+A)·r(GAA):d(TTC) are stable. In addition to providing new structural perspectives for specific therapeutic aims, our results contribute to a systematic structural basis for the emerging field of quantitative R-loop biology.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Ashkan Fakharzadeh
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Feng Pan
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA.,Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| |
Collapse
|
15
|
Flower M, Lomeikaite V, Holmans P, Jones L, Tabrizi SJ, Monckton DG. Reply: The repeat variant in MSH3 is not a genetic modifier for spinocerebellar ataxia type 3 and Friedreich's ataxia. Brain 2020; 143:e26. [PMID: 32154840 DOI: 10.1093/brain/awaa044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Michael Flower
- Department of Neurodegenerative Disease and Dementia Research Institute, UCL, UK
| | - Vilija Lomeikaite
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, UK
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, UK
| | - Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, UK
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease and Dementia Research Institute, UCL, UK
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, UK
| |
Collapse
|
16
|
Tateishi-Karimata H, Sugimoto N. Chemical biology of non-canonical structures of nucleic acids for therapeutic applications. Chem Commun (Camb) 2020; 56:2379-2390. [PMID: 32022004 DOI: 10.1039/c9cc09771f] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
DNA forms not only the canonical duplex structure but also non-canonical structures. Most potential sequences that induce the formation of non-canonical structures are present in disease-related genes. Interestingly, biological reactions are inhibited or dysregulated by non-canonical structure formation in disease-related genes. To control biological reactions, methods for inducing the formation of non-canonical structures have been developed using small molecules and oligonucleotides. In this feature article, we review biological reactions such as replication, transcription, and reverse transcription controlled by non-canonical DNA structures formed by disease-related genes. Furthermore, we discuss recent studies aimed at developing methods for regulating these biological reactions using drugs targeting the DNA structure.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, 650-0047, Japan.
| | | |
Collapse
|
17
|
Large-scale contractions of Friedreich's ataxia GAA repeats in yeast occur during DNA replication due to their triplex-forming ability. Proc Natl Acad Sci U S A 2020; 117:1628-1637. [PMID: 31911468 PMCID: PMC6983365 DOI: 10.1073/pnas.1913416117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Expansions of GAA repeats cause a severe hereditary neurodegenerative disease, Friedreich’s ataxia. In this study, we characterized the mechanisms of GAA repeat contractions in a yeast experimental system. These mechanisms might, in the long run, aid development of a therapy for this currently incurable disease. We show that GAA repeats contract during DNA replication, which can explain the high level of somatic instability of this repeat in patient tissues. We also provided evidence that a triple-stranded DNA structure is at the heart of GAA repeat instability. This discovery highlights the role of triplex DNA in genome instability and human disease. Friedreich’s ataxia (FRDA) is a human hereditary disease caused by the presence of expanded (GAA)n repeats in the first intron of the FXN gene [V. Campuzano et al., Science 271, 1423–1427 (1996)]. In somatic tissues of FRDA patients, (GAA)n repeat tracts are highly unstable, with contractions more common than expansions [R. Sharma et al., Hum. Mol. Genet. 11, 2175–2187 (2002)]. Here we describe an experimental system to characterize GAA repeat contractions in yeast and to conduct a genetic analysis of this process. We found that large-scale contraction is a one-step process, resulting in a median loss of ∼60 triplet repeats. Our genetic analysis revealed that contractions occur during DNA replication, rather than by various DNA repair pathways. Repeats contract in the course of lagging-strand synthesis: The processivity subunit of DNA polymerase δ, Pol32, and the catalytic domain of Rev1, a translesion polymerase, act together in the same pathway to counteract contractions. Accumulation of single-stranded DNA (ssDNA) in the lagging-strand template greatly increases the probability that (GAA)n repeats contract, which in turn promotes repeat instability in rfa1, rad27, and dna2 mutants. Finally, by comparing contraction rates for homopurine-homopyrimidine repeats differing in their mirror symmetry, we found that contractions depend on a repeat’s triplex-forming ability. We propose that accumulation of ssDNA in the lagging-strand template fosters the formation of a triplex between the nascent and fold-back template strands of the repeat. Occasional jumps of DNA polymerase through this triplex hurdle, result in repeat contractions in the nascent lagging strand.
Collapse
|
18
|
De Roeck A, De Coster W, Bossaerts L, Cacace R, De Pooter T, Van Dongen J, D’Hert S, De Rijk P, Strazisar M, Van Broeckhoven C, Sleegers K. NanoSatellite: accurate characterization of expanded tandem repeat length and sequence through whole genome long-read sequencing on PromethION. Genome Biol 2019; 20:239. [PMID: 31727106 PMCID: PMC6857246 DOI: 10.1186/s13059-019-1856-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
Technological limitations have hindered the large-scale genetic investigation of tandem repeats in disease. We show that long-read sequencing with a single Oxford Nanopore Technologies PromethION flow cell per individual achieves 30× human genome coverage and enables accurate assessment of tandem repeats including the 10,000-bp Alzheimer's disease-associated ABCA7 VNTR. The Guppy "flip-flop" base caller and tandem-genotypes tandem repeat caller are efficient for large-scale tandem repeat assessment, but base calling and alignment challenges persist. We present NanoSatellite, which analyzes tandem repeats directly on electric current data and improves calling of GC-rich tandem repeats, expanded alleles, and motif interruptions.
Collapse
Affiliation(s)
- Arne De Roeck
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp-CDE, Universiteitsplein 1, B-2610 Antwerp, Belgium
- Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Wouter De Coster
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp-CDE, Universiteitsplein 1, B-2610 Antwerp, Belgium
- Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Liene Bossaerts
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp-CDE, Universiteitsplein 1, B-2610 Antwerp, Belgium
- Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Rita Cacace
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp-CDE, Universiteitsplein 1, B-2610 Antwerp, Belgium
- Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tim De Pooter
- Neuromics Support Facility, Center for Molecular Neurology, VIB - University of Antwerp, Antwerp, Belgium
| | - Jasper Van Dongen
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp-CDE, Universiteitsplein 1, B-2610 Antwerp, Belgium
- Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Svenn D’Hert
- Neuromics Support Facility, Center for Molecular Neurology, VIB - University of Antwerp, Antwerp, Belgium
| | - Peter De Rijk
- Neuromics Support Facility, Center for Molecular Neurology, VIB - University of Antwerp, Antwerp, Belgium
| | - Mojca Strazisar
- Neuromics Support Facility, Center for Molecular Neurology, VIB - University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp-CDE, Universiteitsplein 1, B-2610 Antwerp, Belgium
- Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kristel Sleegers
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp-CDE, Universiteitsplein 1, B-2610 Antwerp, Belgium
- Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
19
|
Clay A, Hearle P, Schadt K, Lynch DR. New developments in pharmacotherapy for Friedreich ataxia. Expert Opin Pharmacother 2019; 20:1855-1867. [PMID: 31311349 DOI: 10.1080/14656566.2019.1639671] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Friedreich ataxia (FRDA), a rare disease caused by the deficiency of the mitochondrial matrix protein frataxin, affects roughly 1 in 50,000 individuals worldwide. Current and emerging therapies focus on reversing the deleterious effects of such deficiency including mitochondrial augmentation and increasing frataxin levels, providing the possibility of treatment options for this physiologically complex, multisystem disorder. Areas covered: In this review article, the authors discuss the current and prior in vivo and in vitro research studies related to the treatment of FRDA, with a particular interest in future implications of each therapy. Expert opinion: Since the discovery of FXN in 1996, multiple clinical trials have occurred or are currently occurring; at a rapid pace for a rare disease. These trials have been directed at the augmentation of mitochondrial function and/or alleviation of symptoms and are not regarded as potential cures in FRDA. Either a combination of therapies or a drug that replaces or increases the pathologically low levels of frataxin better represent potential cures in FRDA.
