1
|
El Azhar Y, Schulthess P, van Oostrom MJ, Weterings SDC, Meijer WHM, Tsuchida-Straeten N, Thomas WM, Bauer M, Sonnen KF. Unravelling differential Hes1 dynamics during axis elongation of mouse embryos through single-cell tracking. Development 2024; 151:dev202936. [PMID: 39315665 DOI: 10.1242/dev.202936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024]
Abstract
The intricate dynamics of Hes expression across diverse cell types in the developing vertebrate embryonic tail have remained elusive. To address this, we have developed an endogenously tagged Hes1-Achilles mouse line, enabling precise quantification of dynamics at the single-cell resolution across various tissues. Our findings reveal striking disparities in Hes1 dynamics between presomitic mesoderm (PSM) and preneural tube (pre-NT) cells. While pre-NT cells display variable, low-amplitude oscillations, PSM cells exhibit synchronized, high-amplitude oscillations. Upon the induction of differentiation, the oscillation amplitude increases in pre-NT cells. Additionally, our study of Notch inhibition on Hes1 oscillations unveils distinct responses in PSM and pre-NT cells, corresponding to differential Notch ligand expression dynamics. These findings suggest the involvement of separate mechanisms driving Hes1 oscillations. Thus, Hes1 demonstrates dynamic behaviour across adjacent tissues of the embryonic tail, yet the varying oscillation parameters imply differences in the information that can be transmitted by these dynamics.
Collapse
Affiliation(s)
- Yasmine El Azhar
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), University Medical Center Utrecht, Utrecht 3584, The Netherlands
| | - Pascal Schulthess
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), University Medical Center Utrecht, Utrecht 3584, The Netherlands
| | - Marek J van Oostrom
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), University Medical Center Utrecht, Utrecht 3584, The Netherlands
| | - Sonja D C Weterings
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), University Medical Center Utrecht, Utrecht 3584, The Netherlands
| | - Wilke H M Meijer
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), University Medical Center Utrecht, Utrecht 3584, The Netherlands
| | | | - Wouter M Thomas
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), University Medical Center Utrecht, Utrecht 3584, The Netherlands
| | - Marianne Bauer
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), University Medical Center Utrecht, Utrecht 3584, The Netherlands
| | - Katharina F Sonnen
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), University Medical Center Utrecht, Utrecht 3584, The Netherlands
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Technical University of Delft, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
2
|
Li S, Zhao M, Zhang S, Yang R, Yin N, Wang H, Faiola F. Assessing developmental neurotoxicity of emerging environmental chemicals using multiple in vitro models: A comparative analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123743. [PMID: 38462195 DOI: 10.1016/j.envpol.2024.123743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Newly synthesized chemicals are being introduced into the environment without undergoing proper toxicological evaluation, particularly in terms of their effects on the vulnerable neurodevelopment. Thus, it is important to carefully assess the developmental neurotoxicity of these novel environmental contaminants using methods that are closely relevant to human physiology. This study comparatively evaluated the potential developmental neurotoxicity of 19 prevalent environmental chemicals including neonicotinoids (NEOs), organophosphate esters (OPEs), and synthetic phenolic antioxidants (SPAs) at environment-relevant doses (100 nM and 1 μM), using three commonly employed in vitro neurotoxicity models: human neural stem cells (NSCs), as well as the SK-N-SH and PC12 cell lines. Our results showed that NSCs were more sensitive than SK-N-SH and PC12 cell lines. Among all the chemicals tested, the two NEOs imidaclothiz (IMZ) and cycloxaprid (CYC), as well as the OPE tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), generated the most noticeable perturbation by impairing NSC maintenance and neuronal differentiation, as well as promoting the epithelial-mesenchymal transition process, likely via activating NF-κB signaling. Our data indicate that novel NEOs and OPEs, particularly IMZ, CYC, and TDCIPP, may not be safe alternatives as they can affect NSC maintenance and differentiation, potentially leading to neural tube defects and neuronal differentiation dysplasia in fetuses.
Collapse
Affiliation(s)
- Shichang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miaomiao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuxian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Wood JA, Chaparala S, Bantang C, Chattopadhyay A, Wesesky MA, Kinchington PR, Nimgaonkar VL, Bloom DC, D'Aiuto L. RNA-Seq time-course analysis of neural precursor cell transcriptome in response to herpes simplex Virus-1 infection. J Neurovirol 2024; 30:131-145. [PMID: 38478163 PMCID: PMC11371869 DOI: 10.1007/s13365-024-01198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 09/04/2024]
Abstract
The neurogenic niches within the central nervous system serve as essential reservoirs for neural precursor cells (NPCs), playing a crucial role in neurogenesis. However, these NPCs are particularly vulnerable to infection by the herpes simplex virus 1 (HSV-1). In the present study, we investigated the changes in the transcriptome of NPCs in response to HSV-1 infection using bulk RNA-Seq, compared to those of uninfected samples, at different time points post infection and in the presence or absence of antivirals. The results showed that NPCs upon HSV-1 infection undergo a significant dysregulation of genes playing a crucial role in aspects of neurogenesis, including genes affecting NPC proliferation, migration, and differentiation. Our analysis revealed that the CREB signaling, which plays a crucial role in the regulation of neurogenesis and memory consolidation, was the most consistantly downregulated pathway, even in the presence of antivirals. Additionally, cholesterol biosynthesis was significantly downregulated in HSV-1-infected NPCs. The findings from this study, for the first time, offer insights into the intricate molecular mechanisms that underlie the neurogenesis impairment associated with HSV-1 infection.
Collapse
Affiliation(s)
- Joel A Wood
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
| | - Srilakshmi Chaparala
- Molecular Biology Information Service, Health Sciences Library System / Falk Library, University of Pittsburgh, M722 Alan Magee Scaife Hall / 3550 Terrace Street, 15261, Pittsburgh, PA, USA
| | - Cecilia Bantang
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
| | - Ansuman Chattopadhyay
- Molecular Biology Information Service, Health Sciences Library System / Falk Library, University of Pittsburgh, M722 Alan Magee Scaife Hall / 3550 Terrace Street, 15261, Pittsburgh, PA, USA
| | - Maribeth A Wesesky
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh, Suite 820, Eye & Ear Building, 203 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Vishwajit L Nimgaonkar
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
- VA Pittsburgh Healthcare system at U.S. Department of Veterans Affairs, Pittsburgh, PA, USA
| | - David C Bloom
- Academic Research Building, Department of Molecular Genetics and Microbiology, University of Florida, 1200 Newell Drive, R2-231, 32610, Gainesville, FL, USA
| | - Leonardo D'Aiuto
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Van Haver S, Fan Y, Bekaert SL, Everaert C, Van Loocke W, Zanzani V, Deschildre J, Maestre IF, Amaro A, Vermeirssen V, De Preter K, Zhou T, Kentsis A, Studer L, Speleman F, Roberts SS. Human iPSC modeling recapitulates in vivo sympathoadrenal development and reveals an aberrant developmental subpopulation in familial neuroblastoma. iScience 2024; 27:108096. [PMID: 38222111 PMCID: PMC10784699 DOI: 10.1016/j.isci.2023.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/12/2023] [Accepted: 09/26/2023] [Indexed: 01/16/2024] Open
Abstract
Studies defining normal and disrupted human neural crest cell development have been challenging given its early timing and intricacy of development. Consequently, insight into the early disruptive events causing a neural crest related disease such as pediatric cancer neuroblastoma is limited. To overcome this problem, we developed an in vitro differentiation model to recapitulate the normal in vivo developmental process of the sympathoadrenal lineage which gives rise to neuroblastoma. We used human in vitro pluripotent stem cells and single-cell RNA sequencing to recapitulate the molecular events during sympathoadrenal development. We provide a detailed map of dynamically regulated transcriptomes during sympathoblast formation and illustrate the power of this model to study early events of the development of human neuroblastoma, identifying a distinct subpopulation of cell marked by SOX2 expression in developing sympathoblast obtained from patient derived iPSC cells harboring a germline activating mutation in the anaplastic lymphoma kinase (ALK) gene.
Collapse
Affiliation(s)
- Stéphane Van Haver
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Yujie Fan
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Developmental Biology Program, MSKCC, New York, NY 10065, USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - Sarah-Lee Bekaert
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Celine Everaert
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Wouter Van Loocke
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Vittorio Zanzani
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Joke Deschildre
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Inés Fernandez Maestre
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrianna Amaro
- Department of Pediatrics, MSKCC, New York, NY 10065, USA
| | - Vanessa Vermeirssen
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Ting Zhou
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Alex Kentsis
- Department of Pediatrics, MSKCC, New York, NY 10065, USA
- Molecular Pharmacology Program, MSKCC, New York, NY, USA
- Tow Center for Developmental Oncology, MSKCC, New York, NY 10065, USA
- Departments of Pediatrics, Pharmacology and Physiology & Biophysics, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Developmental Biology Program, MSKCC, New York, NY 10065, USA
| | - Frank Speleman
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | | |
Collapse
|
5
|
Bosze B, Suarez-Navarro J, Cajias I, Brzezinski IV JA, Brown NL. Notch pathway mutants do not equivalently perturb mouse embryonic retinal development. PLoS Genet 2023; 19:e1010928. [PMID: 37751417 PMCID: PMC10522021 DOI: 10.1371/journal.pgen.1010928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
In the vertebrate eye, Notch ligands, receptors, and ternary complex components determine the destiny of retinal progenitor cells in part by regulating Hes effector gene activity. There are multiple paralogues for nearly every node in this pathway, which results in numerous instances of redundancy and compensation during development. To dissect such complexity at the earliest stages of eye development, we used seven germline or conditional mutant mice and two spatiotemporally distinct Cre drivers. We perturbed the Notch ternary complex and multiple Hes genes to understand if Notch regulates optic stalk/nerve head development; and to test intracellular pathway components for their Notch-dependent versus -independent roles during retinal ganglion cell and cone photoreceptor competence and fate acquisition. We confirmed that disrupting Notch signaling universally blocks progenitor cell growth, but delineated specific pathway components that can act independently, such as sustained Hes1 expression in the optic stalk/nerve head. In retinal progenitor cells, we found that among the genes tested, they do not uniformly suppress retinal ganglion cell or cone differentiation; which is not due differences in developmental timing. We discovered that shifts in the earliest cell fates correlate with expression changes for the early photoreceptor factor Otx2, but not with Atoh7, a factor required for retinal ganglion cell formation. During photoreceptor genesis we also better defined multiple and simultaneous activities for Rbpj and Hes1 and identify redundant activities that occur downstream of Notch. Given its unique roles at the retina-optic stalk boundary and cone photoreceptor genesis, our data suggest Hes1 as a hub where Notch-dependent and -independent inputs converge.
