1
|
Yamazaki S. The Nuclear NF-κB Regulator IκBζ: Updates on Its Molecular Functions and Pathophysiological Roles. Cells 2024; 13:1467. [PMID: 39273036 PMCID: PMC11393961 DOI: 10.3390/cells13171467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
More than a decade after the discovery of the classical cytoplasmic IκB proteins, IκBζ was identified as an additional member of the IκB family. Unlike cytoplasmic IκB proteins, IκBζ has distinct features, including its nuclear localization, preferential binding to NF-κB subunits, unique expression properties, and specialized role in NF-κB regulation. While the activation of NF-κB is primarily controlled by cytoplasmic IκB members at the level of nuclear entry, IκBζ provides an additional layer of NF-κB regulation in the nucleus, enabling selective gene activation. Human genome-wide association studies (GWAS) and gene knockout experiments in mice have elucidated the physiological and pathological roles of IκBζ. Despite the initial focus to its role in activated macrophages, IκBζ has since been recognized as a key player in the IL-17-triggered production of immune molecules in epithelial cells, which has garnered significant clinical interest. Recent research has also unveiled a novel molecular function of IκBζ, linking NF-κB and the POU transcription factors through its N-terminal region, whose role had remained elusive for many years.
Collapse
Affiliation(s)
- Soh Yamazaki
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo 143-8540, Japan
| |
Collapse
|
2
|
Taki N, Kimura A, Shiraishi Y, Maruyama T, Ohmori T, Takeshita K. Conditional deletion of IκBζ in hematopoietic cells promotes functional recovery after spinal cord injury in mice. J Orthop Sci 2024:S0949-2658(24)00088-5. [PMID: 38760245 DOI: 10.1016/j.jos.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Transcription factor protein IκBζ (encoded by the Nfkbiz gene) regulates nuclear factor-κB (NF-κB) and is involved in the pathophysiology of various inflammatory diseases. However, the role of IκBζ in secondary damage following spinal cord injury (SCI) remains to be determined. Here, we investigated the effect of IκBζ expressed in hematopoietic cells on the progression of secondary damage and functional recovery after SCI. METHODS We used conditional IκBζ-knockout mice (Mx1-Cre;Nfkbizfl/f) to examine the role of IκBζ in hematopoietic cells after SCI. Contusion SCI was induced using a force of 60 kdyn. The recovery of locomotor performance was evaluated using the nine-point Basso Mouse Scale (BMS) until 42 days post-injury. Expression patterns of inflammatory cytokines and chemokines were examined by quantitative real-time PCR or proteome array analysis. Bone marrow transplantation (BMT) was performed to eliminate the effect of IκBζ deletion in non-hematopoietic cells. RESULTS Mx1-Cre;Nfkbizfl/fl mice had significantly improved locomotor function compared with wild-type (WT) mice. The mRNA expression of Nfkbiz in WT mice peaked at 12 h after SCI and then decreased slowly in both the spinal cord and white blood cells. In situ hybridization showed that Nfkbiz mRNA was localized in cell nuclei, including macrophage-like cells, in the injured spinal cord of WT mice at 1 day after SCI. Compared with WT mice, Mx1-Cre;Nfkbizfl/fl mice had significantly increased mRNA expressions of interleukin (Il)-4 and Il-10 in the injured spinal cord. In addition, Mx1-Cre;Nfkbizfl/fl mice had significantly higher protein levels of granulocyte-macrophage colony-stimulating factor and C-C motif chemokine 11 compared with WT mice. BMT from Mx1-Cre;Nfkbizfl/fl mice into WT mice improved functional recovery after SCI compared with control mice (WT cells into WT mice). CONCLUSIONS IκBζ deletion in hematopoietic cells improved functional recovery after SCI, possibly by shifting the inflammatory balance towards anti-inflammatory and pro-regenerative directions.
Collapse
Affiliation(s)
- Naoya Taki
- Department of Orthopaedic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Atsushi Kimura
- Department of Orthopaedic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Yasuyuki Shiraishi
- Department of Orthopaedic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Takashi Maruyama
- Mucosal Immunology Section, National Institute for Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20852, USA
| | - Tsukasa Ohmori
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, 329-0498, Japan
| | - Katsushi Takeshita
- Department of Orthopaedic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
3
|
Baek J, Shin HS, Suk K, Lee WH. LINC01686 affects LPS-induced cytokine expression via the miR-18a-5p/A20/STAT1 axis in THP-1 cells. Immun Inflamm Dis 2024; 12:e1234. [PMID: 38578001 PMCID: PMC10996380 DOI: 10.1002/iid3.1234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/20/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Long noncoding RNAs (lncRNAs) are crucial in regulating various physiological and pathological processes, including immune responses. LINC01686 is a lncRNA with previously uncharacterized functions in immune regulation. This study aims to investigate the function of LINC01686 in lipopolysaccharide (LPS)-induced inflammatory responses in the human monocytic leukemia cell line THP-1 and its potential regulatory mechanisms involving miR-18a-5p and the anti-inflammatory protein A20. METHOD THP-1 cells were stimulated with LPS to induce inflammatory responses, followed by analysis of LINC01686 expression levels. The role of LINC01686 in regulating the expression of interleukin (IL)-6, IL-8, A20, and signal transducer and activator of transcription 1 (STAT1) was examined using small interfering RNA-mediated knockdown. Additionally, the involvement of miR-18a-5p in LINC01686-mediated regulatory pathways was assessed by transfection with decoy RNAs mimicking the miR-18a-5p binding sites of LINC01686 or A20 messenger RNA. RESULTS LINC01686 expression was upregulated in THP-1 cells following LPS stimulation. Suppression of LINC01686 enhanced LPS-induced expression of IL-6 and IL-8, mediated through increased production of reactive oxygen species. Moreover, LINC01686 knockdown upregulated the expression and activation of IκB-ζ, STAT1, and downregulated A20 expression. Transfection with decoy RNAs reversed the effects of LINC01686 suppression on A20, STAT1, IL-6, and IL-8 expression, highlighting the role of LINC01686 in sponging miR-18a-5p and regulating A20 expression. CONCLUSION This study provides the first evidence that LINC01686 plays a critical role in modulating LPS-induced inflammatory responses in THP-1 cells by sponging miR-18a-5p, thereby regulating the expression and activation of A20 and STAT1. These findings shed light on the complex regulatory mechanisms involving lncRNAs in immune responses and offer potential therapeutic targets for inflammatory diseases.
Collapse
Affiliation(s)
- Jongwon Baek
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Hyeung-Seob Shin
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 FOUR KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
4
|
Alpsoy A, Wu XS, Pal S, Klingbeil O, Kumar P, El Demerdash O, Nalbant B, Vakoc CR. IκBζ is a dual-use coactivator of NF-κB and POU transcription factors. Mol Cell 2024; 84:1149-1157.e7. [PMID: 38309274 PMCID: PMC10960667 DOI: 10.1016/j.molcel.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/01/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
OCA-B, OCA-T1, and OCA-T2 belong to a family of coactivators that bind to POU transcription factors (TFs) to regulate gene expression in immune cells. Here, we identify IκBζ (encoded by the NFKBIZ gene) as an additional coactivator of POU TFs. Although originally discovered as an inducible regulator of NF-κB, we show here that IκBζ shares a microhomology with OCA proteins and uses this segment to bind to POU TFs and octamer-motif-containing DNA. Our functional experiments suggest that IκBζ requires its interaction with POU TFs to coactivate immune-related genes. This finding is reinforced by epigenomic analysis of MYD88L265P-mutant lymphoma cells, which revealed colocalization of IκBζ with the POU TF OCT2 and NF-κB:p50 at hundreds of DNA elements harboring octamer and κB motifs. These results suggest that IκBζ is a transcriptional coactivator that can amplify and integrate the output of NF-κB and POU TFs at inducible genes in immune cells.