Collapse
Affiliation(s)
- Alexandra Clay
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Patrick Hearle
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Kim Schadt
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - David R Lynch
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| |
Collapse
|
20
|
Helma R, Bažantová P, Petr M, Adámik M, Renčiuk D, Tichý V, Pastuchová A, Soldánová Z, Pečinka P, Bowater RP, Fojta M, Brázdová M. p53 Binds Preferentially to Non-B DNA Structures Formed by the Pyrimidine-Rich Strands of GAA·TTC Trinucleotide Repeats Associated with Friedreich's Ataxia. Molecules 2019; 24:molecules24112078. [PMID: 31159174 PMCID: PMC6600395 DOI: 10.3390/molecules24112078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/19/2019] [Accepted: 05/30/2019] [Indexed: 01/12/2023] Open
Abstract
Expansions of trinucleotide repeats (TNRs) are associated with genetic disorders such as Friedreich's ataxia. The tumor suppressor p53 is a central regulator of cell fate in response to different types of insults. Sequence and structure-selective modes of DNA recognition are among the main attributes of p53 protein. The focus of this work was analysis of the p53 structure-selective recognition of TNRs associated with human neurodegenerative diseases. Here, we studied binding of full length p53 and several deletion variants to TNRs folded into DNA hairpins or loops. We demonstrate that p53 binds to all studied non-B DNA structures, with a preference for non-B DNA structures formed by pyrimidine (Py) rich strands. Using deletion mutants, we determined the C-terminal DNA binding domain of p53 to be crucial for recognition of such non-B DNA structures. We also observed that p53 in vitro prefers binding to the Py-rich strand over the purine (Pu) rich strand in non-B DNA substrates formed by sequence derived from the first intron of the frataxin gene. The binding of p53 to this region was confirmed using chromatin immunoprecipitation in human Friedreich's ataxia fibroblast and adenocarcinoma cells. Altogether these observations provide further evidence that p53 binds to TNRs' non-B DNA structures.
Collapse
Affiliation(s)
- Robert Helma
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1/3, 612 42 Brno, Czech Republic.
| | - Pavla Bažantová
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
- Faculty of Science, University of Ostrava, Chittussiho 10, 701 03 Ostrava, Czech Republic.
| | - Marek Petr
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1/3, 612 42 Brno, Czech Republic.
| | - Matej Adámik
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | - Daniel Renčiuk
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | - Vlastimil Tichý
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | - Alena Pastuchová
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | - Zuzana Soldánová
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1/3, 612 42 Brno, Czech Republic.
| | - Petr Pečinka
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
- Faculty of Science, University of Ostrava, Chittussiho 10, 701 03 Ostrava, Czech Republic.
| | - Richard P Bowater
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Miroslav Fojta
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic.
| | - Marie Brázdová
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1/3, 612 42 Brno, Czech Republic.
| |
Collapse
|
21
|
Mikaeili H, Sandi M, Bayot A, Al-Mahdawi S, Pook MA. FAST-1 antisense RNA epigenetically alters FXN expression. Sci Rep 2018; 8:17217. [PMID: 30464193 PMCID: PMC6249312 DOI: 10.1038/s41598-018-35639-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
Friedreich ataxia (FRDA) is a multisystem genetic disorder caused by GAA repeat expansion mutations within the FXN gene, resulting in heterochromatin formation and deficiency of frataxin protein. Elevated levels of the FXN antisense transcript (FAST-1) have previously been detected in FRDA. To investigate the effects of FAST-1 on the FXN gene expression, we first stably overexpressed FAST-1 in non-FRDA cell lines and then we knocked down FAST-1 in FRDA fibroblast cells. We observed decreased FXN expression in each FAST-1 overexpressing cell type compared to control cells. We also found that FAST-1 overexpression is associated with both CCCTC-Binding Factor (CTCF) depletion and heterochromatin formation at the 5'UTR of the FXN gene. We further showed that knocking down FAST-1 in FRDA fibroblast cells significantly increased FXN expression. Our results indicate that FAST-1 can act in trans in a similar manner to the cis-acting FAST-1 overexpression that has previously been identified in FRDA fibroblasts. The effects of stably transfected FAST-1 expression on CTCF occupancy and heterochromatin formation at the FXN locus suggest a direct role for FAST-1 in the FRDA molecular disease mechanism. Our findings also support the hypothesis that inhibition of FAST-1 may be a potential approach for FRDA therapy.
Collapse
Affiliation(s)
- Hajar Mikaeili
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, and Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, United Kingdom
| | - Madhavi Sandi
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, and Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, United Kingdom
| | - Aurélien Bayot
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, and Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, United Kingdom
- Mitochondrial Biology Group, CNRS UMR 3691, Departement of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Sahar Al-Mahdawi
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, and Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, United Kingdom
| | - Mark A Pook
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, and Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, United Kingdom.
| |
Collapse
|
22
|
Al-Mahdawi S, Ging H, Bayot A, Cavalcanti F, La Cognata V, Cavallaro S, Giunti P, Pook MA. Large Interruptions of GAA Repeat Expansion Mutations in Friedreich Ataxia Are Very Rare. Front Cell Neurosci 2018; 12:443. [PMID: 30519163 PMCID: PMC6258883 DOI: 10.3389/fncel.2018.00443] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/05/2018] [Indexed: 12/19/2022] Open
Abstract
Friedreich ataxia is a multi-system autosomal recessive inherited disorder primarily caused by homozygous GAA repeat expansion mutations within intron 1 of the frataxin gene. The resulting deficiency of frataxin protein leads to progressive mitochondrial dysfunction, oxidative stress, and cell death, with the main affected sites being the large sensory neurons of the dorsal root ganglia and the dentate nucleus of the cerebellum. The GAA repeat expansions may be pure (GAA)n in sequence or may be interrupted with regions of non-GAA sequence. To our knowledge, there has been no large-scale study of FRDA patient DNA samples to determine the frequency of large interruptions in GAA repeat expansions. Therefore, we have investigated a panel of 245 Friedreich ataxia patient and carrier DNA samples using GAA repeat PCR amplification and MboII restriction enzyme digestion. We demonstrate that the vast majority (97.8%) of Friedreich ataxia GAA repeat expansion samples do not contain significant sequence changes that would result in abnormal MboII digestion profiles, indicating that they are primarily pure GAA repeats. These results show for the first time that large interruptions in the GAA repeats are very rare.
