1
|
Zhu J, Tang W, Fang P, Wang C, Gu M, Yang W, Pan B, Wang B, Guo W. STRN3 promotes tumour growth in hepatocellular carcinoma by inhibiting the hippo pathway. J Cell Mol Med 2024; 28:e18147. [PMID: 38429901 PMCID: PMC10907822 DOI: 10.1111/jcmm.18147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 03/03/2024] Open
Abstract
HCC is a globally high-incidence malignant tumour, and its pathogenesis is still unclear. Recently, STRN3 has been found to be elevated in various tumours, but its expression and biological functions in HCC have not been studied. In the study, clinical correlation analysis was performed on 371 liver cancer patients from TCGA database and liver cancer tissues and normal tissues from the GEO database. qRT-PCR and western blotting were used to detect relevant proteins in cells, and CCK8 and colony formation experiments were performed to analyse cell proliferation ability. Transwell and wound healing experiments were performed to detect cell invasion ability, and flow cytometry was used to detect cell apoptosis. Single-cell sequencing data and multiple immunofluorescence were analysed for the expression abundance and distribution of certain proteins. Immunohistochemistry was used to assess the expression of STRN3 in patients' tumour and adjacent non-cancerous tissues. The results indicated STRN3 was highly expressed in liver tumour tissues and was closely associated with poor prognosis. Knockdown of STRN3 could significantly inhibit cell proliferation and migration ability. At the same time, we found that STRN3 could inhibit the Hippo pathway and promote the entry of YAP protein into the nucleus. Our study first found that STRN3 could promote tumour growth by inhibiting the Hippo pathway. The study of STRN3 can promote the understanding and treatment of the occurrence and development of HCC.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Laboratory Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Wenjia Tang
- Department of Laboratory Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Peiqi Fang
- Department of Laboratory Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Chong Wang
- Department of Laboratory Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Meixiu Gu
- Department of Laboratory Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Wenjing Yang
- Department of Laboratory Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Zhongshan HospitalFudan UniversityShanghaiChina
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan HospitalFudan UniversityXiamenChina
- Department of Laboratory Medicine, Wusong Branch, Zhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Elkholi IE, Boulais J, Thibault MP, Phan HD, Robert A, Lai LB, Faubert D, Smith MJ, Gopalan V, Côté JF. Mapping the MOB proteins' proximity network reveals a unique interaction between human MOB3C and the RNase P complex. J Biol Chem 2023; 299:105123. [PMID: 37536630 PMCID: PMC10480535 DOI: 10.1016/j.jbc.2023.105123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023] Open
Abstract
Distinct functions mediated by members of the monopolar spindle-one-binder (MOB) family of proteins remain elusive beyond the evolutionarily conserved and well-established roles of MOB1 (MOB1A/B) in regulating tissue homeostasis within the Hippo pathway. Since MOB proteins are adaptors, understanding how they engage in protein-protein interactions and help assemble complexes is essential to define the full scope of their biological functions. To address this, we undertook a proximity-dependent biotin identification approach to define the interactomes of all seven human MOB proteins in HeLa and human embryonic kidney 293 cell lines. We uncovered >200 interactions, of which at least 70% are unreported on BioGrid. The generated dataset reliably recalled the bona fide interactors of the well-studied MOBs. We further defined the common and differential interactome between different MOBs on a subfamily and an individual level. We discovered a unique association between MOB3C and 7 of 10 protein subunits of the RNase P complex, an endonuclease that catalyzes tRNA 5' maturation. As a proof of principle for the robustness of the generated dataset, we validated the specific interaction of MOB3C with catalytically active RNase P by using affinity purification-mass spectrometry and pre-tRNA cleavage assays of MOB3C pulldowns. In summary, our data provide novel insights into the biology of MOB proteins and reveal the first interactors of MOB3C, components of the RNase P complex, and hence an exciting nexus with RNA biology.
Collapse
Affiliation(s)
- Islam E Elkholi
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec, Canada; Molecular Biology Programs, Université de Montréal, Montreal, Quebec, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.
| | - Jonathan Boulais
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec, Canada
| | | | - Hong-Duc Phan
- Department of Chemistry & Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Amélie Robert
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec, Canada
| | - Lien B Lai
- Department of Chemistry & Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Denis Faubert
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec, Canada
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Venkat Gopalan
- Department of Chemistry & Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Jean-Franҫois Côté
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec, Canada; Molecular Biology Programs, Université de Montréal, Montreal, Quebec, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Tanti GK, Pandey P, Shreya S, Jain BP. Striatin family proteins: The neglected scaffolds. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119430. [PMID: 36638846 DOI: 10.1016/j.bbamcr.2023.119430] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023]
Abstract
The Striatin family of proteins constitutes Striatin, SG2NA, and Zinedin. Members of this family of proteins act as a signaling scaffold due to the presence of multiple protein-protein interaction domains. At least two members of this family, namely Zinedin and SG2NA, have a proven role in cancer cell proliferation. SG2NA, the second member of this family, undergoes alternative splicing and gives rise to several isoforms which are differentially regulated in a tissue-dependent manner. SG2NA evolved earlier than the other two members of the family, and SG2NA undergoes not only alternative splicing but also other posttranscriptional gene regulation. Striatin also undergoes alternative splicing, and as a result, it gives rise to multiple isoforms. It has been shown that this family of proteins plays a significant role in estrogen signaling, neuroprotection, cancer as well as in cell cycle regulation. Members of the striatin family form a complex network of signaling hubs with different kinases and phosphatases, and other signaling proteins named STRIPAK. Here, in the present manuscript, we thoroughly reviewed the findings on striatin family members to elaborate on the overall structural and functional idea of this family of proteins. We also commented on the involvement of these proteins in STRIPAK complexes and their functional relevance.
Collapse
Affiliation(s)
- Goutam Kumar Tanti
- Department of Neurology, School of Medicine, Technical University of Munich, Germany.
| | - Prachi Pandey
- National Institute of Plant Genome Research, New Delhi, India
| | - Smriti Shreya
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Buddhi Prakash Jain
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India.
| |
Collapse
|
4
|
De Jamblinne CV, Decelle B, Dehghani M, Joseph M, Sriskandarajah N, Leguay K, Rambaud B, Lemieux S, Roux PP, Hipfner DR, Carréno S. STRIPAK regulates Slik localization to control mitotic morphogenesis and epithelial integrity. J Cell Biol 2021; 219:152107. [PMID: 32960945 PMCID: PMC7594492 DOI: 10.1083/jcb.201911035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 07/17/2020] [Accepted: 08/20/2020] [Indexed: 02/01/2023] Open
Abstract
Proteins of the ezrin, radixin, and moesin (ERM) family control cell and tissue morphogenesis. We previously reported that moesin, the only ERM in Drosophila, controls mitotic morphogenesis and epithelial integrity. We also found that the Pp1-87B phosphatase dephosphorylates moesin, counteracting its activation by the Ste20-like kinase Slik. To understand how this signaling pathway is itself regulated, we conducted a genome-wide RNAi screen, looking for new regulators of moesin activity. We identified that Slik is a new member of the striatin-interacting phosphatase and kinase complex (STRIPAK). We discovered that the phosphatase activity of STRIPAK reduces Slik phosphorylation to promote its cortical association and proper activation of moesin. Consistent with this finding, inhibition of STRIPAK phosphatase activity causes cell morphology defects in mitosis and impairs epithelial tissue integrity. Our results implicate the Slik–STRIPAK complex in the control of multiple morphogenetic processes.
Collapse
Affiliation(s)
- Camille Valérie De Jamblinne
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Programmes de biologie moléculaire, Université de Montréal, Montréal, Quebec, Canada
| | - Barbara Decelle
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada
| | - Mehrnoush Dehghani
- Institut de recherches cliniques de Montréal, Montréal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Mathieu Joseph
- Institut de recherches cliniques de Montréal, Montréal, Quebec, Canada.,Programmes de biologie moléculaire, Université de Montréal, Montréal, Quebec, Canada
| | - Neera Sriskandarajah
- Institut de recherches cliniques de Montréal, Montréal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Kévin Leguay
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Programmes de biologie moléculaire, Université de Montréal, Montréal, Quebec, Canada
| | - Basile Rambaud
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Programmes de biologie moléculaire, Université de Montréal, Montréal, Quebec, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Département de Biochimie, Université de Montréal, Montréal, Quebec, Canada
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Programmes de biologie moléculaire, Université de Montréal, Montréal, Quebec, Canada.,Département de Pathologie et de Biologie Cellulaire, Université de Montréal, Montréal, Quebec, Canada
| | - David R Hipfner
- Institut de recherches cliniques de Montréal, Montréal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,Programmes de biologie moléculaire, Université de Montréal, Montréal, Quebec, Canada.,Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Sébastien Carréno
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Programmes de biologie moléculaire, Université de Montréal, Montréal, Quebec, Canada.,Département de Pathologie et de Biologie Cellulaire, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
5
|
Cryo-EM structure of the Hippo signaling integrator human STRIPAK. Nat Struct Mol Biol 2021; 28:290-299. [PMID: 33633399 PMCID: PMC8315899 DOI: 10.1038/s41594-021-00564-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
The striatin-interacting phosphatase and kinase (STRIPAK) complex is a large, multisubunit protein phosphatase 2A (PP2A) assembly that integrates diverse cellular signals in the Hippo pathway to regulate cell proliferation and survival. The architecture and assembly mechanism of this critical complex are poorly understood. Using cryo-EM, we determine the structure of the human STRIPAK core comprising PP2AA, PP2AC, STRN3, STRIP1, and MOB4 at 3.2-Å resolution. Unlike the canonical trimeric PP2A holoenzyme, STRIPAK contains four copies of STRN3 and one copy of each the PP2AA-C heterodimer, STRIP1, and MOB4. The STRN3 coiled-coil domains form an elongated homotetrameric scaffold that links the complex together. An inositol hexakisphosphate (IP6) is identified as a structural cofactor of STRIP1. Mutations of key residues at subunit interfaces disrupt the integrity of STRIPAK, causing aberrant Hippo pathway activation. Thus, STRIPAK is established as a noncanonical PP2A complex with four copies of regulatory STRN3 for enhanced signal integration.
Collapse
|
6
|
Nishio M, To Y, Maehama T, Aono Y, Otani J, Hikasa H, Kitagawa A, Mimori K, Sasaki T, Nishina H, Toyokuni S, Lydon JP, Nakao K, Wah Mak T, Kiyono T, Katabuchi H, Tashiro H, Suzuki A. Endogenous YAP1 activation drives immediate onset of cervical carcinoma in situ in mice. Cancer Sci 2020; 111:3576-3587. [PMID: 32716083 PMCID: PMC7541006 DOI: 10.1111/cas.14581] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer (CC) is usually initiated by infection with high‐risk types of human papillomavirus (HPV). The HPV E6 and E7 proteins target p53 and RB, respectively, but other cellular targets likely exist. We generated uterus‐specific MOB1A/B double KO (uMob1DKO) mice, which immediately developed cervical squamous cell carcinoma in situ. Mutant cervical epithelial cells showed YAP1‐dependent hyperproliferation, altered self‐renewal, impaired contact inhibition, and chromosomal instability. p53 activation was increased in uMob1DKO cells, and additional p53 loss in uMob1DKO mice accelerated tumor invasion. In human CC, strong YAP1 activation was observed from the precancerous stage. Human cells overexpressing HPV16 E6/E7 showed inactivation of not only p53 and RB but also PTPN14, boosting YAP1 activation. Estrogen, cigarette smoke condensate, and PI3K hyperactivation all increased YAP1 activity in human cervical epithelial cells, and PTPN14 depletion along with PI3K activation or estrogen treatment further enhanced YAP1. Thus, immediate CC onset may initiate when YAP1 activity exceeds an oncogenic threshold, making Hippo‐YAP1 signaling a major CC driver.