Collapse
Affiliation(s)
- Bernadett Bosze
- Department of Cell Biology & Human Anatomy, University of California, Davis, California, United States of America
| | - Julissa Suarez-Navarro
- Department of Cell Biology & Human Anatomy, University of California, Davis, California, United States of America
| | - Illiana Cajias
- Department of Cell Biology & Human Anatomy, University of California, Davis, California, United States of America
| | - Joseph A. Brzezinski IV
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Nadean L. Brown
- Department of Cell Biology & Human Anatomy, University of California, Davis, California, United States of America
| |
Collapse
|
6
|
Seong CH, Chiba N, Fredy M, Kusuyama J, Ishihata K, Kibe T, Amir MS, Tada R, Ohnishi T, Nakamura N, Matsuguchi T. Early induction of Hes1 by bone morphogenetic protein 9 plays a regulatory role in osteoblastic differentiation of a mesenchymal stem cell line. J Cell Biochem 2023; 124:1366-1378. [PMID: 37565579 DOI: 10.1002/jcb.30452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023]
Abstract
Bone morphogenic protein 9 (BMP9) is one of the most potent inducers of osteogenic differentiation among the 14 BMP members, but its mechanism of action has not been fully demonstrated. Hes1 is a transcriptional regulator with basic helix-loop-helix (bHLH) domain and is a well-known Notch effector. In this study, we investigated the functional roles of early induction of Hes1 by BMP9 in a mouse mesenchymal stem cell line, ST2. Hes1 mRNA was transiently and periodically induced by BMP9 in ST2, which was inhibited by BMP signal inhibitors but not by Notch inhibitor. Interestingly, Hes1 knockdown in ST2 by siRNA increased the expression of osteogenic differentiation markers such as Sp7 and Ibsp and matrix mineralization in comparison with control siRNA transfected ST2. In contrast, forced expression of Hes1 by using the Tet-On system suppressed the expression of osteogenic markers and matrix mineralization by BMP9. We also found that the early induction of Hes1 by BMP9 suppressed the expression of Alk1, an essential receptor for BMP9. In conclusion, BMP9 rapidly induces the expression of Hes1 via the SMAD pathway in ST2 cells, which plays a negative regulatory role in osteogenic differentiation of mesenchymal stem cells induced by BMP9.
Collapse
Affiliation(s)
- Chang-Hwan Seong
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Norika Chiba
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mardiyantoro Fredy
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Airlangga University, Surabaya, Indonesia
| | - Joji Kusuyama
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Brawijaya University, Malang, Indonesia
| | - Kiyohide Ishihata
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Toshiro Kibe
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Muhammad Subhan Amir
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Biosignals and Inheritance, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryohei Tada
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Norifumi Nakamura
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
7
|
Pessoa ALS, Quesada AA, Nóbrega PR, Viana APO, de Oliveira KT, Figueiredo T, Santos S, Kok F. Neuropsychological Characterization of Autosomal Recessive Intellectual Developmental Disorder 59 Associated with IMPA1 (MRT59). Brain Sci 2023; 13:1048. [PMID: 37508980 PMCID: PMC10377093 DOI: 10.3390/brainsci13071048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Biallelic loss of function of IMPA1 causes autosomal recessive intellectual developmental disorder 59 (MRT59, OMIM #617323). MRT59 has been reported to present with significant intellectual disability and disruptive behavior, but little is known about the neurocognitive pattern of those patients. Thus, the aims of this study were: (1) to assess the cognitive profile of these patients, and (2) to evaluate their functional dependence levels. Eighteen adults, aged 37 to 89 years, participated in this study: nine MRT59 patients, five heterozygous carriers and four non-carrier family members. All of them were from a consanguineous family living in Northeast Brazil. All IMPA1 patients had the (c.489_493dupGGGCT) pathogenic variant in homozygosis. For cognitive assessment, the WASI battery was applied in nine MRT59 patients and compared to heterozygous carriers and non-carrier family members. Functional dependence was evaluated using the functional independence measure (FIM). Patients showed moderate to severe intellectual disability and severe functional disabilities. Heterozygous carriers did not differ from non-carriers. MRT59 patients should be followed up by health professionals in an interdisciplinary way to understand their cognitive disabilities and functional needs properly.
Collapse
Affiliation(s)
- Andre Luiz Santos Pessoa
- Albert Sabin Children's Hospital, Fortaleza 60410-794, Brazil
- Faculty of Medicine, State University of Ceará (UECE), Fortaleza 60714-903, Brazil
| | - Andrea Amaro Quesada
- The Edson Queiroz Foundation, University of Fortaleza (UNIFOR), Fortaleza 60811-905, Brazil
| | - Paulo Ribeiro Nóbrega
- Hospital Universitário Walter Cantídio-UFC, Fortaleza 60430-372, Brazil
- Faculty of Medicine, Centro Universitário Christus, Fortaleza 60160-230, Brazil
| | | | | | - Thalita Figueiredo
- Faculty of Medicine, Federal University of Alagoas (UFAL), Maceio 57200-000, Brazil
| | - Silvana Santos
- State University of Paraíba (UEPB), Campina Grande 58429-500, Brazil
| | - Fernando Kok
- Department of Neurology, University of São Paulo (USP), São Paulo 05508-220, Brazil
| |
Collapse
|
8
|
Reffsin S, Miller J, Ayyanathan K, Dunagin MC, Jain N, Schultz DC, Cherry S, Raj A. Single cell susceptibility to SARS-CoV-2 infection is driven by variable cell states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547955. [PMID: 37461472 PMCID: PMC10350037 DOI: 10.1101/2023.07.06.547955] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The ability of a virus to infect a cell type is at least in part determined by the presence of host factors required for the viral life cycle. However, even within cell types that express known factors needed for infection, not every cell is equally susceptible, suggesting that our knowledge of the full spectrum of factors that promote infection is incomplete. Profiling the most susceptible subsets of cells within a population may reveal additional factors that promote infection. However, because viral infection dramatically alters the state of the cell, new approaches are needed to reveal the state of these cells prior to infection with virus. Here, we used single-cell clone tracing to retrospectively identify and characterize lung epithelial cells that are highly susceptible to infection with SARS-CoV-2. The transcriptional state of these highly susceptible cells includes markers of retinoic acid signaling and epithelial differentiation. Loss of candidate factors identified by our approach revealed that many of these factors play roles in viral entry. Moreover, a subset of these factors exert control over the infectable cell state itself, regulating the expression of key factors associated with viral infection and entry. Analysis of patient samples revealed the heterogeneous expression of these factors across both cells and patients in vivo. Further, the expression of these factors is upregulated in particular inflammatory pathologies. Altogether, our results show that the variable expression of intrinsic cell states is a major determinant of whether a cell can be infected by SARS-CoV-2.
Collapse
Affiliation(s)
- Sam Reffsin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesse Miller
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kasirajan Ayyanathan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Margaret C. Dunagin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Naveen Jain
- Genetics and Epigenetics, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David C. Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Arjun Raj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Choi EB, Vodnala M, Saini P, Anugula S, Zerbato M, Ho JJ, Wang J, Ho Sui SJ, Yoon J, Roels M, Inouye C, Fong YW. Transcription factor SOX15 regulates stem cell pluripotency and promotes neural fate during differentiation by activating the neurogenic gene Hes5. J Biol Chem 2023; 299:102996. [PMID: 36764520 PMCID: PMC10023989 DOI: 10.1016/j.jbc.2023.102996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
SOX2 and SOX15 are Sox family transcription factors enriched in embryonic stem cells (ESCs). The role of SOX2 in activating gene expression programs essential for stem cell self-renewal and acquisition of pluripotency during somatic cell reprogramming is well-documented. However, the contribution of SOX15 to these processes is unclear and often presumed redundant with SOX2 largely because overexpression of SOX15 can partially restore self-renewal in SOX2-deficient ESCs. Here, we show that SOX15 contributes to stem cell maintenance by cooperating with ESC-enriched transcriptional coactivators to ensure optimal expression of pluripotency-associated genes. We demonstrate that SOX15 depletion compromises reprogramming of fibroblasts to pluripotency which cannot be compensated by SOX2. Ectopic expression of SOX15 promotes the reversion of a postimplantation, epiblast stem cell state back to a preimplantation, ESC-like identity even though SOX2 is expressed in both cell states. We also uncover a role of SOX15 in lineage specification, by showing that loss of SOX15 leads to defects in commitment of ESCs to neural fates. SOX15 promotes neural differentiation by binding to and activating a previously uncharacterized distal enhancer of a key neurogenic regulator, Hes5. Together, these findings identify a multifaceted role of SOX15 in induction and maintenance of pluripotency and neural differentiation.
Collapse
Affiliation(s)
- Eun-Bee Choi
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Munender Vodnala
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Prince Saini
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Sharath Anugula
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Madeleine Zerbato
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Jaclyn J Ho
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California at Berkeley, Berkeley, California, USA; Howard Hughes Medical Institute, Berkeley, California, USA
| | - Jianing Wang
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Shannan J Ho Sui
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Joon Yoon
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marielle Roels
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA
| | - Carla Inouye
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California at Berkeley, Berkeley, California, USA; Howard Hughes Medical Institute, Berkeley, California, USA
| | - Yick W Fong
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.
| |
Collapse
|
10
|
Identification of the Time Period during Which BMP Signaling Regulates Proliferation of Neural Progenitor Cells in Zebrafish. Int J Mol Sci 2023; 24:ijms24021733. [PMID: 36675251 PMCID: PMC9863262 DOI: 10.3390/ijms24021733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling regulates neural induction, neuronal specification, and neuronal differentiation. However, the role of BMP signaling in neural progenitors remains unclear. This is because interruption of BMP signaling before or during neural induction causes severe effects on subsequent neural developmental processes. To examine the role of BMP signaling in the development of neural progenitors in zebrafish, we bypassed the effect of BMP signaling on neural induction and suppressed BMP signaling at different time points during gastrulation using a temporally controlled transgenic line carrying a dominant-negative form of Bmp receptor type 1aa and a chemical inhibitor of BMP signaling, DMH1. Inhibiting BMP signaling from 8 hpf could bypass BMP regulation on neural induction, induce the number of proliferating neural progenitors, and reduce the number of neuronal precursors. Inhibiting BMP signaling upregulates the expression of the Notch downstream gene hairy/E(spl)-related 2 (her2). Inhibiting Notch signaling or knocking down the Her2 function reduced neural progenitor proliferation, whereas inactivating BMP signaling in Notch-Her2 deficient background restored the number of proliferating neural progenitors. These results reveal the time window for the proliferation of neural progenitors during zebrafish development and a fine balance between BMP and Notch signaling in regulating the proliferation of neural progenitor cells.
Collapse
|
11
|
Bosze B, Suarez-Navarro J, Cajias I, Brzezinski JA, Brown NL. Not all Notch pathway mutations are equal in the embryonic mouse retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523641. [PMID: 36711950 PMCID: PMC9882158 DOI: 10.1101/2023.01.11.523641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the vertebrate retina, combinations of Notch ligands, receptors, and ternary complex components determine the destiny of retinal progenitor cells by regulating Hes effector gene activity. Owing to reiterated Notch signaling in numerous tissues throughout development, there are multiple vertebrate paralogues for nearly every node in this pathway. These Notch signaling components can act redundantly or in a compensatory fashion during development. To dissect the complexity of this pathway during retinal development, we used seven germline or conditional mutant mice and two spatiotemporally distinct Cre drivers. We perturbed the Notch ternary complex and multiple Hes genes with two overt goals in mind. First, we wished to determine if Notch signaling is required in the optic stalk/nerve head for Hes1 sustained expression and activity. Second, we aimed to test if Hes1, 3 and 5 genes are functionally redundant during early retinal histogenesis. With our allelic series, we found that disrupting Notch signaling consistently blocked mitotic growth and overproduced ganglion cells, but we also identified two significant branchpoints for this pathway. In the optic stalk/nerve head, sustained Hes1 is regulated independent of Notch signaling, whereas during photoreceptor genesis both Notch-dependent and -independent roles for Rbpj and Hes1 impact photoreceptor genesis in opposing manners.