Collapse
Affiliation(s)
- Aktan Alpsoy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xiaoli S Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sujay Pal
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Pramod Kumar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Benan Nalbant
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
5
|
Taylor TC, Coleman BM, Arunkumar SP, Dey I, Dillon JT, Ponde NO, Poholek AC, Schwartz DM, McGeachy MJ, Conti HR, Gaffen SL. IκBζ is an essential mediator of immunity to oropharyngeal candidiasis. Cell Host Microbe 2023; 31:1700-1713.e4. [PMID: 37725983 PMCID: PMC10591851 DOI: 10.1016/j.chom.2023.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/28/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023]
Abstract
Fungal infections are a global threat; yet, there are no licensed vaccines to any fungal pathogens. Th17 cells mediate immunity to Candida albicans, particularly oropharyngeal candidiasis (OPC), but essential downstream mechanisms remain unclear. In the murine model of OPC, IκBζ (Nfkbiz, a non-canonical NF-κB transcription factor) was upregulated in an interleukin (IL)-17-dependent manner and was essential to prevent candidiasis. Deletion of Nfkbiz rendered mice highly susceptible to OPC. IκBζ was dispensable in hematopoietic cells and acted partially in the suprabasal oral epithelium to control OPC. One prominent IκBζ-dependent gene target was β-defensin 3 (BD3) (Defb3), an essential antimicrobial peptide. Human oral epithelial cells required IκBζ for IL-17-mediated induction of BD2 (DEFB4A, human ortholog of mouse Defb3) through binding to the DEFB4A promoter. Unexpectedly, IκBζ regulated the transcription factor Egr3, which was essential for C. albicans induction of BD2/DEFB4A. Accordingly, IκBζ and Egr3 comprise an antifungal signaling hub mediating mucosal defense against oral candidiasis.
Collapse
Affiliation(s)
- Tiffany C Taylor
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bianca M Coleman
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Samyuktha P Arunkumar
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ipsita Dey
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - John T Dillon
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Nicole O Ponde
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Amanda C Poholek
- Department of Pediatrics, University of Pittsburgh, Children's Hospital of UPMC, Pittsburgh, PA 15224, USA
| | - Daniella M Schwartz
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mandy J McGeachy
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Heather R Conti
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
6
|
van Muilekom DR, Collet B, Rebl H, Zlatina K, Sarais F, Goldammer T, Rebl A. Lost and Found: The Family of NF-κB Inhibitors Is Larger than Assumed in Salmonid Fish. Int J Mol Sci 2023; 24:10229. [PMID: 37373375 DOI: 10.3390/ijms241210229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
NF-κB signalling is largely controlled by the family of 'inhibitors of NF-κB' (IκB). The relevant databases indicate that the genome of rainbow trout contains multiple gene copies coding for iκbα (nfkbia), iκbε (nfkbie), iκbδ (nkfbid), iκbζ (nfkbiz), and bcl3, but it lacks iκbβ (nfkbib) and iκbη (ankrd42). Strikingly, three nfkbia paralogs are apparently present in salmonid fish, two of which share a high sequence identity, while the third putative nfkbia gene is significantly less like its two paralogs. This particular nfkbia gene product, iκbα, clusters with the human IκBβ in a phylogenetic analysis, while the other two iκbα proteins from trout associate with their human IκBα counterpart. The transcript concentrations were significantly higher for the structurally more closely related nfkbia paralogs than for the structurally less similar paralog, suggesting that iκbβ probably has not been lost from the salmonid genomes but has been incorrectly designated as iκbα. In the present study, two gene variants coding for iκbα (nfkbia) and iκbε (nfkbie) were prominently expressed in the immune tissues and, particularly, in a cell fraction enriched with granulocytes, monocytes/macrophages, and dendritic cells from the head kidney of rainbow trout. Stimulation of salmonid CHSE-214 cells with zymosan significantly upregulated the iκbα-encoding gene while elevating the copy numbers of the inflammatory markers interleukin-1-beta and interleukin-8. Overexpression of iκbα and iκbε in CHSE-214 cells dose-dependently quenched both the basal and stimulated activity of an NF-κB promoter suggesting their involvement in immune-regulatory processes. This study provides the first functional data on iκbε-versus the well-researched iκbα factor-in a non-mammalian model species.
Collapse
Affiliation(s)
- Doret R van Muilekom
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Bertrand Collet
- VIM, UVSQ, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Henrike Rebl
- Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Kristina Zlatina
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Fabio Sarais
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Tom Goldammer
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
- Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| |
Collapse
|
7
|
Feng Y, Chen Z, Xu Y, Han Y, Jia X, Wang Z, Zhang N, Lv W. The central inflammatory regulator IκBζ: induction, regulation and physiological functions. Front Immunol 2023; 14:1188253. [PMID: 37377955 PMCID: PMC10291074 DOI: 10.3389/fimmu.2023.1188253] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
IκBζ (encoded by NFKBIZ) is the most recently identified IkappaB family protein. As an atypical member of the IkappaB protein family, NFKBIZ has been the focus of recent studies because of its role in inflammation. Specifically, it is a key gene in the regulation of a variety of inflammatory factors in the NF-KB pathway, thereby affecting the progression of related diseases. In recent years, investigations into NFKBIZ have led to greater understanding of this gene. In this review, we summarize the induction of NFKBIZ and then elucidate its transcription, translation, molecular mechanism and physiological function. Finally, the roles played by NFKBIZ in psoriasis, cancer, kidney injury, autoimmune diseases and other diseases are described. NFKBIZ functions are universal and bidirectional, and therefore, this gene may exert a great influence on the regulation of inflammation and inflammation-related diseases.
Collapse
Affiliation(s)
- Yanpeng Feng
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Zhiyuan Chen
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Yi Xu
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Yuxuan Han
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Xiujuan Jia
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zixuan Wang
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nannan Zhang
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjing Lv
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Kouri VP, Olkkonen J, Nurmi K, Peled N, Ainola M, Mandelin J, Nordström DC, Eklund KK. IL-17A and TNF synergistically drive expression of proinflammatory mediators in synovial fibroblasts via IκBζ-dependent induction of ELF3. Rheumatology (Oxford) 2023; 62:872-885. [PMID: 35792833 PMCID: PMC9891425 DOI: 10.1093/rheumatology/keac385] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE IL-17A and TNF act in synergy to induce proinflammatory mediators in synovial fibroblasts thus contributing to diseases associated with chronic arthritis. Many of these factors are regulated by transcription factor E74-like factor-3 (ELF3). Therefore, we sought to investigate ELF3 as a downstream target of IL-17A and TNF signalling and to characterize its role in the molecular mechanism of synergy between IL-17A and TNF. METHODS Regulation of ELF3 expression by IL-17A and TNF was studied in synovial fibroblasts of RA and OA patients and RA synovial explants. Signalling leading to ELF3 mRNA induction and the impact of ELF3 on the response to IL-17A and TNF were studied using siRNA, transient overexpression and signalling inhibitors in synovial fibroblasts and HEK293 cells. RESULTS ELF3 was marginally affected by IL-17A or TNF alone, but their combination resulted in high and sustained expression. ELF3 expression was regulated by the nuclear factor-κB (NF-κB) pathway and CCAAT/enhancer-binding protein β (C/EBPβ), but its induction required synthesis of the NF-κB co-factor IκB (inhibitor of NF-κB) ζ. siRNA-mediated depletion of ELF3 attenuated the induction of cytokines and matrix metalloproteinases by the combination of IL-17A and TNF. Overexpression of ELF3 or IκBζ showed synergistic effect with TNF in upregulating expression of chemokine (C-C motif) ligand 8 (CCL8), and depletion of ELF3 abrogated CCL8 mRNA induction by the combination of IκBζ overexpression and TNF. CONCLUSION Altogether, our results establish ELF3 as an important mediator of the synergistic effect of IL-17A and TNF in synovial fibroblasts. The findings provide novel information of the pathogenic mechanisms of IL-17A in chronic arthritis and implicate ELF3 as a potential therapeutic target.