Collapse
Affiliation(s)
- Sahar Al-Mahdawi
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Synthetic Biology Theme, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Heather Ging
- Ataxia Centre, Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Aurelien Bayot
- Ataxia Centre, Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | | | | | | | - Paola Giunti
- Ataxia Centre, Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Mark A Pook
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Synthetic Biology Theme, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
23
|
Ebbert MTW, Farrugia SL, Sens JP, Jansen-West K, Gendron TF, Prudencio M, McLaughlin IJ, Bowman B, Seetin M, DeJesus-Hernandez M, Jackson J, Brown PH, Dickson DW, van Blitterswijk M, Rademakers R, Petrucelli L, Fryer JD. Long-read sequencing across the C9orf72 'GGGGCC' repeat expansion: implications for clinical use and genetic discovery efforts in human disease. Mol Neurodegener 2018; 13:46. [PMID: 30126445 PMCID: PMC6102925 DOI: 10.1186/s13024-018-0274-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Many neurodegenerative diseases are caused by nucleotide repeat expansions, but most expansions, like the C9orf72 'GGGGCC' (G4C2) repeat that causes approximately 5-7% of all amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) cases, are too long to sequence using short-read sequencing technologies. It is unclear whether long-read sequencing technologies can traverse these long, challenging repeat expansions. Here, we demonstrate that two long-read sequencing technologies, Pacific Biosciences' (PacBio) and Oxford Nanopore Technologies' (ONT), can sequence through disease-causing repeats cloned into plasmids, including the FTD/ALS-causing G4C2 repeat expansion. We also report the first long-read sequencing data characterizing the C9orf72 G4C2 repeat expansion at the nucleotide level in two symptomatic expansion carriers using PacBio whole-genome sequencing and a no-amplification (No-Amp) targeted approach based on CRISPR/Cas9. RESULTS Both the PacBio and ONT platforms successfully sequenced through the repeat expansions in plasmids. Throughput on the MinION was a challenge for whole-genome sequencing; we were unable to attain reads covering the human C9orf72 repeat expansion using 15 flow cells. We obtained 8× coverage across the C9orf72 locus using the PacBio Sequel, accurately reporting the unexpanded allele at eight repeats, and reading through the entire expansion with 1324 repeats (7941 nucleotides). Using the No-Amp targeted approach, we attained > 800× coverage and were able to identify the unexpanded allele, closely estimate expansion size, and assess nucleotide content in a single experiment. We estimate the individual's repeat region was > 99% G4C2 content, though we cannot rule out small interruptions. CONCLUSIONS Our findings indicate that long-read sequencing is well suited to characterizing known repeat expansions, and for discovering new disease-causing, disease-modifying, or risk-modifying repeat expansions that have gone undetected with conventional short-read sequencing. The PacBio No-Amp targeted approach may have future potential in clinical and genetic counseling environments. Larger and deeper long-read sequencing studies in C9orf72 expansion carriers will be important to determine heterogeneity and whether the repeats are interrupted by non-G4C2 content, potentially mitigating or modifying disease course or age of onset, as interruptions are known to do in other repeat-expansion disorders. These results have broad implications across all diseases where the genetic etiology remains unclear.
Collapse
Affiliation(s)
- Mark T. W. Ebbert
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Mayo Graduate School, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Jonathon P. Sens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Mayo Graduate School, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | | | | | | | | | | | - Jazmyne Jackson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | | | | | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Mayo Graduate School, Mayo Clinic, Rochester, MN 55905 USA
| | - John D. Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Mayo Graduate School, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
24
|
McGinty RJ, Mirkin SM. Cis- and Trans-Modifiers of Repeat Expansions: Blending Model Systems with Human Genetics. Trends Genet 2018; 34:448-465. [PMID: 29567336 PMCID: PMC5959756 DOI: 10.1016/j.tig.2018.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/30/2022]
Abstract
Over 30 hereditary diseases are caused by the expansion of microsatellite repeats. The length of the expandable repeat is the main hereditary determinant of these disorders. They are also affected by numerous genomic variants that are either nearby (cis) or physically separated from (trans) the repetitive locus, which we review here. These genetic variants have largely been elucidated in model systems using gene knockouts, while a few have been directly observed as single-nucleotide polymorphisms (SNPs) in patients. There is a notable disconnect between these two bodies of knowledge: knockouts poorly approximate the SNP-level variation in human populations that gives rise to medically relevant cis- and trans-modifiers, while the rarity of these diseases limits the statistical power of SNP-based analysis in humans. We propose that high-throughput SNP-based screening in model systems could become a useful approach to quickly identify and characterize modifiers of clinical relevance for patients.
Collapse
Affiliation(s)
- Ryan J McGinty
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
25
|
Tomé S, Dandelot E, Dogan C, Bertrand A, Geneviève D, Péréon Y, Simon M, Bonnefont JP, Bassez G, Gourdon G. Unusual association of a unique CAG interruption in 5' of DM1 CTG repeats with intergenerational contractions and low somatic mosaicism. Hum Mutat 2018; 39:970-982. [PMID: 29664219 DOI: 10.1002/humu.23531] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/23/2018] [Accepted: 04/10/2018] [Indexed: 11/11/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a dominant multisystemic disorder associated with high variability of symptoms and anticipation. DM1 is caused by an unstable CTG repeat expansion that usually increases in successive generations and tissues. DM1 family pedigrees have shown that ∼90% and 10% of transmissions result in expansions and contractions of the CTG repeat, respectively. To date, the mechanisms of CTG repeat contraction remain poorly documented in DM1. In this report, we identified two new DM1 families with apparent contractions and no worsening of DM1 symptoms in two and three successive maternal transmissions. A new and unique CAG interruption was found in 5' of the CTG expansion in one family, whereas multiple 5' CCG interruptions were detected in the second family. We showed that these interruptions are associated with maternal intergenerational contractions and low somatic mosaicism in blood. By specific triplet-prime PCR, we observed that CTG repeat changes (contractions/expansions) occur preferentially in 3' of the interruptions for both families.
Collapse
Affiliation(s)
- Stéphanie Tomé
- Laboratory CTGDM, Inserm UMR1163, Paris, France; Institut Imagine, Université Paris-Descartes-Sorbonne Paris-Cité, Paris, France
| | - Elodie Dandelot
- Laboratory CTGDM, Inserm UMR1163, Paris, France; Institut Imagine, Université Paris-Descartes-Sorbonne Paris-Cité, Paris, France
| | - Céline Dogan
- Neuromuscular Reference Center, AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| | - Alexis Bertrand
- Laboratory CTGDM, Inserm UMR1163, Paris, France; Institut Imagine, Université Paris-Descartes-Sorbonne Paris-Cité, Paris, France
| | - David Geneviève
- Molecular Genetic Laboratory, Necker Hospital, Paris, France.,Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU Montpellier, Université Montpellier, Montpellier, France
| | - Yann Péréon
- Centre for Neuromuscular Diseases, Hôtel-Dieu Hospital, Nantes, France
| | -
- Pauline Arnaud: Department of genetic, Bichat Hospital, Paris, France, Raphaële Chasserieau: Centre for Neuromuscular Diseases, Hôtel-Dieu Hospital, Nantes, France, Pascal Cintas: Neuromuscular Reference Center, Purpan Hospital, Toulouse, France, Ana-maria Cobo Esteban: Neuromuscular Reference Center, Marin Hospital, Hendaye, France, Marie-Carmen Cruz: Neuromuscular Reference Center, Purpan Hospital, Toulouse, France, Dalil Hamroun: Centre Hospitalo-Universitaire de Montpellier, Montpellier, France, Armelle Magot: Neuromuscular Reference Center, Hôtel-Dieu Hospital, Nantes, France, Alexandra Nadaj-Pakleza Neuromuscular Reference Center, Larrey Hospital, Angers, France, Anne-catherine Aube-Gauthier Neuromuscular Reference Center, Larrey Hospital, Angers, France, Andoni Urtizberea: Neuromuscular Reference Center, Marin Hospital, Hendaye, France
| | - Marie Simon
- Molecular Genetic Laboratory, Necker Hospital, Paris, France
| | | | - Guillaume Bassez
- Sorbonne Université, Inserm, UMRS974, Neuromuscular Reference center, AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| | - Geneviève Gourdon
- Laboratory CTGDM, Inserm UMR1163, Paris, France; Institut Imagine, Université Paris-Descartes-Sorbonne Paris-Cité, Paris, France
| |
Collapse
|
26
|
Kekou K, Sofocleous C, Papadimas G, Petichakis D, Svingou M, Pons RM, Vorgia P, Gika A, Kitsiou-Tzeli S, Kanavakis E. A dynamic trinucleotide repeat (TNR) expansion in the DMD gene. Mol Cell Probes 2016; 30:254-260. [DOI: 10.1016/j.mcp.2016.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 01/01/2023]
|
27
|
Abstract
Friedreich ataxia (FRDA) is caused by the expansion of a GAA triplet repeat in the first intron of the FXN gene. This disease was named after Nicholaus Friedreich, Germany, who depicted the essential finding. Among ataxias, FRDA is the most common hereditary ataxia. It has the autosomal recessive pattern of inheritance. The expansion of the GAA triplet repeat hinders the transcription, thereby reducing the level of the FXN transcript and consequently reducing the level of frataxin, a 210-amino acid protein. The disease pathogenesis is fundamentally due to a lack of frataxin, which is claimed to play a role in iron-sulfur cluster synthesis. Oxidative stress builds up as a result of Fe accumulation in the mitochondria, causing degeneration of the cells, which primarily occurs in the neurons and later in the cardiac tissues, and to some extent in the pancreas. The therapeutic interventions are at infancy; however, current treatments are targeted toward the reduction of iron overload and its effects.