Collapse
Affiliation(s)
- Bernadett Bosze
- Department of Cell Biology & Human Anatomy, University of California, Davis, CA 95616
| | | | - Illiana Cajias
- Department of Cell Biology & Human Anatomy, University of California, Davis, CA 95616
| | - Joseph A. Brzezinski
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Nadean L Brown
- Department of Cell Biology & Human Anatomy, University of California, Davis, CA 95616
| |
Collapse
|
12
|
González-Martínez R, Márquez-Galera A, Del Blanco B, López-Atalaya JP, Barco A, Herrera E. CBP and p300 Jointly Maintain Neural Progenitor Viability but Play Unique Roles in the Differentiation of Neural Lineages. Cells 2022; 11:cells11244118. [PMID: 36552882 PMCID: PMC9777331 DOI: 10.3390/cells11244118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The paralogous lysine acetyltransferases 3 (KAT3), CBP and P300, play critical roles during neurodevelopment, but their specific roles in neural precursors maintenance and differentiation remain obscure. In fact, it is still unclear whether these proteins are individually or jointly essential in processes such as proliferation of neural precursors, differentiation to specific neural cell types, or both. Here, we use subventricular zone-derived neurospheres as a potential ex vivo developmental model to analyze the proliferation and differentiation of neural stem cells (NSCs) lacking CBP, p300, or both proteins. The results showed that CBP and p300 are not individually essential for maintenance and proliferation of NSCs, although their combined ablation seriously compromised cell division. In turn, the absence of either of the two proteins compromised the differentiation of NSC into the neuronal and astrocytic lineages. Single-nucleus RNA sequencing analysis of neural cell cultures derived from CBP or p300 mutant neurospheres revealed divergent trajectories of neural differentiation upon CBP or p300 ablation, confirming unique functions and nonredundant roles in neural development. These findings contribute to a better understanding of the shared and individual roles of KAT3 proteins in neural differentiation and the etiology of neurodevelopmental disorders caused by their deficiency.
Collapse
|
13
|
Serial Gene Expression Profiling of Neural Stem Cells Shows Transcriptome Switch by Long-Term Physioxia from Metabolic Adaption to Cell Signaling Profile. Stem Cells Int 2022; 2022:6718640. [PMID: 36411871 PMCID: PMC9675612 DOI: 10.1155/2022/6718640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Oxygen is an essential factor in the cellular microenvironment with pivotal effects on neural development with a particular sensitivity of midbrain neural stem cells (NSCs) to high atmospheric oxygen tension. However, most experiments are still performed at atmospheric O2 levels (21%, normoxia), whereas mammalian brain tissue is physiologically exposed to substantially lower O2 tensions around 3% (physioxia). We here performed serial Affymetrix gene array analyses to detect expression changes in mouse fetal NSCs from both midbrain and cortical tissues when kept at physioxia compared to normoxia. We identified more than 400 O2-regulated genes involved in cellular metabolism, cell proliferation/differentiation, and various signaling pathways. NSCs from both regions showed a low number but high conformity of regulated genes (9 genes in midbrain vs. 34 in cortical NSCs; 8 concordant expression changes) after short-term physioxia (2 days) with metabolic processes and cellular processes being the most prominent GO categories pointing to cellular adaption to lower oxygen levels. Gene expression profiles changed dramatically after long-term physioxia (13 days) with a higher number of regulated genes and more diverse expression patterns when comparing the two NSC types (338 genes in midbrain vs. 121 in cortical NSCs; 75 concordant changes). Most prominently, we observed a reduction of hits in metabolic processes but an increase in biological regulation and signaling pointing to a switch towards signaling processes and stem cell maintenance. Our data may serve as a basis for identifying potential signaling pathways that maintain stem cell characteristics in cortical versus midbrain physioxic stem cell niches.
Collapse
|
14
|
Reis L, Raciti M, Rodriguez PG, Joseph B, Al Rayyes I, Uhlén P, Falk A, da Cunha Lima ST, Ceccatelli S. Glyphosate-based herbicide induces long-lasting impairment in neuronal and glial differentiation. ENVIRONMENTAL TOXICOLOGY 2022; 37:2044-2057. [PMID: 35485992 PMCID: PMC9541419 DOI: 10.1002/tox.23549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 05/09/2023]
Abstract
Glyphosate-based herbicides (GBH) are among the most sold pesticides in the world. There are several formulations based on the active ingredient glyphosate (GLY) used along with other chemicals to improve the absorption and penetration in plants. The final composition of commercial GBH may modify GLY toxicological profile, potentially enhancing its neurotoxic properties. The developing nervous system is particularly susceptible to insults occurring during the early phases of development, and exposure to chemicals in this period may lead to persistent impairments on neurogenesis and differentiation. The aim of this study was to evaluate the long-lasting effects of a sub-cytotoxic concentration, 2.5 parts per million of GBH and GLY, on the differentiation of human neuroepithelial stem cells (NES) derived from induced pluripotent stem cells (iPSC). We treated NES cells with each compound and evaluated the effects on key cellular processes, such as proliferation and differentiation in daughter cells never directly exposed to the toxicants. We found that GBH induced a more immature neuronal profile associated to increased PAX6, NESTIN and DCX expression, and a shift in the differentiation process toward glial cell fate at the expense of mature neurons, as shown by an increase in the glial markers GFAP, GLT1, GLAST and a decrease in MAP2. Such alterations were associated to dysregulation of key genes critically involved in neurogenesis, including PAX6, HES1, HES5, and DDK1. Altogether, the data indicate that subtoxic concentrations of GBH, but not of GLY, induce long-lasting impairments on the differentiation potential of NES cells.
Collapse
Affiliation(s)
- Luã Reis
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Marilena Raciti
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | | | - Bertrand Joseph
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Ibrahim Al Rayyes
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Per Uhlén
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Anna Falk
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Suzana Telles da Cunha Lima
- Laboratório de Bioprospecção e Biotecnologia, Instituto de BiologiaUniversidade Federal da Bahia (UFBA)SalvadorBrazil
| | | |
Collapse
|
15
|
Deficiency of N-glycanase 1 perturbs neurogenesis and cerebral development modeled by human organoids. Cell Death Dis 2022; 13:262. [PMID: 35322011 PMCID: PMC8942998 DOI: 10.1038/s41419-022-04693-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/23/2022]
Abstract
AbstractMutations in N-glycanase 1 (NGLY1), which deglycosylates misfolded glycoproteins for degradation, can cause NGLY1 deficiency in patients and their abnormal fetal development in multiple organs, including microcephaly and other neurological disorders. Using cerebral organoids (COs) developed from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), we investigate how NGLY1 dysfunction disturbs early brain development. While NGLY1 loss had limited impact on the undifferentiated cells, COs developed from NGLY1-deficient hESCs showed defective formation of SATB2-positive upper-layer neurons, and attenuation of STAT3 and HES1 signaling critical for sustaining radial glia. Bulk and single-cell transcriptomic analysis revealed premature neuronal differentiation accompanied by downregulation of secreted and transcription factors, including TTR, IGFBP2, and ID4 in NGLY1-deficient COs. NGLY1 malfunction also dysregulated ID4 and enhanced neuronal differentiation in CO transplants developed in vivo. NGLY1-deficient CO cells were more vulnerable to multiple stressors; treating the deficient cells with recombinant TTR reduced their susceptibility to stress from proteasome inactivation, likely through LRP2-mediated activation of MAPK signaling. Expressing NGLY1 led to IGFBP2 and ID4 upregulation in CO cells developed from NGLY1-deficiency patient’s hiPSCs. In addition, treatment with recombinant IGFBP2 enhanced ID4 expression, STAT3 signaling, and proliferation of NGLY1-deficient CO cells. Overall, our discoveries suggest that dysregulation of stress responses and neural precursor differentiation underlies the brain abnormalities observed in NGLY1-deficient individuals.
Collapse
|
16
|
Huang H, Zhao C, Hu Q, Liu Q, Sun YM, Chen C, Huang H, Zhou CH, Wu YQ. Neonatal Anesthesia by Ketamine in Neonatal Rats Inhibits the Proliferation and Differentiation of Hippocampal Neural Stem Cells and Decreases Neurocognitive Function in Adulthood via Inhibition of the Notch1 Signaling Pathway. Mol Neurobiol 2021; 58:6272-6289. [PMID: 34480336 DOI: 10.1007/s12035-021-02550-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/28/2021] [Indexed: 12/28/2022]
Abstract
The Notch signaling pathway plays an important role in the regulation of neurogenesis. The objective of this study was to investigate whether the Notch signaling pathway was involved in the neurogenesis impairment and long-term neurocognitive dysfunction caused by neonatal exposure to ketamine. On postnatal day 7 (PND-7), male Sprague-Dawley (SD) rats were intraperitoneally injected with 40 mg/kg ketamine four consecutive times (40 mg/kg × 4) at 1-h intervals. Notch ligand Jagged1 (0.5 mg/kg) and lentivirus overexpressing the Notch1 intracellular domain (LV-NICD1) were microinjected into the hippocampal dentate gyrus (DG) 1 h or 4 days before ketamine administration, respectively. The expression of Notch1 signaling pathway-related proteins was detected by Western blotting 24 h after ketamine administration. The proliferation and differentiation of the neural stem cells (NSCs) in the hippocampal DG were evaluated by double immunofluorescence staining 24 h after treatment. Moreover, changes in hippocampus-dependent spatial memory of 2-month-old rats were investigated with the Morris water maze test. Ketamine anesthesia in neonatal rats decreased the expression levels of Jagged1, Notch1, NICD1, and hairy enhancer of split 1 (Hes1); inhibited the proliferation and astrocytic differentiation of NSCs; and promoted the differentiation of neurons. Neonatal exposure to ketamine caused deficits in hippocampus-dependent spatial reference memory tasks in 2-month-old rats. Microinjection of Jagged1 or LV-NICD1 reversed the inhibitory effect of ketamine on the expression of Notch1-related proteins in the hippocampal DG, attenuated the ketamine-mediated decrease in NSC proliferation and differentiation, and improved the cognitive function of 2-month-old rats after neonatal exposure to ketamine. These results suggest that neonatal exposure to ketamine in rats inhibits the proliferation and differentiation of hippocampal NSCs and impairs neurocognitive function in adulthood. The Notch1 signaling pathway may be involved in the impairment of hippocampus-dependent learning and memory during adulthood caused by neonatal exposure to ketamine. These findings contribute to further understanding the neurotoxicity induced by neonatal exposure to ketamine and the underlying mechanisms.
Collapse
Affiliation(s)
- He Huang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chao Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Qian Hu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yi-Man Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Hui Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, People's Republic of China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, People's Republic of China.
| |
Collapse
|
17
|
Cell cycle arrest determines adult neural stem cell ontogeny by an embryonic Notch-nonoscillatory Hey1 module. Nat Commun 2021; 12:6562. [PMID: 34772946 PMCID: PMC8589987 DOI: 10.1038/s41467-021-26605-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
Quiescent neural stem cells (NSCs) in the adult mouse brain are the source of neurogenesis that regulates innate and adaptive behaviors. Adult NSCs in the subventricular zone are derived from a subpopulation of embryonic neural stem-progenitor cells (NPCs) that is characterized by a slower cell cycle relative to the more abundant rapid cycling NPCs that build the brain. Yet, how slow cell cycle can cause the establishment of adult NSCs remains largely unknown. Here, we demonstrate that Notch and an effector Hey1 form a module that is upregulated by cell cycle arrest in slowly dividing NPCs. In contrast to the oscillatory expression of the Notch effectors Hes1 and Hes5 in fast cycling progenitors, Hey1 displays a non-oscillatory stationary expression pattern and contributes to the long-term maintenance of NSCs. These findings reveal a novel division of labor in Notch effectors where cell cycle rate biases effector selection and cell fate. Adult neural stem cells are derived from an embryonic population of slowcycling progenitor cells, though how reduced cycling speed leads to establishment of the adult population has remained elusive. Here they show that non-oscillatory Notch-Hey signaling induced by slow-cycling contributes to long term maintenance of neural stem cells.