Collapse
Affiliation(s)
- Miki Nishio
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Cancer Genetics, MIB, Kyushu University, Fukuoka, Japan
| | - Yoko To
- Division of Cancer Genetics, MIB, Kyushu University, Fukuoka, Japan.,Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yukari Aono
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Junji Otani
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroki Hikasa
- Department of Biochemistry, School of Medicine, University of Occupational and Environmental Health, Kita-kyushu, Japan
| | - Akihiro Kitagawa
- Department of Gastroenterological Surgery, Medical School and Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, MRI, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, MRI, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Kazuwa Nakao
- MIC, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tak Wah Mak
- The Princess Margaret Cancer Centre, UHN, Toronto, ON, Canada.,Department of Medical Biophysics, Toronto University, Toronto, ON, Canada
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Hidetaka Katabuchi
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hironori Tashiro
- Department of Women's Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Cancer Genetics, MIB, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Qiu Z, Fa P, Liu T, Prasad CB, Ma S, Hong Z, Chan ER, Wang H, Li Z, He K, Wang QE, Williams TM, Yan C, Sizemore ST, Narla G, Zhang J. A Genome-Wide Pooled shRNA Screen Identifies PPP2R2A as a Predictive Biomarker for the Response to ATR and CHK1 Inhibitors. Cancer Res 2020; 80:3305-3318. [PMID: 32522823 PMCID: PMC7518641 DOI: 10.1158/0008-5472.can-20-0057] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/17/2020] [Accepted: 06/04/2020] [Indexed: 01/18/2023]
Abstract
There is currently a lack of precise predictive biomarkers for patient selection in clinical trials of inhibitors targeting replication stress (RS) response proteins ATR and CHK1. The objective of this study was to identify novel predictive biomarkers for the response to these agents in treating non-small cell lung cancer (NSCLC). A genome-wide loss-of-function screen revealed that tumor suppressor PPP2R2A, a B regulatory subunit of protein phosphatase 2 (PP2A), determines sensitivity to CHK1 inhibition. A synthetic lethal interaction between PPP2R2A deficiency and ATR or CHK1 inhibition was observed in NSCLC in vitro and in vivo and was independent of p53 status. ATR and CHK1 inhibition resulted in significantly increased levels of RS and altered replication dynamics, particularly in PPP2R2A-deficient NSCLC cells. Mechanistically, PPP2R2A negatively regulated translation of oncogene c-Myc protein. c-Myc activity was required for PPP2R2A deficiency-induced alterations of replication initiation/RS and sensitivity to ATR/CHK1 inhibitors. We conclude that PPP2R2A deficiency elevates RS by upregulating c-Myc activity, rendering cells reliant on the ATR/CHK1 axis for survival. Our studies show a novel synthetic lethal interaction and identify PPP2R2A as a potential new predictive biomarker for patient stratification in the clinical use of ATR and CHK1 inhibitors. SIGNIFICANCE: This study reveals new approaches to specifically target PPP2R2A-deficient lung cancer cells and provides a novel biomarker that will significantly improve treatment outcome with ATR and CHK1 inhibitors.
Collapse
MESH Headings
- Animals
- Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors
- Biomarkers, Tumor/deficiency
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/chemistry
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Line, Tumor
- Checkpoint Kinase 1/antagonists & inhibitors
- DNA Damage
- DNA Replication
- Drug Resistance, Neoplasm
- Female
- Gene Knockdown Techniques
- Genes, p53
- Genome-Wide Association Study
- Heterografts
- Humans
- Lung Neoplasms/chemistry
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Male
- Mice
- Mice, Nude
- Protein Phosphatase 2/deficiency
- Protein Phosphatase 2/genetics
- Protein Phosphatase 2/metabolism
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Small Interfering
Collapse
Affiliation(s)
- Zhaojun Qiu
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Pengyan Fa
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Tao Liu
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Chandra B Prasad
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Shanhuai Ma
- University of Rochester, Rochester, New York
| | - Zhipeng Hong
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Ernest R Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Zaibo Li
- Department of Pathology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Kai He
- Department of Internal Medicine, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Qi-En Wang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Steven T Sizemore
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Goutham Narla
- Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | - Junran Zhang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio.
| |
Collapse
|
8
|
Huang Y, Ma FT, Ren Q. Function of the MOB kinase activator-like 1 in the innate immune defense of the oriental river prawn (Macrobrachium nipponense). FISH & SHELLFISH IMMUNOLOGY 2020; 102:440-448. [PMID: 32418908 DOI: 10.1016/j.fsi.2020.04.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
The monopolar spindle one binder (MOB) protein, a key signal transducer of the Hippo signaling pathway, is involved in growth control and cancer. In this study, a new MOB kinase activator-like 1 of the oriental river prawns, Macrobrachium nipponense, (MnMOB1) was isolated and characterized. The open reading frame of MnMOB1 consisted of 651 nucleotides that encoded 216 amino acid residues and contained the Mob1_phocein domain. Phylogenetic analysis revealed that MnMOB1 clustered together with the MOB1 from Penaeus vannamei. The distribution of MnMOB1 expression in various tissues of normal prawn revealed that the MnMOB1 expression was highest in the hepatopancreas followed by those in the intestines, gill, heart, stomach, and hemocytes. In prawns challenged with Staphylococcus aureus and Vibrio parahaemolyticus, the expression levels of MnMOB1 in the hepatopancreas, gills, and intestine were upregulated. Furthermore, the expression levels of crustins and anti-lipopolysaccharide factors in prawn injected with S. aureus and V. parahaemolyticus and MnMOB1 knockdown were significantly decreased relative to those in the control group. These findings indicated that MnMOB1 is involved in the regulation of antimicrobial peptide expression and plays a crucial role in the innate immunity of M. nipponense.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China; Postdoctoral Innovation Practice Base, Jiangsu Shuixian Industrial Company Limited, 40 Tonghu Road, Baoying, Yangzhou, Jiangsu, 225800, China
| | - Fu-Tong Ma
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Qian Ren
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China.
| |
Collapse
|
9
|
Bae SJ, Ni L, Luo X. STK25 suppresses Hippo signaling by regulating SAV1-STRIPAK antagonism. eLife 2020; 9:e54863. [PMID: 32292165 PMCID: PMC7182433 DOI: 10.7554/elife.54863] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
The MST-LATS kinase cascade is central to the Hippo pathway that controls tissue homeostasis, development, and organ size. The PP2A complex STRIPAKSLMAP blocks MST1/2 activation. The GCKIII family kinases associate with STRIPAK, but the functions of these phosphatase-associated kinases remain elusive. We previously showed that the scaffolding protein SAV1 promotes Hippo signaling by counteracting STRIPAK (Bae et al., 2017). Here, we show that the GCKIII kinase STK25 promotes STRIPAK-mediated inhibition of MST2 in human cells. Depletion of STK25 enhances MST2 activation without affecting the integrity of STRIPAKSLMAP. STK25 directly phosphorylates SAV1 and diminishes the ability of SAV1 to inhibit STRIPAK. Thus, STK25 as the kinase component of STRIPAK can inhibit the function of the STRIPAK inhibitor SAV1. This mutual antagonism between STRIPAK and SAV1 controls the initiation of Hippo signaling.
Collapse
Affiliation(s)
- Sung Jun Bae
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Lisheng Ni
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Xuelian Luo
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biophysics University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
10
|
Schad EG, Petersen CP. STRIPAK Limits Stem Cell Differentiation of a WNT Signaling Center to Control Planarian Axis Scaling. Curr Biol 2020; 30:254-263.e2. [PMID: 31928872 DOI: 10.1016/j.cub.2019.11.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/14/2019] [Accepted: 11/22/2019] [Indexed: 01/26/2023]
Abstract
Regeneration involves regulating tissue proportionality across considerable size ranges through unknown mechanisms. In planarians, which scale reversibly over 40× through regeneration, we identify the Striatin-interacting phosphatase and kinase (STRIPAK) complex as a potent negative regulator of axis length. Inhibition of two proteins in the STRIPAK complex, mob4 and striatin, dramatically increased posterior length, through expansion of a posterior wnt1+ signaling center within midline muscle cells. wnt1 was required for tail expansion after mob4 inhibition and dynamically reestablishes proportionality after amputation in normal animals, indicating STRIPAK represses Wnt signaling for scaling. Regulation of wnt1 expansion was stem cell dependent, demonstrating that control of signaling-center production through stem cell differentiation underlies proportional growth in adult regenerative tissue.
Collapse
Affiliation(s)
- Erik G Schad
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston IL 60208, USA.
| |
Collapse
|
11
|
Chauhan P, Gupta R, Jain BP, Pandey S, Goswami SK. Subcellular dynamics of variants of SG2NA in NIH3T3 fibroblasts. Cell Biol Int 2019; 44:637-650. [PMID: 31773824 DOI: 10.1002/cbin.11264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022]
Abstract
SG2NA, a WD40 repeat protein of the Striatin subfamily, has four splicing and one messenger RNA edit variants. It is fast emerging as a scaffold for multimeric signaling complexes with roles in tissue development and disease. The green fluorescent protein (GFP)-tagged variants of SG2NA were ectopically expressed in NIH3T3 cells and their modulation by serum and GSK3β-ERK signaling were monitored. The 87, 78, and 35 kDa variants showed a biphasic modulation by serum till 24 h but the 52 kDa variant remained largely unresponsive. Inhibition of phosphatases by okadaic acid increased the levels of the endogenous 78 kDa and the ectopically expressed GFP-tagged 87 and 78 kDa SG2NAs. Contrastingly, okadaic acid treatment reduced the level of GFP-tagged 35 kDa SG2NA, suggesting differential modes of their stability through phosphorylation-dephosphorylation. The inhibition of GSK3β by LiCl showed a gradual decrease in the levels of 78 kDa. In the case of the other variants viz, GFP-tagged 35, 52, and 87 kDa, inhibition of GSK3β caused an initial increase followed by a decrease with a subtle difference in kinetics and intensities. Similar results were also seen upon inhibition of GSK3β by small interfering RNA. All the variants showed an increase followed by a decrease upon inhibition of extracellular-signal-regulated-kinase (ERK). These variants are localized in the plasma membrane, endoplasmic reticulum, mitochondria, and the nucleus with different propensities and no discernable subcellular distribution was seen upon stimulation by serum and the inhibition of phosphatases, GSK3β, and ERK. Taken together, the variants of SG2NA are modulated by the kinase-phosphatase network in a similar but characteristic manner.
Collapse
Affiliation(s)
- Pooja Chauhan
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.,Department of Microbiology and Molecular Genetics, Hadassah Medical School, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem, POB 12272, Jerusalem, 91120, Israel
| | - Richa Gupta
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Buddhi P Jain
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.,Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University Bihar, Motihari, 845401, India
| | - Shweta Pandey
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.,APSGMNS Govt PG College, Kawardha, Chhatishgarh
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| |
Collapse
|
12
|
Hein AL, Brandquist ND, Ouellette CY, Seshacharyulu P, Enke CA, Ouellette MM, Batra SK, Yan Y. PR55α regulatory subunit of PP2A inhibits the MOB1/LATS cascade and activates YAP in pancreatic cancer cells. Oncogenesis 2019; 8:63. [PMID: 31659153 PMCID: PMC6817822 DOI: 10.1038/s41389-019-0172-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
PP2A holoenzyme complexes are responsible for the majority of Ser/Thr phosphatase activities in human cells. Each PP2A consists of a catalytic subunit (C), a scaffold subunit (A), and a regulatory subunit (B). While the A and C subunits each exists only in two highly conserved isoforms, a large number of B subunits share no homology, which determines PP2A substrate specificity and cellular localization. It is anticipated that different PP2A holoenzymes play distinct roles in cellular signaling networks, whereas PP2A has only generally been defined as a putative tumor suppressor, which is mostly based on the loss-of-function studies using pharmacological or biological inhibitors for the highly conserved A or C subunit of PP2A. Recent studies of specific pathways indicate that some PP2A complexes also possess tumor-promoting functions. We have previously reported an essential role of PR55α, a PP2A regulatory subunit, in the support of oncogenic phenotypes, including in vivo tumorigenicity/metastasis of pancreatic cancer cells. In this report, we have elucidated a novel role of PR55α-regulated PP2A in the activation of YAP oncoprotein, whose function is required for anchorage-independent growth during oncogenesis of solid tumors. Our data show two lines of YAP regulation by PR55α: (1) PR55α inhibits the MOB1-triggered autoactivation of LATS1/2 kinases, the core member of the Hippo pathway that inhibits YAP by inducing its proteasomal degradation and cytoplasmic retention and (2) PR55α directly interacts with and regulates YAP itself. Accordingly, PR55α is essential for YAP-promoted gene transcriptions, as well as for anchorage-independent growth, in which YAP plays a key role. In summary, current findings demonstrate a novel YAP activation mechanism based on the PR55α-regulated PP2A phosphatase.