Collapse
Affiliation(s)
- Srinivasan Muthuswamy
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | | |
Collapse
|
28
|
Singh HN, Rajeswari MR. Identification of genes containing expanded purine repeats in the human genome and their apparent protective role against cancer. J Biomol Struct Dyn 2015; 34:689-704. [PMID: 25990537 DOI: 10.1080/07391102.2015.1049553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Purine repeat sequences present in a gene are unique as they have high propensity to form unusual DNA-triple helix structures. Friedreich's ataxia is the only human disease that is well known to be associated with DNA-triplexes formed by purine repeats. The purpose of this study was to recognize the expanded purine repeats (EPRs) in human genome and find their correlation with cancer pathogenesis. We developed "PuRepeatFinder.pl" algorithm to identify non-overlapping EPRs without pyrimidine interruptions in the human genome and customized for searching repeat lengths, n ≥ 200. A total of 1158 EPRs were identified in the genome which followed Wakeby distribution. Two hundred and ninety-six EPRs were found in geneic regions of 282 genes (EPR-genes). Gene clustering of EPR-genes was done based on their cellular function and a large number of EPR-genes were found to be enzymes/enzyme modulators. Meta-analysis of 282 EPR-genes identified only 63 EPR-genes in association with cancer, mostly in breast, lung, and blood cancers. Protein-protein interaction network analysis of all 282 EPR-genes identified proteins including those in cadherins and VEGF. The two observations, that EPRs can induce mutations under malignant conditions and that identification of some EPR-gene products in vital cell signaling-mediated pathways, together suggest the crucial role of EPRs in carcinogenesis. The new link between EPR-genes and their functionally interacting proteins throws a new dimension in the present understanding of cancer pathogenesis and can help in planning therapeutic strategies. Validation of present results using techniques like NGS is required to establish the role of the EPR genes in cancer pathology.
Collapse
Affiliation(s)
- Himanshu Narayan Singh
- a Department of Biochemistry , All India Institute of Medical Sciences , Room No: 3005A, New Delhi 110029 , India
| | - Moganty R Rajeswari
- a Department of Biochemistry , All India Institute of Medical Sciences , Room No: 3005A, New Delhi 110029 , India
| |
Collapse
|
29
|
Usdin K, House NCM, Freudenreich CH. Repeat instability during DNA repair: Insights from model systems. Crit Rev Biochem Mol Biol 2015; 50:142-67. [PMID: 25608779 DOI: 10.3109/10409238.2014.999192] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expansion of repeated sequences is the cause of over 30 inherited genetic diseases, including Huntington disease, myotonic dystrophy (types 1 and 2), fragile X syndrome, many spinocerebellar ataxias, and some cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Repeat expansions are dynamic, and disease inheritance and progression are influenced by the size and the rate of expansion. Thus, an understanding of the various cellular mechanisms that cooperate to control or promote repeat expansions is of interest to human health. In addition, the study of repeat expansion and contraction mechanisms has provided insight into how repair pathways operate in the context of structure-forming DNA, as well as insights into non-canonical roles for repair proteins. Here we review the mechanisms of repeat instability, with a special emphasis on the knowledge gained from the various model systems that have been developed to study this topic. We cover the repair pathways and proteins that operate to maintain genome stability, or in some cases cause instability, and the cross-talk and interactions between them.
Collapse
Affiliation(s)
- Karen Usdin
- Laboratory of Cell and Molecular Biology, NIDDK, NIH , Bethesda, MD , USA
| | | | | |
Collapse
|
30
|
Mizielinska S, Grönke S, Niccoli T, Ridler CE, Clayton EL, Devoy A, Moens T, Norona FE, Woollacott IO, Pietrzyk J, Cleverley K, Nicoll AJ, Pickering-Brown S, Dols J, Cabecinha M, Hendrich O, Fratta P, Fisher EM, Partridge L, Isaacs AM. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 2014; 345:1192-1194. [PMID: 25103406 PMCID: PMC4944841 DOI: 10.1126/science.1256800] [Citation(s) in RCA: 552] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An expanded GGGGCC repeat in C9orf72 is the most common genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis. A fundamental question is whether toxicity is driven by the repeat RNA itself and/or by dipeptide repeat proteins generated by repeat-associated, non-ATG translation. To address this question, we developed in vitro and in vivo models to dissect repeat RNA and dipeptide repeat protein toxicity. Expression of pure repeats, but not stop codon-interrupted "RNA-only" repeats in Drosophila caused adult-onset neurodegeneration. Thus, expanded repeats promoted neurodegeneration through dipeptide repeat proteins. Expression of individual dipeptide repeat proteins with a non-GGGGCC RNA sequence revealed that both poly-(glycine-arginine) and poly-(proline-arginine) proteins caused neurodegeneration. These findings are consistent with a dual toxicity mechanism, whereby both arginine-rich proteins and repeat RNA contribute to C9orf72-mediated neurodegeneration.
