1
|
Kim SJ, Park SH, Myung K, Lee KY. Lamin A/C facilitates DNA damage response by modulating ATM signaling and homologous recombination pathways. Anim Cells Syst (Seoul) 2024; 28:401-416. [PMID: 39176289 PMCID: PMC11340224 DOI: 10.1080/19768354.2024.2393820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024] Open
Abstract
Lamin A/C, a core component of the nuclear lamina, forms a mesh-like structure beneath the inner nuclear membrane. While its structural role is well-studied, its involvement in DNA metabolism remains unclear. We conducted sequential protein fractionation to determine the subcellular localization of early DNA damage response (DDR) proteins. Our findings indicate that most DDR proteins, including ATM and the MRE11-RAD50-NBS1 (MRN) complex, are present in the nuclease - and high salt-resistant pellet fraction. Notably, ATM and MRN remain stably associated with these structures throughout the cell cycle, independent of ionizing radiation (IR)-induced DNA damage. Although Lamin A/C interacts with ATM and MRN, its depletion does not disrupt their association with nuclease-resistant structures. However, it impairs the IR-enhanced association of ATM with the nuclear matrix and ATM-mediated DDR signaling, as well as the interaction between ATM and MRN. This disruption impedes the recruitment of MRE11 to damaged DNA and the association of damaged DNA with the nuclear matrix. Additionally, Lamin A/C depletion results in reduced protein levels of CtIP and RAD51, which is mediated by transcriptional regulation. This, in turn, impairs the efficiency of homologous recombination (HR). Our findings indicate that Lamin A/C plays a pivotal role in DNA damage repair (DDR) by orchestrating ATM-mediated signaling, maintaining HR protein levels, and ensuring efficient DNA repair processes.
Collapse
Affiliation(s)
- Seong-jung Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Kyoo-young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Korea
| |
Collapse
|
2
|
Cobb AM, Yusoff S, Hayward R, Ahmad S, Sun M, Verhulst A, D'Haese PC, Shanahan CM. Runx2 (Runt-Related Transcription Factor 2) Links the DNA Damage Response to Osteogenic Reprogramming and Apoptosis of Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2021; 41:1339-1357. [PMID: 33356386 DOI: 10.1161/atvbaha.120.315206] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Animals
- Apoptosis
- Cells, Cultured
- Cellular Reprogramming
- Core Binding Factor Alpha 1 Subunit/genetics
- Core Binding Factor Alpha 1 Subunit/metabolism
- DNA Damage
- Disease Models, Animal
- Female
- Histones/metabolism
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Osteogenesis
- Phosphorylation
- Rats, Wistar
- Signal Transduction
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Mice
- Rats
Collapse
Affiliation(s)
- Andrew M Cobb
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Syabira Yusoff
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Robert Hayward
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Sadia Ahmad
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Mengxi Sun
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Anja Verhulst
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium (A.V., P.C.D.)
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium (A.V., P.C.D.)
| | - Catherine M Shanahan
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| |
Collapse
|
3
|
Liang F, Miller AS, Longerich S, Tang C, Maranon D, Williamson EA, Hromas R, Wiese C, Kupfer GM, Sung P. DNA requirement in FANCD2 deubiquitination by USP1-UAF1-RAD51AP1 in the Fanconi anemia DNA damage response. Nat Commun 2019; 10:2849. [PMID: 31253762 PMCID: PMC6599204 DOI: 10.1038/s41467-019-10408-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/08/2019] [Indexed: 02/02/2023] Open
Abstract
Fanconi anemia (FA) is a multigenic disease of bone marrow failure and cancer susceptibility stemming from a failure to remove DNA crosslinks and other chromosomal lesions. Within the FA DNA damage response pathway, DNA-dependent monoubiquitinaton of FANCD2 licenses downstream events, while timely FANCD2 deubiquitination serves to extinguish the response. Here, we show with reconstituted biochemical systems, which we developed, that efficient FANCD2 deubiquitination by the USP1-UAF1 complex is dependent on DNA and DNA binding by UAF1. Surprisingly, we find that the DNA binding activity of the UAF1-associated protein RAD51AP1 can substitute for that of UAF1 in FANCD2 deubiquitination in our biochemical system. We also reveal the importance of DNA binding by UAF1 and RAD51AP1 in FANCD2 deubiquitination in the cellular setting. Our results provide insights into a key step in the FA pathway and help define the multifaceted role of the USP1-UAF1-RAD51AP1 complex in DNA damage tolerance and genome repair. In the Fanconi anemia pathway, deubiquitination of FANCD2 is a fundamental regulatory step. Here, the authors have developed a set of biochemical tools to reconstitute FANCD2 deubiquitination by recombinant USP1-UAF1-RAD51AP1 and reveal critical mechanistic details of the process.
Collapse
Affiliation(s)
- Fengshan Liang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA.,Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Adam S Miller
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Simonne Longerich
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Tang
- Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - David Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Elizabeth A Williamson
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gary M Kupfer
- Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, CT, USA. .,Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA. .,Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
4
|
Lopez-Martinez D, Liang CC, Cohn MA. Cellular response to DNA interstrand crosslinks: the Fanconi anemia pathway. Cell Mol Life Sci 2016; 73:3097-114. [PMID: 27094386 PMCID: PMC4951507 DOI: 10.1007/s00018-016-2218-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022]
Abstract
Interstrand crosslinks (ICLs) are a highly toxic form of DNA damage. ICLs can interfere with vital biological processes requiring separation of the two DNA strands, such as replication and transcription. If ICLs are left unrepaired, it can lead to mutations, chromosome breakage and mitotic catastrophe. The Fanconi anemia (FA) pathway can repair this type of DNA lesion, ensuring genomic stability. In this review, we will provide an overview of the cellular response to ICLs. First, we will discuss the origin of ICLs, comparing various endogenous and exogenous sources. Second, we will describe FA proteins as well as FA-related proteins involved in ICL repair, and the post-translational modifications that regulate these proteins. Finally, we will review the process of how ICLs are repaired by both replication-dependent and replication-independent mechanisms.
Collapse
Affiliation(s)
- David Lopez-Martinez
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Chih-Chao Liang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Martin A Cohn
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
5
|
Coleman KE, Huang TT. How SUMOylation Fine-Tunes the Fanconi Anemia DNA Repair Pathway. Front Genet 2016; 7:61. [PMID: 27148358 PMCID: PMC4835495 DOI: 10.3389/fgene.2016.00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/01/2016] [Indexed: 12/21/2022] Open
Abstract
Fanconi anemia (FA) is a rare human genetic disorder characterized by developmental defects, bone marrow failure and cancer predisposition, primarily due to a deficiency in the repair of DNA interstrand crosslinks (ICLs). ICL repair through the FA DNA repair pathway is a complicated multi-step process, involving at least 19 FANC proteins and coordination of multiple DNA repair activities, including homologous recombination, nucleotide excision repair and translesion synthesis (TLS). SUMOylation is a critical regulator of several DNA repair pathways, however, the role of this modification in controlling the FA pathway is poorly understood. Here, we summarize recent advances in the fine-tuning of the FA pathway by small ubiquitin-like modifier (SUMO)-targeted ubiquitin ligases (STUbLs) and other SUMO-related interactions, and discuss the implications of these findings in the design of novel therapeutics for alleviating FA-associated condition, including cancer.
Collapse
Affiliation(s)
- Kate E Coleman
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York NY, USA
| | - Tony T Huang
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York NY, USA
| |
Collapse
|
6
|
Wilson RHC, Hesketh EL, Coverley D. The Nuclear Matrix: Fractionation Techniques and Analysis. Cold Spring Harb Protoc 2016; 2016:pdb.top074518. [PMID: 26729911 DOI: 10.1101/pdb.top074518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The first descriptions of an insoluble nuclear structure appeared more than 70 years ago, but it is only in recent years that a sophisticated picture of its significance has begun to emerge. Here we introduce multiple methods for the study of the nuclear matrix.
Collapse
Affiliation(s)
| | - Emma L Hesketh
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Dawn Coverley
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
7
|
Duxin JP, Walter JC. What is the DNA repair defect underlying Fanconi anemia? Curr Opin Cell Biol 2015; 37:49-60. [PMID: 26512453 PMCID: PMC4688103 DOI: 10.1016/j.ceb.2015.09.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 12/14/2022]
Abstract
Fanconi anemia (FA) is a rare human genetic disease characterized by bone marrow failure, cancer predisposition, and genomic instability. It has been known for many years that FA patient-derived cells are exquisitely sensitive to DNA interstrand cross-linking agents such as cisplatin and mitomycin C. On this basis, it was widely assumed that failure to repair endogenous interstrand cross-links (ICLs) causes FA, although the endogenous mutagen that generates these lesions remained elusive. Recent genetic evidence now suggests that endogenous aldehydes are the driving force behind FA. Importantly, aldehydes cause a variety of DNA lesions, including ICLs and DNA protein cross-links (DPCs), re-kindling the debate about which DNA lesions cause FA. In this review, we discuss new developments in our understanding of DPC and ICL repair, and how these findings bear on the question of which DNA lesion underlies FA.