Collapse
Affiliation(s)
- Ashley L Hein
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nichole D Brandquist
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Caroline Y Ouellette
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Charles A Enke
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michel M Ouellette
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
13
|
Kück U, Radchenko D, Teichert I. STRIPAK, a highly conserved signaling complex, controls multiple eukaryotic cellular and developmental processes and is linked with human diseases. Biol Chem 2019; 400:1005-1022. [PMID: 31042639 DOI: 10.1515/hsz-2019-0173] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/28/2019] [Indexed: 01/17/2023]
Abstract
The striatin-interacting phosphatases and kinases (STRIPAK) complex is evolutionary highly conserved and has been structurally and functionally described in diverse lower and higher eukaryotes. In recent years, this complex has been biochemically characterized better and further analyses in different model systems have shown that it is also involved in numerous cellular and developmental processes in eukaryotic organisms. Further recent results have shown that the STRIPAK complex functions as a macromolecular assembly communicating through physical interaction with other conserved signaling protein complexes to constitute larger dynamic protein networks. Here, we will provide a comprehensive and up-to-date overview of the architecture, function and regulation of the STRIPAK complex and discuss key issues and future perspectives, linked with human diseases, which may form the basis of further research endeavors in this area. In particular, the investigation of bi-directional interactions between STRIPAK and other signaling pathways should elucidate upstream regulators and downstream targets as fundamental parts of a complex cellular network.
Collapse
Affiliation(s)
- Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Daria Radchenko
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Ines Teichert
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| |
Collapse
|
14
|
Gundogdu R, Hergovich A. MOB (Mps one Binder) Proteins in the Hippo Pathway and Cancer. Cells 2019; 8:cells8060569. [PMID: 31185650 PMCID: PMC6627106 DOI: 10.3390/cells8060569] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/22/2022] Open
Abstract
The family of MOBs (monopolar spindle-one-binder proteins) is highly conserved in the eukaryotic kingdom. MOBs represent globular scaffold proteins without any known enzymatic activities. They can act as signal transducers in essential intracellular pathways. MOBs have diverse cancer-associated cellular functions through regulatory interactions with members of the NDR/LATS kinase family. By forming additional complexes with serine/threonine protein kinases of the germinal centre kinase families, other enzymes and scaffolding factors, MOBs appear to be linked to an even broader disease spectrum. Here, we review our current understanding of this emerging protein family, with emphases on post-translational modifications, protein-protein interactions, and cellular processes that are possibly linked to cancer and other diseases. In particular, we summarise the roles of MOBs as core components of the Hippo tissue growth and regeneration pathway.
Collapse
Affiliation(s)
- Ramazan Gundogdu
- Vocational School of Health Services, Bingol University, 12000 Bingol, Turkey.
| | - Alexander Hergovich
- UCL Cancer Institute, University College London, WC1E 6BT, London, United Kingdom.
| |
Collapse
|
15
|
Asymmetrical localization of Nup107-160 subcomplex components within the nuclear pore complex in fission yeast. PLoS Genet 2019; 15:e1008061. [PMID: 31170156 PMCID: PMC6553703 DOI: 10.1371/journal.pgen.1008061] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/01/2019] [Indexed: 01/05/2023] Open
Abstract
The nuclear pore complex (NPC) forms a gateway for nucleocytoplasmic transport. The outer ring protein complex of the NPC (the Nup107-160 subcomplex in humans) is a key component for building the NPC. Nup107-160 subcomplexes are believed to be symmetrically localized on the nuclear and cytoplasmic sides of the NPC. However, in S. pombe immunoelectron and fluorescence microscopic analyses revealed that the homologous components of the human Nup107-160 subcomplex had an asymmetrical localization: constituent proteins spNup132 and spNup107 were present only on the nuclear side (designated the spNup132 subcomplex), while spNup131, spNup120, spNup85, spNup96, spNup37, spEly5 and spSeh1 were localized only on the cytoplasmic side (designated the spNup120 subcomplex), suggesting the complex was split into two pieces at the interface between spNup96 and spNup107. This contrasts with the symmetrical localization reported in other organisms. Fusion of spNup96 (cytoplasmic localization) with spNup107 (nuclear localization) caused cytoplasmic relocalization of spNup107. In this strain, half of the spNup132 proteins, which interact with spNup107, changed their localization to the cytoplasmic side of the NPC, leading to defects in mitotic and meiotic progression similar to an spNup132 deletion strain. These observations suggest the asymmetrical localization of the outer ring spNup132 and spNup120 subcomplexes of the NPC is necessary for normal cell cycle progression in fission yeast. The nuclear pore complexes (NPCs) form gateways to transport intracellular molecules between the nucleus and the cytoplasm across the nuclear envelope. The Nup107-160 subcomplex, that forms nuclear and cytoplasmic outer rings, is a key complex responsible for building the NPC by symmetrical localization on the nuclear and cytoplasmic sides of the nuclear pore. This structural characteristic was found in various organisms including humans and budding yeasts, and therefore believed to be common among “all” eukaryotes. However, in this paper, we revealed an asymmetrical localization of the homologous components of the human Nup107-160 subcomplex in fission yeast by immunoelectron and fluorescence microscopic analyses: in this organism, the Nup107-160 subcomplex is split into two pieces, and each of the split pieces is differentially distributed to the nuclear and cytoplasmic side of the NPC: one piece is only in the nuclear side while the other piece is only in the cytoplasmic side. This contrasts with the symmetrical localization reported in other organisms. In addition, we confirmed that the asymmetrical configuration of the outer ring structure is necessary for cell cycle progression in fission yeast. This study provides notions of diverse structures and functions of NPCs evolved in eukaryotes.
Collapse
|
16
|
Kato W, Nishio M, To Y, Togashi H, Mak TW, Takada H, Ohga S, Maehama T, Suzuki A. MOB1 regulates thymocyte egress and T-cell survival in mice in a YAP1-independent manner. Genes Cells 2019; 24:485-495. [PMID: 31125466 DOI: 10.1111/gtc.12704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/05/2019] [Accepted: 05/14/2019] [Indexed: 01/31/2023]
Abstract
Mammalian STE20-like protein kinase 1/2 (MST1/2) and nuclear Dbf2-related kinase 1/2 (NDR1/2) are core components of Hippo signaling that are also known to be important regulators of lymphocyte trafficking. However, little is understood about the roles of other Hippo pathway molecules in these cells. Here, we present the first analysis of the function of Mps one binder kinase activator-1 (MOB1) in T lymphocytes in vivo. T-cell-specific double knockout (DKO) of MOB1A/B in mice [tMob1 DKO mice] reduces the number of naïve T cells in both the circulation and secondary lymphoid organs, but leads to an accumulation of CD4+ CD8- and CD4- CD8+ single-positive (SP) cells in the thymus. In vitro, naïve MOB1A/B-deficient T cells show increased apoptosis and display impaired trafficking capacity in response to the chemokine CCL19. These defects are linked to suppression of the activation of MST and NDR kinases, but are independent of the downstream transcriptional co-activator Yes-associated protein 1 (YAP1). Thus, MOB1 proteins play an important role in thymic egress and T-cell survival that is mediated by a pathway other than conventional Hippo-YAP1 signaling.
Collapse
Affiliation(s)
- Wakako Kato
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan.,Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Miki Nishio
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan.,Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoko To
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hideru Togashi
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Tak Wah Mak
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada
| | - Hidetoshi Takada
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan.,Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
Goto H, Nishio M, To Y, Oishi T, Miyachi Y, Maehama T, Nishina H, Akiyama H, Mak TW, Makii Y, Saito T, Yasoda A, Tsumaki N, Suzuki A. Loss of Mob1a/b in mice results in chondrodysplasia due to YAP1/TAZ-TEAD-dependent repression of SOX9. Development 2018; 145:dev.159244. [PMID: 29511023 DOI: 10.1242/dev.159244] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/19/2018] [Indexed: 12/30/2022]
Abstract
Hippo signaling is modulated in response to cell density, external mechanical forces, and rigidity of the extracellular matrix (ECM). The Mps one binder kinase activator (MOB) adaptor proteins are core components of Hippo signaling and influence Yes-associated protein 1 (YAP1) and transcriptional co-activator with PDZ-binding motif (TAZ), which are potent transcriptional regulators. YAP1/TAZ are key contributors to cartilage and bone development but the molecular mechanisms by which the Hippo pathway controls chondrogenesis are largely unknown. Cartilage is rich in ECM and also subject to strong external forces - two upstream factors regulating Hippo signaling. Chondrogenesis and endochondral ossification are tightly controlled by growth factors, morphogens, hormones, and transcriptional factors that engage in crosstalk with Hippo-YAP1/TAZ signaling. Here, we generated tamoxifen-inducible, chondrocyte-specific Mob1a/b-deficient mice and show that hyperactivation of endogenous YAP1/TAZ impairs chondrocyte proliferation and differentiation/maturation, leading to chondrodysplasia. These defects were linked to suppression of SOX9, a master regulator of chondrogenesis, the expression of which is mediated by TEAD transcription factors. Our data indicate that a MOB1-dependent YAP1/TAZ-TEAD complex functions as a transcriptional repressor of SOX9 and thereby negatively regulates chondrogenesis.
Collapse
Affiliation(s)
- Hiroki Goto
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Miki Nishio
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Yoko To
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Tatsuya Oishi
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yosuke Miyachi
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University School of Medicine, Gifu 501-1194, Japan
| | - Tak Wah Mak
- Campbell Family Institute for Breast Cancer Research at the Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C1, Canada; Department of Medical Biophysics, University of Toronto, University Health Network, Toronto M5G 2C1, Canada
| | - Yuma Makii
- Department of Sensory and Motor System Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Taku Saito
- Department of Sensory and Motor System Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Akihiro Yasoda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Noriyuki Tsumaki
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Akira Suzuki
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan .,Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| |
Collapse
|
18
|
Vitulo N, Vezzi A, Galla G, Citterio S, Marino G, Ruperti B, Zermiani M, Albertini E, Valle G, Barcaccia G. Characterization and Evolution of the Cell Cycle-Associated Mob Domain-Containing Proteins in Eukaryotes. Evol Bioinform Online 2017. [DOI: 10.1177/117693430700300007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The MOB family includes a group of cell cycle-associated proteins highly conserved throughout eukaryotes, whose founding members are implicated in mitotic exit and co-ordination of cell cycle progression with cell polarity and morphogenesis. Here we report the characterization and evolution of the MOB domain-containing proteins as inferred from the 43 eukaryotic genomes so far sequenced. We show that genes for Mob-like proteins are present in at least 41 of these genomes, confirming the universal distribution of this protein family and suggesting its prominent biological function. The phylogenetic analysis reveals five distinct MOB domain classes, showing a progressive expansion of this family from unicellular to multicellular organisms, reaching the highest number in mammals. Plant Mob genes appear to have evolved from a single ancestor, most likely after the loss of one or more genes during the early stage of Viridiplantae evolutionary history. Three of the Mob classes are widespread among most of the analyzed organisms. The possible biological and molecular function of Mob proteins and their role in conserved signaling pathways related to cell proliferation, cell death and cell polarity are also presented and critically discussed.