Collapse
Affiliation(s)
- Vesa-Petteri Kouri
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki.,Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital
| | - Juri Olkkonen
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki
| | - Katariina Nurmi
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki
| | - Nitai Peled
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki
| | - Mari Ainola
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki
| | - Jami Mandelin
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki
| | - Dan C Nordström
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki.,Department of Internal Medicine and Rehabilitation
| | - Kari K Eklund
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki.,Inflammation Center, Division of Rheumatology, Helsinki University Hospital.,ORTON Orthopaedic Hospital of the Orton Foundation, Helsinki, Finland
| |
Collapse
|
9
|
Zhang Y, Tang J, Zhou Y, Xiao Q, Chen Q, Wang H, Lan J, Wu L, Peng Y. Short-term exposure to dimethyl fumarate (DMF) inhibits LPS-induced IκBζ expression in macrophages. Front Pharmacol 2023; 14:1114897. [PMID: 36817140 PMCID: PMC9929133 DOI: 10.3389/fphar.2023.1114897] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Background: The pharmacological activity of dimethyl fumarate (DMF) in treating psoriasis and multiple sclerosis (MS) is not fully understood. DMF is hydrolysed to monomethyl fumarate (MMF) in vivo, which is believed to account for the therapeutic effects of DMF. However, previous studies have provided evidence that DMF also enters the circulation. Given that DMF is short-lived in the blood, whether DMF has a therapeutic impact is still unclear. Methods: Lipopolysaccharide (LPS)-mediated RAW264.7 cell activation was used as a model of inflammation to explore the anti-inflammatory effects of short-term DMF exposure in vitro. Whole blood LPS stimulation assay was applied to compare the anti-inflammatory effects of DMF and MMF in vivo. Griess assay was performed to examined nitrite release. The expression of pro-inflammatory cytokines and transcription factors were measured by quantitative PCR (qPCR), ELISA and Western blot. Depletion of intracellular glutathione (GSH) was evaluated by Ellman's assay. Luciferase reporter assays were performed to evaluate DMF effects on Nrf2-ARE pathway activation, promoter activity of Nfkbiz and mRNA stability of Nfkbiz. Binding of STAT3 to the IκBζ promoter were examined using Chromatin immunoprecipitation (ChIP) assay. Results: Short-term exposure to DMF significantly inhibited the inflammatory response of RAW264.7 cells and suppressed LPS-induced IκBζ expression. Importantly, oral DMF but not oral MMF administration significantly inhibited IκBζ transcription in murine peripheral blood cells. We demonstrated that the expression of IκBζ is affected by the availability of intracellular GSH and regulated by the transcription factor Nrf2 and STAT3. DMF with strong electrophilicity can rapidly deplete intracellular GSH, activate the Nrf2-ARE pathway, and inhibit the binding of STAT3 to the IκBζ promoter, thereby suppressing IκBζ expression in macrophages. Conclusion: These results demonstrate the rapid anti-inflammatory effects of DMF in macrophages, providing evidence to support the direct anti-inflammatory activity of DMF.
Collapse
|
10
|
Protein targeting by the itaconate family in immunity and inflammation. Biochem J 2022; 479:2499-2510. [PMID: 36546613 DOI: 10.1042/bcj20220364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Immune cells are metabolically plastic and respond to inflammatory stimuli with large shifts in metabolism. Itaconate is one of the most up-regulated metabolites in macrophages in response to the gram negative bacterial product LPS. As such, itaconate has recently been the subject of intense research interest. The artificial derivatives, including 4-Octyl Itaconate (4-OI) and Dimethyl Itaconate (DI) and naturally produced isomers, mesaconate and citraconate, have been tested in relation to itaconate biology with similarities and differences in the biochemistry and immunomodulatory properties of this family of compounds emerging. Both itaconate and 4-OI have been shown to modify cysteines on a range of target proteins, with the modification being linked to a functional change. Targets include KEAP1 (the NRF2 inhibitor), GAPDH, NLRP3, JAK1, and the lysosomal regulator, TFEB. 4-OI and DI are more electrophilic, and are therefore stronger NRF2 activators, and inhibit the production of Type I IFNs, while itaconate inhibits SDH and the dioxygenase, TET2. Additionally, both itaconate and derivates have been shown to be protective across a wide range of mouse models of inflammatory and infectious diseases, through both distinct and overlapping mechanisms. As such, continued research involving the comparison of itaconate and related molecules holds exciting prospects for the study of cysteine modification and pathways for immunomodulation and the potential for new anti-inflammatory therapeutics.
Collapse
|
11
|
Gautam P, Maenner S, Cailotto F, Reboul P, Labialle S, Jouzeau J, Bourgaud F, Moulin D. Emerging role of IκBζ in inflammation: Emphasis on psoriasis. Clin Transl Med 2022; 12:e1032. [PMID: 36245291 PMCID: PMC9574490 DOI: 10.1002/ctm2.1032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 01/28/2023] Open
Abstract
Psoriasis is a chronic inflammatory disorder affecting skin and joints that results from immunological dysfunction such as enhanced IL-23 induced Th-17 differentiation. IkappaB-Zeta (IκBζ) is an atypical transcriptional factor of the IκB protein family since, contrary to the other family members, it positively regulates NF-κB pathway by being exclusively localized into the nucleus. IκBζ deficiency reduces visible manifestations of experimental psoriasis by diminishing expression of psoriasis-associated genes. It is thus tempting to consider IκBζ as a potential therapeutic target for psoriasis as well as for other IL23/IL17-mediated inflammatory diseases. In this review, we will discuss the regulation of expression of NFKBIZ and its protein IκBζ, its downstream targets, its involvement in pathogenesis of multiple disorders with emphasis on psoriasis and evidences supporting that inhibition of IκBζ may be a promising alternative to current therapeutic managements of psoriasis.
Collapse
Affiliation(s)
- Preeti Gautam
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | - Sylvain Maenner
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | - Frédéric Cailotto
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | - Pascal Reboul
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | - Stéphane Labialle
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | - Jean‐Yves Jouzeau
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | | | - David Moulin
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| |
Collapse
|
12
|
IκBζ regulates the development of nonalcoholic fatty liver disease through the attenuation of hepatic steatosis in mice. Sci Rep 2022; 12:11634. [PMID: 35804007 PMCID: PMC9270369 DOI: 10.1038/s41598-022-15840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
IκBζ is a transcriptional regulator that augments inflammatory responses from the Toll-like receptor or interleukin signaling. These innate immune responses contribute to the progression of nonalcoholic fatty liver disease (NAFLD); however, the role of IκBζ in the pathogenesis of NAFLD remains elusive. We investigated whether IκBζ was involved in the progression of NAFLD in mice. We generated hepatocyte-specific IκBζ-deficient mice (Alb-Cre; Nfkbizfl/fl) by crossing Nfkbizfl/fl mice with Alb-Cre transgenic mice. NAFLD was induced by feeding the mice a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD). CDAHFD-induced IκBζ expression in the liver was observed in Nfkbizfl/fl mice, but not in Alb-Cre; Nfkbizfl/fl mice. Contrary to our initial expectation, IκBζ deletion in hepatocytes accelerated the progression of NAFLD after CDAHFD treatment. Although the increased expression of inflammatory cytokines and apoptosis-related proteins by CDAHFD remained unchanged between Nfkbizfl/fl and Alb-Cre; Nfkbizfl/fl mice, early-stage steatosis of the liver was significantly augmented in Alb-Cre; Nfkbizfl/fl mice. Overexpression of IκBζ in hepatocytes via the adeno-associated virus vector attenuated liver steatosis caused by the CDAHFD in wild-type C57BL/6 mice. This preventive effect of IκBζ overexpression on steatosis was not observed without transcriptional activity. Microarray analysis revealed a correlation between IκBζ expression and the changes of factors related to triglyceride biosynthesis and lipoprotein uptake. Our data suggest that hepatic IκBζ attenuates the progression of NAFLD possibly through the regulation of the factors related to triglyceride metabolism.