Collapse
Affiliation(s)
- Julien P Duxin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute.
| |
Collapse
|
8
|
Chen X, Bosques L, Sung P, Kupfer GM. A novel role for non-ubiquitinated FANCD2 in response to hydroxyurea-induced DNA damage. Oncogene 2015; 35:22-34. [PMID: 25893307 DOI: 10.1038/onc.2015.68] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a genetic disease of bone marrow failure, cancer susceptibility, and sensitivity to DNA crosslinking agents. FANCD2, the central protein of the FA pathway, is monoubiquitinated upon DNA damage, such as crosslinkers and replication blockers such as hydroxyurea (HU). Even though FA cells demonstrate unequivocal sensitivity to crosslinkers, such as mitomycin C (MMC), we find that they are largely resistant to HU, except for cells absent for expression of FANCD2. FANCD2, RAD51 and RAD18 form a complex, which is enhanced upon HU exposure. Surprisingly, although FANCD2 is required for this enhanced interaction, its monoubiquitination is not. Similarly, non-ubiquitinated FANCD2 can still support proliferation cell nuclear antigen (PCNA) monoubiquitination. RAD51, but not BRCA2, is also required for PCNA monoubiquitination in response to HU, suggesting that this function is independent of homologous recombination (HR). We further show that translesion (TLS) polymerase PolH chromatin localization is decreased in FANCD2 deficient cells, FANCD2 siRNA knockdown cells and RAD51 siRNA knockdown cells, and PolH knockdown results in HU sensitivity only. Our data suggest that FANCD2 and RAD51 have an important role in PCNA monoubiquitination and TLS in a FANCD2 monoubiquitination and HR-independent manner in response to HU. This effect is not observed with MMC treatment, suggesting a non-canonical function for the FA pathway in response to different types of DNA damage.
Collapse
Affiliation(s)
- X Chen
- Department of Pediatrics, Section of Hematology/Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.,Department of Pathology, Section of Hematology/Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - L Bosques
- Department of Pediatrics, Section of Hematology/Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.,Department of Pathology, Section of Hematology/Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - P Sung
- Department of Molecular, Cellular, and Developmental Biology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - G M Kupfer
- Department of Pediatrics, Section of Hematology/Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.,Department of Pathology, Section of Hematology/Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
Saningong AD, Bayer P. Human DNA-binding peptidyl-prolyl cis/trans isomerase Par14 is cell cycle dependently expressed and associates with chromatin in vivo. BMC BIOCHEMISTRY 2015; 16:4. [PMID: 25645591 PMCID: PMC4327958 DOI: 10.1186/s12858-015-0033-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/15/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Par14, a member of the parvulin family of peptidyl-prolyl cis-trans isomerases that is involved in rRNA processing, microtubule formation and the glucose metabolism and has been suggested to play a role in chromatin remodeling on basis of sequence and structural identities to HMG proteins. Par14 is enriched in the nucleus and binds to double-stranded DNA in vitro. RESULTS By means of sub-nuclear biochemical fractionations, we demonstrate that cellular Par14 is associated with chromatin 3-fold higher than with the nuclear matrix in vivo. Par14 is released from the chromatin fraction after treatment with DNase I and elutes at high NaCl concentrations from the nucleic acid-binding fraction. Using qRT-PCR and western blotting we demonstrate that Par14 is up-regulated during the S and G2/M phases in synchronised human foreskin fibroblasts cells. CONCLUSION In the light of our results, Par14 can be described as an endogenous non-histone chromatin protein, which binds DNA in vivo. We propose that Par14 is involved in a DNA-dependent activity such as transcription.
Collapse
Affiliation(s)
- Akuma D Saningong
- Department of Structural and Medicinal Biochemistry, Center of Medical Biotechnology, Universität Duisburg-Essen, Room S03 S01 A35, Universitätsstr. 1-5, 45141, Essen, Germany.
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Center of Medical Biotechnology, Universität Duisburg-Essen, Room S03 S01 A35, Universitätsstr. 1-5, 45141, Essen, Germany.
| |
Collapse
|
10
|
Qian L, Yuan F, Rodriguez-Tello P, Padgaonkar S, Zhang Y. Human Fanconi anemia complementation group a protein stimulates the 5' flap endonuclease activity of FEN1. PLoS One 2013; 8:e82666. [PMID: 24349332 PMCID: PMC3857783 DOI: 10.1371/journal.pone.0082666] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 10/26/2013] [Indexed: 11/28/2022] Open
Abstract
In eukaryotic cells, Flap endonuclease 1 (FEN1) is a major structure-specific endonuclease that processes 5’ flapped structures during maturation of lagging strand DNA synthesis, long patch base excision repair, and rescue of stalled replication forks. Here we report that fanconi anemia complementation group A protein (FANCA), a protein that recognizes 5’ flap structures and is involved in DNA repair and maintenance of replication forks, constantly stimulates FEN1-mediated incision of both DNA and RNA flaps. Kinetic analyses indicate that FANCA stimulates FEN1 by increasing the turnover rate of FEN1 and altering its substrate affinity. More importantly, six pathogenic FANCA mutants are significantly less efficient than the wild-type at stimulating FEN1 endonuclease activity, implicating that regulation of FEN1 by FANCA contributes to the maintenance of genomic stability.
Collapse
Affiliation(s)
- Liangyue Qian
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Paola Rodriguez-Tello
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Suyog Padgaonkar
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
11
|
Benitez A, Yuan F, Nakajima S, Wei L, Qian L, Myers R, Hu JJ, Lan L, Zhang Y. Damage-dependent regulation of MUS81-EME1 by Fanconi anemia complementation group A protein. Nucleic Acids Res 2013; 42:1671-83. [PMID: 24170812 PMCID: PMC3919598 DOI: 10.1093/nar/gkt975] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
MUS81-EME1 is a DNA endonuclease involved in replication-coupled repair of DNA interstrand cross-links (ICLs). A prevalent hypothetical role of MUS81-EME1 in ICL repair is to unhook the damage by incising the leading strand at the 3′ side of an ICL lesion. In this study, we report that purified MUS81-EME1 incises DNA at the 5′ side of a psoralen ICL residing in fork structures. Intriguingly, ICL repair protein, Fanconi anemia complementation group A protein (FANCA), greatly enhances MUS81-EME1-mediated ICL incision. On the contrary, FANCA exhibits a two-phase incision regulation when DNA is undamaged or the damage affects only one DNA strand. Studies using truncated FANCA proteins indicate that both the N- and C-moieties of the protein are required for the incision regulation. Using laser-induced psoralen ICL formation in cells, we find that FANCA interacts with and recruits MUS81 to ICL lesions. This report clarifies the incision specificity of MUS81-EME1 on ICL damage and establishes that FANCA regulates the incision activity of MUS81-EME1 in a damage-dependent manner.
Collapse
Affiliation(s)
- Anaid Benitez
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Satoshi Nakajima
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Leizhen Wei
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Liangyue Qian
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Richard Myers
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jennifer J. Hu
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Li Lan
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- *To whom correspondence should be addressed. Tel: +1 305 243 9237; Fax: +1 305 243 3955;
| |
Collapse
|
12
|
Wilson RHC, Coverley D. Relationship between DNA replication and the nuclear matrix. Genes Cells 2012; 18:17-31. [PMID: 23134523 PMCID: PMC3564400 DOI: 10.1111/gtc.12010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/10/2012] [Indexed: 01/24/2023]
Abstract
There is an extensive list of primary published work related to the nuclear matrix (NM). Here we review the aspects that are required to understand its relationship with DNA replication, while highlighting some of the difficulties in studying such a structure, and possible differences that arise from the choice of model system. We consider NM attachment regions of DNA and discuss their characteristics and potential function before reviewing data that deal specifically with functional interaction with DNA replication factors. Data have long existed indicating that newly synthesized DNA is associated with a nuclease-resistant NM, allowing the conclusion that the elongation step of DNA synthesis is immobilized within the nucleus. We review in more detail the emerging data that suggest that prereplication complex proteins and origins of replication are transiently recruited to the NM during late G1 and early S-phase. Collectively, these data suggest that the initiation step of the DNA replication process is also immobilized by attachment to the NM. We outline models that discuss the possible spatial relationships and highlight the emerging evidence that suggests there may be important differences between cell types.