Collapse
Affiliation(s)
- Sarah Mizielinska
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sebastian Grönke
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany
| | - Teresa Niccoli
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, UCL, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Charlotte E. Ridler
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Emma L. Clayton
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Anny Devoy
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Thomas Moens
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, UCL, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Frances E. Norona
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Ione O.C. Woollacott
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Julian Pietrzyk
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Karen Cleverley
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andrew J. Nicoll
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- MRC Prion Unit, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Stuart Pickering-Brown
- Institute of Brain, Behaviour and Mental Health, Faculty of Human and Medical Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Jacqueline Dols
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany
| | - Melissa Cabecinha
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, UCL, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Oliver Hendrich
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany
| | - Pietro Fratta
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Elizabeth M.C. Fisher
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, UCL, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Adrian M. Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
31
|
Epigenetics in Friedreich's Ataxia: Challenges and Opportunities for Therapy. GENETICS RESEARCH INTERNATIONAL 2013; 2013:852080. [PMID: 23533785 PMCID: PMC3590757 DOI: 10.1155/2013/852080] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/10/2013] [Indexed: 11/17/2022]
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by homozygous expansion of a GAA·TTC trinucleotide repeat within the first intron of the FXN gene, leading to reduced FXN transcription and decreased levels of frataxin protein. Recent advances in FRDA research have revealed the presence of several epigenetic modifications that are either directly or indirectly involved in this FXN gene silencing. Although epigenetic marks may be inherited from one generation to the next, modifications of DNA and histones can be reversed, indicating that they are suitable targets for epigenetic-based therapy. Unlike other trinucleotide repeat disorders, such as Huntington disease, the large expansions of GAA·TTC repeats in FRDA do not produce a change in the frataxin amino acid sequence, but they produce reduced levels of normal frataxin. Therefore, transcriptional reactivation of the FXN gene provides a good therapeutic option. The present paper will initially focus on the epigenetic changes seen in FRDA patients and their role in the silencing of FXN gene and will be concluded by considering the potential epigenetic therapies.
Collapse
|
32
|
Di Fabio R, Santorelli F, Bertini E, Balestri M, Cursi L, Tessa A, Pierelli F, Casali C. Infantile childhood onset of spinocerebellar ataxia type 2. THE CEREBELLUM 2012; 11:526-30. [PMID: 21975856 DOI: 10.1007/s12311-011-0315-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is a late-onset autosomal dominant cerebellar ataxia caused by triplet CAG/CTG expansion in the ATX2 gene. The initial symptoms usually appear when subjects are in their 30s.Pediatric onset is less common and usually associated with larger triplet expansions. We here report the case of a 1-year-old girl who presented with facial dysmorphism,dystonic features, developmental delay, and retinitis pigmentosa.She was diagnosed as carrying an expanded CAG/CTG tract (92 repeats) before a molecular diagnosis of SCA2 was made in her father. Facial dysmorphism associated with developmental delay and retinitis pigmentosa in early childhood should prompt a careful family investigation for ataxia and study of ATX2.
Collapse
Affiliation(s)
- Roberto Di Fabio
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Via Francesco Faggiana 34, Latina, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ramazzotti M, Monsellier E, Kamoun C, Degl'Innocenti D, Melki R. Polyglutamine repeats are associated to specific sequence biases that are conserved among eukaryotes. PLoS One 2012; 7:e30824. [PMID: 22312432 PMCID: PMC3270027 DOI: 10.1371/journal.pone.0030824] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 12/23/2011] [Indexed: 12/20/2022] Open
Abstract
Nine human neurodegenerative diseases, including Huntington's disease and several spinocerebellar ataxia, are associated to the aggregation of proteins comprising an extended tract of consecutive glutamine residues (polyQs) once it exceeds a certain length threshold. This event is believed to be the consequence of the expansion of polyCAG codons during the replication process. This is in apparent contradiction with the fact that many polyQs-containing proteins remain soluble and are encoded by invariant genes in a number of eukaryotes. The latter suggests that polyQs expansion and/or aggregation might be counter-selected through a genetic and/or protein context. To identify this context, we designed a software that scrutinize entire proteomes in search for imperfect polyQs. The nature of residues flanking the polyQs and that of residues other than Gln within polyQs (insertions) were assessed. We discovered strong amino acid residue biases robustly associated to polyQs in the 15 eukaryotic proteomes we examined, with an over-representation of Pro, Leu and His and an under-representation of Asp, Cys and Gly amino acid residues. These biases are conserved amongst unrelated proteins and are independent of specific functional classes. Our findings suggest that specific residues have been co-selected with polyQs during evolution. We discuss the possible selective pressures responsible of the observed biases.
Collapse
Affiliation(s)
- Matteo Ramazzotti
- Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Florence, Italy
- * E-mail: (MR); (EM)
| | - Elodie Monsellier
- Laboratoire d'Enzymologie et de Biochimie Structurales, UPR 3082 CNRS, Gif sur Yvette, France
- * E-mail: (MR); (EM)
| | - Choumouss Kamoun
- Laboratoire d'Enzymologie et de Biochimie Structurales, UPR 3082 CNRS, Gif sur Yvette, France
| | | | - Ronald Melki
- Laboratoire d'Enzymologie et de Biochimie Structurales, UPR 3082 CNRS, Gif sur Yvette, France
| |
Collapse
|
34
|
Affiliation(s)
- Massimo Pandolfo
- Brussels Free University and Erasme Hospital, Brussels, Belgium.
| |
Collapse
|
35
|
Holloway TP, Rowley SM, Delatycki MB, Sarsero JP. Detection of interruptions in the GAA trinucleotide repeat expansion in the FXN gene of Friedreich ataxia. Biotechniques 2011; 50:182-6. [PMID: 21486239 DOI: 10.2144/000113615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/06/2011] [Indexed: 11/23/2022] Open
Abstract
Friedreich ataxia is a neurodegenerative disorder caused by the expansion of a GAA trinucleotide repeat sequence within the first intron of the FXN gene. Interruptions in the GAA repeat may serve to alleviate the inhibitory effects of the GAA expansion on FXN gene expression and to decrease pathogenicity. We have developed a simple and rapid PCR- and restriction enzyme-based assay to assess the purity of GAA repeat sequences.
Collapse
Affiliation(s)
- Timothy P Holloway
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
36
|
Belotserkovskii BP, Liu R, Hanawalt PC. Peptide nucleic acid (PNA) binding and its effect on in vitro transcription in friedreich's ataxia triplet repeats. Mol Carcinog 2009; 48:299-308. [PMID: 19306309 DOI: 10.1002/mc.20486] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Peptide nucleic acids (PNAs) are DNA mimics in which peptide-like linkages are substituted for the phosphodiester backbone. Homopyrimidine PNAs can invade double-stranded DNA containing the homologous sequence by displacing the homopyrimidine strand from the DNA duplex and forming a PNA/DNA/PNA triplex with the complementary homopurine strand. Among biologically interesting targets for triplex-forming PNA are (GAA/CTT)(n) repeats. Expansion of these repeats results in partial inhibition of transcription in the frataxin gene, causing Friedreich's ataxia. We have studied PNA binding and its effect on T7 RNA polymerase transcription in vitro for short repeats (n = 3) and for long repeats (n = 39), placed in both possible orientations relative to the T7 promoter such that either the GAA-strand, or the CTT-strand serves as the template for transcription. In all cases PNA bound specifically and efficiently to its target sequence. For the short insert, PNA binding to the template strand caused partial transcription blockage with well-defined sites of RNA product truncation in the region of the PNA-binding sequence, whereas binding to the nontemplate strand did not block transcription. However, PNA binding to long repeats, whether in the template or the nontemplate strand, resulted in a dramatic reduction of the amount of full-length transcription product, although in the case of the nontemplate strand there were no predominant truncation sites. Biological implications of these results are discussed.