Collapse
|
13
|
Keane S, Herring M, Rolny P, Wettergren Y, Ejeskär K. Inflammation suppresses DLG2 expression decreasing inflammasome formation. J Cancer Res Clin Oncol 2022; 148:2295-2311. [PMID: 35499706 PMCID: PMC9349146 DOI: 10.1007/s00432-022-04029-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/15/2022] [Indexed: 11/09/2022]
Abstract
Purpose Loss of expression of DLG2 has been identified in a number of cancers to contribute to the disease by resulting in increased tumor cell proliferation and poor survival. In light of the previous evidence that DLG2 alters the cell cycle and affects proliferation, combined with indications that DLG2 is involved in NLRP3 inflammasome axis we speculated that DLG2 has an immune function. So far, there is no data that clearly elucidates this role, and this study was designed to investigate DLG2 in inflammatory colon disease and in colon cancer as well as its impact on inflammasome induction. Methods The DLG2 expression levels were established in publicly available inflammation, colon cancer and mouse model datasets. The overexpression and silencing of DLG2 in colon cancer cells were used to determine the effect of DLG2 expression on the activation of the inflammasome and subsequent cytokine release. Results The expression of DLG2 is repressed in inflammatory colon diseases IBD and Ulcerative colitis as well as colorectal cancer tissue compared to healthy individuals. We subsequently show that induction with inflammatory agents in cell and animal models results in a biphasic alteration of DLG2 with an initial increase followed by an ensuing decrease. DLG2 overexpression leads to a significant increase in expression of IL1B, IκBζ and BAX, components that result in inflammasome formation. DLG2 silencing in THP1 cells resulted in increased release of IL-6 into the microenvironment which once used to treat bystander COLO205 cells resulted in an increase in STAT3 phosphorylation and an increase proliferating cells and more cells in the G2/M phase. Restoration of DLG2 to the colon resulted in reduced AKT and S6 signaling. Conclusion DLG2 expression is altered in response to inflammation in the gut as well as colon cancer, resulting in altered ability to form inflammasomes. Trial registration NCT03072641. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-022-04029-7.
Collapse
Affiliation(s)
- Simon Keane
- School of Health Science, DHEAR, Translational Medicine, University of Skövde, Skövde, Sweden.
| | - Matthew Herring
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Peter Rolny
- Division of Gastroenterology/Hepatology, Department of Medicine, Sahlgrenska University Hospital/Östra, Gothenburg, Sweden
| | - Yvonne Wettergren
- Department of Surgery, The Sahlgrenska Academy at University of Gothenburg, SU/Östra, Gothenburg, Sweden
| | - Katarina Ejeskär
- School of Health Science, DHEAR, Translational Medicine, University of Skövde, Skövde, Sweden
| |
Collapse
|
14
|
Li YC, Wang Y, Zou W. Exploration on the Mechanism of Ubiquitin Proteasome System in Cerebral Stroke. Front Aging Neurosci 2022; 14:814463. [PMID: 35462700 PMCID: PMC9022456 DOI: 10.3389/fnagi.2022.814463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/14/2022] [Indexed: 12/23/2022] Open
Abstract
Stroke’s secondary damage, such as inflammation, oxidative stress, and mitochondrial dysfunction, are thought to be crucial factors in the disease’s progression. Despite the fact that there are numerous treatments for secondary damage following stroke, such as antiplatelet therapy, anticoagulant therapy, surgery, and so on, the results are disappointing and the side effects are numerous. It is critical to develop novel and effective strategies for improving patient prognosis. The ubiquitin proteasome system (UPS) is the hub for the processing and metabolism of a wide range of functional regulatory proteins in cells. It is critical for the maintenance of cell homeostasis. With the advancement of UPS research in recent years, it has been discovered that UPS is engaged in a variety of physiological and pathological processes in the human body. UPS is expected to play a role in the onset and progression of stroke via multiple targets and pathways. This paper explores the method by which UPS participates in the linked pathogenic process following stroke, in order to give a theoretical foundation for further research into UPS and stroke treatment.
Collapse
Affiliation(s)
- Yu-Chao Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Wang
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Wei Zou
- Heilongjiang University of Chinese Medicine, Harbin, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Wei Zou,
| |
Collapse
|
15
|
Zhang W, Zhang Q, Wei X, Feng Y. Bortezomib-containing regiment in treating glomerulopathy with fibronectin deposits combined with monoclonal gammopathy of undetermined significance: a case report and literature review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:379. [PMID: 35434028 PMCID: PMC9011310 DOI: 10.21037/atm-22-242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/01/2022] [Indexed: 11/17/2022]
Abstract
Background Glomerulopathy with fibronectin deposits (GFND) is a newly recognized rare glomerular disease. As its onset can be stably inherited in affected families without sex differences and fibronectin 1 (FN1) mutations can be detected in 40% of patients’ families, GFND is considered to be an autosomal dominant genetic disease. The main clinical manifestations are proteinuria, progressive renal failure, edema, hypertension, hematuria, and type 4 renal tubular acidosis. The diagnosis was confirmed by renal biopsy, and there was no specific treatment. Monoclonal gammopathy refers to the existence of monoclonal immunoglobulin (MIg) produced by monoclonal plasma cells in serum. When MIg damages the kidney by direct deposition or indirect mechanisms, it is defined as monoclonal gammopathy of renal significance (MGRS). The principle of treatment is to inhibit plasma cells from producing MIg. Case Description We report the efficacy of a case of GFND combined with monoclonal gammopathy of undetermined significance (MGUS) treated with a bortezomib-containing regimen. A 44-year-old female patient was admitted to the hospital for “edema of both lower extremities for 1 month and aggravation for 5 days”. In May 2018, after exertion, the patient developed edema of both lower extremities, accompanied by foamy urine with no obvious deepening of urine color or decreased output, no gross hematuria, and gradual aggravation with fatigue. Conclusions After treatment, the edema of patient subsided, urinary protein decreased significantly, and serum albumin increased near to normal. It is achieving a very good therapeutic effect and long-term event-free survival. The treatment is safety and there are no obvious toxic side effects. It provides a new idea for the treatment of GFND.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Hematology, Gansu Provincial People's Hospital, Lanzhou, China
| | - Qike Zhang
- Department of Hematology, Gansu Provincial People's Hospital, Lanzhou, China
| | - Xiaofang Wei
- Department of Hematology, Gansu Provincial People's Hospital, Lanzhou, China
| | - Youfan Feng
- Department of Hematology, Gansu Provincial People's Hospital, Lanzhou, China
| |
Collapse
|
16
|
Yuan H, Suzuki S, Terui H, Hirata-Tsuchiya S, Nemoto E, Yamasaki K, Saito M, Shiba H, Aiba S, Yamada S. Loss of IκBζ Drives Dentin Formation via Altered H3K4me3 Status. J Dent Res 2022; 101:951-961. [PMID: 35193410 DOI: 10.1177/00220345221075968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Enforced enrichment of the active promoter marks trimethylation of histone H3 lysine 4 (H3K4me3) and acetylation of histone H3 lysine 27 (H3K27ac) by inhibiting histone demethylases and deacetylases is positively associated with hard tissue formation through the induction of osteo/odontogenic differentiation. However, the key endogenous epigenetic modulator of odontoblasts to regulate the expression of genes coding dentin extracellular matrix (ECM) proteins has not been identified. We focused on nuclear factor (NF)-κB inhibitor ζ (IκBζ), which was originally identified as the transcriptional regulator of NF-κB and recently regarded as the NF-κB-independent epigenetic modulator, and found that IκBζ null mice exhibit a thicker dentin width and narrower pulp chamber, with aged mice having more marked phenotypes. At 6 mo of age, dentin fluorescent labeling revealed significantly accelerated dentin synthesis in the incisors of IκBζ null mice. In the molars of IκBζ null mice, marked tertiary dentin formation adjacent to the pulp horn was observed. Mechanistically, the expression of COL1A2 and COL1A1 collagen genes increased more in the odontoblast-rich fraction of IκBζ null mice than in wild type in vivo, similar to human odontoblast-like cells transfected with small interfering RNA for IκBζ compared with cells transfected with control siRNA in vitro. Furthermore, the direct binding of IκBζ to the COL1A2 promoter suppressed COL1A2 expression and the local active chromatin status marked by H3K4me3. Based on whole-genome identification of H3K4me3 enrichment, ECM and ECM organization-related gene loci were selectively activated by the knockdown of IκBζ, which consistently resulted in the upregulation of these genes. Collectively, this study suggested that IκBζ is the key negative regulator of dentin formation in odontoblasts by inhibiting dentin ECM- and ECM organization-related gene expression through an altered local chromatin status marked by H3K4me3. Therefore, IκBζ is a potential target for epigenetically improving the clinical outcomes of dentin regeneration therapies such as pulp capping.