Collapse
|
18
|
El-Hodiri HM, Campbell WA, Kelly LE, Hawthorn EC, Schwartz M, Jalligampala A, McCall MA, Meyer K, Fischer AJ. Nuclear Factor I in neurons, glia and during the formation of Müller glia-derived progenitor cells in avian, porcine and primate retinas. J Comp Neurol 2021; 530:1213-1230. [PMID: 34729776 DOI: 10.1002/cne.25270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022]
Abstract
The regenerative potential of Müller glia (MG) is extraordinary in fish, poor in chick and terrible in mammals. In the chick model, MG readily reprogram into proliferating Müller glia-derived progenitor cells (MGPCs), but neuronal differentiation is very limited. The factors that suppress the neurogenic potential of MGPCs in the chick are slowly being revealed. Isoforms of Nuclear Factor I (NFI) are cell-intrinsic factors that limit neurogenic potential; these factors are required for the formation of MG in the developing mouse retina (Clark et al., 2019) and deletion of these factors reprograms MG into neuron-like cells in mature mouse retina (Hoang et al., 2020). Accordingly, we sought to characterize the patterns of expression NFIs in the developing, mature and damaged chick retina. In addition, we characterized patterns of expression of NFIs in the retinas of large mammals, pigs and monkeys. Using a combination of single cell RNA-sequencing (scRNA-seq) and immunolabeling we probed for patterns of expression. In embryonic chick, levels of NFIs are very low in early E5 (embryonic day 5) retinal progenitor cells (RPCs), up-regulated in E8 RPCs, further up-regulated in differentiating MG at E12 and E15. NFIs are maintained in mature resting MG, microglia and neurons. Levels of NFIs are reduced in activated MG in retinas treated with NMDA and/or insulin+FGF2, and further down-regulated in proliferating MGPCs. However, levels of NFIs in MGPCs were significantly higher than those seen in RPCs. Immunolabeling for NFIA and NFIB closely matched patterns of expression revealed in different types of retinal neurons and glia, consistent with findings from scRNA-seq. In addition, we find expression of NFIA and NFIB through progenitors in the circumferential marginal zone at the far periphery of the retina. We find similar patterns of expression for NFIs in scRNA-seq databases for pig and monkey retinas. Patterns of expression of NFIA and NFIB were validated with immunofluorescence in pig and monkey retinas wherein these factors were predominantly detected in MG and a few types of inner retinal neurons. In summary, NFIA and NFIB are prominently expressed in developing chick retina and by mature neurons and glia in the retinas of chicks, pigs and monkeys. Although levels of NFIs are decreased in chick, in MGPCs these levels remain higher than those seen in neurogenic RPCs. We propose that the neurogenic potential of MGPCs in the chick retina is suppressed by NFIs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Heithem M El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY
| | - Warren A Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Lisa E Kelly
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Evan C Hawthorn
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Maura Schwartz
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH
| | - Archana Jalligampala
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY
| | - Maureen A McCall
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY
| | - Kathrin Meyer
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
19
|
Chen W, Liu N, Shen S, Zhu W, Qiao J, Chang S, Dong J, Bai M, Ma L, Wang S, Jia W, Guo X, Li A, Xi J, Jiang C, Kang J. Fetal growth restriction impairs hippocampal neurogenesis and cognition via Tet1 in offspring. Cell Rep 2021; 37:109912. [PMID: 34731622 DOI: 10.1016/j.celrep.2021.109912] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/22/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022] Open
Abstract
Fetal growth restriction (FGR) increases the risk for impaired cognitive function later in life. However, the precise mechanisms remain elusive. Using dexamethasone-induced FGR and protein restriction-influenced FGR mouse models, we observe learning and memory deficits in adult FGR offspring. FGR induces decreased hippocampal neurogenesis from the early post-natal period to adulthood by reducing the proliferation of neural stem cells (NSCs). We further find a persistent decrease of Tet1 expression in hippocampal NSCs of FGR mice. Mechanistically, Tet1 downregulation results in hypermethylation of the Dll3 and Notch1 promoters and inhibition of Notch signaling, leading to reduced NSC proliferation. Overexpression of Tet1 activates Notch signaling, offsets the decline in neurogenesis, and enhances learning and memory abilities in FGR offspring. Our data indicate that a long-term decrease in Tet1/Notch signaling in hippocampal NSCs contributes to impaired neurogenesis following FGR and could serve as potential targets for the intervention of FGR-related cognitive disorders.
Collapse
Affiliation(s)
- Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Nana Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shijun Shen
- Institute of Translational Research, Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wei Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jing Qiao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shujuan Chang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jianfeng Dong
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mingliang Bai
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Li Ma
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shanshan Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wenwen Jia
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ang Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiajie Xi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Cizhong Jiang
- Institute of Translational Research, Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
20
|
Hu N, Zou L. Multiple functions of Hes genes in the proliferation and differentiation of neural stem cells. Ann Anat 2021; 239:151848. [PMID: 34715307 DOI: 10.1016/j.aanat.2021.151848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/24/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022]
Abstract
The HES proteins (hairy and Enhancer of split (E(spl)) homologs) are basic helix-loop-helix (bHLH) transcription factors that regulate the proliferation and differentiation of stem cells. Family members HES1, 3, and 5 are all critical regulators of nervous system development. The Hes genes exhibit oscillatory expression levels, and this dynamic expression allows for the complex regulation of numerous downstream genes such as Ascl1, Neurog2, Olig2 involved in the differentiation of specific cell types. In addition, HES proteins act as hubs for the molecule crosstalk among Notch, Wnt, and other signaling pathways that regulate nervous system development.
Collapse
Affiliation(s)
- Nan Hu
- Department of Human Anatomy, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Linqing Zou
- Department of Human Anatomy, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
21
|
Wang X, Wang Q, Tian H, Lv W, Song L, Li Z, Yao H, Shi S. Electroacupuncture in promoting neural repair after spinal cord injury: Inhibiting the Notch signaling pathway and regulating downstream proteins expression. Anat Rec (Hoboken) 2021; 304:2494-2505. [PMID: 34636492 DOI: 10.1002/ar.24779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) is one of the serious central nervous system injuries and the incidence of SCI continues to increase. Previous studies have indicated that electroacupuncture (EA) is beneficial for promoting recovery after SCI. In the present study, we attempted to evaluate how EA can promote the neural repair in SCI model rats by observing changes in the Notch signaling pathway. Experimental rats were randomly divided into four groups. Each group had its own intervention period: 1 day, 7 days, 14 days, and 28 days, and five randomized subgroups: blank control (B) group, blank electroacupuncture (BE) group, sham operation (S) group, model control (M) group and EA group. Animals in the EA group and the BE group were treated with EA at Dazhui (GV14) and Mingmen (GV4) acupoints for 20 min. After the intervention period, the Basso-Beattie-Bresnahan (BBB) score was used to evaluate the neurological function. We found that BBB score increased in EA-treated groups. Hematoxylin and eosin staining was used to observe pathological changes in the injured spinal cord and the results showed that EA therapy could promote the repair of injured spinal cord tissue. Immunohistochemistry and Western blot methods were used to detect the expression of proteins Delta1, Presenilin1, Hes1, and Hes5 in the injured spinal cord. The results showed that the expression levels of Delta1, Presenilin1, Hes1, and Hes5 increased significantly after SCI and decreased after EA treatment. Our study suggested that the possible mechanism by which EA could benefit the recovery after SCI in rats may include inhibiting the Notch signaling pathway and regulating the downstream proteins expression. In addition, our study can provide reference for selecting acupoints and treatment cycle in the treatment of SCI.
Collapse
Affiliation(s)
- Xin Wang
- The Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Qiaoxia Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Huiling Tian
- Institute of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wei Lv
- Department of Traditional Chinese Medicine, Shuangqiao Hospital, Beijing, China
| | - Liangyu Song
- Chaoyangmen Community Health Service Center, Beijing, China
| | - Zhigang Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Haijiang Yao
- Treatment Center of Traditional Chinese Medicine, Beijing Bo'ai Hospital, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, China
| | - Suhua Shi
- Department of Rehabilitation, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
22
|
Inositol monophosphatase 1 (IMPA1) mutation in intellectual disability patients impairs neurogenesis but not gliogenesis. Mol Psychiatry 2021; 26:3558-3571. [PMID: 32839513 DOI: 10.1038/s41380-020-00862-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 11/09/2022]
Abstract
A homozygous mutation in the inositol monophosphatase 1 (IMPA1) gene was recently identified in nine individuals with severe intellectual disability (ID) and disruptive behavior. These individuals belong to the same family from Northeastern Brazil, which has 28 consanguineous marriages and 59 genotyped family members. IMPA1 is responsible for the generation of free inositol from de novo biosynthesis and recycling from inositol polyphosphates and participates in the phosphatidylinositol signaling pathway. To understand the role of IMPA1 deficiency in ID, we generated induced pluripotent stem cells (iPSCs) from patients and neurotypical controls and differentiated these into hippocampal dentate gyrus-like neurons and astrocytes. IMPA1-deficient neuronal progenitor cells (NPCs) revealed substantial deficits in proliferation and neurogenic potential. At low passage NPCs (P1 to P3), we observed cell cycle arrest, apoptosis, progressive change to a glial morphology and reduction in neuronal differentiation. These observations were validated by rescuing the phenotype with myo-inositol supplemented media during differentiation of patient-derived iPSCs into neurons and by the reduction of neurogenic potential in control NPCs-expressing shIMPA1. Transcriptome analysis showed that NPCs and neurons derived from ID patients have extensive deregulation of gene expression affecting pathways necessary for neurogenesis and upregulation of gliogenic genes. IMPA1 deficiency did not affect cell cycle progression or survival in iPSCs and glial progenitor cells or astrocyte differentiation. Therefore, this study shows that the IMPA1 mutation specifically affects NPC survival and neuronal differentiation.
Collapse
|
23
|
Idzhilova OS, Roshchin MV, Smirnova GR, Malyshev AY. Central Targeting of Channelrhodopsin2 by the Motif of Potassium Channel Kv2.1 Can be Altered Due to Overexpression of the Construct. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Shqirat M, Kinoshita A, Kageyama R, Ohtsuka T. Sonic hedgehog expands neural stem cells in the neocortical region leading to an expanded and wrinkled neocortical surface. Genes Cells 2021; 26:399-410. [PMID: 33811429 DOI: 10.1111/gtc.12847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 01/08/2023]
Abstract
An expanded and folded neocortex is characteristic of higher mammals, including humans and other primates. The neocortical surface area was dramatically enlarged during the course of mammalian brain evolution from lissencephalic to gyrencephalic mammals, and this bestowed higher cognitive functions especially to primates, including humans. In this study, we generated transgenic (Tg) mice in which the expression of Sonic hedgehog (Shh) could be controlled in neural stem cells (NSCs) and neural progenitors by using the Tet-on system. Shh overexpression during embryogenesis promoted the symmetric proliferative division of NSCs in the neocortical region, leading to the expansion of lateral ventricles and tangential extension of the ventricular zone. Moreover, Shh-overexpressing Tg mice showed dramatic expansion of the neocortical surface area and exhibited a wrinkled brain when overexpression was commenced at early stages of neural development. These results indicate that Shh is able to increase the neocortical NSCs and contribute to expansion of the neocortex.
Collapse
Affiliation(s)
- Mohammed Shqirat
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Kinoshita
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan.,RIKEN Center for Brain Science, Wako, Japan
| | - Toshiyuki Ohtsuka
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Özsoy Ş, Vujovic F, Simonian M, Valova V, Hunter N, Farahani RM. Cannibalized erythroblasts accelerate developmental neurogenesis by regulating mitochondrial dynamics. Cell Rep 2021; 35:108942. [PMID: 33826895 DOI: 10.1016/j.celrep.2021.108942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/18/2020] [Accepted: 03/12/2021] [Indexed: 11/29/2022] Open
Abstract
Metabolic support was long considered to be the only developmental function of hematopoiesis, a view that is gradually changing. Here, we disclose a mechanism triggered during neurulation that programs brain development by donation of sacrificial yolk sac erythroblasts to neuroepithelial cells. At embryonic day (E) 8.5, neuroepithelial cells transiently integrate with the endothelium of yolk sac blood vessels and cannibalize intravascular erythroblasts as transient heme-rich endosymbionts. This cannibalistic behavior instructs precocious neuronal differentiation of neuroepithelial cells in the proximity of blood vessels. By experiments in vitro, we show that access to erythroblastic heme accelerates the pace of neurogenesis by induction of a truncated neurogenic differentiation program from a poised state. Mechanistically, the poised state is invoked by activation of the mitochondrial electron transport chain that leads to amplified production of reactive oxygen species in addition to omnipresent guanosine triphosphate (GTP) with consequential upregulation of pro-differentiation β-catenin.