Collapse
Affiliation(s)
- Nicola Vitulo
- Dipartimento di Biologia, University of Padova, Viale G. Colombo 3, 35121, Padova
| | - Alessandro Vezzi
- Dipartimento di Biologia, University of Padova, Viale G. Colombo 3, 35121, Padova
| | - Giulio Galla
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali, University of Padova - Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Sandra Citterio
- Dipartimento di Scienze dell'Ambiente e del Territorio, University of Milano - Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Giada Marino
- Dipartimento di Scienze dell'Ambiente e del Territorio, University of Milano - Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Benedetto Ruperti
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Via delle Scienze 208, 33100, Udine, Italy
| | - Monica Zermiani
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Via delle Scienze 208, 33100, Udine, Italy
| | - Emidio Albertini
- Dipartimento di Biologia Vegetale e Biotecnologie Agroambientali e Zootecniche, Borgo XX Giugno, 06121, Perugia, Italy
| | - Giorgio Valle
- Dipartimento di Biologia, University of Padova, Viale G. Colombo 3, 35121, Padova
| | - Gianni Barcaccia
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali, University of Padova - Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| |
Collapse
|
19
|
Neisch AL, Neufeld TP, Hays TS. A STRIPAK complex mediates axonal transport of autophagosomes and dense core vesicles through PP2A regulation. J Cell Biol 2017; 216:441-461. [PMID: 28100687 PMCID: PMC5294782 DOI: 10.1083/jcb.201606082] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/09/2016] [Accepted: 12/27/2016] [Indexed: 02/06/2023] Open
Abstract
Autophagy plays an essential role in the cellular homeostasis of neurons, facilitating the clearance of cellular debris. This clearance process is orchestrated through the assembly, transport, and fusion of autophagosomes with lysosomes for degradation. The motor protein dynein drives autophagosome motility from distal sites of assembly to sites of lysosomal fusion. In this study, we identify the scaffold protein CKA (connector of kinase to AP-1) as essential for autophagosome transport in neurons. Together with other core components of the striatin-interacting phosphatase and kinase (STRIPAK) complex, we show that CKA associates with dynein and directly binds Atg8a, an autophagosomal protein. CKA is a regulatory subunit of PP2A, a component of the STRIPAK complex. We propose that the STRIPAK complex modulates dynein activity. Consistent with this hypothesis, we provide evidence that CKA facilitates axonal transport of dense core vesicles and autophagosomes in a PP2A-dependent fashion. In addition, CKA-deficient flies exhibit PP2A-dependent motor coordination defects. CKA function within the STRIPAK complex is crucial to prevent transport defects that may contribute to neurodegeneration.
Collapse
Affiliation(s)
- Amanda L Neisch
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Thomas P Neufeld
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Thomas S Hays
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
20
|
Juraszek B, Nałęcz KA. Protein phosphatase PP2A - a novel interacting partner of carnitine transporter OCTN2 (SLC22A5) in rat astrocytes. J Neurochem 2016; 139:537-551. [DOI: 10.1111/jnc.13777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/15/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Barbara Juraszek
- Laboratory of Transport through Biomembranes; Department of Molecular and Cellular Neurobiology; Nencki Institute of Experimental Biology of Polish Academy of Sciences; Warsaw Poland
| | - Katarzyna A. Nałęcz
- Laboratory of Transport through Biomembranes; Department of Molecular and Cellular Neurobiology; Nencki Institute of Experimental Biology of Polish Academy of Sciences; Warsaw Poland
| |
Collapse
|
21
|
Tuand K, Stijnen P, Volders K, Declercq J, Nuytens K, Meulemans S, Creemers J. Nuclear Localization of the Autism Candidate Gene Neurobeachin and Functional Interaction with the NOTCH1 Intracellular Domain Indicate a Role in Regulating Transcription. PLoS One 2016; 11:e0151954. [PMID: 26999814 PMCID: PMC4801420 DOI: 10.1371/journal.pone.0151954] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 03/07/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Neurobeachin (NBEA) is an autism spectrum disorders (ASD) candidate gene. NBEA deficiency affects regulated secretion, receptor trafficking, synaptic architecture and protein kinase A (PKA)-mediated phosphorylation. NBEA is a large multidomain scaffolding protein. From N- to C-terminus, NBEA has a concanavalin A-like lectin domain flanked by armadillo repeats (ACA), an A-kinase anchoring protein domain that can bind to PKA, a domain of unknown function (DUF1088) and a BEACH domain, preceded by a pleckstrin homology-like domain and followed by WD40 repeats (PBW). Although most of these domains mediate protein-protein interactions, no interaction screen has yet been performed. METHODS Yeast two-hybrid screens with the ACA and PBW domain modules of NBEA gave a list of interaction partners, which were analyzed for Gene Ontology (GO) enrichment. Neuro-2a cells were used for confocal microscopy and nuclear extraction analysis. NOTCH-mediated transcription was studied with luciferase reporter assays and qRT-PCR, combined with NBEA knockdown or overexpression. RESULTS Both domain modules showed a GO enrichment for the nucleus. PBW almost exclusively interacted with transcription regulators, while ACA interacted with a number of PKA substrates. NBEA was partially localized in the nucleus of Neuro-2a cells, albeit much less than in the cytoplasm. A nuclear localization signal was found in the DUF1088 domain, which was shown to contribute to the nuclear localization of an EGFP-DPBW fusion protein. Yeast two-hybrid identified the Notch1 intracellular domain as a physical interactor of the PBW domain and a role for NBEA as a negative regulator in Notch-mediated transcription was demonstrated. CONCLUSION Defining novel interaction partners of conserved NBEA domain modules identified a role for NBEA as transcriptional regulator in the nucleus. The physical interaction of NBEA with NOTCH1 is most relevant for ASD pathogenesis because NOTCH signaling is essential for neural development.
Collapse
Affiliation(s)
- Krizia Tuand
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Leuven Autism Research consortium (LAuRes), KU Leuven, Leuven, Belgium
| | - Pieter Stijnen
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Karolien Volders
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Leuven Autism Research consortium (LAuRes), KU Leuven, Leuven, Belgium
| | | | - Kim Nuytens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Leuven Autism Research consortium (LAuRes), KU Leuven, Leuven, Belgium
| | | | - John Creemers
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
22
|
Shi Z, Jiao S, Zhou Z. STRIPAK complexes in cell signaling and cancer. Oncogene 2016; 35:4549-57. [PMID: 26876214 DOI: 10.1038/onc.2016.9] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/24/2015] [Accepted: 12/24/2015] [Indexed: 12/28/2022]
Abstract
Striatin-interacting phosphatase and kinase (STRIPAK) complexes are striatin-centered multicomponent supramolecular structures containing both kinases and phosphatases. STRIPAK complexes are evolutionarily conserved and have critical roles in protein (de)phosphorylation. Recent studies indicate that STRIPAK complexes are emerging mediators and regulators of multiple vital signaling pathways including Hippo, MAPK (mitogen-activated protein kinase), nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are extensively involved in a variety of fundamental biological processes ranging from cell growth, differentiation, proliferation and apoptosis to metabolism, immune regulation and tumorigenesis. Growing evidence correlates dysregulation of STRIPAK complexes with human diseases including cancer. In this review, we summarize the current understanding of the assembly and functions of STRIPAK complexes, with a special focus on cell signaling and cancer.
Collapse
Affiliation(s)
- Z Shi
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - S Jiao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Z Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
23
|
Kück U, Beier AM, Teichert I. The composition and function of the striatin-interacting phosphatases and kinases (STRIPAK) complex in fungi. Fungal Genet Biol 2015; 90:31-38. [PMID: 26439752 DOI: 10.1016/j.fgb.2015.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 02/06/2023]
Abstract
The striatin-interacting phosphatases and kinases (STRIPAK) complex is a highly conserved eukaryotic protein complex that was recently described for diverse animal and fungal species. Here, we summarize our current knowledge about the composition and function of the STRIPAK complex from the ascomycete Sordaria macrospora, which we discovered by investigating sexually sterile mutants (pro), having a defect in fruiting body development. Mass spectrometry and yeast two-hybrid analysis defined core subunits of the STRIPAK complex, which have structural homologs in animal and other fungal organisms. These subunits (and their mammalian homologs) are PRO11 (striatin), PRO22 (STRIP1/2), SmMOB3 (Mob3), PRO45 (SLMAP), and PP2AA, the structural, and PP2Ac, the catalytic subunits of protein phosphatase 2A (PP2A). Beside fruiting body formation, the STRIPAK complex controls vegetative growth and hyphal fusion in S. macrospora. Although the contribution of single subunits to diverse cellular and developmental processes is not yet fully understood, functional analysis has already shown that mammalian homologs are able to substitute the function of distinct fungal STRIPAK subunits. This underscores the view that fungal model organisms serve as useful tools to get a molecular insight into cellular and developmental processes of eukaryotes in general. Future work will unravel the precise localization of single subunits within the cell and decipher their STRIPAK-related and STRIPAK-independent functions. Finally, evidence is accumulating that there is a crosstalk between STRIPAK and various signaling pathways, suggesting that eukaryotic development is dependent on STRIPAK signaling.
Collapse
Affiliation(s)
- Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Anna M Beier
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Ines Teichert
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
24
|
Nguyen LK, Matallanas DG, Romano D, Kholodenko BN, Kolch W. Competing to coordinate cell fate decisions: the MST2-Raf-1 signaling device. Cell Cycle 2015; 14:189-99. [PMID: 25607644 PMCID: PMC4353221 DOI: 10.4161/15384101.2014.973743] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
How do biochemical signaling pathways generate biological specificity? This question is fundamental to modern biology, and its enigma has been accentuated by the discovery that most proteins in signaling networks serve multifunctional roles. An answer to this question may lie in analyzing network properties rather than individual traits of proteins in order to elucidate design principles of biochemical networks that enable biological decision-making. We discuss how this is achieved in the MST2/Hippo-Raf-1 signaling network with the help of mathematical modeling and model-based analysis, which showed that competing protein interactions with affinities controlled by dynamic protein modifications can function as Boolean computing devices that determine cell fate decisions. In addition, we discuss areas of interest for future research and highlight how systems approaches would be of benefit.
Collapse
Affiliation(s)
- Lan K Nguyen
- a Systems Biology Ireland ; University College Dublin ; Belfield , Dublin , Ireland
| | | | | | | | | |
Collapse
|
25
|
Franke WW, Rickelt S, Zimbelmann R, Dörflinger Y, Kuhn C, Frey N, Heid H, Rosin-Arbesfeld R. Striatins as plaque molecules of zonulae adhaerentes in simple epithelia, of tessellate junctions in stratified epithelia, of cardiac composite junctions and of various size classes of lateral adherens junctions in cultures of epithelia- and carcinoma-derived cells. Cell Tissue Res 2014; 359:779-97. [PMID: 25501894 PMCID: PMC4341017 DOI: 10.1007/s00441-014-2053-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/05/2014] [Indexed: 11/29/2022]
Abstract
Proteins of the striatin family (striatins 1–4; sizes ranging from 90 to 110 kDa on SDS-polyacrylamide gel electrophoresis) are highly homologous in their amino acid sequences but can differ in their cell-type-specific gene expression patterns and biological functions. In various cell types, we have found one, two or three polypeptides of this evolutionarily old and nearly ubiquitous family of proteins known to serve as scaffold proteins for diverse protein complexes. Light and electron microscopic immunolocalization methods have revealed striatins in mammalian cell-cell adherens junctions (AJs). In simple epithelia, we have localized striatins as constitutive components of the plaques of the subapical zonulae adhaerentes of cells, including intestinal, glandular, ductal and urothelial cells and hepatocytes. Striatins colocalize with E-cadherin or E–N-cadherin heterodimers and with the plaque proteins α- and β-catenin, p120 and p0071. In some epithelia and carcinomas and in cultured cells derived therefrom, striatins are also seen in lateral AJs. In stratified epithelia and in corresponding squamous cell carcinomas, striatins can be found in plaques of some forms of tessellate junctions. Moreover, striatins are major plaque proteins of composite junctions (CJs; areae compositae) in the intercalated disks connecting cardiomyocytes, colocalizing with other CJ molecules, including plectin and ankyrin-G. We discuss the “multimodulator” scaffold roles of striatins in the initiation and regulation of the formation of various complex particles and structures. We propose that striatins are included in the diagnostic candidate list of proteins that, in the CJs of human hearts, can occur in mutated forms in the pathogeneses of hereditary cardiomyopathies, as seen in some types of genetically determined heart damage in boxer dogs.