Collapse
Affiliation(s)
- H Yuan
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - S Suzuki
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - H Terui
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - S Hirata-Tsuchiya
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - E Nemoto
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - K Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - M Saito
- Department of Restorative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - H Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - S Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - S Yamada
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
17
|
Ahn Y, Kim MG, Choi YJ, Lee SJ, Suh HJ, Jo K. Photoprotective effects of sphingomyelin-containing milk phospholipids in ultraviolet B-irradiated hairless mice by suppressing nuclear factor-κB expression. J Dairy Sci 2022; 105:1929-1939. [PMID: 34998560 DOI: 10.3168/jds.2021-21192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Ceramide-containing phospholipids improve skin hydration and barrier function and are ideal for use in skin care products. In this study, we evaluated the photoprotective effect of milk phospholipids on the skin condition of UVB-irradiated hairless mice. Skin parameters were assessed following oral administration of milk phospholipids. The UVB irradiation induced photoaging in mice. The animals were divided into 5 groups: a control group (oral administration of saline with no UBV irradiation), UVB group (oral administration of saline with UVB irradiation), and 3 UVB irradiation groups receiving the milk phospholipids at 3 different concentrations of oral administration, 50 mg/kg (ML group), 100 mg/kg (MM group), and 150 mg/kg (MH group), for 8 wk. An increase in skin hydration and transepidermal water loss were improved in the 150 mg/kg of milk phospholipid-administered group. Hematoxylin and eosin staining revealed a decrease in epidermal thickness in the milk phospholipid-administered groups (50, 100, and 150 mg/kg of body weight). In particular, the 100 and 150 mg/kg groups showed significant changes in the area, length, and depth of the wrinkles compared with the UVB group. Moreover, the gene expression of matrix metalloproteins was attenuated, and that of proinflammatory cytokines, especially tumor necrosis factor-α, was significantly reduced in the milk phospholipid-administered groups than in the UVB group. The reduced ceramide and increased sphingosine-1-phosphate levels in the skin tissue due to UVB exposure were restored to levels similar to those of the control group following milk phospholipid administration. These results were confirmed to be due to the downregulation of protein expression of nuclear factor kappa-B (NF-κB) and phosphorylated IκB-α (inhibitor of κB α). Collectively, oral administration of milk phospholipids improves skin health through a synergistic effect on photoprotective activity.
Collapse
Affiliation(s)
- Yejin Ahn
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Min G Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Yong J Choi
- Solus Advanced Materials Co., Ltd., Yongin 16858, Republic of Korea
| | - Sang J Lee
- Holistic Bio Co., Ltd., Seongnam 13494, Republic of Korea
| | - Hyung J Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Kyungae Jo
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
18
|
IκBζ controls IL-17-triggered gene expression program in intestinal epithelial cells that restricts colonization of SFB and prevents Th17-associated pathologies. Mucosal Immunol 2022; 15:1321-1337. [PMID: 35999460 PMCID: PMC9705257 DOI: 10.1038/s41385-022-00554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023]
Abstract
Control of gut microbes is crucial for not only local defense in the intestine but also proper systemic immune responses. Although intestinal epithelial cells (IECs) play important roles in cytokine-mediated control of enterobacteria, the underlying mechanisms are not fully understood. Here we show that deletion of IκBζ in IECs in mice leads to dysbiosis with marked expansion of segmented filamentous bacteria (SFB), thereby enhancing Th17 cell development and exacerbating inflammatory diseases. Mechanistically, the IκBζ deficiency results in decrease in the number of Paneth cells and impairment in expression of IL-17-inducible genes involved in IgA production. The decrease in Paneth cells is caused by aberrant activation of IFN-γ signaling and a failure of IL-17-dependent recovery from IFN-γ-induced damage. Thus, the IL-17R-IκBζ axis in IECs contributes to the maintenance of intestinal homeostasis by serving as a key component in a regulatory loop between the gut microbiota and immune cells.
Collapse
|
19
|
Kumar R, Theiss AL, Venuprasad K. RORγt protein modifications and IL-17-mediated inflammation. Trends Immunol 2021; 42:1037-1050. [PMID: 34635393 PMCID: PMC8556362 DOI: 10.1016/j.it.2021.09.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022]
Abstract
RORγt, the master transcription factor for cytokine interleukin (IL)-17, is expressed explicitly in Th17 cells, γδT cells, and type 3 innate lymphoid cells in mice and humans. Since dysregulated IL-17 expression is strongly linked to several human inflammatory diseases, the RORγt-IL-17 axis has been the focus of intense research. Recently, several studies have shown that RORγt is modified by multiple post-translational mechanisms, including ubiquitination, acetylation, SUMOylation, and phosphorylation. This review discusses how post-translational modifications modulate RORγt function and its turnover to regulate IL-17-driven inflammation. Broad knowledge of these pathways is crucial for a clear understanding of the pathogenic role of RORγt+IL-17+ cells and for the development of putative therapeutic strategies to target IL-17-driven diseases such as multiple sclerosis, psoriasis, rheumatoid arthritis, systemic lupus erythematosus, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Arianne L Theiss
- University of Colorado, School of Medicine, Division of Gastroenterology and Hepatology, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - K Venuprasad
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Abe H, Tanada Y, Omiya S, Podaru MN, Murakawa T, Ito J, Shah AM, Conway SJ, Ono M, Otsu K. NF-κB activation in cardiac fibroblasts results in the recruitment of inflammatory Ly6C hi monocytes in pressure-overloaded hearts. Sci Signal 2021; 14:eabe4932. [PMID: 34637330 PMCID: PMC11536391 DOI: 10.1126/scisignal.abe4932] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heart failure is a major public health problem, and inflammation is involved in its pathogenesis. Inflammatory Ly6Chi monocytes accumulate in mouse hearts after pressure overload and are detrimental to the heart; however, the types of cells that drive inflammatory cell recruitment remain uncertain. Here, we showed that a distinct subset of mouse cardiac fibroblasts became activated by pressure overload and recruited Ly6Chi monocytes to the heart. Single-cell sequencing analysis revealed that a subset of cardiac fibroblasts highly expressed genes transcriptionally activated by the transcription factor NF-κB, as well as C-C motif chemokine ligand 2 (Ccl2) mRNA, which encodes a major factor in Ly6Chi monocyte recruitment. The deletion of the NF-κB activator IKKβ in activated cardiac fibroblasts attenuated Ly6Chi monocyte recruitment and preserved cardiac function in mice subjected to pressure overload. Pseudotime analysis indicated two single-branch trajectories from quiescent fibroblasts into inflammatory fibroblasts and myofibroblasts. Our results provide insight into the mechanisms underlying cardiac inflammation and fibroblast-mediated inflammatory responses that could be therapeutically targeted to treat heart failure.