Collapse
|
37
|
Richard GF, Kerrest A, Dujon B. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 2008; 72:686-727. [PMID: 19052325 PMCID: PMC2593564 DOI: 10.1128/mmbr.00011-08] [Citation(s) in RCA: 338] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Repeated elements can be widely abundant in eukaryotic genomes, composing more than 50% of the human genome, for example. It is possible to classify repeated sequences into two large families, "tandem repeats" and "dispersed repeats." Each of these two families can be itself divided into subfamilies. Dispersed repeats contain transposons, tRNA genes, and gene paralogues, whereas tandem repeats contain gene tandems, ribosomal DNA repeat arrays, and satellite DNA, itself subdivided into satellites, minisatellites, and microsatellites. Remarkably, the molecular mechanisms that create and propagate dispersed and tandem repeats are specific to each class and usually do not overlap. In the present review, we have chosen in the first section to describe the nature and distribution of dispersed and tandem repeats in eukaryotic genomes in the light of complete (or nearly complete) available genome sequences. In the second part, we focus on the molecular mechanisms responsible for the fast evolution of two specific classes of tandem repeats: minisatellites and microsatellites. Given that a growing number of human neurological disorders involve the expansion of a particular class of microsatellites, called trinucleotide repeats, a large part of the recent experimental work on microsatellites has focused on these particular repeats, and thus we also review the current knowledge in this area. Finally, we propose a unified definition for mini- and microsatellites that takes into account their biological properties and try to point out new directions that should be explored in a near future on our road to understanding the genetics of repeated sequences.
Collapse
Affiliation(s)
- Guy-Franck Richard
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS, URA2171, Université Pierre et Marie Curie, UFR927, 25 rue du Dr. Roux, F-75015, Paris, France.
| | | | | |
Collapse
|
38
|
Soragni E, Herman D, Dent SYR, Gottesfeld JM, Wells RD, Napierala M. Long intronic GAA*TTC repeats induce epigenetic changes and reporter gene silencing in a molecular model of Friedreich ataxia. Nucleic Acids Res 2008; 36:6056-65. [PMID: 18820300 PMCID: PMC2577344 DOI: 10.1093/nar/gkn604] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/05/2008] [Accepted: 09/05/2008] [Indexed: 12/25/2022] Open
Abstract
Friedreich ataxia (FRDA) is caused by hyperexpansion of GAA*TTC repeats located in the first intron of the FXN gene, which inhibits transcription leading to the deficiency of frataxin. The FXN gene is an excellent target for therapeutic intervention since (i) 98% of patients carry the same type of mutation, (ii) the mutation is intronic, thus leaving the FXN coding sequence unaffected and (iii) heterozygous GAA*TTC expansion carriers with approximately 50% decrease of the frataxin are asymptomatic. The discovery of therapeutic strategies for FRDA is hampered by a lack of appropriate molecular models of the disease. Herein, we present the development of a new cell line as a molecular model of FRDA by inserting 560 GAA*TTC repeats into an intron of a GFP reporter minigene. The GFP_(GAA*TTC)(560) minigene recapitulates the molecular hallmarks of the mutated FXN gene, i.e. inhibition of transcription of the reporter gene, decreased levels of the reporter protein and hypoacetylation and hypermethylation of histones in the vicinity of the repeats. Additionally, selected histone deacetylase inhibitors, known to stimulate the FXN gene expression, increase the expression of the GFP_(GAA*TTC)(560) reporter. This FRDA model can be adapted to high-throughput analyses in a search for new therapeutics for the disease.
Collapse
Affiliation(s)
- E. Soragni
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - D. Herman
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - S. Y. R. Dent
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - J. M. Gottesfeld
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - R. D. Wells
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - M. Napierala
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| |
Collapse
|
39
|
Abstract
Pathological expansions of GAA repeats in the first intron of the frataxin gene cause most cases of Friedreich ataxia, a progressively debilitating neurodegenerative disease. The disease is inherited in an autosomal recessive manner and the GAA repeats are suspected to form unusual non B-DNA conformations that decrease transcription and subsequently reduce levels of the encoded protein, frataxin. Recent work has shown that GAA repeats induce heterochromatin formation and silencing of the frataxin gene locus. Frataxin plays a crucial role in iron metabolism and detoxification and interacts with electron transport chain proteins. Clinical trials are currently underway to examine the efficacy of antioxidants in the treatment of Friedreich ataxia, but therapeutics designed to increase frataxin message levels are still in the developmental stages. This review will focus on the progress of potential treatment strategies for Friedreich ataxia that target the GAA expanded gene and seek to increase the level of frataxin message and protein.
Collapse
Affiliation(s)
- Michael D Hebert
- Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA.
| |
Collapse
|
40
|
Stolle CA, Frackelton EC, McCallum J, Farmer JM, Tsou A, Wilson RB, Lynch DR. Novel, complex interruptions of the GAA repeat in small, expanded alleles of two affected siblings with late-onset Friedreich ataxia. Mov Disord 2008; 23:1303-6. [PMID: 18464277 DOI: 10.1002/mds.22012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Friedreich ataxia (FA) is an autosomal recessive disorder associated with expanded GAA repeats in intron 1 of the FRDA gene. Two siblings presented with a mild form of FA at >60 years of age. Both had a large expansion (>600 repeats) and a small expansion (120 repeats) by long-range PCR. Sequence analysis of the small allele revealed multiple, complex interruptions in the GAA repeat. These 2 patients presented later than predicted from their allele size alone, when compared with a large cohort of FA patients. Accounting for the interruptions in the GAA repeat, though, did not make the age of onset consistent with that noted in other patients. Three additional patients with late onset FA and small expanded alleles also exhibited interrupted GAA repeats that were not associated with inappropriately late onset. Our observations suggest that interrupted GAA repeats do not clearly impact the age of onset in FA.
Collapse
Affiliation(s)
- Catherine A Stolle
- The Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4318, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Friedreich ataxia, the most common inherited ataxia, is caused by the transcriptional silencing of the FXN gene, which codes for the 210 amino acid frataxin, a mitochondrial protein involved in iron-sulfur cluster biosynthesis. The expansion of the GAA x TTC tract in intron 1 to as many as 1700 repeats elicits the transcriptional silencing by the formation of non-B DNA structures (triplexes or sticky DNA), the formation of a persistent DNA x RNA hybrid, or heterochromatin formation. The triplex (sticky DNA) adopted by the long repeat sequence also elicits profound mutagenic, genetic instability, and recombination behaviors. Early stage therapeutic investigations involving polyamides or histone deacetylase inhibitors are being pursued. Friedreich ataxia may be one of the most thoroughly studied hereditary neurological disease from a pathophysiological standpoint.
Collapse
Affiliation(s)
- Robert D Wells
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, The Texas Medical Center, 2121 W. Holcombe Blvd., Houston, TX 77030-3303, USA.
| |
Collapse
|
42
|
Cai M, Qiu D, Yuan T, Ding X, Li H, Duan L, Xu C, Li X, Wang S. Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. PLANT, CELL & ENVIRONMENT 2008; 31:86-96. [PMID: 17986178 DOI: 10.1111/j.1365-3040.2007.01739.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The WRKY transcription factor superfamily controls diverse developmental and physiological processes in plants. However, little is known about the factors that directly regulate the function of WRKY genes. In this study, we identified cis-acting elements and their binding proteins of rice OsWRKY13, a gene that plays a pivotal role in disease resistance against bacterial and fungal pathogens. Two novel pathogen-responsive cis-elements, PRE2 and PRE4, were characterized from the promoter region of OsWRKY13. The two cis-elements negatively regulate gene expression without pathogen challenge, and positively regulate gene expression after pathogen-induced protein binding. OsWRKY13 binds to PRE4, which harbours a novel W-like box. Another five proteins (Rad51-like; tubby-like; SWIM zinc finger and nucleotide-binding adaptor shared by APAF-1, certain R proteins and CED-4 (NB-ARC) domain containing proteins; and an unknown protein) also bind to one of the two cis-elements. Different proteins interacting with the same cis-element appear to have different DNA-binding core sequences. These proteins localize in the nucleus and show differential expression upon pathogen challenge. These results suggest that OsWRKY13 expression is regulated by multiple factors to achieve disease resistance.