Collapse
|
13
|
Fanconi anemia proteins and their interacting partners: a molecular puzzle. Anemia 2012; 2012:425814. [PMID: 22737580 PMCID: PMC3378961 DOI: 10.1155/2012/425814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/13/2012] [Indexed: 11/17/2022] Open
Abstract
In recent years, Fanconi anemia (FA) has been the subject of intense investigations, primarily in the DNA repair research field. Many discoveries have led to the notion of a canonical pathway, termed the FA pathway, where all FA proteins function sequentially in different protein complexes to repair DNA cross-link damages. Although a detailed architecture of this DNA cross-link repair pathway is emerging, the question of how a defective DNA cross-link repair process translates into the disease phenotype is unresolved. Other areas of research including oxidative metabolism, cell cycle progression, apoptosis, and transcriptional regulation have been studied in the context of FA, and some of these areas were investigated before the fervent enthusiasm in the DNA repair field. These other molecular mechanisms may also play an important role in the pathogenesis of this disease. In addition, several FA-interacting proteins have been identified with roles in these “other” nonrepair molecular functions. Thus, the goal of this paper is to revisit old ideas and to discuss protein-protein interactions related to other FA-related molecular functions to try to give the reader a wider perspective of the FA molecular puzzle.
Collapse
|
14
|
Yuan F, Qian L, Zhao X, Liu JY, Song L, D'Urso G, Jain C, Zhang Y. Fanconi anemia complementation group A (FANCA) protein has intrinsic affinity for nucleic acids with preference for single-stranded forms. J Biol Chem 2011; 287:4800-7. [PMID: 22194614 DOI: 10.1074/jbc.m111.315366] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5'-flap or 5'-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772-1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found.
Collapse
Affiliation(s)
- Fenghua Yuan
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Huang M, Kennedy R, Ali AM, Moreau LA, Meetei AR, D’Andrea AD, Chen CC. Human MutS and FANCM complexes function as redundant DNA damage sensors in the Fanconi Anemia pathway. DNA Repair (Amst) 2011; 10:1203-12. [DOI: 10.1016/j.dnarep.2011.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/03/2011] [Accepted: 09/10/2011] [Indexed: 12/30/2022]
|
16
|
Constantinou A. Rescue of replication failure by Fanconi anaemia proteins. Chromosoma 2011; 121:21-36. [PMID: 22057367 PMCID: PMC3260432 DOI: 10.1007/s00412-011-0349-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/17/2011] [Accepted: 10/17/2011] [Indexed: 01/23/2023]
Abstract
Chromosomal aberrations are often associated with incomplete genome duplication, for instance at common fragile sites, or as a consequence of chemical alterations in the DNA template that block replication forks. Studies of the cancer-prone disease Fanconi anaemia (FA) have provided important insights into the resolution of replication problems. The repair of interstrand DNA crosslinks induced by chemotherapy drugs is coupled with DNA replication and controlled by FA proteins. We discuss here the recent discovery of new FA-associated proteins and the development of new tractable repair systems that have dramatically improved our understanding of crosslink repair. We focus also on how FA proteins protect against replication failure in the context of fragile sites and on the identification of reactive metabolites that account for the development of Fanconi anaemia symptoms.
Collapse
Affiliation(s)
- Angelos Constantinou
- Institute of Human Genetics, CNRS UPR 1142, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| |
Collapse
|
17
|
Gospodinov A, Mladenova V, Anachkova B. Sub-Cellular Localization of TIP49 in Response to DNA Damage. BIOTECHNOL BIOTEC EQ 2011. [DOI: 10.5504/bbeq.2011.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
18
|
Tumini E, Plevani P, Muzi-Falconi M, Marini F. Physical and functional crosstalk between Fanconi anemia core components and the GINS replication complex. DNA Repair (Amst) 2010; 10:149-58. [PMID: 21109493 DOI: 10.1016/j.dnarep.2010.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/20/2010] [Accepted: 10/20/2010] [Indexed: 11/18/2022]
Abstract
Fanconi anemia (FA) is an inherited disease characterized by bone marrow failure, increased cancer risk and hypersensitivity to DNA cross-linking agents, implying a role for this pathway in the maintenance of genomic stability. The central player of the FA pathway is the multi-subunit E3 ubiquitin ligase complex activated through a replication- and DNA damage-dependent mechanism. A consequence of the activation of the complex is the monoubiquitylation of FANCD2 and FANCI, late term effectors in the maintenance of genome integrity. The details regarding the coordination of the FA-dependent response and the DNA replication process are still mostly unknown. We found, by yeast two-hybrid assay and co-immunoprecipitation in human cells, that the core complex subunit FANCF physically interacts with PSF2, a member of the GINS complex essential for both the initiation and elongation steps of DNA replication. In HeLa cells depleted for PSF2, we observed a decreased binding to chromatin of the FA core complex, suggesting that the GINS complex may have a role in either loading or stabilizing the FA core complex onto chromatin. Consistently, GINS and core complex bind chromatin contemporarily upon origin firing and PSF2 depletion sensitizes cells to DNA cross-linking agents. However, depletion of PSF2 is not sufficient to reduce monoubiquitylation of FANCD2 or its localization to nuclear foci following DNA damage. Our results suggest a novel crosstalk between DNA replication and the FA pathway.
Collapse
Affiliation(s)
- Emanuela Tumini
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | |
Collapse
|
19
|
Abstract
FANCM and its relatives, Hef, Mph1 and Fml1, are DNA junction-specific helicases/translocases that target and process perturbed replication forks and intermediates of homologous recombination. They have variously been implicated in promoting the activation of the S-phase checkpoint, recruitment of the Fanconi Anemia Core Complex to sites of DNA damage, crossover avoidance during DNA double-strand break repair by homologous recombination, and the replicative bypass of DNA lesions by template switching. This review summarises our current understanding of the biochemical activities and biological functions of the FANCM family.
Collapse
Affiliation(s)
- Matthew C Whitby
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
20
|
Bhagwat N, Olsen AL, Wang AT, Hanada K, Stuckert P, Kanaar R, D'Andrea A, Niedernhofer LJ, McHugh PJ. XPF-ERCC1 participates in the Fanconi anemia pathway of cross-link repair. Mol Cell Biol 2009; 29:6427-37. [PMID: 19805513 PMCID: PMC2786876 DOI: 10.1128/mcb.00086-09] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/28/2009] [Accepted: 09/26/2009] [Indexed: 11/20/2022] Open
Abstract
Interstrand cross-links (ICLs) prevent DNA strand separation and, therefore, transcription and replication, making them extremely cytotoxic. The precise mechanism by which ICLs are removed from mammalian genomes largely remains elusive. Genetic evidence implicates ATR, the Fanconi anemia proteins, proteins required for homologous recombination, translesion synthesis, and at least two endonucleases, MUS81-EME1 and XPF-ERCC1. ICLs cause replication-dependent DNA double-strand breaks (DSBs), and MUS81-EME1 facilitates DSB formation. The subsequent repair of these DSBs occurs via homologous recombination after the ICL is unhooked by XPF-ERCC1. Here, we examined the effect of the loss of either nuclease on FANCD2 monoubiquitination to determine if the nucleolytic processing of ICLs is required for the activation of the Fanconi anemia pathway. FANCD2 was monoubiquitinated in Mus81(-/-), Ercc1(-/-), and XPF-deficient human, mouse, and hamster cells exposed to cross-linking agents. However, the monoubiquitinated form of FANCD2 persisted longer in XPF-ERCC1-deficient cells than in wild-type cells. Moreover, the levels of chromatin-bound FANCD2 were dramatically reduced and the number of ICL-induced FANCD2 foci significantly lower in XPF-ERCC1-deficient cells. These data demonstrate that the unhooking of an ICL by XPF-ERCC1 is necessary for the stable localization of FANCD2 to the chromatin and subsequent homologous recombination-mediated DSB repair.