Collapse
Affiliation(s)
- Hajime Abe
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK
| | - Yohei Tanada
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK
| | - Shigemiki Omiya
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK
| | - Mihai-Nicolae Podaru
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK
| | - Tomokazu Murakawa
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK
| | - Jumpei Ito
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK
| | - Ajay M. Shah
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK
| | - Simon J. Conway
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Kinya Otsu
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK
- National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| |
Collapse
|
21
|
Silke J, O’Reilly LA. NF-κB and Pancreatic Cancer; Chapter and Verse. Cancers (Basel) 2021; 13:4510. [PMID: 34572737 PMCID: PMC8469693 DOI: 10.3390/cancers13184510] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the world's most lethal cancers. An increase in occurrence, coupled with, presently limited treatment options, necessitates the pursuit of new therapeutic approaches. Many human cancers, including PDAC are initiated by unresolved inflammation. The transcription factor NF-κB coordinates many signals that drive cellular activation and proliferation during immunity but also those involved in inflammation and autophagy which may instigate tumorigenesis. It is not surprising therefore, that activation of canonical and non-canonical NF-κB pathways is increasingly recognized as an important driver of pancreatic injury, progression to tumorigenesis and drug resistance. Paradoxically, NF-κB dysregulation has also been shown to inhibit pancreatic inflammation and pancreatic cancer, depending on the context. A pro-oncogenic or pro-suppressive role for individual components of the NF-κB pathway appears to be cell type, microenvironment and even stage dependent. This review provides an outline of NF-κB signaling, focusing on the role of the various NF-κB family members in the evolving inflammatory PDAC microenvironment. Finally, we discuss pharmacological control of NF-κB to curb inflammation, focussing on novel anti-cancer agents which reinstate the process of cancer cell death, the Smac mimetics and their pre-clinical and early clinical trials.
Collapse
Affiliation(s)
- John Silke
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Lorraine Ann O’Reilly
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
22
|
Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478:2619-2664. [PMID: 34269817 PMCID: PMC8286839 DOI: 10.1042/bcj20210139] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and ‘re-set’ inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical ‘inhibitor of κB kinases’ (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.
Collapse
|
23
|
Yang J, He Z, Chen C, Li S, Qian J, Zhao J, Fang R. Toxoplasma gondii Infection Inhibits Histone Crotonylation to Regulate Immune Response of Porcine Alveolar Macrophages. Front Immunol 2021; 12:696061. [PMID: 34322124 PMCID: PMC8312545 DOI: 10.3389/fimmu.2021.696061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/18/2021] [Indexed: 01/01/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular parasite that can infect almost all warm-blooded animals, causing serious public health problems. Lysine crotonylation (Kcr) is a newly discovered posttranslational modification (PTM), which is first identified on histones and has been proved relevant to procreation regulation, transcription activation, and cell signaling pathway. However, the biological functions of histone crotonylation have not yet been reported in macrophages infected with T. gondii. As a result, a total of 1,286 Kcr sites distributed in 414 proteins were identified and quantified, demonstrating the existence of crotonylation in porcine alveolar macrophages. According to our results, identified histones were overall downregulated. HDAC2, a histone decrotonylase, was found to be significantly increased, which might be the executor of histone Kcr after parasite infection. In addition, T. gondii infection inhibited the crotonylation of H2B on K12, contributing on the suppression of epigenetic regulation and NF-κB activation. Nevertheless, the reduction of histone crotonylation induced by parasite infection could promote macrophage proliferation via activating PI3K/Akt signaling pathway. The present findings point to a comprehensive understanding of the biological functions of histone crotonylation in porcine alveolar macrophages, thereby providing a certain research basis for the mechanism research on the immune response of host cells against T. gondii infection.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhengming He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chengjie Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Senyang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiahui Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Gómez-Chávez F, Correa D, Navarrete-Meneses P, Cancino-Diaz JC, Cancino-Diaz ME, Rodríguez-Martínez S. NF-κB and Its Regulators During Pregnancy. Front Immunol 2021; 12:679106. [PMID: 34025678 PMCID: PMC8131829 DOI: 10.3389/fimmu.2021.679106] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptional factor NF-κB is a nuclear factor involved in both physiological and pathological processes. This factor can control the transcription of more than 400 genes, including cytokines, chemokines, and their modulators, immune and non-immune receptors, proteins involved in antigen presentation and cell adhesion, acute phase and stress response proteins, regulators of apoptosis, growth factors, other transcription factors and their regulators, as well as different enzymes; all these molecules control several biological processes. NF-κB is a tightly regulated molecule that has also been related to apoptosis, cell proliferation, inflammation, and the control of innate and adaptive immune responses during onset of labor, in which it has a crucial role; thus, early activation of this factor may have an adverse effect, by inducing premature termination of pregnancy, with bad outcomes for the mother and the fetus, including product loss. Reviews compiling the different activities of NF-κB have been reported. However, an update regarding NF-κB regulation during pregnancy is lacking. In this work, we aimed to describe the state of the art around NF-κB activity, its regulatory role in pregnancy, and the effect of its dysregulation due to invasion by pathogens like Trichomonas vaginalis and Toxoplasma gondii as examples.
Collapse
Affiliation(s)
- Fernando Gómez-Chávez
- Secretaría de Salud, Cátedras CONACyT-Instituto Nacional de Pediatría, Mexico City, Mexico
- Secretaría de Salud, Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
- Departamento de Formación Básica Disciplinaria, Escuela Nacional de Medicina y Homeopatía-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Dolores Correa
- Dirección de Investigación, Universidad Anáhuac, Huixquilucan, Mexico
| | - Pilar Navarrete-Meneses
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Secretaría de Salud Mexico City, Mexico City, Mexico
| | - Juan Carlos Cancino-Diaz
- Laboratorio de Inmunomicrobiología, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mario Eugenio Cancino-Diaz
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, ENCB-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sandra Rodríguez-Martínez
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, ENCB-Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
25
|
Xiao F, Du W, Zhu X, Tang Y, Liu L, Huang E, Deng C, Luo C, Han M, Chen P, Ding L, Hong X, Wu L, Jiang Q, Zou H, Liu D, Lu L. IL-17 drives salivary gland dysfunction via inhibiting TRPC1-mediated calcium movement in Sjögren's syndrome. Clin Transl Immunology 2021; 10:e1277. [PMID: 33968407 PMCID: PMC8082715 DOI: 10.1002/cti2.1277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives This study aims to determine a role of interleukin‐17A (IL‐17) in salivary gland (SG) dysfunction and therapeutic effects of targeting IL‐17 in SG for treating autoimmune sialadenitis in primary Sjögren’s syndrome (pSS). Methods Salivary IL‐17 levels and IL‐17‐secreting cells in labial glands of pSS patients were examined. Kinetic changes of IL‐17‐producing cells in SG from mice with experimental Sjögren’s syndrome (ESS) were analysed. To determine a role of IL‐17 in salivary secretion, IL‐17‐deficient mice and constructed chimeric mice with IL‐17 receptor C (IL‐17RC) deficiency in non‐hematopoietic and hematopoietic cells were examined for saliva flow rates during ESS development. Both human and murine primary SG epithelial cells were treated with IL‐17 for measuring cholinergic activation‐induced calcium movement. Moreover, SG functions were assessed in ESS mice with salivary retrograde cannulation of IL‐17 neutralisation antibodies. Results Increased salivary IL‐17 levels were negatively correlated with saliva flow rates in pSS patients. Both IL‐17‐deficient mice and chimeric mice with non‐hematopoietic cell‐restricted IL‐17RC deficiency exhibited no obvious salivary reduction while chimeric mice with hematopoietic cell‐restricted IL‐17RC deficiency showed significantly decreased saliva secretion during ESS development. In SG epithelial cells, IL‐17 inhibited acetylcholine‐induced calcium movement and downregulated the expression of transient receptor potential canonical 1 via promoting Nfkbiz mRNA stabilisation. Moreover, local IL‐17 neutralisation in SG markedly attenuated hyposalivation and ameliorated tissue inflammation in ESS mice. Conclusion These findings identify a novel function of IL‐17 in driving salivary dysfunction during pSS development and may provide a new therapeutic strategy for targeting SG dysfunction in pSS patients.