Collapse
Affiliation(s)
- Şükran Özsoy
- IDR/Westmead Institute for Medical Research, Westmead, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Filip Vujovic
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Mary Simonian
- IDR/Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Valentina Valova
- Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
| | - Neil Hunter
- IDR/Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Ramin M Farahani
- IDR/Westmead Institute for Medical Research, Westmead, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
26
|
Li J, Sun L, Peng XL, Yu XM, Qi SJ, Lu ZJ, Han JDJ, Shen Q. Integrative genomic analysis of early neurogenesis reveals a temporal genetic program for differentiation and specification of preplate and Cajal-Retzius neurons. PLoS Genet 2021; 17:e1009355. [PMID: 33760820 PMCID: PMC7990179 DOI: 10.1371/journal.pgen.1009355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 01/12/2021] [Indexed: 01/02/2023] Open
Abstract
Neurogenesis in the developing neocortex begins with the generation of the preplate, which consists of early-born neurons including Cajal-Retzius (CR) cells and subplate neurons. Here, utilizing the Ebf2-EGFP transgenic mouse in which EGFP initially labels the preplate neurons then persists in CR cells, we reveal the dynamic transcriptome profiles of early neurogenesis and CR cell differentiation. Genome-wide RNA-seq and ChIP-seq analyses at multiple early neurogenic stages have revealed the temporal gene expression dynamics of early neurogenesis and distinct histone modification patterns in early differentiating neurons. We have identified a new set of coding genes and lncRNAs involved in early neuronal differentiation and validated with functional assays in vitro and in vivo. In addition, at E15.5 when Ebf2-EGFP+ cells are mostly CR neurons, single-cell sequencing analysis of purified Ebf2-EGFP+ cells uncovers molecular heterogeneities in CR neurons, but without apparent clustering of cells with distinct regional origins. Along a pseudotemporal trajectory these cells are classified into three different developing states, revealing genetic cascades from early generic neuronal differentiation to late fate specification during the establishment of CR neuron identity and function. Our findings shed light on the molecular mechanisms governing the early differentiation steps during cortical development, especially CR neuron differentiation. Neural stem cells and progenitor cells in the embryonic brain give rise to neurons following a precise temporal order after initial expansion. Early-born neurons including Cajal-Retzius (CR) cells and subplate neurons form the preplate in the developing cerebral cortex, then CR neurons occupy the layer 1, playing an important role in cortical histogenesis. The molecular mechanisms governing the early neuronal differentiation processes remain to be explored. Here, by genome-wide approaches including bulk RNA-seq, single-cell RNA-seq and ChIP-seq, we comprehensively characterized the temporal dynamic gene expression profile and epigenetic status at different stages during early cortical development and uncovered molecularly heterogeneous subpopulations within the CR cells. We revealed CR neuron signatures and cell type-specific histone modification patterns along early neuron specification. Using in vitro and in vivo assays, we identified novel lncRNAs as potential functional regulators in preplate differentiation and CR neuron identity establishment. Our study provides a comprehensive analysis of the genetic and epigenetic programs during neuronal differentiation and would help bring new insights into the early cortical neurogenesis process, particularly the differentiation of CR neurons.
Collapse
Affiliation(s)
- Jia Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- PTN graduate program, School of Life Sciences, Peking University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Lei Sun
- PTN graduate program, School of Life Sciences, Tsinghua University, Beijing, China
| | | | - Xiao-Ming Yu
- School of Medicine, Tsinghua University, Beijing, China
| | - Shao-Jun Qi
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing-Dong J. Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qin Shen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Brain and Spinal Cord Clinical Research Center, Tongji University, Shanghai, China
- * E-mail:
| |
Collapse
|
27
|
Wang M, Du L, Lee AC, Li Y, Qin H, He J. Different lineage contexts direct common pro-neural factors to specify distinct retinal cell subtypes. J Cell Biol 2021; 219:151968. [PMID: 32699896 PMCID: PMC7480095 DOI: 10.1083/jcb.202003026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/13/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023] Open
Abstract
How astounding neuronal diversity arises from variable cell lineages in vertebrates remains mostly elusive. By in vivo lineage tracing of ∼1,000 single zebrafish retinal progenitors, we identified a repertoire of subtype-specific stereotyped neurogenic lineages. Remarkably, within these stereotyped lineages, GABAergic amacrine cells were born with photoreceptor cells, whereas glycinergic amacrine cells were born with OFF bipolar cells. More interestingly, post-mitotic differentiation blockage of GABAergic and glycinergic amacrine cells resulted in their respecification into photoreceptor and bipolar cells, respectively, suggesting lineage constraint in cell subtype specification. Using single-cell RNA-seq and ATAC-seq analyses, we further identified lineage-specific progenitors, each defined by specific transcription factors that exhibited characteristic chromatin accessibility dynamics. Finally, single pro-neural factors could specify different neuron types/subtypes in a lineage-dependent manner. Our findings reveal the importance of lineage context in defining neuronal subtypes and provide a demonstration of in vivo lineage-dependent induction of unique retinal neuron subtypes for treatment purposes.
Collapse
Affiliation(s)
- Mei Wang
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Lei Du
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Aih Cheun Lee
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Huiwen Qin
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Jie He
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
28
|
Ohtsuka T, Kageyama R. Hes1 overexpression leads to expansion of embryonic neural stem cell pool and stem cell reservoir in the postnatal brain. Development 2021; 148:dev.189191. [PMID: 33531431 DOI: 10.1242/dev.189191] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/14/2021] [Indexed: 11/20/2022]
Abstract
Neural stem cells (NSCs) gradually alter their characteristics during mammalian neocortical development, resulting in the production of various neurons and glial cells, and remain in the postnatal brain as a source of adult neurogenesis. Notch-Hes signaling is a key regulator of stem cell properties in the developing and postnatal brain, and Hes1 is a major effector that strongly inhibits neuronal differentiation and maintains NSCs. To manipulate Hes1 expression levels in NSCs, we generated transgenic (Tg) mice using the Tet-On system. In Hes1-overexpressing Tg mice, NSCs were maintained in both embryonic and postnatal brains, and generation of later-born neurons was prolonged until later stages in the Tg neocortex. Hes1 overexpression inhibited the production of Tbr2+ intermediate progenitor cells but instead promoted the generation of basal radial glia-like cells in the subventricular zone (SVZ) at late embryonic stages. Furthermore, Hes1-overexpressing Tg mice exhibited the expansion of NSCs and enhanced neurogenesis in the SVZ of adult brain. These results indicate that Hes1 overexpression expanded the embryonic NSC pool and led to the expansion of the NSC reservoir in the postnatal and adult brain.
Collapse
Affiliation(s)
- Toshiyuki Ohtsuka
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan .,Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
29
|
Seong CH, Chiba N, Kusuyama J, Subhan Amir M, Eiraku N, Yamashita S, Ohnishi T, Nakamura N, Matsuguchi T. Bone morphogenetic protein 9 (BMP9) directly induces Notch effector molecule Hes1 through the SMAD signaling pathway in osteoblasts. FEBS Lett 2020; 595:389-403. [PMID: 33264418 DOI: 10.1002/1873-3468.14016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/01/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022]
Abstract
Bone morphogenetic protein (BMP) 9 is one of the most osteogenic BMPs, but its mechanism of action has not been fully elucidated. Hes1, a transcriptional regulator with a basic helix-loop-helix domain, is a well-known effector of Notch signaling. Here, we find that BMP9 induces periodic increases of Hes1 mRNA and protein expression in osteoblasts, presumably through an autocrine negative feedback mechanism. BMP9-mediated Hes1 induction is significantly inhibited by an ALK inhibitor and overexpression of Smad7, an inhibitory Smad. Luciferase and ChIP assays revealed that two Smad-binding sites in the 5' upstream region of the mouse Hes1 gene are essential for transcriptional activation by BMP9. Thus, our data indicate that BMP9 induces Hes1 expression in osteoblasts via the Smad signaling pathway.
Collapse
Affiliation(s)
- Chang-Hwan Seong
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Japan.,Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Norika Chiba
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Joji Kusuyama
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Japan.,Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA, USA.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Muhammad Subhan Amir
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Japan.,Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Japan.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Airlangga University, Surabaya, Indonesia
| | - Nahoko Eiraku
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Sachiko Yamashita
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Norifumi Nakamura
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| |
Collapse
|
30
|
Hes5.9 Coordinate FGF and Notch Signaling to Modulate Gastrulation via Regulating Cell Fate Specification and Cell Migration in Xenopus tropicalis. Genes (Basel) 2020; 11:genes11111363. [PMID: 33218193 PMCID: PMC7699193 DOI: 10.3390/genes11111363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 01/15/2023] Open
Abstract
Gastrulation drives the establishment of three germ layers and embryonic axes during frog embryonic development. Mesodermal cell fate specification and morphogenetic movements are vital factors coordinating gastrulation, which are regulated by numerous signaling pathways, such as the Wnt (Wingless/Integrated), Notch, and FGF (Fibroblast growth factor) pathways. However, the coordination of the Notch and FGF signaling pathways during gastrulation remains unclear. We identified a novel helix–loop–helix DNA binding domain gene (Hes5.9), which was regulated by the FGF and Notch signaling pathways during gastrulation. Furthermore, gain- and loss-of-function of Hes5.9 led to defective cell migration and disturbed the expression patterns of mesodermal and endodermal marker genes, thus interfering with gastrulation. Collectively, these results suggest that Hes5.9 plays a crucial role in cell fate decisions and cell migration during gastrulation, which is modulated by the FGF and Notch signaling pathways.
Collapse
|
31
|
Nerli E, Rocha-Martins M, Norden C. Asymmetric neurogenic commitment of retinal progenitors involves Notch through the endocytic pathway. eLife 2020; 9:e60462. [PMID: 33141024 PMCID: PMC7679139 DOI: 10.7554/elife.60462] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/02/2020] [Indexed: 01/07/2023] Open
Abstract
During brain development, progenitor cells need to balanceproliferation and differentiation in order to generate different neurons in the correct numbers and proportions. Currently, the patterns of multipotent progenitor divisions that lead to neurogenic entry and the factors that regulate them are not fully understood. We here use the zebrafish retina to address this gap, exploiting its suitability for quantitative live-imaging. We show that early neurogenic progenitors arise from asymmetric divisions. Notch regulates this asymmetry, as when inhibited, symmetric divisions producing two neurogenic progenitors occur. Surprisingly however, Notch does not act through an apicobasal activity gradient as previously suggested, but through asymmetric inheritance of Sara-positive endosomes. Further, the resulting neurogenic progenitors show cell biological features different from multipotent progenitors, raising the possibility that an intermediate progenitor state exists in the retina. Our study thus reveals new insights into the regulation of proliferative and differentiative events during central nervous system development.