Collapse
Affiliation(s)
- Nikhil Bhagwat
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Anna L. Olsen
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Anderson T. Wang
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Katsuhiro Hanada
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Patricia Stuckert
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Roland Kanaar
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Alan D'Andrea
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Laura J. Niedernhofer
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Peter J. McHugh
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| |
Collapse
|
21
|
Zhi G, Wilson JB, Chen X, Krause DS, Xiao Y, Jones NJ, Kupfer GM. Fanconi anemia complementation group FANCD2 protein serine 331 phosphorylation is important for fanconi anemia pathway function and BRCA2 interaction. Cancer Res 2009; 69:8775-83. [PMID: 19861535 DOI: 10.1158/0008-5472.can-09-2312] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fanconi anemia is a cancer-prone inherited bone marrow failure and cancer susceptibility syndrome with at least 13 complementation groups (FANCA, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCJ, FANCL, FANCM, and FANCN). Our laboratory has previously described several regulatory phosphorylation events for core complex member proteins FANCG and FANCA by phosphorylation. In this study, we report a novel phosphorylation site serine 331 (S331) of FANCD2, the pivotal downstream player of the Fanconi anemia pathway. Phosphorylation of S331 is important for its DNA damage-inducible monoubiquitylation, resistance to DNA cross-linkers, and in vivo interaction with FANCD1/BRCA2. A phosphomimetic mutation at S331 restores all of these phenotypes to wild-type. In vitro and in vivo experiments show that phosphorylation of S331 is mediated by CHK1, the S-phase checkpoint kinase implicated in the Fanconi anemia DNA repair pathway.
Collapse
Affiliation(s)
- Gang Zhi
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Gari K, Constantinou A. The role of the Fanconi anemia network in the response to DNA replication stress. Crit Rev Biochem Mol Biol 2009; 44:292-325. [PMID: 19728769 DOI: 10.1080/10409230903154150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fanconi anemia is a genetically heterogeneous disorder associated with chromosome instability and a highly elevated risk for developing cancer. The mutated genes encode proteins involved in the cellular response to DNA replication stress. Fanconi anemia proteins are extensively connected with DNA caretaker proteins, and appear to function as a hub for the coordination of DNA repair with DNA replication and cell cycle progression. At a molecular level, however, the raison d'être of Fanconi anemia proteins still remains largely elusive. The thirteen Fanconi anemia proteins identified to date have not been embraced into a single and defined biological process. To help put the Fanconi anemia puzzle into perspective, we begin this review with a summary of the strategies employed by prokaryotes and eukaryotes to tolerate obstacles to the progression of replication forks. We then summarize what we know about Fanconi anemia with an emphasis on biochemical aspects, and discuss how the Fanconi anemia network, a late acquisition in evolution, may function to permit the faithful and complete duplication of our very large vertebrate chromosomes.
Collapse
Affiliation(s)
- Kerstin Gari
- DNA Damage Response Laboratory, Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, UK
| | | |
Collapse
|
23
|
de Winter JP, Joenje H. The genetic and molecular basis of Fanconi anemia. Mutat Res 2009; 668:11-19. [PMID: 19061902 DOI: 10.1016/j.mrfmmm.2008.11.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/28/2008] [Accepted: 11/06/2008] [Indexed: 05/27/2023]
Abstract
The capacity to maintain genomic integrity is shared by all living organisms. Multiple pathways are distinguished that safeguard genomic stability, most of which have originated in primitive life forms. In human individuals, defects in these pathways are typically associated with cancer proneness. The Fanconi anemia pathway, one of these pathways, has evolved relatively late during evolution and exists - in its fully developed form - only in vertebrates. This pathway, in which thus far 13 distinct proteins have been shown to participate, appears essential for error-free DNA replication. Inactivating mutations in the corresponding genes underlie the recessive disease Fanconi anemia (FA). In the last decade the genetic basis of this disorder has been uncovered by a variety of approaches, including complementation cloning, genetic linkage analysis and protein association studies. Here we review these approaches, introduce the encoded proteins, and discuss their possible role in ensuring genomic integrity.
Collapse
Affiliation(s)
- Johan P de Winter
- Department of Clinical Genetics, Section Oncogenetics, VU University Medical Center, Van der Boechorststraat 7, Amsterdam 1081 BT, The Netherlands.
| | | |
Collapse
|
24
|
Xu M, Medvedev S, Yang J, Hecht NB. MIWI-independent small RNAs (MSY-RNAs) bind to the RNA-binding protein, MSY2, in male germ cells. Proc Natl Acad Sci U S A 2009; 106:12371-6. [PMID: 19597149 PMCID: PMC2718373 DOI: 10.1073/pnas.0903944106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Indexed: 11/18/2022] Open
Abstract
The germ cell-specific DNA/RNA-binding protein MSY2 binds small RNAs (MSY-RNAs) that are approximately 25-31 nt in length, often initiate with a 5' adenine, and are expressed in both germ cells and somatic cells. MSY-RNA levels do not decrease in Miwi or Msy2 null mice. Most MSY-RNAs map within annotated genes, but some are PIWI-interacting RNA (piRNA)-like and map to piRNA clusters. MSY-RNAs are in both nuclei and cytoplasm. In nuclei, MSY-RNAs are enriched in chromatin, and in the cytoplasm they are detected in both ribonucleoproteins and polysomes.
Collapse
Affiliation(s)
- Mingang Xu
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
| | - Sergey Medvedev
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Juxiang Yang
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
| | - Norman B. Hecht
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
| |
Collapse
|
25
|
Kubota Y, Takanami T, Higashitani A, Horiuchi S. Localization of X-ray cross complementing gene 1 protein in the nuclear matrix is controlled by casein kinase II-dependent phosphorylation in response to oxidative damage. DNA Repair (Amst) 2009; 8:953-60. [PMID: 19596613 DOI: 10.1016/j.dnarep.2009.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 06/09/2009] [Accepted: 06/09/2009] [Indexed: 11/24/2022]
Abstract
Base excision repair/single strand break repair (BER/SSBR) of damaged DNA is a highly efficient process. X-ray cross complementing protein 1 (XRCC1) functions as a key scaffold protein for BER/SSBR factors. Recent work has shown that XRCC1 forms dense foci at sites of DNA damage in a manner dependent on casein kinase II (CK2) phosphorylation. To investigate the mechanism underlying foci formation, we analyzed the subnuclear localization and phosphorylation status of XRCC1 during the repair process by biochemical fractionation of HeLa cellular proteins. The localization was also verified by in situ extraction of the fixed cells. In unchallenged cells, XRCC1 was primarily found in the chromatin fraction in a highly phosphorylated form; in addition, a minor population (10-15%) existed in the nuclear matrix (NM) with no or marginal phosphorylation. After hydrogen peroxide treatment, hyperphosphorylated XRCC1 appeared in the NM and accordingly, those in the chromatin fraction decreased. Foci formation and changes in XRCC1 distribution could be abolished by the knockdown of CK2, the expression of a non-phosphorylatable version of XRCC1, or the inhibition of poly-ADP ribosylation at the damage sites. Other BER factors, like DNA polymerase beta, were also found to accumulate in the NM after hydrogen peroxide-induced DNA damage, although its association with the NM seemed relatively weak. Our results suggest that the constitutive phosphorylation of XRCC1 in the chromatin and its DNA damage-induced recruitment to the NM are critical for foci formation, and that the core reactions of BER/SSBR may occur in the NM.
Collapse
Affiliation(s)
- Yoshiko Kubota
- Department of Biochemistry, School of Medicine, Iwate Medical University, 19-1 Morioka, Iwate 020-8505, Japan.
| | | | | | | |
Collapse
|
26
|
Mladenov EV, Kalev PS, Anachkova BB. Nuclear matrix binding site in the Rad51 recombinase. J Cell Physiol 2009; 219:202-8. [DOI: 10.1002/jcp.21665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Noy-Lotan S, Dgany O, Lahmi R, Marcoux N, Krasnov T, Yissachar N, Ginsberg D, Motro B, Resnitzky P, Yaniv I, Kupfer GM, Tamary H. Codanin-1, the protein encoded by the gene mutated in congenital dyserythropoietic anemia type I (CDAN1), is cell cycle-regulated. Haematologica 2009; 94:629-37. [PMID: 19336738 DOI: 10.3324/haematol.2008.003327] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Congenital dyserythropoietic anemia type I is an inherited autosomal recessive macrocytic anemia associated with ineffective erythropoiesis and the development of secondary hemochromatosis. Distinct erythroid precursors with internuclear chromatin bridges and spongy heterochromatin are pathognomonic for the disease. The mutated gene (CDAN1) encodes a ubiquitously expressed protein of unknown function, codanin-1. Based on the morphological features of congenital dyserythropoietic anemia type I erythroblasts and data on a role in cell cycle progression of codanin-1 homolog in Drosophila we investigated the cellular localization and possible involvement of codanin-1 during the cell cycle. DESIGN AND METHODS Codanin-1 localization was studied by immunofluorescence and immune electron microscopy. Cell cycle expression of codanin-1 was evaluated using synchronized HeLa cells. E2F proteins are the main regulator of G(1)/S transition. An E2F1-inducible cell line (U20S-ER-E2F1) enabled us to study codanin-1 expression following ectopic E2F1 induction. Direct binding of E2F1 to codanin-1 promoter was assessed by chromatin immunoprecipitation. We used a luciferase-reporter plasmid to study activation of CDAN1 transcription by E2F1. RESULTS We localized codanin-1 to heterochromatin in interphase cells. During the cell cycle, high levels of codanin-1 were observed in the S phase. At mitosis, codanin-1 underwent phosphorylation, which coincided with its exclusion from condensed chromosomes. The proximal CDAN1 gene promoter region, containing five putative E2F binding sites, was found to be a direct target of E2F1. CONCLUSIONS Taken together, these data suggest that codanin-1 is a cell cycle-regulated protein active in the S phase. The exact role of codanin-1 during the S phase remains to be determined. Nevertheless this represents the first step towards understanding the function of the proteins involved in congenital dyserythropoietic anemia.