Collapse
Affiliation(s)
- Werner W Franke
- Helmholtz Group for Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kaźmierczak-Barańska J, Pęczek Ł, Przygodzka P, Cieślak MJ. Downregulation of striatin leads to hyperphosphorylation of MAP2, induces depolymerization of microtubules and inhibits proliferation of HEK293T cells. FEBS Lett 2014; 589:222-30. [PMID: 25497017 DOI: 10.1016/j.febslet.2014.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/25/2014] [Accepted: 12/02/2014] [Indexed: 01/11/2023]
Abstract
Microtubules are tubular polymers of α/β-tubulin that are involved in the maintenance of cell shape, motility, and intracellular transport and in the segregation of chromosomes during cell division. Microtubules are dynamic structures, and their assembly is regulated by phosphoproteins called microtubule-associated proteins (MAPs). We propose that striatin, a protein belonging to the striatin family of proteins, is involved in regulation of microtubules. In HEK293T cells, striatin colocalizes with microtubules and stably associates with PP2Ac. Inhibition of striatin expression results in hyperphosphorylation of MAP2 and destabilizes microtubules. Striatin-induced destabilization of microtubules inhibited the proliferation of HEK293T cells and caused the accumulation of cells in the G0/G1 phase of the cell cycle. These results suggest that the PP2A/striatin complex modulates microtubule dynamics by regulating MAP2 phosphorylation.
Collapse
Affiliation(s)
- Julia Kaźmierczak-Barańska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza St., 90-363 Lodz, Poland.
| | - Łukasz Pęczek
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza St., 90-363 Lodz, Poland
| | - Patrycja Przygodzka
- Institute for Medical Biology of the Polish Academy of Sciences, 106 Lodowa St., 93-232 Lodz, Poland.
| | - Marcin J Cieślak
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza St., 90-363 Lodz, Poland.
| |
Collapse
|
27
|
Chen L, Ma L, Bai Q, Zhu X, Zhang J, Wei Q, Li D, Gao C, Li J, Zhang Z, Liu C, He Z, Zeng X, Zhang A, Qu W, Zhuang Z, Chen W, Xiao Y. Heavy metal-induced metallothionein expression is regulated by specific protein phosphatase 2A complexes. J Biol Chem 2014; 289:22413-26. [PMID: 24962574 PMCID: PMC4139248 DOI: 10.1074/jbc.m114.548677] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/20/2014] [Indexed: 01/06/2023] Open
Abstract
Induction of metallothionein (MT) expression is involved in metal homeostasis and detoxification. To identify the key pathways that regulate metal-induced cytotoxicity, we investigate how phosphorylated metal-responsive transcription factor-1 (MTF-1) contributed to induction of MT expression. Immortal human embryonic kidney cells (HEK cells) were treated with seven kinds of metals including cadmium chloride (CdCl2), zinc sulfate (ZnSO4), copper sulfate(CuSO4), lead acetate (PbAc), nickel sulfate (NiSO4), sodium arsenite (NaAsO2), and potassium bichromate (K2Cr2O7). The MT expression was induced in a dose-response and time-dependent manner upon various metal treatments. A cycle of phosphorylation and dephosphorylation was required for translocation of MTF-1 from cytoplasm to nucleus, leading to the up-regulation of MTs expression. Protein phosphatase 2A (PP2A) participated in regulating MT expression through dephosphorylation of MTF-1. A loss-of-function screen revealed that the specific PP2A complexes containing PR110 were involved in metal-induced MT expression. Suppression of PP2A PR110 in HEK cells resulted in the persistent MTF-1 phosphorylation and the disturbance of MTF-1 nuclear translocation, which was concomitant with a significant decrease of MT expression and enhanced cytotoxicity in HEK cells. Notably, MTF-1 was found in complex with specific PP2A complexes containing the PR110 subunit upon metal exposure. Furthermore, we identify that the dephosphorylation of MTF-1 at residue Thr-254 is directly regulated by PP2A PR110 complexes and responsible for MTF-1 activation. Taken together, these findings delineate a novel pathway that determines cytotoxicity in response to metal treatments and provide new insight into the role of PP2A in cellular stress response.
Collapse
Affiliation(s)
- Liping Chen
- From the Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lu Ma
- From the Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Bai
- From the Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaonian Zhu
- From the Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinmiao Zhang
- From the Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Wei
- From the Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Daochuan Li
- From the Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chen Gao
- From the Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Li
- From the Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhengbao Zhang
- From the Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Caixia Liu
- From the Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhini He
- From the Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaowen Zeng
- From the Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Aihua Zhang
- Department of Toxicology, School of Public Health, Guiyang Medical University, Guiyang 550004, China
| | - Weidong Qu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China, and
| | - Zhixiong Zhuang
- Department of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518001, China
| | - Wen Chen
- From the Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China,
| | - Yongmei Xiao
- From the Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China,
| |
Collapse
|
28
|
Coutinho P, Vega C, Pojoga LH, Rivera A, Prado GN, Yao TM, Adler G, Torres-Grajales M, Maldonado ER, Ramos-Rivera A, Williams JS, Williams G, Romero JR. Aldosterone's rapid, nongenomic effects are mediated by striatin: a modulator of aldosterone's effect on estrogen action. Endocrinology 2014; 155:2233-43. [PMID: 24654783 PMCID: PMC4020933 DOI: 10.1210/en.2013-1834] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cellular responses to steroids are mediated by 2 general mechanisms: genomic and rapid/nongenomic effects. Identification of the mechanisms underlying aldosterone (ALDO)'s rapid vs their genomic actions is difficult to study, and these mechanisms are not clearly understood. Recent data suggest that striatin is a mediator of nongenomic effects of estrogen. We explored the hypothesis that striatin is an intermediary of the rapid/nongenomic effects of ALDO and that striatin serves as a novel link between the actions of the mineralocorticoid and estrogen receptors. In human and mouse endothelial cells, ALDO promoted an increase in phosphorylated extracellular signal-regulated protein kinases 1/2 (pERK) that peaked at 15 minutes. In addition, we found that striatin is a critical intermediary in this process, because reducing striatin levels with small interfering RNA (siRNA) technology prevented the rise in pERK levels. In contrast, reducing striatin did not significantly affect 2 well-characterized genomic responses to ALDO. Down-regulation of striatin with siRNA produced similar effects on estrogen's actions, reducing nongenomic, but not some genomic, actions. ALDO, but not estrogen, increased striatin levels. When endothelial cells were pretreated with ALDO, the rapid/nongenomic response to estrogen on phosphorylated endothelial nitric oxide synthase (peNOS) was enhanced and accelerated significantly. Importantly, pretreatment with estrogen did not enhance ALDO's nongenomic response on pERK. In conclusion, our results indicate that striatin is a novel mediator for both ALDO's and estrogen's rapid and nongenomic mechanisms of action on pERK and phosphorylated eNOS, respectively, thereby suggesting a unique level of interactions between the mineralocorticoid receptor and the estrogen receptor in the cardiovascular system.
Collapse
Affiliation(s)
- Patricia Coutinho
- Division of Endocrinology, Diabetes and Hypertension (P.C., C.V., L.H.P., G.N.P., T.M.Y., G.A., M.T.-G., E.R.M., A.R.-R., J.S.W., G.W., J.R.R.), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, and Department of Laboratory Medicine (C.V., A.R., G.N.P., E.R.M.), Boston Children's Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen C, Shi Z, Zhang W, Chen M, He F, Zhang Z, Wang Y, Feng M, Wang W, Zhao Y, Brown JH, Jiao S, Zhou Z. Striatins contain a noncanonical coiled coil that binds protein phosphatase 2A A subunit to form a 2:2 heterotetrameric core of striatin-interacting phosphatase and kinase (STRIPAK) complex. J Biol Chem 2014; 289:9651-61. [PMID: 24550388 PMCID: PMC3975014 DOI: 10.1074/jbc.m113.529297] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/17/2014] [Indexed: 01/18/2023] Open
Abstract
The protein phosphatase 2A (PP2A) and kinases such as germinal center kinase III (GCKIII) can interact with striatins to form a supramolecular complex called striatin-interacting phosphatase and kinase (STRIPAK) complex. Despite the fact that the STRIPAK complex regulates multiple cellular events, it remains only partially understood how this complex itself is assembled and regulated for differential biological functions. Our recent work revealed the activation mechanism of GCKIIIs by MO25, as well as how GCKIIIs heterodimerize with CCM3, a molecular bridge between GCKIII and striatins. Here we dissect the structural features of the coiled coil domain of striatin 3, a novel type of PP2A regulatory subunit that functions as a scaffold for the assembly of the STRIPAK complex. We have determined the crystal structure of a selenomethionine-labeled striatin 3 coiled coil domain, which shows it to assume a parallel dimeric but asymmetric conformation containing a large bend. This result combined with a number of biophysical analyses provide evidence that the coiled coil domain of striatin 3 and the PP2A A subunit form a stable core complex with a 2:2 stoichiometry. Structure-based mutational studies reveal that homodimerization of striatin 3 is essential for its interaction with PP2A and therefore assembly of the STRIPAK complex. Wild-type striatin 3 but not the mutants defective in PP2A binding strongly suppresses apoptosis of Jurkat cells induced by the GCKIII kinase MST3, most likely through a mechanism in which striatin recruits PP2A to negatively regulate the activation of MST3. Collectively, our work provides structural insights into the organization of the STRIPAK complex and will facilitate further functional studies.
Collapse
Affiliation(s)
- Cuicui Chen
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhubing Shi
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China, and
| | - Wenqing Zhang
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min Chen
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Feng He
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenzhen Zhang
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yicui Wang
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Miao Feng
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenjia Wang
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun Zhao
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jerry H. Brown
- the Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Shi Jiao
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhaocai Zhou
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China, and
| |
Collapse
|
30
|
Hwang J, Pallas DC. STRIPAK complexes: structure, biological function, and involvement in human diseases. Int J Biochem Cell Biol 2014; 47:118-48. [PMID: 24333164 PMCID: PMC3927685 DOI: 10.1016/j.biocel.2013.11.021] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 11/18/2013] [Accepted: 11/28/2013] [Indexed: 12/31/2022]
Abstract
The mammalian striatin family consists of three proteins, striatin, S/G2 nuclear autoantigen, and zinedin. Striatin family members have no intrinsic catalytic activity, but rather function as scaffolding proteins. Remarkably, they organize multiple diverse, large signaling complexes that participate in a variety of cellular processes. Moreover, they appear to be regulatory/targeting subunits for the major eukaryotic serine/threonine protein phosphatase 2A. In addition, striatin family members associate with germinal center kinase III kinases as well as other novel components, earning these assemblies the name striatin-interacting phosphatase and kinase (STRIPAK) complexes. Recently, there has been a great increase in functional and mechanistic studies aimed at identifying and understanding the roles of STRIPAK and STRIPAK-like complexes in cellular processes of multiple organisms. These studies have identified novel STRIPAK and STRIPAK-like complexes and have explored their roles in specific signaling pathways. Together, the results of these studies have sparked increased interest in striatin family complexes because they have revealed roles in signaling, cell cycle control, apoptosis, vesicular trafficking, Golgi assembly, cell polarity, cell migration, neural and vascular development, and cardiac function. Moreover, STRIPAK complexes have been connected to clinical conditions, including cardiac disease, diabetes, autism, and cerebral cavernous malformation. In this review, we discuss the expression, localization, and protein domain structure of striatin family members. Then we consider the diverse complexes these proteins and their homologs form in various organisms, emphasizing what is known regarding function and regulation. Finally, we explore possible roles of striatin family complexes in disease, especially cerebral cavernous malformation.