Collapse
Affiliation(s)
- Elisa Nerli
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Mauricio Rocha-Martins
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Instituto Gulbenkian de CiênciaOeirasPortugal
| |
Collapse
|
32
|
Hatakeyama J, Shimamura K. The Pace of Neurogenesis Is Regulated by the Transient Retention of the Apical Endfeet of Differentiating Cells. Cereb Cortex 2020; 29:3725-3737. [PMID: 30307484 DOI: 10.1093/cercor/bhy252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 01/08/2023] Open
Abstract
The development of the mammalian cerebral cortex involves a variety of temporally organized events such as successive waves of neuronal production and the transition of progenitor competence for each neuronal subtype generated. The number of neurons generated in a certain time period, that is, the rate of neuron production, varies across the regions of the brain and the specific developmental stage; however, the underlying mechanism of this process is poorly understood. We have recently found that nascent neurons communicate with undifferentiated progenitors and thereby regulate neurogenesis, through a transiently retained apical endfoot that signals via the Notch pathway. Here, we report that the retention time length of the neuronal apical endfoot correlates with the rate of neuronal production in the developing mouse cerebral cortex. We further demonstrate that a forced reduction or extension of the retention period through the disruption or stabilization of adherens junction, respectively, resulted in the acceleration or deceleration of neurogenesis, respectively. Our results suggest that the apical endfeet of differentiating cells serve as a pace controller for neurogenesis, thereby assuring the well-proportioned laminar organization of the neocortex.
Collapse
Affiliation(s)
- Jun Hatakeyama
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Kenji Shimamura
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| |
Collapse
|
33
|
Ybx1 fine-tunes PRC2 activities to control embryonic brain development. Nat Commun 2020; 11:4060. [PMID: 32792512 PMCID: PMC7426271 DOI: 10.1038/s41467-020-17878-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 07/22/2020] [Indexed: 01/28/2023] Open
Abstract
Chromatin modifiers affect spatiotemporal gene expression programs that underlie organismal development. The Polycomb repressive complex 2 (PRC2) is a crucial chromatin modifier in executing neurodevelopmental programs. Here, we find that PRC2 interacts with the nucleic acid-binding protein Ybx1. In the mouse embryo in vivo, Ybx1 is required for forebrain specification and restricting mid-hindbrain growth. In neural progenitor cells (NPCs), Ybx1 controls self-renewal and neuronal differentiation. Mechanistically, Ybx1 highly overlaps PRC2 binding genome-wide, controls PRC2 distribution, and inhibits H3K27me3 levels. These functions are consistent with Ybx1-mediated promotion of genes involved in forebrain specification, cell proliferation, or neuronal differentiation. In Ybx1-knockout NPCs, H3K27me3 reduction by PRC2 enzymatic inhibitor or genetic depletion partially rescues gene expression and NPC functions. Our findings suggest that Ybx1 fine-tunes PRC2 activities to regulate spatiotemporal gene expression in embryonic neural development and uncover a crucial epigenetic mechanism balancing forebrain-hindbrain lineages and self-renewal-differentiation choices in NPCs.
Collapse
|
34
|
Minchington TG, Griffiths-Jones S, Papalopulu N. Dynamical gene regulatory networks are tuned by transcriptional autoregulation with microRNA feedback. Sci Rep 2020; 10:12960. [PMID: 32737375 PMCID: PMC7395740 DOI: 10.1038/s41598-020-69791-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/06/2020] [Indexed: 01/06/2023] Open
Abstract
Concepts from dynamical systems theory, including multi-stability, oscillations, robustness and stochasticity, are critical for understanding gene regulation during cell fate decisions, inflammation and stem cell heterogeneity. However, the prevalence of the structures within gene networks that drive these dynamical behaviours, such as autoregulation or feedback by microRNAs, is unknown. We integrate transcription factor binding site (TFBS) and microRNA target data to generate a gene interaction network across 28 human tissues. This network was analysed for motifs capable of driving dynamical gene expression, including oscillations. Identified autoregulatory motifs involve 56% of transcription factors (TFs) studied. TFs that autoregulate have more interactions with microRNAs than non-autoregulatory genes and 89% of autoregulatory TFs were found in dual feedback motifs with a microRNA. Both autoregulatory and dual feedback motifs were enriched in the network. TFs that autoregulate were highly conserved between tissues. Dual feedback motifs with microRNAs were also conserved between tissues, but less so, and TFs regulate different combinations of microRNAs in a tissue-dependent manner. The study of these motifs highlights ever more genes that have complex regulatory dynamics. These data provide a resource for the identification of TFs which regulate the dynamical properties of human gene expression.
Collapse
Affiliation(s)
- Thomas G Minchington
- School of Medical Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Sam Griffiths-Jones
- School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | - Nancy Papalopulu
- School of Medical Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
35
|
Chen X, Chen H, He Y, Fu S, Liu H, Wang Q, Shen J. Proteomics-Guided Study on Buyang Huanwu Decoction for Its Neuroprotective and Neurogenic Mechanisms for Transient Ischemic Stroke: Involvements of EGFR/PI3K/Akt/Bad/14-3-3 and Jak2/Stat3/Cyclin D1 Signaling Cascades. Mol Neurobiol 2020; 57:4305-4321. [PMID: 32700252 DOI: 10.1007/s12035-020-02016-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/08/2020] [Indexed: 01/22/2023]
Abstract
Buyang Huanwu Decoction (BHD), a classic traditional Chinese medicine (TCM) formula, has been used for recovering neurological dysfunctions and treating post-stroke disability in China for 200 years. In the present study, we investigated the effects of BHD on inhibiting neuronal apoptosis, promoting proliferation and differentiation of neural stem cells (NSCs) and neurite formation and enhancing learning and memory functional recovery in an experimental rat ischemic stroke model. BHD significantly reduced infarct volume and decreased cell apoptosis in the ischemic brain. BHD enhanced neuronal cell viability in vitro. BHD dose-dependently promoted the proliferation of NSCs in ischemic rat brains in vivo. Moreover, BHD promoted neuronal and astrocyte differentiation in primary cultured NSCs in vitro. Water maze test revealed that BHD promoted the recovery of learning function but not memory functions in the transient ischemic rats. We then investigated the changes of the cellular signaling molecules by using two-dimension (2D) gel electrophoresis and focused on the PI3K/Akt/Bad and Jak2/Stat3/cyclin D1signaling pathway to uncover its underlying mechanisms for its neuroprotective and neurogenetic effects. BHD significantly upregulated the expression of p-PI3K, p-Akt, and p-Bad as well as the expression of p-Jak, p-Stat3, and cyclin D1 in vitro and in vivo. In addition, BHD upregulated Hes1 and downregulated cav-1 in vitro and in vivo. Taken together, these results suggest that BHD has neuroprotective effects and neurogenesis-promoting effects via activating PI3K/Akt/Bad and Jak2/Stat3/Cyclin D1 signaling pathways. Graphical Abstract Buyang Huanwu Decoction (BHD) activates the PI3K-AKT-BAD pathway in the ischemic brain for neuroprotection. BHD also activates JAK2/STAT3/Cyclin D1 signaling cascades for promoting neurogenesis in the hippocampus of post-ischemic brains. Moreover, BHD inhibits the expression of caveolin-1 and increases the expression of HES1 for promoting neuronal differentiation. The neuroprotective and neurogenesis-promoting effects in the hippocampus of post-ischemic brains promote learning ability.
Collapse
Affiliation(s)
- Xi Chen
- Department of Core Facility, The People's Hospital of Bao-an Shenzhen, Shenzhen, China.,The 8th people's Hospital of Shenzhen, The Affiliated Bao-an Hospital of Southern Medical University, Shenzhen, 518000, China.,School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, Hong Kong SAR, China
| | - Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, Hong Kong SAR, China
| | - Yachong He
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, Hong Kong SAR, China
| | - Shuping Fu
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, Hong Kong SAR, China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haosheng Liu
- Department of Core Facility, The People's Hospital of Bao-an Shenzhen, Shenzhen, China.,The 8th people's Hospital of Shenzhen, The Affiliated Bao-an Hospital of Southern Medical University, Shenzhen, 518000, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiangang Shen
- Department of Core Facility, The People's Hospital of Bao-an Shenzhen, Shenzhen, China. .,The 8th people's Hospital of Shenzhen, The Affiliated Bao-an Hospital of Southern Medical University, Shenzhen, 518000, China. .,School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
36
|
Večeřa J, Procházková J, Šumberová V, Pánská V, Paculová H, Lánová MK, Mašek J, Bohačiaková D, Andersson ER, Pacherník J. Hypoxia/Hif1α prevents premature neuronal differentiation of neural stem cells through the activation of Hes1. Stem Cell Res 2020; 45:101770. [PMID: 32276221 DOI: 10.1016/j.scr.2020.101770] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 01/02/2023] Open
Abstract
Embryonic neural stem cells (NSCs), comprising neuroepithelial and radial glial cells, are indispensable precursors of neurons and glia in the mammalian developing brain. Since the process of neurogenesis occurs in a hypoxic environment, the question arises of how NSCs deal with low oxygen tension and whether it affects their stemness. Genes from the hypoxia-inducible factors (HIF) family are well known factors governing cellular response to hypoxic conditions. In this study, we have discovered that the endogenous stabilization of hypoxia-inducible factor 1α (Hif1α) during neural induction is critical for the normal development of the NSCs pool by preventing its premature depletion and differentiation. The knock-out of the Hif1α gene in mESC-derived neurospheres led to a decrease in self-renewal of NSCs, paralleled by an increase in neuronal differentiation. Similarly, neuroepithelial cells differentiated in hypoxia exhibited accelerated neurogenesis soon after Hif1α knock-down. In both models, the loss of Hif1α was accompanied by an immediate drop in neural repressor Hes1 levels while changes in Notch signaling were not observed. We found that active Hif1α/Arnt1 transcription complex bound to the evolutionarily conserved site in Hes1 gene promoter in both neuroepithelial cells and neural tissue of E8.5 - 9.5 embryos. Taken together, these results emphasize the novel role of Hif1α in the regulation of early NSCs population through the activation of neural repressor Hes1, independently of Notch signaling.
Collapse
Affiliation(s)
- Josef Večeřa
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic.
| | - Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Veronika Šumberová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Veronika Pánská
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Hana Paculová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Martina Kohutková Lánová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Jan Mašek
- Department of Biosciences and Nutrition, Neo, Blickagången 16, SE-141 83 Huddinge, Sweden
| | - Dáša Bohačiaková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Emma Rachel Andersson
- Department of Biosciences and Nutrition, Neo, Blickagången 16, SE-141 83 Huddinge, Sweden; Department of Cell and Molecular Biology, Biomedicum, Solnavägen 9, SE-171 65 Solna, Sweden
| | - Jiří Pacherník
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
37
|
Transcriptional analysis of scar-free wound healing during early stages of tail regeneration in the green anole lizard, Anolis carolinensis. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.regen.2019.100025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Simultaneous Requirements for Hes1 in Retinal Neurogenesis and Optic Cup-Stalk Boundary Maintenance. J Neurosci 2020; 40:1501-1513. [PMID: 31949107 DOI: 10.1523/jneurosci.2327-19.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
The bHLH transcription factor Hes1 is a key downstream effector for the Notch signaling pathway. During embryogenesis neural progenitors express low levels of Hes1 in an oscillating pattern, whereas glial brain boundary regions (e.g., isthmus) have high, sustained Hes1 levels that suppress neuronal fates. Here, we show that in the embryonic mouse retina, the optic nerve head and stalk express high Hes1, with the ONH constituting a boundary between the neural retina and glial cells that ultimately line the optic stalk. Using two Cre drivers with distinct spatiotemporal expression we conditionally inactivated Hes1, to delineate the requirements for this transcriptional repressor during retinal neurogenesis versus patterning of the optic cup and stalk. Throughout retinal neurogenesis, Hes1 maintains proliferation and blocks retinal ganglion cell formation, but surprisingly we found it also promotes cone photoreceptor genesis. In the postnatal eye, Hes1 inactivation with Rax-Cre resulted in increased bipolar neurons and a mispositioning of Müller glia. Our results indicate that Notch pathway regulation of cone genesis is more complex than previously assumed, and reveal a novel role for Hes1 in maintaining the optic cup-stalk boundary.SIGNIFICANCE STATEMENT The bHLH repressor Hes1 regulates the timing of neurogenesis, rate of progenitor cell division, gliogenesis, and maintains tissue compartment boundaries. This study expands current eye development models by showing Notch-independent roles for Hes1 in the developing optic nerve head (ONH). Defects in ONH formation result in optic nerve coloboma; our work now inserts Hes1 into the genetic hierarchy regulating optic fissure closure. Given that Hes1 acts analogously in the ONH as the brain isthmus, it prompts future investigation of the ONH as a signaling factor center, or local organizer. Embryonic development of the ONH region has been poorly studied, which is surprising given it is where the pan-ocular disease glaucoma is widely believed to inflict damage on RGC axons.