Collapse
Affiliation(s)
- Meng Cai
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cai M, Wei J, Li X, Xu C, Wang S. A rice promoter containing both novel positive and negative cis-elements for regulation of green tissue-specific gene expression in transgenic plants. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:664-74. [PMID: 17596180 DOI: 10.1111/j.1467-7652.2007.00271.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The tissue-specific expression of transgenes is essential in plant breeding programmes to avoid the fitness costs caused by constitutive expression of a target gene. However, knowledge on the molecular mechanisms of tissue-specific gene expression and practicable tissue-specific promoters is limited. In this study, we identified the cis-acting elements of a tissue-specific promoter from rice, P(D54O), and tested the application of original and modified P(D54O) and its cis-elements in the regulation of gene expression. P(D54O) is a green tissue-specific promoter. Five novel tissue-specific cis-elements (LPSE1, LPSE2, LPSRE1, LPSRE2, PSE1) were characterized from P(D54O). LPSE1 activated gene expression in leaf and young panicle. LPSRE2 suppressed gene expression in leaf, root, young panicle and stem, and PSE1 suppressed gene expression in young panicle and stem. LPSRE1 and LPSE2 had dual roles in the regulation of tissue-specific gene expression; both functioned as activators in leaf, but LPSRE1 acted as a repressor in stem and LPSE2 as a repressor in young panicle and root. Transgenic rice plants carrying cry1Ac encoding Bacillus thuringiensis endotoxin, regulated by P(D54O), were resistant to leaf-folders, with no Cry1Ac protein found in endosperm or embryo. A reporter gene regulated by a series of truncated P(D54O) showed various tissue-specific expression patterns. Different fragments of P(D54O) fused with the constitutive cauliflower mosaic virus 35S promoter suppressed 35S-regulated gene expression in various tissues. P(D54O), truncated P(D54O) and the tissue-specific cis-elements provide useful tools for the regulation of tissue-specific gene expression in rice breeding programmes.
Collapse
Affiliation(s)
- Meng Cai
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
44
|
Abstract
Nearly 30 hereditary disorders in humans result from an increase in the number of copies of simple repeats in genomic DNA. These DNA repeats seem to be predisposed to such expansion because they have unusual structural features, which disrupt the cellular replication, repair and recombination machineries. The presence of expanded DNA repeats alters gene expression in human cells, leading to disease. Surprisingly, many of these debilitating diseases are caused by repeat expansions in the non-coding regions of their resident genes. It is becoming clear that the peculiar structures of repeat-containing transcripts are at the heart of the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA.
| |
Collapse
|
45
|
Son LS, Bacolla A, Wells RD. Sticky DNA: in vivo formation in E. coli and in vitro association of long GAA*TTC tracts to generate two independent supercoiled domains. J Mol Biol 2006; 360:267-84. [PMID: 16764889 DOI: 10.1016/j.jmb.2006.05.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 05/04/2006] [Accepted: 05/10/2006] [Indexed: 02/02/2023]
Abstract
The expanded GAA*TTC repeat sequence associated with Friedreich's ataxia (FRDA) adopts non-B DNA structures, (triplexes and sticky DNA). Sticky DNA is formed in plasmids by the association of two long GAA*TTC tracts at lengths that are found in the sequence of the frataxin gene in patients. Most FRDA patients have expanded GAA*TTC repeats (up to 1700 triplets), which inhibit the transcription of the gene, thus diminishing the synthesis of frataxin, a mitochondrial protein involved in iron-sulfur cluster biogenesis. Negative supercoiling and MgCl(2) (or MnCl(2)) are required to stabilize sticky DNA (a dumbbell-shaped structure) in plasmids with a pair of repeat tracts where n> or =60 in the direct repeat orientation in vitro. Since the triplet repeat sequences (TRS) were symmetrically positioned in the plasmids and because a number of unique restriction sites were present in the vector, studies were conducted to evaluate the influence of selectively linearizing one or the other supercoiled domains created by the DNA*DNA associated region, i.e. the stable complex at the pair of TRS's. The two domains behave independently, thus confirming the association of the two tracts and the dumbbell-shaped plasmid in our model for sticky DNA. Linking number investigations were performed on a family of plasmids harboring different lengths (30, 60, or 176 repeats), orientations and number of tracts (one or two) of a GAA*TTC repeat in Escherichia coli to evaluate the in vivo role, if any, of sticky DNA. Unexpectedly, this non-B DNA conformation elicited the formation of a TRS-length dependent change in the global topology of the plasmids, indicative of an apparent compression of the primary helices. Thus, linking number determinations confirm that sticky DNA has an important consequence in vivo.
Collapse
Affiliation(s)
- Leslie S Son
- Institute of Biosciences and Technology, Center for Genome Research, Texas A&M University System Health Science Center, Texas Medical Center, 2121 W. Holcombe Blvd., Houston, TX 77030-3303, USA
| | | | | |
Collapse
|
46
|
Abstract
Hypermutable tandem repeat sequences (TRSs) are present in the genomes of both prokaryotic and eukaryotic organisms. Numerous studies have been conducted in several laboratories over the past decade to investigate the mechanisms responsible for expansions and contractions of microsatellites (a subset of TRSs with a repeat length of 1-6 nucleotides) in the model prokaryotic organism Escherichia coli. Both the frequency of tandem repeat instability (TRI), and the types of mutational events that arise, are markedly influenced by the DNA sequence of the repeat, the number of unit repeats, and the types of cellular pathways that process the TRS. DNA strand slippage is a general mechanism invoked to explain instability in TRSs. Misaligned DNA sequences are stabilized both by favorable base pairing of complementary sequences and by the propensity of TRSs to form relatively stable secondary structures. Several cellular processes, including replication, recombination and a variety of DNA repair pathways, have been shown to interact with such structures and influence TRI in bacteria. This paper provides an overview of our current understanding of mechanisms responsible for TRI in bacteria, with an emphasis on studies that have been carried out in E. coli. In addition, new experimental data are presented, suggesting that TLS polymerases (PolII, PolIV and PolV) do not contribute significantly to TRI in E. coli.