Collapse
Affiliation(s)
- Juyeon Hwang
- Department of Biochemistry and Winship Cancer Institute, and Biochemistry, Cell, Developmental Biology Graduate Program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | - David C Pallas
- Department of Biochemistry and Winship Cancer Institute, and Biochemistry, Cell, Developmental Biology Graduate Program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| |
Collapse
|
31
|
SOcK, MiSTs, MASK and STicKs: the GCKIII (germinal centre kinase III) kinases and their heterologous protein-protein interactions. Biochem J 2013; 454:13-30. [PMID: 23889253 DOI: 10.1042/bj20130219] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The GCKIII (germinal centre kinase III) subfamily of the mammalian Ste20 (sterile 20)-like group of serine/threonine protein kinases comprises SOK1 (Ste20-like/oxidant-stress-response kinase 1), MST3 (mammalian Ste20-like kinase 3) and MST4. Initially, GCKIIIs were considered in the contexts of the regulation of mitogen-activated protein kinase cascades and apoptosis. More recently, their participation in multiprotein heterocomplexes has become apparent. In the present review, we discuss the structure and phosphorylation of GCKIIIs and then focus on their interactions with other proteins. GCKIIIs possess a highly-conserved, structured catalytic domain at the N-terminus and a less-well conserved C-terminal regulatory domain. GCKIIIs are activated by tonic autophosphorylation of a T-loop threonine residue and their phosphorylation is regulated primarily through protein serine/threonine phosphatases [especially PP2A (protein phosphatase 2A)]. The GCKIII regulatory domains are highly disorganized, but can interact with more structured proteins, particularly the CCM3 (cerebral cavernous malformation 3)/PDCD10 (programmed cell death 10) protein. We explore the role(s) of GCKIIIs (and CCM3/PDCD10) in STRIPAK (striatin-interacting phosphatase and kinase) complexes and their association with the cis-Golgi protein GOLGA2 (golgin A2; GM130). Recently, an interaction of GCKIIIs with MO25 has been identified. This exhibits similarities to the STRADα (STE20-related kinase adaptor α)-MO25 interaction (as in the LKB1-STRADα-MO25 heterotrimer) and, at least for MST3, the interaction may be enhanced by cis-autophosphorylation of its regulatory domain. In these various heterocomplexes, GCKIIIs associate with the Golgi apparatus, the centrosome and the nucleus, as well as with focal adhesions and cell junctions, and are probably involved in cell migration, polarity and proliferation. Finally, we consider the association of GCKIIIs with a number of human diseases, particularly cerebral cavernous malformations.
Collapse
|
32
|
Okadaic Acid: a tool to study the hippo pathway. Mar Drugs 2013; 11:896-902. [PMID: 23493077 PMCID: PMC3705378 DOI: 10.3390/md11030896] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/04/2013] [Accepted: 02/19/2013] [Indexed: 02/06/2023] Open
Abstract
Mammalian Ste20-like kinases 1 and 2 (MST1 and MST2) are activated in NIH3T3 cells exposed to okadaic acid. The Hippo pathway is a newly emerging signaling that functions as a tumor suppressor. MST1 and MST2 work as core kinases of the Hippo pathway and their activities depend on the autophosphorylation, which is negatively regulated by protein phosphatase 2A (PP2A). Okadaic acid has been frequently used to enhance the phosphorylation of MST1 and MST2 and to trigger the activation of the Hippo pathway. However other components of the Hippo pathway could also be targets of okadaic acid. In this review we first briefly summarize the molecular architecture of the Hippo pathway for the reference of researchers outside the field. We explain how MST kinases are regulated by PP2A and how okadaic acid activates MST2. Thereafter we discuss which components of the Hippo pathway are candidate substrates of protein phosphatases and which points we need to consider in the usage of okadaic acid to study the Hippo pathway.
Collapse
|
33
|
Nishio M, Hamada K, Kawahara K, Sasaki M, Noguchi F, Chiba S, Mizuno K, Suzuki SO, Dong Y, Tokuda M, Morikawa T, Hikasa H, Eggenschwiler J, Yabuta N, Nojima H, Nakagawa K, Hata Y, Nishina H, Mimori K, Mori M, Sasaki T, Mak TW, Nakano T, Itami S, Suzuki A. Cancer susceptibility and embryonic lethality in Mob1a/1b double-mutant mice. J Clin Invest 2012; 122:4505-18. [PMID: 23143302 DOI: 10.1172/jci63735] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 09/13/2012] [Indexed: 12/31/2022] Open
Abstract
Mps one binder 1a (MOB1A) and MOB1B are key components of the Hippo signaling pathway and are mutated or inactivated in many human cancers. Here we show that intact Mob1a or Mob1b is essential for murine embryogenesis and that loss of the remaining WT Mob1 allele in Mob1a(Δ/Δ)1b(tr/+) or Mob1a(Δ/+)1b(tr/tr) mice results in tumor development. Because most of these cancers resembled trichilemmal carcinomas, we generated double-mutant mice bearing tamoxifen-inducible, keratinocyte-specific homozygous-null mutations of Mob1a and Mob1b (kDKO mice). kDKO mice showed hyperplastic keratinocyte progenitors and defective keratinocyte terminal differentiation and soon died of malnutrition. kDKO keratinocytes exhibited hyperproliferation, apoptotic resistance, impaired contact inhibition, enhanced progenitor self renewal, and increased centrosomes. Examination of Hippo pathway signaling in kDKO keratinocytes revealed that loss of Mob1a/b altered the activities of the downstream Hippo mediators LATS and YAP1. Similarly, YAP1 was activated in some human trichilemmal carcinomas, and some of these also exhibited MOB1A/1B inactivation. Our results clearly demonstrate that MOB1A and MOB1B have overlapping functions in skin homeostasis, and exert their roles as tumor suppressors by regulating downstream elements of the Hippo pathway.
Collapse
Affiliation(s)
- Miki Nishio
- Division of Cancer Genetics, Medical Institute of Bioregulation, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Functional repurposing revealed by comparing S. pombe and S. cerevisiae genetic interactions. Cell 2012; 149:1339-52. [PMID: 22682253 PMCID: PMC3613983 DOI: 10.1016/j.cell.2012.04.028] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 03/08/2012] [Accepted: 04/02/2012] [Indexed: 12/12/2022]
Abstract
We present a genetic interaction map of pairwise measures including ∼40% of nonessential S. pombe genes. By comparing interaction maps for fission and budding yeast, we confirmed widespread conservation of genetic relationships within and between complexes and pathways. However, we identified an important subset of orthologous complexes that have undergone functional "repurposing": the evolution of divergent functions and partnerships. We validated three functional repurposing events in S. pombe and mammalian cells and discovered that (1) two lumenal sensors of misfolded ER proteins, the kinase/nuclease Ire1 and the glucosyltransferase Gpt1, act together to mount an ER stress response; (2) ESCRT factors regulate spindle-pole-body duplication; and (3) a membrane-protein phosphatase and kinase complex, the STRIPAK complex, bridges the cis-Golgi, the centrosome, and the outer nuclear membrane to direct mitotic progression. Each discovery opens new areas of inquiry and-together-have implications for model organism-based research and the evolution of genetic systems.
Collapse
|
35
|
Abstract
The canonical pathway of regulation of the GCK (germinal centre kinase) III subgroup member, MST3 (mammalian Sterile20-related kinase 3), involves a caspase-mediated cleavage between N-terminal catalytic and C-terminal regulatory domains with possible concurrent autophosphorylation of the activation loop MST3(Thr178), induction of serine/threonine protein kinase activity and nuclear localization. We identified an alternative ‘non-canonical’ pathway of MST3 activation (regulated primarily through dephosphorylation) which may also be applicable to other GCKIII (and GCKVI) subgroup members. In the basal state, inactive MST3 co-immunoprecipitated with the Golgi protein GOLGA2/gm130 (golgin A2/Golgi matrix protein 130). Activation of MST3 by calyculin A (a protein serine/threonine phosphatase 1/2A inhibitor) stimulated (auto)phosphorylation of MST3(Thr178) in the catalytic domain with essentially simultaneous cis-autophosphorylation of MST3(Thr328) in the regulatory domain, an event also requiring the MST3(341–376) sequence which acts as a putative docking domain. MST3(Thr178) phosphorylation increased MST3 kinase activity, but this activity was independent of MST3(Thr328) phosphorylation. Interestingly, MST3(Thr328) lies immediately C-terminal to a STRAD (Sterile20-related adaptor) pseudokinase-like site identified recently as being involved in binding of GCKIII/GCKVI members to MO25 scaffolding proteins. MST3(Thr178/Thr328) phosphorylation was concurrent with dissociation of MST3 from GOLGA2/gm130 and association of MST3 with MO25, and MST3(Thr328) phosphorylation was necessary for formation of the activated MST3–MO25 holocomplex.
Collapse
|
36
|
Hyodo T, Ito S, Hasegawa H, Asano E, Maeda M, Urano T, Takahashi M, Hamaguchi M, Senga T. Misshapen-like kinase 1 (MINK1) is a novel component of striatin-interacting phosphatase and kinase (STRIPAK) and is required for the completion of cytokinesis. J Biol Chem 2012; 287:25019-29. [PMID: 22665485 DOI: 10.1074/jbc.m112.372342] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytokinesis is initiated by constriction of the cleavage furrow and terminated by abscission of the intercellular bridge that connects two separating daughter cells. The complicated processes of cytokinesis are coordinated by phosphorylation and dephosphorylation mediated by protein kinases and phosphatases. Mammalian Misshapen-like kinase 1 (MINK1) is a member of the germinal center kinases and is known to regulate cytoskeletal organization and oncogene-induced cell senescence. To search for novel regulators of cytokinesis, we performed a screen using a library of siRNAs and found that MINK1 was essential for cytokinesis. Time-lapse analysis revealed that MINK1-depleted cells were able to initiate furrowing but that abscission was disrupted. STRN4 (Zinedin) is a regulatory subunit of protein phosphatase 2A (PP2A) and was recently shown to be a component of a novel protein complex called striatin-interacting phosphatase and kinase (STRIPAK). Mass spectrometry analysis showed that MINK1 was a component of STRIPAK and that MINK1 directly interacted with STRN4. Similar to MINK1 depletion, STRN4-knockdown induced multinucleated cells and inhibited the completion of abscission. In addition, STRN4 reduced MINK1 activity in the presence of catalytic and structural subunits of PP2A. Our study identifies a novel regulatory network of protein kinases and phosphatases that regulate the completion of abscission.
Collapse
Affiliation(s)
- Toshinori Hyodo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Manavalan A, Ramachandran U, Sundaramurthi H, Mishra M, Sze SK, Hu JM, Feng ZW, Heese K. Gastrodia elata Blume (tianma) mobilizes neuro-protective capacities. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 3:219-241. [PMID: 22773961 PMCID: PMC3388733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/27/2012] [Indexed: 06/01/2023]
Abstract
Tianma (Gastrodia elata Blume) is a traditional Chinese medicine (TCM) often used for the treatment of headache, convulsions, hypertension and neurodegenerative diseases. Tianma also modulates the cleavage of the amyloid precursor protein App and cognitive functions in mice. The neuronal actions of tianma thus led us to investigate its specific effects on neuronal signalling. Accordingly, this pilot study was designed to examine the effects of tianma on the proteome metabolism in differentiated mouse neuronal N2a cells using an iTRAQ (isobaric tags for relative and absolute quantitation)-based proteomics research approach. We identified 2178 proteins, out of which 74 were found to be altered upon tianma treatment in differentiated mouse neuronal N2a cells. Based on the observed data obtained, we hypothesize that tianma could promote neuro-regenerative processes by inhibiting stress-related proteins and mobilizing neuroprotective genes such as Nxn, Dbnl, Mobkl3, Clic4, Mki67 and Bax with various regenerative modalities and capacities related to neuro-synaptic plasticity.