Collapse
Affiliation(s)
- Sharon Noy-Lotan
- Pediatric Hematology Oncology, Schneider Children's Medical Center of Israel, 14 Kaplan Street, Petah Tiqva 49 202, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
ATR-dependent phosphorylation of FANCA on serine 1449 after DNA damage is important for FA pathway function. Blood 2008; 113:2181-90. [PMID: 19109555 DOI: 10.1182/blood-2008-05-154294] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Previous work has shown several proteins defective in Fanconi anemia (FA) are phosphorylated in a functionally critical manner. FANCA is phosphorylated after DNA damage and localized to chromatin, but the site and significance of this phosphorylation are unknown. Mass spectrometry of FANCA revealed one phosphopeptide, phosphorylated on serine 1449. Serine 1449 phosphorylation was induced after DNA damage but not during S phase, in contrast to other posttranslational modifications of FA proteins. Furthermore, the S1449A mutant failed to completely correct a variety of FA-associated phenotypes. The DNA damage response is coordinated by phosphorylation events initiated by apical kinases ATM (ataxia telangectasia mutated) and ATR (ATM and Rad3-related), and ATR is essential for proper FA pathway function. Serine 1449 is in a consensus ATM/ATR site, phosphorylation in vivo is dependent on ATR, and ATR phosphorylated FANCA on serine 1449 in vitro. Phosphorylation of FANCA on serine 1449 is a DNA damage-specific event that is downstream of ATR and is functionally important in the FA pathway.
Collapse
|
29
|
Abstract
Fanconi anemia (FA) is a genetic disease characterized by congenital abnormalities, bone marrow failure, and cancer susceptibility. A total of 13 FA proteins are involved in regulating genome surveillance and chromosomal stability. The FA core complex, consisting of 8 FA proteins (A/B/C/E/F/G/L/M), is essential for the monoubiquitination of FANCD2 and FANCI. FANCM is a human ortholog of the archaeal DNA repair protein Hef, and it contains a DEAH helicase and a nuclease domain. Here, we examined the effect of FANCM expression on the integrity and localization of the FA core complex. FANCM was exclusively localized to chromatin fractions and underwent cell cycle-dependent phosphorylation and dephosphorylation. FANCM-depleted HeLa cells had an intact FA core complex but were defective in chromatin localization of the complex. Moreover, depletion of the FANCM binding partner, FAAP24, disrupted the chromatin association of FANCM and destabilized FANCM, leading to defective recruitment of the FA core complex to chromatin. Our results suggest that FANCM is an anchor required for recruitment of the FA core complex to chromatin, and that the FANCM/FAAP24 interaction is essential for this chromatin-loading activity. Dysregulated loading of the FA core complex accounts, at least in part, for the characteristic cellular and developmental abnormalities in FA.
Collapse
|
30
|
UBE2T, the Fanconi anemia core complex, and FANCD2 are recruited independently to chromatin: a basis for the regulation of FANCD2 monoubiquitination. Mol Cell Biol 2007; 27:8421-30. [PMID: 17938197 DOI: 10.1128/mcb.00504-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Fanconi anemia (FA) nuclear core complex and the E2 ubiquitin-conjugating enzyme UBE2T are required for the S phase and DNA damage-restricted monoubiquitination of FANCD2. This constitutes a key step in the FA tumor suppressor pathway, and much attention has been focused on the regulation at this point. Here, we address the importance of the assembly of the FA core complex and the subcellular localization of UBE2T in the regulation of FANCD2 monoubiquitination. We establish three points. First, the stable assembly of the FA core complex can be dissociated of its ability to function as an E3 ubiquitin ligase. Second, the actual E3 ligase activity is not determined by the assembly of the FA core complex but rather by its DNA damage-induced localization to chromatin. Finally, UBE2T and FANCD2 access this subcellular fraction independently of the FA core complex. FANCD2 monoubiquitination is therefore not regulated by multiprotein complex assembly but by the formation of an active E2/E3 holoenzyme on chromatin.
Collapse
|
31
|
Stone S, Sobeck A, van Kogelenberg M, de Graaf B, Joenje H, Christian J, Hoatlin ME. Identification, developmental expression and regulation of the Xenopus ortholog of human FANCG/XRCC9. Genes Cells 2007; 12:841-51. [PMID: 17584296 DOI: 10.1111/j.1365-2443.2007.01096.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fanconi anemia (FA) is associated with variable developmental abnormalities, bone marrow failure and cancer susceptibility. FANCG/XRCC9 is member of the FA core complex, a group of proteins that control the monoubiquitylation of FANCD2, an event that plays a critical role in maintaining genomic stability. Here we report the identification of the Xenopus laevis ortholog of human FANCG (xFANCG), its expression during development, and its molecular interactions with a partner protein, xFANCA. The xFANCG protein sequence is 47% similar to its human ortholog, with highest conservation in the two putative N-terminal leucine zippers and the tetratricopeptide repeat (TPR) motifs. xFANCG is maternally and zygotically transcribed. Prior to the midblastula stage, a single xFANCG transcript is observed but two additional alternatively spliced mRNAs are detected after the midblastula transition. One of the variants is predicted to encode a novel isoform of xFANCG lacking exon 2. The mutual association between FANCG and FANCA required for their nuclear import is conserved in Xenopus egg extracts. Our data demonstrate that interactions between FANCA and FANCG occur at the earliest stage of vertebrate development and raise the possibility that functionally different isoforms of xFANCG may play a role in early development.
Collapse
Affiliation(s)
- Stacie Stone
- Division of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Mladenov E, Tsaneva I, Anachkova B. Activation of the S phase DNA damage checkpoint by mitomycin C. J Cell Physiol 2007; 211:468-76. [PMID: 17167777 DOI: 10.1002/jcp.20957] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have studied the rate of DNA synthesis, cell cycle distribution, formation of gamma-H2AX, and Rad51 nuclear foci and association of Rad51 with the nuclear matrix after treatment of HeLa cells with the interstrand crosslinking agent mitomycin C (MMC) in the presence of the kinase inhibitors caffeine and wortmannin. The results showed that MMC treatment arrested the cells in S-phase and induced the appearance of gamma-H2AX and Rad51 nuclear foci, accompanied with a sequestering of Rad51 to the nuclear matrix. These effects were abrogated by caffeine, which inhibits the Ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) kinases. However, wortmannin at a concentration that inhibits ATM, but not ATR did not affect cell cycle progression, damage-induced phosphorylation of H2AX and Rad51 foci formation, and association with the nuclear matrix, suggesting that the S-phase arrest induced by MMC is ATR-dependent. These findings were confirmed by experiments with ATR-deficient and AT cells. They indicate that the DNA damage ATR-dependent S-phase checkpoint pathway may regulate the spatiotemporal organization of the process of repair of interstrand crosslinks.