Collapse
|
39
|
Taroc EZM, Naik AS, Lin JM, Peterson NB, Keefe DL, Genis E, Fuchs G, Balasubramanian R, Forni PE. Gli3 Regulates Vomeronasal Neurogenesis, Olfactory Ensheathing Cell Formation, and GnRH-1 Neuronal Migration. J Neurosci 2020; 40:311-326. [PMID: 31767679 PMCID: PMC6948949 DOI: 10.1523/jneurosci.1977-19.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/18/2019] [Accepted: 11/17/2019] [Indexed: 12/20/2022] Open
Abstract
During mammalian development, gonadotropin-releasing-hormone-1 neurons (GnRH-1ns) migrate from the developing vomeronasal organ (VNO) into the brain asserting control of pubertal onset and fertility. Recent data suggest that correct development of the olfactory ensheathing cells (OEC) is imperative for normal GnRH-1 neuronal migration. However, the full ensemble of molecular pathways that regulate OEC development remains to be fully deciphered. Loss-of-function of the transcription factor Gli3 is known to disrupt olfactory development, however, if Gli3 plays a role in GnRH-1 neuronal development is unclear. By analyzing Gli3 extra-toe mutants (Gli3Xt/Xt), we found that Gli3 loss-of-function compromises the onset of achaete-scute family bHLH transcription factor 1 (Ascl-1)+ vomeronasal progenitors and the formation of OEC in the nasal mucosa. Surprisingly, GnRH-1 neurogenesis was intact in Gli3Xt/Xt mice but they displayed significant defects in GnRH-1 neuronal migration. In contrast, Ascl-1null mutants showed reduced neurogenesis for both vomeronasal and GnRH-1ns but less severe defects in OEC development. These observations suggest that Gli3 is critical for OEC development in the nasal mucosa and subsequent GnRH-1 neuronal migration. However, the nonoverlapping phenotypes between Ascl-1 and Gli3 mutants indicate that Ascl-1, while crucial for GnRH-1 neurogenesis, is not required for normal OEC development. Because Kallmann syndrome (KS) is characterized by abnormal GnRH-1ns migration, we examined whole-exome sequencing data from KS subjects. We identified and validated a GLI3 loss-of-function variant in a KS individual. These findings provide new insights into GnRH-1 and OECs development and demonstrate that human GLI3 mutations contribute to KS etiology.SIGNIFICANCE STATEMENT The transcription factor Gli3 is necessary for correct development of the olfactory system. However, if Gli3 plays a role in controlling GnRH-1 neuronal development has not been addressed. We found that Gli3 loss-of-function compromises the onset of Ascl-1+ vomeronasal progenitors, formation of olfactory ensheathing cells in the nasal mucosa, and impairs GnRH-1 neuronal migration to the brain. By analyzing Ascl-1null mutants we dissociated the neurogenic defects observed in Gli3 mutants from lack of olfactory ensheathing cells in the nasal mucosa, moreover, we discovered that Ascl-1 is necessary for GnRH-1 ontogeny. Analyzing human whole-exome sequencing data, we identified a GLI3 loss-of-function variant in a KS individual. Our data suggest that GLI3 is a candidate gene contributing to KS etiology.
Collapse
Affiliation(s)
- Ed Zandro M Taroc
- Department of Biological Sciences; The RNA Institute, and the Center for Neuroscience Research; University at Albany, State University of New York, Albany, New York 12222, and
| | - Ankana S Naik
- Department of Biological Sciences; The RNA Institute, and the Center for Neuroscience Research; University at Albany, State University of New York, Albany, New York 12222, and
| | - Jennifer M Lin
- Department of Biological Sciences; The RNA Institute, and the Center for Neuroscience Research; University at Albany, State University of New York, Albany, New York 12222, and
| | - Nicolas B Peterson
- Department of Biological Sciences; The RNA Institute, and the Center for Neuroscience Research; University at Albany, State University of New York, Albany, New York 12222, and
| | - David L Keefe
- Harvard Reproductive Sciences Center and The Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Elizabet Genis
- Department of Biological Sciences; The RNA Institute, and the Center for Neuroscience Research; University at Albany, State University of New York, Albany, New York 12222, and
| | - Gabriele Fuchs
- Department of Biological Sciences; The RNA Institute, and the Center for Neuroscience Research; University at Albany, State University of New York, Albany, New York 12222, and
| | - Ravikumar Balasubramanian
- Harvard Reproductive Sciences Center and The Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Paolo E Forni
- Department of Biological Sciences; The RNA Institute, and the Center for Neuroscience Research; University at Albany, State University of New York, Albany, New York 12222, and
| |
Collapse
|
40
|
Baik SH, Rajeev V, Fann DYW, Jo DG, Arumugam TV. Intermittent fasting increases adult hippocampal neurogenesis. Brain Behav 2020; 10:e01444. [PMID: 31804775 PMCID: PMC6955834 DOI: 10.1002/brb3.1444] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/24/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Intermittent fasting (IF) has been suggested to have neuroprotective effects through the activation of multiple signaling pathways. Rodents fasted intermittently exhibit enhanced hippocampal neurogenesis and long-term potentiation (LTP) at hippocampal synapses compared with sedentary animals fed an ad libitum (AL) diet. However, the underlying mechanisms have not been studied. In this study, we evaluated the mechanistic gap in understanding IF-induced neurogenesis. METHODS We evaluated the impact of 3 months of IF (12, 16, and 24 hr of food deprivation on a daily basis) on hippocampal neurogenesis in C57BL/6NTac mice using immunoblot analysis. RESULTS Three-month IF significantly increased activation of the Notch signaling pathway (Notch 1, NICD1, and HES5), neurotrophic factor BDNF, and downstream cellular transcription factor, cAMP response element-binding protein (p-CREB). The expression of postsynaptic marker, PSD95, and neuronal stem cell marker, Nestin, was also increased in the hippocampus in response to 3-month IF. CONCLUSIONS These findings suggest that IF may increase hippocampal neurogenesis involving the Notch 1 pathway.
Collapse
Affiliation(s)
- Sang-Ha Baik
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Vismitha Rajeev
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - David Yang-Wei Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore.,School of Pharmacy, Sungkyunkwan University, Suwon, Korea.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore City, Singapore
| |
Collapse
|
41
|
George S, Hamblin MR, Abrahamse H. Differentiation of Mesenchymal Stem Cells to Neuroglia: in the Context of Cell Signalling. Stem Cell Rev Rep 2019; 15:814-826. [PMID: 31515658 PMCID: PMC6925073 DOI: 10.1007/s12015-019-09917-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The promise of engineering specific cell types from stem cells and rebuilding damaged or diseased tissues has fascinated stem cell researchers and clinicians over last few decades. Mesenchymal Stem Cells (MSCs) have the potential to differentiate into non-mesodermal cells, particularly neural-lineage, consisting of neurons and glia. These multipotent adult stem cells can be used for implementing clinical trials in neural repair. Ongoing research identifies several molecular mechanisms involved in the speciation of neuroglia, which are tightly regulated and interconnected by various components of cell signalling machinery. Growing MSCs with multiple inducers in culture media will initiate changes on intricately interlinked cell signalling pathways and processes. Net result of these signal flow on cellular architecture is also dependent on the type of ligands and stem cells investigated in vitro. However, our understanding about this dynamic signalling machinery is limited and confounding, especially with spheroid structures, neurospheres and organoids. Therefore, the results for differentiating neurons and glia in vitro have been inconclusive, so far. Added to this complication, we have no convincing evidence about the electrical conductivity and functionality status generated in differentiating neurons and glia. This review has taken a step forward to tailor the information on differentiating neuroglia with the common methodologies, in practice.
Collapse
Affiliation(s)
- Sajan George
- Laser Research Centre, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Michael R Hamblin
- Laser Research Centre, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
- Wellman Centre for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.
| |
Collapse
|
42
|
Klatt A, Salzmann E, Schneider LJ, Reifschneider A, Korneck M, Hermle P, Bürkle A, Stoll D, Kadereit S. Toxicity of ionizing radiation (IR) in a human induced pluripotent stem cell (hiPSC)-derived 3D early neurodevelopmental model. Arch Toxicol 2019; 93:2879-2893. [DOI: 10.1007/s00204-019-02553-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/22/2019] [Indexed: 01/04/2023]
|
43
|
Manning CS, Biga V, Boyd J, Kursawe J, Ymisson B, Spiller DG, Sanderson CM, Galla T, Rattray M, Papalopulu N. Quantitative single-cell live imaging links HES5 dynamics with cell-state and fate in murine neurogenesis. Nat Commun 2019; 10:2835. [PMID: 31249377 PMCID: PMC6597611 DOI: 10.1038/s41467-019-10734-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
During embryogenesis cells make fate decisions within complex tissue environments. The levels and dynamics of transcription factor expression regulate these decisions. Here, we use single cell live imaging of an endogenous HES5 reporter and absolute protein quantification to gain a dynamic view of neurogenesis in the embryonic mammalian spinal cord. We report that dividing neural progenitors show both aperiodic and periodic HES5 protein fluctuations. Mathematical modelling suggests that in progenitor cells the HES5 oscillator operates close to its bifurcation boundary where stochastic conversions between dynamics are possible. HES5 expression becomes more frequently periodic as cells transition to differentiation which, coupled with an overall decline in HES5 expression, creates a transient period of oscillations with higher fold expression change. This increases the decoding capacity of HES5 oscillations and correlates with interneuron versus motor neuron cell fate. Thus, HES5 undergoes complex changes in gene expression dynamics as cells differentiate.
Collapse
Affiliation(s)
- Cerys S. Manning
- School of Medical Sciences, Division of Developmental Biology and Medicine, Faculty of Biology Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Veronica Biga
- School of Medical Sciences, Division of Developmental Biology and Medicine, Faculty of Biology Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - James Boyd
- Department of Cellular and Molecular Physiology, University of Liverpool, Crown Street, Liverpool, L69 3BX UK
| | - Jochen Kursawe
- School of Medical Sciences, Division of Developmental Biology and Medicine, Faculty of Biology Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Bodvar Ymisson
- School of Medical Sciences, Division of Developmental Biology and Medicine, Faculty of Biology Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - David G. Spiller
- School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Christopher M. Sanderson
- Department of Cellular and Molecular Physiology, University of Liverpool, Crown Street, Liverpool, L69 3BX UK
| | - Tobias Galla
- Theoretical Physics Division, School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL UK
| | - Magnus Rattray
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Nancy Papalopulu
- School of Medical Sciences, Division of Developmental Biology and Medicine, Faculty of Biology Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| |
Collapse
|
44
|
Liu B, Zhang Q, Ke C, Xia Z, Luo C, Li Y, Guan X, Cao X, Xu Y, Zhao Y. Ginseng-Angelica-Sansheng-Pulvis Boosts Neurogenesis Against Focal Cerebral Ischemia-Induced Neurological Deficiency. Front Neurosci 2019; 13:515. [PMID: 31191223 PMCID: PMC6549519 DOI: 10.3389/fnins.2019.00515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/06/2019] [Indexed: 01/04/2023] Open
Abstract
Background The traditional Chinese medicine Ginseng-Angelica-Shanseng-Pulvis (GASP) has been used to treat stroke for 300 years. This present study investigated if it can induce increases in neurogenesis following cerebral ischemic injury. Methods Rats following middle cerebral artery occlusion were orally treated with high, medium, and low doses of a standardized GASP extract. Results After 14 days, treatment with GASP improved regional blood flow and infarction volume by magnetic resonance imaging scanning, enhanced Ki67+ expression in the subventricular zone, increased brain-derived neurotrophic factor (BDNF) secretion, Nestin, and bone morphogenetic protein (BMP) 2/4 expressions in the hippocampus in a dose-dependent manner. Interestingly, low-dose treatment with GASP downregulated doublecortin and Notch1 expressions in the hippocampus, as well as upregulated glial fibrillary acidic protein expression in the subgranular zone and hairy and enhancer of split (Hes) 5 expression in the hippocampus, while treatment with middle and high doses of GASP reversed these results. Meanwhile, the consumed time was shortened in the basket test and the adhesive removal test and the spending time on exploring novel objects was prolonged by GASP treatment whose effects were more obvious at day 14 post-ischemia. Conclusion Our study demonstrates that treatment with GASP increases neurogenesis and ameliorates sensorimotor functions and recognition memory. We hypothesize that these effects are thought be mediated by an effect on the BMP2/4 pathway and Notch1/Hes5 signal. Due to its beneficial efficacy, GASP can be recognized as an alternative therapeutic agent for ischemic stroke.