Collapse
Affiliation(s)
- Arulmani Manavalan
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Advanced Studies, Nanyang Technological University60 Nanyang View, Singapore 639673, Singapore
| | - Umamaheswari Ramachandran
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Advanced Studies, Nanyang Technological University60 Nanyang View, Singapore 639673, Singapore
| | - Husvinee Sundaramurthi
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
| | - Manisha Mishra
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Advanced Studies, Nanyang Technological University60 Nanyang View, Singapore 639673, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
| | - Jiang-Miao Hu
- Kunming Institute of Botany, Chinese Academy of ScienceKunming, Yunnan 650204, People’s Republic of China
| | - Zhi Wei Feng
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
| | - Klaus Heese
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Advanced Studies, Nanyang Technological University60 Nanyang View, Singapore 639673, Singapore
| |
Collapse
|
38
|
Pojoga LH, Coutinho P, Rivera A, Yao TM, Maldonado ER, Youte R, Adler GK, Williams J, Turchin A, Williams GH, Romero JR. Activation of the mineralocorticoid receptor increases striatin levels. Am J Hypertens 2012; 25:243-9. [PMID: 22089104 DOI: 10.1038/ajh.2011.197] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Aldosterone (ALDO), a critical regulator of sodium homeostasis, mediates its effects via activation of the mineralocorticoid receptor (MR) through mechanisms that are not entirely clear. Striatin, a membrane associated protein, interacts with estrogen receptors in endothelial cells. METHODS We studied the effects of MR activation in vitro and in vivo on striatin levels in vascular tissue. RESULTS We observed that dietary sodium restriction was associated with increased striatin levels in mouse heart and aorta and that striatin and MR are present in the human endothelial cell line, (EA.hy926), and in mouse aortic endothelial cells (MAEC). Further, we show that MR co-precipitates with striatin in vascular tissue. Incubation of EA.hy926 cells with ALDO (10(-8) mol/l for 5-24 h) increases striatin protein and mRNA expression, an effect that was inhibited by canrenoic acid, an MR antagonist. Consistent with these observations, incubation of MAEC with ALDO increased striatin levels that were likewise blocked by canrenoic acid. To test the in vivo relevance of these findings, we studied two previously described mouse models of increased ALDO levels. Intraperitoneal ALDO administration augmented the abundance of striatin protein in mouse heart. We also observed that in a murine model of chronic ALDO-mediated cardiovascular damage following treatment with N(G)-nitro-L-arginine methyl ester plus angiotensin II an increased abundance of striatin protein in heart and kidney tissue. CONCLUSION Our results provide evidence that increased striatin levels is a component of MR activation in the vasculature and suggest that regulation of striatin by ALDO may modulate estrogen's nongenomic effects.
Collapse
|
39
|
Gordon J, Hwang J, Carrier KJ, Jones CA, Kern QL, Moreno CS, Karas RH, Pallas DC. Protein phosphatase 2a (PP2A) binds within the oligomerization domain of striatin and regulates the phosphorylation and activation of the mammalian Ste20-Like kinase Mst3. BMC BIOCHEMISTRY 2011; 12:54. [PMID: 21985334 PMCID: PMC3217859 DOI: 10.1186/1471-2091-12-54] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 10/10/2011] [Indexed: 11/10/2022]
Abstract
Background Striatin, a putative protein phosphatase 2A (PP2A) B-type regulatory subunit, is a multi-domain scaffolding protein that has recently been linked to several diseases including cerebral cavernous malformation (CCM), which causes symptoms ranging from headaches to stroke. Striatin association with the PP2A A/C (structural subunit/catalytic subunit) heterodimer alters PP2A substrate specificity, but targets and roles of striatin-associated PP2A are not known. In addition to binding the PP2A A/C heterodimer to form a PP2A holoenzyme, striatin associates with cerebral cavernous malformation 3 (CCM3) protein, the mammalian Mps one binder (MOB) homolog, Mob3/phocein, the mammalian sterile 20-like (Mst) kinases, Mst3, Mst4 and STK25, and several other proteins to form a large signaling complex. Little is known about the molecular architecture of the striatin complex and the regulation of these sterile 20-like kinases. Results To help define the molecular organization of striatin complexes and to determine whether Mst3 might be negatively regulated by striatin-associated PP2A, a structure-function analysis of striatin was performed. Two distinct regions of striatin are capable of stably binding directly or indirectly to Mob3--one N-terminal, including the coiled-coil domain, and another more C-terminal, including the WD-repeat domain. In addition, striatin residues 191-344 contain determinants necessary for efficient association of Mst3, Mst4, and CCM3. PP2A associates with the coiled-coil domain of striatin, but unlike Mob3 and Mst3, its binding appears to require striatin oligomerization. Deletion of the caveolin-binding domain on striatin abolishes striatin family oligomerization and PP2A binding. Point mutations in striatin that disrupt PP2A association cause hyperphosphorylation and activation of striatin-associated Mst3. Conclusions Striatin orchestrates the regulation of Mst3 by PP2A. It binds Mst3 likely as a dimer with CCM3 via residues lying between striatin's calmodulin-binding and WD-domains and recruits the PP2A A/C heterodimer to its coiled-coil/oligomerization domain. Residues outside the previously reported coiled-coil domain of striatin are necessary for its oligomerization. Striatin-associated PP2A is critical for Mst3 dephosphorylation and inactivation. Upon inhibition of PP2A, Mst3 activation appears to involve autophosphorylation of multiple activation loop phosphorylation sites. Mob3 can associate with striatin sequences C-terminal to the Mst3 binding site but also with sequences proximal to striatin-associated PP2A, consistent with a possible role for Mob 3 in the regulation of Mst3 by PP2A.
Collapse
Affiliation(s)
- Johnthan Gordon
- Department of Biochemistry and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bai SW, Herrera-Abreu MT, Rohn JL, Racine V, Tajadura V, Suryavanshi N, Bechtel S, Wiemann S, Baum B, Ridley AJ. Identification and characterization of a set of conserved and new regulators of cytoskeletal organization, cell morphology and migration. BMC Biol 2011; 9:54. [PMID: 21834987 PMCID: PMC3201212 DOI: 10.1186/1741-7007-9-54] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 08/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell migration is essential during development and in human disease progression including cancer. Most cell migration studies concentrate on known or predicted components of migration pathways. RESULTS Here we use data from a genome-wide RNAi morphology screen in Drosophila melanogaster cells together with bioinformatics to identify 26 new regulators of morphology and cytoskeletal organization in human cells. These include genes previously implicated in a wide range of functions, from mental retardation, Down syndrome and Huntington's disease to RNA and DNA-binding genes. We classify these genes into seven groups according to phenotype and identify those that affect cell migration. We further characterize a subset of seven genes, FAM40A, FAM40B, ARC, FMNL3, FNBP3/FBP11, LIMD1 and ZRANB1, each of which has a different effect on cell shape, actin filament distribution and cell migration. Interestingly, in several instances closely related isoforms with a single Drosophila homologue have distinct phenotypes. For example, FAM40B depletion induces cell elongation and tail retraction defects, whereas FAM40A depletion reduces cell spreading. CONCLUSIONS Our results identify multiple regulators of cell migration and cytoskeletal signalling that are highly conserved between Drosophila and humans, and show that closely related paralogues can have very different functions in these processes.
Collapse
Affiliation(s)
- Siau Wei Bai
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
- SWB, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 PARIS; VR, Fluofarma, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Maria Teresa Herrera-Abreu
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Jennifer L Rohn
- MRC Laboratory of Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Victor Racine
- Institute of Molecular and Cellular Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
- SWB, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 PARIS; VR, Fluofarma, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Virginia Tajadura
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Narendra Suryavanshi
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Stephanie Bechtel
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Stefan Wiemann
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Buzz Baum
- MRC Laboratory of Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
41
|
Kean MJ, Ceccarelli DF, Goudreault M, Sanches M, Tate S, Larsen B, Gibson LCD, Derry WB, Scott IC, Pelletier L, Baillie GS, Sicheri F, Gingras AC. Structure-function analysis of core STRIPAK Proteins: a signaling complex implicated in Golgi polarization. J Biol Chem 2011; 286:25065-75. [PMID: 21561862 DOI: 10.1074/jbc.m110.214486] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are alterations in brain capillary architecture that can result in neurological deficits, seizures, or stroke. We recently demonstrated that CCM3, a protein mutated in familial CCMs, resides predominantly within the STRIPAK complex (striatin interacting phosphatase and kinase). Along with CCM3, STRIPAK contains the Ser/Thr phosphatase PP2A. The PP2A holoenzyme consists of a core catalytic subunit along with variable scaffolding and regulatory subunits. Within STRIPAK, striatin family members act as PP2A regulatory subunits. STRIPAK also contains all three members of a subfamily of Sterile 20 kinases called the GCKIII proteins (MST4, STK24, and STK25). Here, we report that striatins and CCM3 bridge the phosphatase and kinase components of STRIPAK and map the interacting regions on each protein. We show that striatins and CCM3 regulate the Golgi localization of MST4 in an opposite manner. Consistent with a previously described function for MST4 and CCM3 in Golgi positioning, depletion of CCM3 or striatins affects Golgi polarization, also in an opposite manner. We propose that STRIPAK regulates the balance between MST4 localization at the Golgi and in the cytosol to control Golgi positioning.
Collapse
Affiliation(s)
- Michelle J Kean
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bao Y, Hata Y, Ikeda M, Withanage K. Mammalian Hippo pathway: from development to cancer and beyond. J Biochem 2011; 149:361-79. [PMID: 21324984 DOI: 10.1093/jb/mvr021] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Hippo pathway was discovered as a signal transduction pathway that regulates organ size in Drosophila melanogaster. It is composed of three components: cell surface upstream regulators including cell adhesion molecules and cell polarity complexes; a kinase cascade comprising two serine-threonine kinases with regulators and adaptors; and a downstream target, a transcription coactivator. The coactivator mediates the transcription of cell proliferation-promoting and anti-apoptotic genes. The pathway negatively regulates the coactivator to restrict cell proliferation and to promote cell death. Thus, the pathway prevents tissue overgrowth and tumourigenesis. The framework of the pathway is conserved in mammals. A dysfunction of the pathway is frequently detected in human cancers and correlates with a poor prognosis. Recent works indicated that the Hippo pathway plays an important role in tissue homoeostasis through the regulation of stem cells, cell differentiation and tissue regeneration.
Collapse
Affiliation(s)
- Yijun Bao
- Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | | | |
Collapse
|
43
|
The phocein homologue SmMOB3 is essential for vegetative cell fusion and sexual development in the filamentous ascomycete Sordaria macrospora. Curr Genet 2011; 57:133-49. [PMID: 21229248 PMCID: PMC3059760 DOI: 10.1007/s00294-010-0333-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 12/06/2010] [Accepted: 12/27/2010] [Indexed: 01/11/2023]
Abstract
Members of the striatin family and their highly conserved interacting protein phocein/Mob3 are key components in the regulation of cell differentiation in multicellular eukaryotes. The striatin homologue PRO11 of the filamentous ascomycete Sordaria macrospora has a crucial role in fruiting body development. Here, we functionally characterized the phocein/Mob3 orthologue SmMOB3 of S. macrospora. We isolated the gene and showed that both, pro11 and Smmob3 are expressed during early and late developmental stages. Deletion of Smmob3 resulted in a sexually sterile strain, similar to the previously characterized pro11 mutant. Fusion assays revealed that ∆Smmob3 was unable to undergo self-fusion and fusion with the pro11 strain. The essential function of the SmMOB3 N-terminus containing the conserved mob domain was demonstrated by complementation analysis of the sterile S. macrospora ∆Smmob3 strain. Downregulation of either pro11 in ∆Smmob3, or Smmob3 in pro11 mutants by means of RNA interference (RNAi) resulted in synthetic sexual defects, demonstrating for the first time the importance of a putative PRO11/SmMOB3 complex in fruiting body development.