Collapse
Affiliation(s)
- Emil Mladenov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | |
Collapse
|
33
|
Sobeck A, Stone S, Hoatlin ME. DNA structure-induced recruitment and activation of the Fanconi anemia pathway protein FANCD2. Mol Cell Biol 2007; 27:4283-92. [PMID: 17420278 PMCID: PMC1900049 DOI: 10.1128/mcb.02196-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Fanconi anemia (FA) pathway proteins are thought to be involved in the repair of irregular DNA structures including those encountered by the moving replication fork. However, the nature of the DNA structures that recruit and activate the FA proteins is not known. Because FA proteins function within an extended network of proteins, some of which are still unknown, we recently established cell-free assays in Xenopus laevis egg extracts to deconstruct the FA pathway in a fully replication-competent context. Here we show that the central FA pathway protein, xFANCD2, is monoubiquitinated (xFANCD2-L) rapidly in the presence of linear and branched double-stranded DNA (dsDNA) structures but not single-stranded or Y-shaped DNA. xFANCD2-L associates with dsDNA structures in an FA core complex-dependent manner but independently of xATRIP, the regulatory subunit of xATR. Formation of xFANCD2-L is also triggered in response to circular dsDNA, suggesting that dsDNA ends are not required to trigger monoubiquitination of FANCD2. The induction of xFANCD2-L in response to circular dsDNA is replication and checkpoint independent. Our results provide new evidence that the FA pathway discriminates among DNA structures and demonstrate that triggering the FA pathway can be uncoupled from DNA replication and ATRIP-dependent activation.
Collapse
Affiliation(s)
- A Sobeck
- Biochemistry and Molecular Biology and Molecular and Medical Genetics, Oregon Health and Science University, Medical Research Building, Portland, OR 97239, USA
| | | | | |
Collapse
|
34
|
Ciccia A, Ling C, Coulthard R, Yan Z, Xue Y, Meetei AR, Laghmani EH, Joenje H, McDonald N, de Winter JP, Wang W, West SC. Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Mol Cell 2007; 25:331-43. [PMID: 17289582 DOI: 10.1016/j.molcel.2007.01.003] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 11/28/2006] [Accepted: 01/02/2007] [Indexed: 11/26/2022]
Abstract
The Fanconi anemia (FA) core complex plays a crucial role in a DNA damage response network with BRCA1 and BRCA2. How this complex interacts with damaged DNA is unknown, as only the FA core protein FANCM (the homolog of an archaeal helicase/nuclease known as HEF) exhibits DNA binding activity. Here, we describe the identification of FAAP24, a protein that targets FANCM to structures that mimic intermediates formed during the replication/repair of damaged DNA. FAAP24 shares homology with the XPF family of flap/fork endonucleases, associates with the C-terminal region of FANCM, and is a component of the FA core complex. FAAP24 is required for normal levels of FANCD2 monoubiquitylation following DNA damage. Depletion of FAAP24 by siRNA results in cellular hypersensitivity to DNA crosslinking agents and chromosomal instability. Our data indicate that the FANCM/FAAP24 complex may play a key role in recruitment of the FA core complex to damaged DNA.
Collapse
Affiliation(s)
- Alberto Ciccia
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Herts, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vilcheck SK, Ceryak S, O'Brien TJ, Patierno SR. FANCD2 monoubiquitination and activation by hexavalent chromium [Cr(VI)] exposure: activation is not required for repair of Cr(VI)-induced DSBs. Mutat Res 2006; 610:21-30. [PMID: 16893675 PMCID: PMC2080350 DOI: 10.1016/j.mrgentox.2006.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2006] [Indexed: 12/29/2022]
Abstract
Fanconi anemia (FA) is a rare autosomal recessive disorder characterized by congenital abnormalities, progressive bone marrow failure, and cancer susceptibility. FA cells are hypersensitive to DNA crosslinking agents. FA is a genetically heterogeneous disease with at least 11 complementation groups. The eight cloned FA proteins interact in a common pathway with established DNA-damage-response proteins, including BRCA1 and ATM. Six FA proteins (A, C, E, F, G, and L) regulate the monoubiquitination of FANCD2 after DNA damage by crosslinking agents, which targets FANCD2 to BRCA1 nuclear foci containing BRCA2 (FANCD1) and RAD51. Some forms of hexavalent chromium [Cr(VI)] are implicated as respiratory carcinogens and induce several types of DNA lesions, including DNA interstrand crosslinks. We have shown that FA-A fibroblasts are hypersensitive to both Cr(VI)-induced apoptosis and clonogenic lethality. Here we show that Cr(VI) treatment induced monoubiquitination of FANCD2 in normal human fibroblasts, providing the first molecular evidence of Cr(VI)-induced activation of the FA pathway. FA-A fibroblasts demonstrated no FANCD2 monoubiquitination, in keeping with the requirement of FA-A for this modification. We also found that Cr(VI) treatment induced significantly more S-phase-dependent DNA double strand breaks (DSBs), as measured by gamma-H2AX expression, in FA-A fibroblasts compared to normal cells. However, and notably, DSBs were repaired equally in both normal and FA-A fibroblasts during recovery from Cr(VI) treatment. While previous research on FA has defined the genetic causes of this disease, it is critical in terms of individual risk assessment to address how cells from FA patients respond to genotoxic insult.
Collapse
Affiliation(s)
- Susan K Vilcheck
- Department of Pharmacology and Physiology, The George Washington University Medical Center, 2300 Eye Street, NW, Washington, DC 20037, United States
| | | | | | | |
Collapse
|
36
|
Abstract
The repair of DNA double-strand breaks involves the accumulation of key homologous recombination proteins in nuclear foci at the sites of repair. The organization of these foci in relation to non-chromatin nuclear structures is poorly understood. To address this question, we examined the distribution of several recombination proteins in subcellular fractions following treatment of HeLa cells with ionizing radiation and the crosslinking agent mitomycin C. The results showed association of Rad51, Rad54, BRCA1 and BRCA2, but not Rad51C, with the nuclear matrix fraction in response to double-strand breaks induction. The association of Rad51 with the nuclear matrix correlates with the formation of Rad51 nuclear foci as a result of DNA damage. Fractionation in situ confirmed that Rad51 foci remained firmly immobilized within the chromatin-depleted nuclei. Irs1SF cells that are unable to form Rad51 damage-induced nuclear foci did not show accumulation of Rad51 in the nuclear matrix. Similarly, no accumulation of Rad51 in the nuclear matrix could be observed after treatment of HeLa cells with the kinase inhibitor caffeine, which reduces formation of Rad51 foci. The results were compared to the distribution of the phosphorylated histone variant, gamma-H2AX. These data suggest a dynamic association and tethering of recombination proteins and surrounding chromatin regions to the nuclear matrix.
Collapse
Affiliation(s)
- Emil Mladenov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | | | | |
Collapse
|
37
|
Abstract
The Fanconi anemia (FA) pathway consists of a unique, multi-subunit E3 ubiquitin ligase complex that is activated in a replication and DNA-damage dependent mechanism. This FA core complex possesses a putative helicase and an E3 ubiquitin ligase subunit, is assembled in both the nucleoplasm and in chromatin, and is required for the mono-ubiquitination of FANCD2, a downstream FA protein, following genotoxic stress. Clinically, absence of the FA pathway results in congenital defects, bone marrow failure, and cancer predisposition. At the cellular level, this pathway is required for chromosomal stability and cellular resistance to DNA interstrand crosslinkers (ICLs) such as mitomycin C (MMC). A general model has emerged for the FA pathway as an arm of the DNA-damage response following ICLs. This review will summarize the current understanding of the FA core complex and propose a model for its activity.
Collapse
Affiliation(s)
- Allan M Gurtan
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
38
|
Abstract
A rare genetic disease, Fanconi anemia (FA), now attracts broader attention from cancer biologists and basic researchers in the DNA repair and ubiquitin biology fields as well as from hematologists. FA is a chromosome instability syndrome characterized by childhood-onset aplastic anemia, cancer or leukemia susceptibility, and cellular hypersensitivity to DNA crosslinking agents. Identification of 11 genes for FA has led to progress in the molecular understanding of this disease. FA proteins, including a ubiquitin ligase (FANCL), a monoubiquitinated protein (FANCD2), a helicase (FANCJ/BACH1/BRIP1), and a breast/ovarian cancer susceptibility protein (FANCD1/BRCA2), appear to cooperate in a pathway leading to the recognition and repair of damaged DNA. Molecular interactions among FA proteins and responsible proteins for other chromosome instability syndromes (BLM, NBS1, MRE11, ATM, and ATR) have also been found. Furthermore, inactivation of FA genes has been observed in a wide variety of human cancers in the general population. These findings have broad implications for predicting the sensitivity and resistance of tumors to widely used anticancer DNA crosslinking agents (cisplatin, mitomycin C, and melphalan). Here, we summarize recent progress in the molecular biology of FA and discuss roles of the FA proteins in DNA repair and cancer biology.