Collapse
Affiliation(s)
- Fan Xiao
- Department of Pathology Shenzhen Institute of Research and Innovation The University of Hong Kong Hong Kong.,Chongqing International Institute for Immunology Chongqing China
| | - Wenhan Du
- Department of Pathology Shenzhen Institute of Research and Innovation The University of Hong Kong Hong Kong.,Chongqing International Institute for Immunology Chongqing China
| | - Xiaoxia Zhu
- Department of Rheumatology Huashan Hospital and Fudan University Shanghai China
| | - Yuan Tang
- Department of Pathology Shenzhen Institute of Research and Innovation The University of Hong Kong Hong Kong.,Chongqing International Institute for Immunology Chongqing China
| | - Lixiong Liu
- Department of Rheumatology and Immunology Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen China
| | - Enyu Huang
- Department of Pathology Shenzhen Institute of Research and Innovation The University of Hong Kong Hong Kong.,Chongqing International Institute for Immunology Chongqing China
| | - Chong Deng
- Department of Pathology Shenzhen Institute of Research and Innovation The University of Hong Kong Hong Kong.,Chongqing International Institute for Immunology Chongqing China
| | - Cainan Luo
- Department of Rheumatology and Immunology People's Hospital of Xinjiang Uygur Autonomous Region Urumqi China
| | - Man Han
- Division of Rheumatology Guang'anmen Hospital China Academy of Chinese Medical Sciences Beijing China
| | - Ping Chen
- Department of Rheumatology and Immunology Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen China
| | - Liping Ding
- Department of Rheumatology and Immunology Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen China
| | - Lijun Wu
- Department of Rheumatology and Immunology People's Hospital of Xinjiang Uygur Autonomous Region Urumqi China
| | - Quan Jiang
- Division of Rheumatology Guang'anmen Hospital China Academy of Chinese Medical Sciences Beijing China
| | - Hejian Zou
- Department of Rheumatology Huashan Hospital and Fudan University Shanghai China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen China
| | - Liwei Lu
- Department of Pathology Shenzhen Institute of Research and Innovation The University of Hong Kong Hong Kong.,Chongqing International Institute for Immunology Chongqing China
| |
Collapse
|
26
|
Zhou Y, Xu B. New insights into molecular mechanisms of "Cold or Hot" nature of food: When East meets West. Food Res Int 2021; 144:110361. [PMID: 34053554 DOI: 10.1016/j.foodres.2021.110361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 01/04/2023]
Abstract
Traditional Chinese medicines are largely adopted in China and have a key importance in the world medical system. Cold-hot nature is the important characteristics of food and Chinese Materia Medica in the traditional Chinese medicine, relating to food functions in the organism. As compared to the studies on the cold and hot nature in Chinese medicine, the research studies carried out to establish the association between cold-hot nature and food are insufficient. Intending to investigate the criteria to discriminate the cold-hot nature of food and Chinese medicine scientifically, this review collected the cold-hot nature-related literature in recent 20 years in several popular databases such as PubMed, Google Scholar, and Science Direct. This review explored that the cold and hot natures are not only linked to the chemical components such as water, carbohydrates, lipids, and amino acids, but also correlated to the biological effects, comprising of energy metabolism, inflammation response, oxidation reaction, immune response, and cell growth and proliferation. Besides, this review further put forward the possibility that cold-hot nature of food and Chinese medicine exert different biological effects on the inflammatory response via regulating the signaling pathways viz. NF-κB and MAPK. More extensive studies are needed to consider the overall connections between both the biological effects and chemical components and how food processing affects the cold-hot nature of the food.
Collapse
Affiliation(s)
- Yifan Zhou
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
27
|
Regulation of the Nfkbiz Gene and Its Protein Product IkBζ in Animal Models of Sepsis and Endotoxic Shock. Infect Immun 2021; 89:IAI.00674-20. [PMID: 33431705 DOI: 10.1128/iai.00674-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Sepsis is a life-threatening condition that arises from a poorly regulated inflammatory response to pathogenic organisms. Current treatments are limited to antibiotics, fluid resuscitation, and other supportive therapies. New targets for monitoring disease progression and therapeutic interventions are therefore critically needed. We previously reported that lipocalin-2 (Lcn2), a bacteriostatic mediator with potent proapoptotic activities, was robustly induced in sepsis. Other studies showed that Lcn2 was a predictor of mortality in septic patients. However, how Lcn2 is regulated during sepsis is poorly understood. We evaluated how IkBζ, an inducer of Lcn2, was regulated in sepsis using both the cecal ligation and puncture (CLP) and endotoxemia (lipopolysaccharide [LPS]) animal models. We show that Nfkbiz, the gene encoding IkBζ, was rapidly stimulated but, unlike Lcn2, whose expression persists during sepsis, mRNA levels of Nfkbiz decline to near basal levels several hours after its induction. In contrast, we observed that IkBζ expression remained highly elevated in septic animals following CLP but not LPS, indicating the occurrence of a CLP-specific mechanism that extends IkBζ half-life. By using an inhibitor of IkBζ, we determined that the expression of Lcn2 was largely controlled by IkBζ. Altogether, these data indicate that the high IkBζ expression in tissues likely contributes to the elevated expression of Lcn2 in sepsis. Since IkBζ is also capable of promoting or repressing other inflammatory genes, it might exert a central role in sepsis.
Collapse
|
28
|
Evaluating the effect of spaceflight on the host-pathogen interaction between human intestinal epithelial cells and Salmonella Typhimurium. NPJ Microgravity 2021; 7:9. [PMID: 33750813 PMCID: PMC7943786 DOI: 10.1038/s41526-021-00136-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Spaceflight uniquely alters the physiology of both human cells and microbial pathogens, stimulating cellular and molecular changes directly relevant to infectious disease. However, the influence of this environment on host-pathogen interactions remains poorly understood. Here we report our results from the STL-IMMUNE study flown aboard Space Shuttle mission STS-131, which investigated multi-omic responses (transcriptomic, proteomic) of human intestinal epithelial cells to infection with Salmonella Typhimurium when both host and pathogen were simultaneously exposed to spaceflight. To our knowledge, this was the first in-flight infection and dual RNA-seq analysis using human cells.
Collapse
|
29
|
Michaelis L, Treß M, Löw HC, Klees J, Klameth C, Lange A, Grießhammer A, Schäfer A, Menz S, Steimle A, Schulze-Osthoff K, Frick JS. Gut Commensal-Induced IκBζ Expression in Dendritic Cells Influences the Th17 Response. Front Immunol 2021; 11:612336. [PMID: 33542719 PMCID: PMC7851057 DOI: 10.3389/fimmu.2020.612336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
Intestinal commensal bacteria can have a large impact on the state of health and disease of the host. Regulation of Th17 cell development by gut commensals is known to contribute to their dichotomous role in promoting gut homeostasis and host defense, or development of autoimmune diseases. Yet, the underlying mechanisms remain to be fully elucidated. One candidate factor contributing to Th17 differentiation, and the expression of which could be influenced by commensals is the atypical nuclear IκB protein IκBζ. IκBζ acts as a transcriptional regulator of the expression of Th17-related secondary response genes in many cell types including dendritic cells (DCs). Insights into the regulation of IκBζ in DCs could shed light on how these immune sentinel cells at the interface between commensals, innate and adaptive immune system drive an immune-tolerogenic or inflammatory Th17 cell response. In this study, the influence of two gut commensals of low (Bacteroides vulgatus) or high (Escherichia coli) immunogenicity on IκBζ expression in DCs and its downstream effects was analyzed. We observed that the amount of IκBζ expression and secretion of Th17-inducing cytokines correlated with the immunogenicity of these commensals. However, under immune-balanced conditions, E. coli also strongly induced an IκBζ-dependent secretion of anti-inflammatory IL-10, facilitating a counter-regulative Treg response as assessed in in vitro CD4+ T cell polarization assays. Yet, in an in vivo mouse model of T cell-induced colitis, prone to inflammatory and autoimmune conditions, administration of E. coli promoted an expansion of rather pro-inflammatory T helper cell subsets whereas administration of B. vulgatus resulted in the induction of protective T helper cell subsets. These findings might contribute to the development of new therapeutic strategies for the treatment of autoimmune diseases using commensals or commensal-derived components.