Collapse
Affiliation(s)
- Bowen Liu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Zhang
- Department of Biotherapy, Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Chienchih Ke
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung City, Taiwan.,Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Zhenyan Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Cheng Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
45
|
Mahmoudi R, Ghareghani M, Zibara K, Tajali Ardakani M, Jand Y, Azari H, Nikbakht J, Ghanbari A. Alyssum homolocarpum seed oil (AHSO), containing natural alpha linolenic acid, stearic acid, myristic acid and β-sitosterol, increases proliferation and differentiation of neural stem cells in vitro. Altern Ther Health Med 2019; 19:113. [PMID: 31159797 PMCID: PMC6547481 DOI: 10.1186/s12906-019-2518-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/07/2019] [Indexed: 01/01/2023]
Abstract
Background Embryonic neural stem cells (eNSCs) are immature precursors of the central nervous system (CNS), with self-renewal and multipotential differentiation capacities. These are regulated by endogenous and exogenous factors such as alpha-linolenic acid (ALA), a plant-based essential omega-3 polyunsaturated fatty acid. Methods In this study, we investigated the effects of various concentrations of Alyssum homolocarpum seed oil (AHSO), containing natural ALA, stearic acid (SA), myristic acid (MA), and β-sitosterol, on proliferation and differentiation of eNSCs, in comparison to controls and to synthetic pure ALA. Results Treatment with natural AHSO (25 to 75 μM), similar to synthetic ALA, caused a significant ~ 2-fold increase in eNCSs viability, in comparison to controls. To confirm this proliferative activity, treatment of NSCs with 50 or 75 μM AHSO resulted in a significant increase in mRNA levels of notch1, hes-1 and Ki-67and NICD protein expression, in comparison to controls. Moreover, AHSO administration significantly increased the differentiation of eNSCs toward astrocytes (GFAP+) and oligodendrocytes (MBP+) in a dose dependent manner and was more potent than ALA, at similar concentrations, in comparison to controls. Indeed, only high concentrations of 100 μM AHSO, but not ALA, caused a significant increase in the frequency of neurons (β-III Tubulin+). Conclusion Our data demonstrated that AHSO, a rich source of ALA containing also other beneficial fatty acids, increased the proliferation and stimulated the differentiation of eNSCs. We suggest that AHSO’s effects are caused by β-sitosterol, SA and MA, present within this oil. AHSO could be used in diet to prevent neurodevelopmental syndromes, cognitive decline during aging, and various psychiatric disorders.
Collapse
|
46
|
Endothelial-neurosphere crosstalk in microwell arrays regulates self-renewal and differentiation of human neural stem cells. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
47
|
Kalogeropoulou A, Lygerou Z, Taraviras S. Cortical Development and Brain Malformations: Insights From the Differential Regulation of Early Events of DNA Replication. Front Cell Dev Biol 2019; 7:29. [PMID: 30915332 PMCID: PMC6421272 DOI: 10.3389/fcell.2019.00029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/20/2019] [Indexed: 12/27/2022] Open
Abstract
During the development of the cortex distinct populations of Neural Stem Cells (NSCs) are defined by differences in their cell cycle duration, self-renewal capacity and transcriptional profile. A key difference across the distinct populations of NSCs is the length of G1 phase, where the licensing of the DNA replication origins takes place by the assembly of a pre-replicative complex. Licensing of DNA replication is a process that is adapted accordingly to the cell cycle length of NSCs to secure the timed duplication of the genome. Moreover, DNA replication should be efficiently coordinated with ongoing transcription for the prevention of conflicts that would impede the progression of both processes, compromising the normal course of development. In the present review we discuss how the differential regulation of the licensing and initiation of DNA replication in different cortical NSCs populations is integrated with the properties of these stem cells populations. Moreover, we examine the implication of the initial steps of DNA replication in the pathogenetic mechanisms of neurodevelopmental defects and Zika virus-related microcephaly, highlighting the significance of the differential regulation of DNA replication during brain development.
Collapse
Affiliation(s)
| | - Zoi Lygerou
- Department of General Biology, Medical School, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
48
|
Ohtsuka T, Kageyama R. Regulation of temporal properties of neural stem cells and transition timing of neurogenesis and gliogenesis during mammalian neocortical development. Semin Cell Dev Biol 2019; 95:4-11. [PMID: 30634047 DOI: 10.1016/j.semcdb.2019.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/05/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
Abstract
In the developing mammalian neocortex, neural stem cells (NSCs) gradually alter their characteristics as development proceeds. NSCs initially expand the progenitor pool by symmetric proliferative division and then shift to asymmetric neurogenic division to commence neurogenesis. NSCs sequentially give rise to deep layer neurons first and superficial layer neurons later through mid- to late-embryonic stages, followed by shifting to a gliogenic phase at perinatal stages. The precise mechanisms regulating developmental timing of the transition from symmetric to asymmetric division have not been fully elucidated; however, gradual elongation in cell cycle length and concomitant accumulation of determinants that promote neuronal differentiation may function as a biological clock that regulates the onset of asymmetric neurogenic division. On the other hand, epigenetic regulatory systems have been implicated in the regulation of transition timing of neurogenesis and gliogenesis; the polycomb group (PcG) complex and Hmga genes have been found to govern the developmental timing by modulating chromatin structure during neocortical development. Furthermore, we uncovered several factors and mechanisms underlying the regulation of timing of neocortical neurogenesis and gliogenesis. In this review, we discuss recent findings regarding the mechanisms that govern the temporal properties of NSCs and the precise transition timing during neocortical development.
Collapse
Affiliation(s)
- Toshiyuki Ohtsuka
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan; Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan; Kyoto University Graduate School of Biostudies, Kyoto, 606-8501, Japan.
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan; Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan; Kyoto University Graduate School of Biostudies, Kyoto, 606-8501, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
49
|
Liu L, Wang Y, Li Y, Guo P, Liu C, Li Z, Wang F, Zhao P, Xia Q, He H. Insights into the repression of fibroin modulator binding protein-1 on the transcription of fibroin H-chain during molting in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 104:39-49. [PMID: 30543984 DOI: 10.1016/j.ibmb.2018.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
Fibroin modulator binding protein-1 (FMBP-1) is a novel DNA-binding protein containing a conserved score and three amino acid peptide repeat (STPR) domain. The roles of factors containing STPR domain are less known. Although multiple transcription factors are involved in the transcriptional regulation of silk protein genes during the development of silkworm, the mechanism of transcriptional repression of silk protein genes during molting remains unclear. Here, we found that FMBP-1 expression was contrary to that of fibroin heavy chain (fib-H) during the fourth molting period of Bombyx mori. FMBP-1 repressed fib-H promoter activity by directly binding to the -130 element in the fib-H promoter region. We also identified two proteins, Bmsage and Bmdimm, that interacted with FMBP-1 in the posterior silk gland of silkworm larvae, and further verified these interactions by far western blotting and microscale thermophoresis in vitro, as well as co-immunoprecipitation and bimolecular fluorescence complementation at the cellular level. The luciferase reporter assay showed that the interaction between FMBP-1 and Bmdimm antagonized the activation of Bmdimm on fib-H transcription, but did not affect FMBP-1-mediated transcriptional repression on fib-H gene. Therefore, we proposed the following mechanism of fib-H transcriptional repression by FMBP-1 during the molting of silkworm larvae: 1) FMBP-1 directly binds to the -130 element in the fib-H promoter to repress fib-H transcription; 2) FMBP-1 interacts with Bmdimm to antagonize the activation of Bmdimm on fib-H transcription. Our findings promote a better understanding of fib-H transcriptional regulation and provide novel insights into the transcriptional repression of fib-H by FMBP-1 and basic helix-loop-helix factors Bmdimm during the molting of silkworm larvae. Our study also provides valuable information regarding the biological function of factors containing STPR domain.
Collapse
Affiliation(s)
- Lina Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Yejing Wang
- College of Biotechnology, Southwest University, Beibei, Chongqing, 400715, China.
| | - Yu Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Pengchao Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Zhiqing Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing, 400715, China.
| | - Huawei He
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
50
|
Braccioli L, Vervoort SJ, Puma G, Nijboer CH, Coffer PJ. SOX4 inhibits oligodendrocyte differentiation of embryonic neural stem cells in vitro by inducing Hes5 expression. Stem Cell Res 2018; 33:110-119. [PMID: 30343100 DOI: 10.1016/j.scr.2018.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 12/27/2022] Open
Abstract
SOX4 has been shown to promote neuronal differentiation both in the adult and embryonic neural progenitors. Ectopic SOX4 expression has also been shown to inhibit oligodendrocyte differentiation in mice, however the underlying molecular mechanisms remain poorly understood. Here we demonstrate that SOX4 regulates transcriptional targets associated with neural development in neural stem cells (NSCs), reducing the expression of genes promoting oligodendrocyte differentiation. Interestingly, we observe that SOX4 levels decreased during oligodendrocyte differentiation in vitro. Moreover, we show that SOX4 knockdown induces increased oligodendrocyte differentiation, as the percentage of Olig2-positive/2',3'-Cyclic-nucleotide 3'-phosphodiesterase (CNPase)-positive maturing oligodendrocytes increases, while the number of Olig2-positive oligodendrocyte precursors is unaffected. Conversely, conditional SOX4 overexpression utilizing a doxycycline inducible system decreases the percentage of maturing oligodendrocytes, suggesting that SOX4 inhibits maturation from precursor to mature oligodendrocyte. We identify the transcription factor Hes5 as a direct SOX4 target gene and we show that conditional overexpression of Hes5 rescues the increased oligodendrocyte differentiation mediated by SOX4 depletion in NSCs. Taken together, these observations support a novel role for SOX4 in NSC by controlling oligodendrocyte differentiation through induction of Hes5 expression.
Collapse
Affiliation(s)
- Luca Braccioli
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht University, Utrecht, 3508, AB, the Netherlands; Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, 3584, CT, the Netherlands
| | - Stephin J Vervoort
- Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, 3584, CT, the Netherlands
| | - Gianmarco Puma
- Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, 3584, CT, the Netherlands
| | - Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht University, Utrecht, 3508, AB, the Netherlands
| | - Paul J Coffer
- Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, 3584, CT, the Netherlands; Division of Pediatrics, University Medical Center Utrecht, Utrecht University, Utrecht, 3508, AB, the Netherlands.
| |
Collapse
|