Collapse
Affiliation(s)
- Toshiyasu Taniguchi
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
39
|
La P, Desmond A, Hou Z, Silva AC, Schnepp RW, Hua X. Tumor suppressor menin: the essential role of nuclear localization signal domains in coordinating gene expression. Oncogene 2006; 25:3537-46. [PMID: 16449969 DOI: 10.1038/sj.onc.1209400] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Menin is encoded by the tumor suppressor gene MEN1 that is mutated in patients with an inherited tumor syndrome, multiple endocrine neoplasia type 1 (MEN1). Although menin is a nuclear protein and directly binds to DNA through its nuclear localization signals (NLSs), the precise role for each of the NLSs in nuclear translocation and gene expression remains to be elucidated. Here, we show that point mutations in three individual NLSs, NLS1, NLS2, and a novel accessory NLS, NLSa, do not block nuclear translocation, but compromise the ability of menin to repress expression of the endogenous insulin-like growth factor binding protein-2 (IGFBP-2) gene. This repression is not released by an inhibitor of histone deacetylases. Although subtle mutations in menin NLSs do not affect menin association with chromatin, they abolish menin binding to the IGFBP-2 promoter in vivo. Furthermore, each of the NLSs is also crucial for menin-mediated induction of caspase 8 expression. Together, these results suggest that menin may act as a scaffold protein in coordinating activation and repression of gene transcription and that its NLSs play a more important role in controlling gene transcription than merely targeting menin into the nucleus.
Collapse
Affiliation(s)
- P La
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Abramson Cancer Center, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Abstract
Recent advances resulting from the identification of the genes responsible for four inherited marrow failure syndromes, Fanconi anemia, dyskeratosis congenita, Diamond-Blackfan anemia, and Shwachman-Diamond syndrome, are reviewed. The interpretation of genetic testing should be guided by an understanding of the limitations of such testing for each disorder. The possibility of an inherited basis for marrow failure must be considered for adults as well as children with aplastic anemia. Shared molecular themes are emerging from functional studies of the genes underlying the different inherited disorders. Genomic instability may result from impaired DNA repair in Fanconi anemia or telomere dysregulation in dyskeratosis congenita. Mutations affecting ribosome assembly or function are associated with Diamond-Blackfan anemia, dyskeratosis congenita, and Shwachman-Diamond syndrome. These findings raise new questions about the molecular mechanisms regulating hematopoiesis and leukemogenesis. Clinical implications arising from these molecular studies are explored.
Collapse
Affiliation(s)
- Akiko Shimamura
- Children's Hospital Boston, Karp Research Laboratories, Boston, MA 02115, USA.
| |
Collapse
|
41
|
Samaniego R, Jeong SY, de la Torre C, Meier I, Moreno Díaz de la Espina S. CK2 phosphorylation weakens 90 kDa MFP1 association to the nuclear matrix in Allium cepa. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:113-24. [PMID: 16291799 DOI: 10.1093/jxb/erj010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
MFP1 is a conserved plant coiled-coil protein located on the stroma side of the chloroplast thylakoids, as well as in the nuclear matrix. It displays species-specific variability in the number of genes, proteins, and expression. Allium cepa has two nuclear proteins antigenically related to MFP1 with different M(r), pI, distribution, and expression, but only the 90 kDa MFP1 protein is a nuclear matrix component that associates with both the nucleoskeletal filaments and a new category of nuclear bodies. The 90 kDa AcMFP1 migrates in two-dimensional blots as two sets of spots. The hypo-phosphorylated forms (pI approximately 9.5) are tightly bound to the nuclear matrix, while high ionic strength buffers release the more acidic hyper-phosphorylated ones (pI approximately 8.5), suggesting that the protein is post-translationally modified, and that these modifications control its attachment to the nuclear matrix. Dephosphorylation by exogenous alkaline phosphatase and phosphorylation by exogenous CK2, as well as specific inhibition and stimulation of endogenous CK2 with heparin and spermine and spermidine, respectively, revealed that the protein is an in vitro and in vivo substrate of this enzyme, and that CK2 phosphorylation weakens the strength of its binding to the nuclear matrix. In synchronized cells, the nuclear 90 kDa AcMFP1 phosphorylation levels vary during the cell cycle with a moderate peak in G2. These results provide the first evidence for AcMFP1 in vivo phosphorylation, and open up further research on its nuclear functions.
Collapse
Affiliation(s)
- Rafael Samaniego
- Nuclear Matrix Laboratory, Centro de Investigaciones Biológicas, CSIC, 28040-Madrid, Spain
| | | | | | | | | |
Collapse
|
42
|
Sobeck A, Stone S, Costanzo V, de Graaf B, Reuter T, de Winter J, Wallisch M, Akkari Y, Olson S, Wang W, Joenje H, Christian JL, Lupardus PJ, Cimprich KA, Gautier J, Hoatlin ME. Fanconi anemia proteins are required to prevent accumulation of replication-associated DNA double-strand breaks. Mol Cell Biol 2006; 26:425-37. [PMID: 16382135 PMCID: PMC1346898 DOI: 10.1128/mcb.26.2.425-437.2006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 07/20/2005] [Accepted: 10/13/2005] [Indexed: 12/19/2022] Open
Abstract
Fanconi anemia (FA) is a multigene cancer susceptibility disorder characterized by cellular hypersensitivity to DNA interstrand cross-linking agents such as mitomycin C (MMC). FA proteins are suspected to function at the interface between cell cycle checkpoints, DNA repair, and DNA replication. Using replicating extracts from Xenopus eggs, we developed cell-free assays for FA proteins (xFA). Recruitment of the xFA core complex and xFANCD2 to chromatin is strictly dependent on replication initiation, even in the presence of MMC indicating specific recruitment to DNA lesions encountered by the replication machinery. The increase in xFA chromatin binding following treatment with MMC is part of a caffeine-sensitive S-phase checkpoint that is controlled by xATR. Recruitment of xFANCD2, but not xFANCA, is dependent on the xATR-xATR-interacting protein (xATRIP) complex. Immunodepletion of either xFANCA or xFANCD2 from egg extracts results in accumulation of chromosomal DNA breaks during replicative synthesis. Our results suggest coordinated chromatin recruitment of xFA proteins in response to replication-associated DNA lesions and indicate that xFA proteins function to prevent the accumulation of DNA breaks that arise during unperturbed replication.
Collapse
Affiliation(s)
- Alexandra Sobeck
- Division of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Casado JA, Núñez MI, Segovia JC, Ruiz de Almodóvar JM, Bueren JA. Non-homologous end-joining defect in fanconi anemia hematopoietic cells exposed to ionizing radiation. Radiat Res 2005; 164:635-41. [PMID: 16238440 DOI: 10.1667/rr3395.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fanconi anemia is a genetically heterogeneous recessive disease characterized mainly by bone marrow failure and cancer predisposition. Although it is accepted that Fanconi cells are highly sensitive to DNA crosslinking agents, their response to ionizing radiation is still unclear. Using pulsed-field gel electrophoresis, we have observed that radiation generates a similar number of DNA double-strand breaks in normal and Fanconi cells from three (FA-A, FA-C and FA-F) of the 11 complementation groups identified. Nonsynchronized as well as nonproliferating Fanconi anemia cells showed an evident defect in rejoining the double-strand breaks generated by ionizing radiation, indicating defective non-homologous end-joining repair. At the cellular level, no difference in the radiosensitivity of normal and FA-A lymphoblast cells was noted, and a modest increase in the radiosensitivity of Fanca-/- hematopoietic progenitor cells was observed compared to Fanca+/+ cells. Finally, when animals were exposed to a fractionated total-body irradiation of 5 Gy, a similar hematopoietic syndrome was observed in wild-type and Fanca-/- mice. Taken together, our observations suggest that Fanconi cells, in particular those having nonfunctional Fanconi proteins upstream of FANCD2, have a defect in the non-homologous end-joining repair of double-strand breaks produced by ionizing radiation, and that compensatory mechanisms of DNA repair and/or stem cell regeneration should limit the impact of this defect in irradiated organisms.