Collapse
Affiliation(s)
- M Bichara
- Département Intégrité du Génome de l'UMR 7175, PolAP1, Boulevard Sébastien Brant 67400, Strasbourg-Illkirch, France
| | | | | |
Collapse
|
47
|
Schoenfeld RA, Napoli E, Wong A, Zhan S, Reutenauer L, Morin D, Buckpitt AR, Taroni F, Lonnerdal B, Ristow M, Puccio H, Cortopassi GA. Frataxin deficiency alters heme pathway transcripts and decreases mitochondrial heme metabolites in mammalian cells. Hum Mol Genet 2005; 14:3787-99. [PMID: 16239244 DOI: 10.1093/hmg/ddi393] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Deficiency of the frataxin mRNA alters the transcriptome, triggering neuro- and cardiodegeneration in Friedreich's ataxia. We microarrayed murine frataxin-deficient heart tissue, liver tissue and cardiocytes and observed a transcript down-regulation to up-regulation ratio of nearly 2:1 with a mitochondrial localization of transcriptional changes. Combining all mouse and human microarray data for frataxin-deficient cells and tissues, the most consistently decreased transcripts were mitochondrial coproporphyrinogen oxidase (CPOX) of the heme pathway and mature T-cell proliferation 1, a homolog of yeast COX23, which is thought to function as a mitochondrial metallochaperone. Quantitative RT-PCR studies confirmed the significant down-regulation of Isu1, CPOX and ferrochelatase at 10 weeks in mouse hearts. We observed that mutant cells were resistant to aminolevulinate-dependent toxicity, as expected if the heme pathway was inhibited. Consistent with this, we observed increased cellular protoporphyrin IX levels, reduced mitochondrial heme a and heme c levels and reduced activity of cytochrome oxidase, suggesting a defect between protoporphyrin IX and heme a. Fe-chelatase activities were similar in mutants and controls, whereas Zn-chelatase activities were slightly elevated in mutants, supporting the idea of an altered metal-specificity of ferrochelatase. These results suggest that frataxin deficiency causes defects late in the heme pathway. As ataxic symptoms occur in other diseases of heme deficiency, the heme defect we observe in frataxin-deficient cells could be primary to the pathophysiological process.
Collapse
Affiliation(s)
- Robert A Schoenfeld
- Department of Molecular Biosciences, University of California, Davis 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Napierala M, Bacolla A, Wells RD. Increased negative superhelical density in vivo enhances the genetic instability of triplet repeat sequences. J Biol Chem 2005; 280:37366-76. [PMID: 16166072 DOI: 10.1074/jbc.m508065200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The influence of negative superhelical density on the genetic instabilities of long GAA.TTC, CGG.CCG, and CTG.CAG repeat sequences was studied in vivo in topologically constrained plasmids in Escherichia coli. These repeat tracts are involved in the etiologies of Friedreich ataxia, fragile X syndrome, and myotonic dystrophy type 1, respectively. The capacity of these DNA tracts to undergo deletions-expansions was explored with three genetic-biochemical approaches including first, the utilization of topoisomerase I and/or DNA gyrase mutants, second, the specific inhibition of DNA gyrase by novobiocin, and third, the genetic removal of the HU protein, thus lowering the negative supercoil density (-sigma). All three strategies revealed that higher -sigma in vivo enhanced the formation of deleted repeat sequences. The effects were most pronounced for the Friedreich ataxia and the fragile X triplet repeat sequences. Higher levels of -sigma stabilize non-B DNA conformations (i.e. triplexes, sticky DNA, flexible and writhed DNA, slipped structures) at appropriate repeat tracts; also, numerous prior genetic instability investigations invoke a role for these structures in promoting the slippage of the DNA complementary strands. Thus, we propose that the in vivo modulation of the DNA structure, localized to the repeat tracts, is responsible for these behaviors. Presuming that these interrelationships are also found in humans, dynamic alterations in the chromosomal nuclear matrix may modulate the -sigma of certain DNA regions and, thus, stabilize/destabilize certain non-B conformations which regulate the genetic expansions-deletions responsible for the diseases.
Collapse
Affiliation(s)
- Marek Napierala
- Institute of Biosciences and Technology, Center for Genome Research, Texas A&M University System Health Science Center, Houston, 77030-3303, USA
| | | | | |
Collapse
|
49
|
Wells RD, Dere R, Hebert ML, Napierala M, Son LS. Advances in mechanisms of genetic instability related to hereditary neurological diseases. Nucleic Acids Res 2005; 33:3785-98. [PMID: 16006624 PMCID: PMC1174910 DOI: 10.1093/nar/gki697] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Substantial progress has been realized in the past several years in our understanding of the molecular mechanisms responsible for the expansions and deletions (genetic instabilities) of repeating tri-, tetra- and pentanucleotide repeating sequences associated with a number of hereditary neurological diseases. These instabilities occur by replication, recombination and repair processes, probably acting in concert, due to slippage of the DNA complementary strands relative to each other. The biophysical properties of the folded-back repeating sequence strands play a critical role in these instabilities. Non-B DNA structural elements (hairpins and slipped structures, DNA unwinding elements, tetraplexes, triplexes and sticky DNA) are described. The replication mechanisms are influenced by pausing of the replication fork, orientation of the repeat strands, location of the repeat sequences relative to replication origins and the flap endonuclease. Methyl-directed mismatch repair, nucleotide excision repair, and repair of damage caused by mutagens are discussed. Genetic recombination and double-strand break repair advances in Escherichia coli, yeast and mammalian models are reviewed. Furthermore, the newly discovered capacities of certain triplet repeat sequences to cause gross chromosomal rearrangements are discussed.
Collapse
Affiliation(s)
- Robert D Wells
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Texas Medical Center, 2121 W. Holcombe Blvd, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
50
|
Raghavan SC, Chastain P, Lee JS, Hegde BG, Houston S, Langen R, Hsieh CL, Haworth IS, Lieber MR. Evidence for a Triplex DNA Conformation at the bcl-2 Major Breakpoint Region of the t(14;18) Translocation. J Biol Chem 2005; 280:22749-60. [PMID: 15840562 DOI: 10.1074/jbc.m502952200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The most common chromosomal translocation in cancer, t(14;18), occurs at the bcl-2 major breakpoint region (Mbr) in follicular lymphomas. The 150-bp bcl-2 Mbr, which contains three breakage hotspots (peaks), has a single-stranded character and, hence, a non-B DNA conformation both in vivo and in vitro. Here, we use gel assays and electron microscopy to show that a triplex-specific antibody binds to the bcl-2 Mbr in vitro. Bisulfite reactivity shows that the non-B DNA structure is favored by, but not dependent upon, supercoiling and suggests a possible triplex conformation at one portion of the Mbr (peak I). We have used circular dichroism to test whether the predicted third strand of that suggested structure can indeed form a triplex with the duplex at peak I, and it does so with 1:1 stoichiometry. Using an intracellular minichromosomal assay, we show that the non-B DNA structure formation is critical for the breakage at the bcl-2 Mbr, because a 3-bp mutation that disrupts the putative peak I triplex also markedly reduces the recombination of the Mbr. A three-dimensional model of such a triplex is consistent with bond length, bond angle, and energetic restrictions (stacking and hydrogen bonding). We infer that an imperfect purine/purine/pyrimidine (R.R.Y) triplex likely forms at the bcl-2 Mbr in vitro, and in vivo recombination data favor this as the major DNA conformation in vivo as well.
Collapse
MESH Headings
- Antibodies, Monoclonal/chemistry
- Base Sequence
- Cell Line, Tumor
- Chromosomes, Human, Pair 14
- Chromosomes, Human, Pair 18
- Circular Dichroism
- DNA/chemistry
- Humans
- Hydrogen Bonding
- Microscopy, Electron
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Plasmids/metabolism
- Protein Conformation
- Protein Transport
- Proto-Oncogene Proteins c-bcl-2/chemistry
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Recombination, Genetic
- Software
- Sulfites/pharmacology
- Translocation, Genetic
Collapse
Affiliation(s)
- Sathees C Raghavan
- Norris Comprehensive Cancer Center, Zilka Neurogenetics Institute, University of Southern California Keck School of Medicine, Los Angeles, 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|