Collapse
|
44
|
Antagonistic roles of PP2A-Pab1 and Etd1 in the control of cytokinesis in fission yeast. Genetics 2010; 186:1261-70. [PMID: 20876564 DOI: 10.1534/genetics.110.121368] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In Schizosaccharomyces pombe, Etd1 is a positive regulator of the septation initiation network (SIN), a conserved GTPase-regulated kinase cascade that triggers cytokinesis. Here we show that a mutation in the pab1 gene, which encodes the B-regulatory subunit of the protein phosphatase 2A (PP2A), suppresses mutations in the etd1 gene. Etd1 is required for the function of the GTPase Spg1, a key regulator of SIN signaling. Interestingly, the loss of Pab1 function restored the activity of Spg1 in Etd1-deficient cells. This result suggests that PP2A-Pab1-mediated dephosphorylation inhibits Spg1, thus antagonizing Etd1 function. The loss of pab1 function also rescues the lethality of mutants of other genes in the SIN cascade such as mob1, sid1, and cdc11. Two-hybrid assays indicate that Pab1 physically interacts with Mob1, Sid1, Sid2, and Cdc11, suggesting that the phosphatase 2A B-subunit is a component of the SIN complex. Together, our results indicate that PP2A-Pab1 plays a novel role in cytokinesis, regulating SIN activity at different levels. Pab1 is also required to activate polarized cell growth. Thus, PP2A-Pab1 may be involved in coordinating polar growth and cytokinesis.
Collapse
|
45
|
Wang CL, Shim WB, Shaw BD. Aspergillus nidulans striatin (StrA) mediates sexual development and localizes to the endoplasmic reticulum. Fungal Genet Biol 2010; 47:789-99. [PMID: 20601045 DOI: 10.1016/j.fgb.2010.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 06/12/2010] [Accepted: 06/15/2010] [Indexed: 01/20/2023]
Abstract
Striatin family proteins have been identified in animals and fungi and are considered to be scaffolding proteins. In fungi striatin orthologs have been associated with sexual development and virulence to plants. In this study, we characterized the functions and localization of the striatin ortholog, StrA, in Aspergillus nidulans. deltastrA strains showed multiple defects in conidium germination, mycelial radial growth, production of diffusible red pigment, and reduced conidiation. The most striking phenotype is the production of abnormally small cleistothecia that are defective in ascosporogenesis. Over-expression of strA enhanced cleistothecium development and increased the production of Hülle cells in shaking liquid cultures. In addition, we generated strains expressing StrA::eGFP under the endogenous promoter. By co-labeling with FM4-64 and co-localization with nuclear localized StuA(NLS)::DsRed or CxnA (an endoplasmic reticulum marker), we determined that StrA mainly localizes to endoplasmic reticulum and the nuclear envelope.
Collapse
Affiliation(s)
- Chih-Li Wang
- Program for the Biology of Filamentous Fungi, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | | | | |
Collapse
|
46
|
Chow A, Hao Y, Yang X. Molecular characterization of human homologs of yeast MOB1. Int J Cancer 2010; 126:2079-89. [PMID: 19739119 DOI: 10.1002/ijc.24878] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MOB (Mps one binder) was originally identified in yeast as a regulator of mitotic exit and cytokinesis, and was later identified as a tumor suppressor and a component of an emerging Hippo-LATS tumor suppressor pathway in Drosophila (D). So far, 7 human homologs of yeast MOB (hMOB1A, 1B, 2A, 2B, 2C, 3, 4) have been identified. Although hMOB1A/B has been extensively studied, the biological features of other hMOBs are largely unknown. In addition, while hMOB1 has been reported to interact with and activate LATS (Large tumor suppressor)/Warts tumor suppressor, the functional significance of this is unknown. In this study, we have characterized, for the first time, the cellular and biochemical function of all human MOBs. By examining hMOB mRNAs expression in various human tissues, we found that hMOBs demonstrated different expression patterns. Further biochemical characterization of hMOBs showed that only hMOB1A and hMOB1B interact with both LATS1 and LATS2 in vitro and in vivo. Significantly, we have discovered that overexpression of hMOB1 in human cancer cells activated LATS activity and inhibited cell proliferation or caused apoptosis while hMOB1, targeting the plasma membrane, led to a more significant phenotype. Reciprocally, short-hairpin (sh) RNA-mediated suppression of hMOB1 causes increased cell proliferation. Our findings provided evidence that hMOB1A and hMOB1B are 2 LATS-binding proteins that may function as tumor suppressors in human cancer cells.
Collapse
Affiliation(s)
- Annabelle Chow
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | |
Collapse
|
47
|
Ma HL, Peng YL, Gong L, Liu WB, Sun S, Liu J, Zheng CB, Fu H, Yuan D, Zhao J, Chen PC, Xie SS, Zeng XM, Xiao YM, Liu Y, Li DWC. The goldfish SG2NA gene encodes two alpha-type regulatory subunits for PP-2A and displays distinct developmental expression pattern. GENE REGULATION AND SYSTEMS BIOLOGY 2009; 3:115-29. [PMID: 19838339 PMCID: PMC2758282 DOI: 10.4137/grsb.s2764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
SG2NA is a member of the striatin protein family. In human and mouse, the SG2NA gene encodes two major protein isoforms: SG2NA alpha and SG2NA beta. The functions of these proteins, except for acting as the regulatory subunits for PP-2A, remain largely unknown. To explore the possible functions of SG2NA in lower vertebrates, we have isolated two SG2NA cDNAs from goldfish, Carassius auratus. Our results reveal that the first cDNA contains an ORF of 2118 bp encoding a deduced protein with 705 amino acids, and the second one 2148 bp coding for a deduced protein of 715 amino acids. Comparative analysis reveals that both isoforms belong to the alpha-type, and are named SG2NA alpha and SG2NA alpha(+). RT-PCR and western blot analysis reveal that the SG2NA gene is differentially expressed in 9 tissues examined. During goldfish development, while the SG2NA mRNAs remain relatively constant in the first 3 stages and then become decreased and fluctuated from gastrula to larval hatching, the SG2NA proteins are fluctuated, displaying a peak every 3 to 4 stages. Each later peak is higher than the earlier one and the protein expression level becomes maximal at hatching stage. Together, our results reveal that SG2NA may play an important role during goldfish development and also in homeostasis of most adult tissues.
Collapse
Affiliation(s)
- Hai-Li Ma
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
The adenovirus E4orf4 protein induces G2/M arrest and cell death by blocking protein phosphatase 2A activity regulated by the B55 subunit. J Virol 2009; 83:8340-52. [PMID: 19535438 DOI: 10.1128/jvi.00711-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human adenovirus E4orf4 protein is toxic in human tumor cells. Its interaction with the B alpha subunit of protein phosphatase 2A (PP2A) is critical for cell killing; however, the effect of E4orf4 binding is not known. B alpha is one of several mammalian B-type regulatory subunits that form PP2A holoenzymes with A and C subunits. Here we show that E4orf4 protein interacts uniquely with B55 family subunits and that cell killing increases with the level of E4orf4 expression. Evidence suggesting that B alpha-specific PP2A activity, measured in vitro against phosphoprotein substrates, is reduced by E4orf4 binding was obtained, and two potential B55-specific PP2A substrates, 4E-BP1 and p70(S6K), were seen to be hypophosphorylated in vivo following expression of E4orf4. Furthermore, treatment of cells with low levels of the phosphatase inhibitor okadaic acid or coexpression of the PP2A inhibitor I(1)(PP2A) enhanced E4orf4-induced cell killing and G(2)/M arrest significantly. These results suggested that E4orf4 toxicity results from the inhibition of B55-specific PP2A holoenzymes, an idea that was strengthened by an observed growth arrest resulting from treatment of H1299 cells with B alpha-specific RNA interference. We believe that E4orf4 induces growth arrest resulting in cell death by reducing the global level of B55-specific PP2A activity, thus preventing the dephosphorylation of B55-specific PP2A substrates, including those involved in cell cycle progression.
Collapse
|
49
|
Goudreault M, D'Ambrosio LM, Kean MJ, Mullin MJ, Larsen BG, Sanchez A, Chaudhry S, Chen GI, Sicheri F, Nesvizhskii AI, Aebersold R, Raught B, Gingras AC. A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol Cell Proteomics 2009; 8:157-71. [PMID: 18782753 PMCID: PMC2621004 DOI: 10.1074/mcp.m800266-mcp200] [Citation(s) in RCA: 275] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/21/2008] [Indexed: 11/06/2022] Open
Abstract
The serine/threonine protein phosphatases are targeted to specific subcellular locations and substrates in part via interactions with a wide variety of regulatory proteins. Understanding these interactions is thus critical to understanding phosphatase function. Using an iterative affinity purification/mass spectrometry approach, we generated a high density interaction map surrounding the protein phosphatase 2A catalytic subunit. This approach recapitulated the assembly of the PP2A catalytic subunit into many different trimeric complexes but also revealed several new protein-protein interactions. Here we define a novel large multiprotein assembly, referred to as the striatin-interacting phosphatase and kinase (STRIPAK) complex. STRIPAK contains the PP2A catalytic (PP2Ac) and scaffolding (PP2A A) subunits, the striatins (PP2A regulatory B''' subunits), the striatin-associated protein Mob3, the novel proteins STRIP1 and STRIP2 (formerly FAM40A and FAM40B), the cerebral cavernous malformation 3 (CCM3) protein, and members of the germinal center kinase III family of Ste20 kinases. Although the function of the CCM3 protein is unknown, the CCM3 gene is mutated in familial cerebral cavernous malformations, a condition associated with seizures and strokes. Our proteomics survey indicates that a large portion of the CCM3 protein resides within the STRIPAK complex, opening the way for further studies of CCM3 biology. The STRIPAK assembly establishes mutually exclusive interactions with either the CTTNBP2 proteins (which interact with the cytoskeletal protein cortactin) or a second subcomplex consisting of the sarcolemmal membrane-associated protein (SLMAP) and the related coiled-coil proteins suppressor of IKKepsilon (SIKE) and FGFR1OP2. We have thus identified several novel PP2A-containing protein complexes, including a large assembly linking kinases and phosphatases to a gene mutated in human disease.
Collapse
Affiliation(s)
- Marilyn Goudreault
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Trammell MA, Mahoney NM, Agard DA, Vale RD. Mob4 plays a role in spindle focusing in Drosophila S2 cells. J Cell Sci 2008; 121:1284-92. [PMID: 18388316 DOI: 10.1242/jcs.017210] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The characteristic bipolar shape of the mitotic spindle is produced by the focusing of the minus ends of microtubules at the spindle poles. The focus is maintained by the centrosome, a microtubule-nucleating organelle, as well as by proteins that are capable of focusing kinetochore fibers (K fibers) even in the absence of a centrosome. Here, we have performed a small-scale RNA interference (RNAi) screen of known or suspected pole-related proteins in Drosophila S2 cells. An unexpected outcome of this screen was the finding that one of the four Drosophila Mob proteins (a family of kinase regulators) plays a role in spindle pole organization. Time-lapse microscopy of mitotic cells depleted of Drosophila Mob4 by RNAi revealed that the K fibers splay apart and do not maintain their focus either in the presence or absence of functional centrosomes. The Mob4 RNAi phenotype most closely resembles that observed after depletion of the protein encoded by abnormal spindle (Asp), although Asp localization is not substantially affected by Mob4 RNAi. Expression of a Drosophila Mob4-GFP fusion protein revealed its localization to the nucleus in interphase and to spindle poles and kinetochores during mitosis. We propose that Mob4 in Drosophila controls a mitotic kinase that in turn regulates downstream target proteins involved in K fiber focusing at the poles.
Collapse
Affiliation(s)
- Matthew A Trammell
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94107, USA
| | | | | | | |
Collapse
|