Collapse
Affiliation(s)
- José A Casado
- Hematopoietic Gene Therapy Program, CIEMAT, 28040, Madrid, Spain
| | | | | | | | | |
Collapse
|
44
|
Sharma S, Sommers JA, Gary RK, Friedrich-Heineken E, Hübscher U, Brosh RM. The interaction site of Flap Endonuclease-1 with WRN helicase suggests a coordination of WRN and PCNA. Nucleic Acids Res 2005; 33:6769-81. [PMID: 16326861 PMCID: PMC1301591 DOI: 10.1093/nar/gki1002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Werner and Bloom syndromes are genetic RecQ helicase disorders characterized by genomic instability. Biochemical and genetic data indicate that an important protein interaction of WRN and Bloom syndrome (BLM) helicases is with the structure-specific nuclease Flap Endonuclease 1 (FEN-1), an enzyme that is implicated in the processing of DNA intermediates that arise during cellular DNA replication, repair and recombination. To acquire a better understanding of the interaction of WRN and BLM with FEN-1, we have mapped the FEN-1 binding site on the two RecQ helicases. Both WRN and BLM bind to the extreme C-terminal 18 amino acid tail of FEN-1 that is adjacent to the PCNA binding site of FEN-1. The importance of the WRN/BLM physical interaction with the FEN-1 C-terminal tail was confirmed by functional interaction studies with catalytically active purified recombinant FEN-1 deletion mutant proteins that lack either the WRN/BLM binding site or the PCNA interaction site. The distinct binding sites of WRN and PCNA and their combined effect on FEN-1 nuclease activity suggest that they may coordinately act with FEN-1. WRN was shown to facilitate FEN-1 binding to its preferred double-flap substrate through its protein interaction with the FEN-1 C-terminal binding site. WRN retained its ability to physically bind and stimulate acetylated FEN-1 cleavage activity to the same extent as unacetylated FEN-1. These studies provide new insights to the interaction of WRN and BLM helicases with FEN-1, and how these interactions might be regulated with the PCNA–FEN-1 interaction during DNA replication and repair.
Collapse
Affiliation(s)
| | | | - Ronald K. Gary
- Department of Chemistry, University of NevadaLas Vegas 4505 Maryland Parkway, Las Vegas, NV 89154-4003, USA
| | - Erica Friedrich-Heineken
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich-IrchelWinterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Ulrich Hübscher
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich-IrchelWinterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Robert M. Brosh
- To whom correspondence should be addressed. Tel: +1 410 558 8578; Fax: +1 410 558 8157;
| |
Collapse
|
45
|
Matsushita N, Kitao H, Ishiai M, Nagashima N, Hirano S, Okawa K, Ohta T, Yu DS, McHugh PJ, Hickson ID, Venkitaraman AR, Kurumizaka H, Takata M. A FancD2-monoubiquitin fusion reveals hidden functions of Fanconi anemia core complex in DNA repair. Mol Cell 2005; 19:841-7. [PMID: 16168378 DOI: 10.1016/j.molcel.2005.08.018] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2005] [Revised: 07/11/2005] [Accepted: 08/15/2005] [Indexed: 12/27/2022]
Abstract
In DNA damage responses, the Fanconi anemia (FA) protein, FancD2, is targeted to chromatin and forms nuclear foci following its monoubiquitination, a process likely catalyzed by the FA core complex. Here, we show that a chicken FancD2-ubiquitin fusion protein, carrying a Lys-Arg substitution removing the natural monoubiquitination site (D2KR-Ub), could reverse cisplatin hypersensitivity and localize to chromatin in FANCD2-deficient DT40 cells. Importantly, the chromatin targeting was dependent on three core complex components as well as the hydrophobic surface of ubiquitin that may direct protein-protein interactions. Furthermore, a constitutively chromatin bound fusion of D2KR-histone H2B could complement cisplatin sensitivity in FANCD2- but not FANCC-, FANCG-, or FANCL-deficient cells. Thus these core complex components have an additional function in the DNA repair, which is independent of the monoubiquitination and chromatin targeting of FancD2. These results define functional consequences of FancD2 monoubiquitination and reveal previously hidden functions for the FA protein core complex.
Collapse
Affiliation(s)
- Nobuko Matsushita
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Fanconi anemia (FA) is a rare inherited disorder characterized clinically by aplastic anemia, developmental defects, and a susceptibility to cancer. Eleven complementation groups have been identified (FA-A, -B, -C, -D1, -D2, -E, -F, -G, -I, -J, and -L), and the genes responsible for 9 groups (FANCA, B, C, D1, D2, E, F, G, and L) have been cloned. The proteins involved in FA act coordinately in the cellular response to DNA cross-links in a pathway that has been shown to interact physically or functionally with a variety of other proteins involved in DNA repair or cell cycle control, notably BRCA1, Rad51,ATM,ATR, and Nbs1. Considerable advances in the identification and description of proteins involved in FA have been recorded, but the precise biochemical function of the FA pathway remains elusive. As research continues to improve our understanding of FA, insight will be gained into what is a pivotal process in cancer biology.
Collapse
Affiliation(s)
- Natalie Collins
- Department of Microbiology, University of Virginia Health System, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
47
|
Macé G, Bogliolo M, Guervilly JH, Dugas du Villard JA, Rosselli F. 3R coordination by Fanconi anemia proteins. Biochimie 2005; 87:647-58. [PMID: 15935541 DOI: 10.1016/j.biochi.2005.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a recessive cancer prone syndrome featuring bone marrow failure and hypersensitivity to DNA crosslinks. Nine FA genes have been isolated so far. The biochemical function(s) of the FA proteins remain(s) poorly determined. However, a large consensus exists on the evidence that, to cope with DNA cross-links, a cell needs a functional FA pathway. In this review, we resume current understanding of how the FA pathway works in response to DNA damage and how it is integrated in a complex network of proteins involved in the maintenance of the genetic stability.
Collapse
Affiliation(s)
- Gaëtane Macé
- Institut Gustave-Roussy PR2, UPR2169 du CNRS, 39, rue Camille-Desmoulins, 94805 Villejuif cedex, France
| | | | | | | | | |
Collapse
|
48
|
Mosedale G, Niedzwiedz W, Alpi A, Perrina F, Pereira-Leal JB, Johnson M, Langevin F, Pace P, Patel KJ. The vertebrate Hef ortholog is a component of the Fanconi anemia tumor-suppressor pathway. Nat Struct Mol Biol 2005; 12:763-71. [PMID: 16116434 DOI: 10.1038/nsmb981] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 08/03/2005] [Indexed: 12/21/2022]
Abstract
The helicase-associated endonuclease for fork-structured DNA (Hef) is an archaeabacterial protein that processes blocked replication forks. Here we have isolated the vertebrate Hef ortholog and investigated its molecular function. Disruption of this gene in chicken DT40 cells results in genomic instability and sensitivity to DNA cross-links. The similarity of this phenotype to that of cells lacking the Fanconi anemia-related (FA) tumor-suppressor genes led us to investigate whether Hef functions in this pathway. Indeed, we found a genetic interaction between the FANCC and Hef genes. In addition, Hef is a component of the FA nuclear protein complex that facilitates its DNA damage-inducible chromatin localization and the monoubiquitination of the FA protein FANCD2. Notably, Hef interacts directly with DNA structures that are intermediates in DNA replication. This discovery sheds light on the origins, regulation and molecular function of the FA tumor-suppressor pathway in the maintenance of genome stability.
Collapse
Affiliation(s)
- Georgina Mosedale
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ferrer M, Rodríguez JA, Spierings EA, de Winter JP, Giaccone G, Kruyt FAE. Identification of multiple nuclear export sequences in Fanconi anemia group A protein that contribute to CRM1-dependent nuclear export. Hum Mol Genet 2005; 14:1271-81. [PMID: 15790592 DOI: 10.1093/hmg/ddi138] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Fanconi anemia (FA) pathway plays an important role in maintaining genomic stability, and defects in this pathway cause cancer susceptibility. The FA proteins have been found to function primarily in a nuclear complex, although a cytoplasmic localization and function for several FA proteins has also been reported. In this study, we investigated the possibility that FANCA, FANCC and FANCG are subjected to active export out of the nucleus. After treatment with leptomycin B, a specific inhibitor of CRM1-mediated nuclear export, the accumulation of epitope-tagged FANCA in the nucleus increased, whereas FANCC was affected to a lesser extent and FANCG showed no response. CRM1-mediated export of FANCA was further confirmed using CRM1 cotransfection, which led to a dramatic relocalization of FANCA to the cytoplasm. Five functional leucine-rich nuclear export sequences (NESs) distributed throughout the FANCA sequence were identified and characterized using an in vivo export assay. Simultaneous inactivation of three of these NESs resulted in a discrete but reproducible increase of FANCA nuclear accumulation. However, these NES mutations did not affect the ability of FANCA to complement the mitomycin C or cisplatin sensitivity of FA-A lymphoblasts. Surprisingly, mutations in the other two NESs resulted in an almost complete relocation of the protein to cytoplasm, suggesting that these motifs overlap with domains that are crucial for nuclear import. Taken together, these findings indicate that FANCA can be actively exported out of the nucleus by CRM1, revealing a new mechanism to regulate the function of the FA protein complex.
Collapse
Affiliation(s)
- Miriam Ferrer
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
|