Collapse
Affiliation(s)
- Lena Michaelis
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Marcel Treß
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Hanna-Christine Löw
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Johanna Klees
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christian Klameth
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Anna Lange
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Anne Grießhammer
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Andrea Schäfer
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Sarah Menz
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Alex Steimle
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | | | - Julia-Stefanie Frick
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
30
|
Zhang Y, Wei Z, Dong H, Zhou J, Yuan J, Ni B, Wu Y, Han C, Tian Y. Regulation of mRNA stability by RBPs and noncoding RNAs contributing to the pathogenicity of Th17 cells. RNA Biol 2020; 18:647-656. [PMID: 33302787 DOI: 10.1080/15476286.2020.1862567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Th17 cells remain one of the most important subsets of T cells in numerous autoimmune and chronic inflammatory diseases. Posttranscriptional regulation (PTR), especially mRNA stability, has recently emerged as an important mechanism that controls the fate of Th17 cells. This review summarizes the current knowledge on RNA-binding proteins (RBPs), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) that induce mRNA stability changes and their roles in mediating the differentiation, proliferation, function, and migration of Th17 cells. In addition, we summarize the role of RNA modifications and nonsense-mediated mRNA decay (NMD) in Th17 cells. Ongoing research will help to identify practical applications for the regulation of mRNA stability and provide potential targets to prevent and treat Th17-related autoimmune diseases.
Collapse
Affiliation(s)
- Yiwei Zhang
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China.,Department of Orthopedics, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Zhiyuan Wei
- Department of Orthopedics, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Hui Dong
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jian Zhou
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jizhao Yuan
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Chao Han
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yi Tian
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| |
Collapse
|
31
|
Liu Z, Tang C, He L, Yang D, Cai J, Zhu J, Shu S, Liu Y, Yin L, Chen G, Liu Y, Zhang D, Dong Z. The negative feedback loop of NF-κB/miR-376b/NFKBIZ in septic acute kidney injury. JCI Insight 2020; 5:142272. [PMID: 33328388 PMCID: PMC7819752 DOI: 10.1172/jci.insight.142272] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 12/29/2022] Open
Abstract
Sepsis is the leading cause of acute kidney injury (AKI). However, the pathogenesis of septic AKI remains largely unclear. Here, we demonstrate a significant decrease of microRNA-376b (miR-376b) in renal tubular cells in mice with septic AKI. Urinary miR-376b in these mice was also dramatically decreased. Patients with sepsis with AKI also had significantly lower urinary miR-376b than patients with sepsis without AKI, supporting its diagnostic value for septic AKI. LPS treatment of renal tubular cells led to the activation of NF-κB, and inhibition of NF-κB prevented a decrease of miR-376b. ChIP assay further verified NF-κB binding to the miR-376b gene promoter upon LPS treatment. Functionally, miR-376b mimics exaggerated tubular cell death, kidney injury, and intrarenal production of inflammatory cytokines, while inhibiting miR-376b afforded protective effects in septic mice. Interestingly, miR-376b suppressed the expression of NF-κB inhibitor ζ (NFKBIZ) in both in vitro and in vivo models of septic AKI. Luciferase microRNA target reporter assay further verified NFKBIZ as a direct target of miR-376b. Collectively, these results illustrate the NF-κB/miR-376b/NFKBIZ negative feedback loop that regulates intrarenal inflammation and tubular damage in septic AKI. Moreover, urinary miR-376b is a potential biomarker for the diagnosis of AKI in patients with sepsis.
Collapse
Affiliation(s)
| | | | - Liyu He
- Department of Nephrology and
| | | | | | | | | | | | | | | | - Yu Liu
- Department of Nephrology and
| | - Dongshan Zhang
- Department of Nephrology and.,Department of Emergency Medicine, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Zheng Dong
- Department of Nephrology and.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| |
Collapse
|
32
|
Zarate MA, Nguyen LM, De Dios RK, Zheng L, Wright CJ. Maturation of the Acute Hepatic TLR4/NF-κB Mediated Innate Immune Response Is p65 Dependent in Mice. Front Immunol 2020; 11:1892. [PMID: 32973783 PMCID: PMC7472845 DOI: 10.3389/fimmu.2020.01892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/14/2020] [Indexed: 12/27/2022] Open
Abstract
Compared to adults, neonates are at increased risk of infection. There is a growing recognition that dynamic qualitative and quantitative differences in immunity over development contribute to these observations. The liver plays a key role as an immunologic organ, but whether its contribution to the acute innate immune response changes over lifetime is unknown. We hypothesized that the liver would activate a developmentally-regulated acute innate immune response to intraperitoneal lipopolysaccharide (LPS). We first assessed the hepatic expression and activity of the NF-κB, a key regulator of the innate immune response, at different developmental ages (p0, p3, p7, p35, and adult). Ontogeny of the NF-κB subunits (p65/p50) revealed a reduction in Rela (p65) and Nfkb1 (p105, precursor to p50) gene expression (p0) and p65 subunit protein levels (p0 and p3) vs. older ages. The acute hepatic innate immune response to LPS was associated by the degradation of the NF-κB inhibitory proteins (IκBα and IκBβ), and nuclear translocation of the NF-κB subunit p50 in all ages, whereas nuclear translocation of the NF-κB subunit p65 was only observed in the p35 and adult mouse. Consistent with these findings, we detected NF-κB subunit p65 nuclear staining exclusively in the LPS-exposed adult liver compared with p7 mouse. We next interrogated the LPS-induced hepatic expression of pro-inflammatory genes (Tnf, Icam1, Ccl3, and Traf1), and observed a gradually increase in gene expression starting from p0. Confirming our results, hepatic NF-κB subunit p65 nuclear translocation was associated with up-regulation of the Icam1 gene in the adult, and was not detected in the p7 mouse. Thus, an inflammatory challenge induces an NF-κB-mediated hepatic innate immune response activation across all developmental ages, but nuclear translocation of the NF-κB subunit p65 and associated induction of pro-inflammatory genes occurred only after the first month of life. Our results demonstrate that the LPS-induced hepatic innate immune response is developmentally regulated by the NF-κB subunit p65 in the mouse.
Collapse
Affiliation(s)
- Miguel A Zarate
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Leanna M Nguyen
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Robyn K De Dios
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
33
|
Gao Y, Chen Y, Zhang Z, Yu X, Zheng J. Recent Advances in Mouse Models of Sjögren's Syndrome. Front Immunol 2020; 11:1158. [PMID: 32695097 PMCID: PMC7338666 DOI: 10.3389/fimmu.2020.01158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Sjögren's syndrome (SS) is a complex rheumatoid disease that mainly affects exocrine glands, resulting in xerostomia (dry mouth) and xerophthalmia (dry eye). SS is characterized by autoantibodies, infiltration into exocrine glands, and ectopic expression of MHC II molecules on glandular epithelial cells. In contrast to the well-characterized clinical and immunological features, the etiology and pathogenesis of SS remain largely unknown. Animal models are powerful research tools for elucidating the pathogenesis of human diseases. To date, many mouse models of SS, including induced models, in which disease is induced in mice, and genetic models, in which mice spontaneously develop SS-like disease, have been established. These mouse models have provided new insight into the pathogenesis of SS. In this review, we aim to provide a comprehensive overview of recent advances in the field of experimental SS.
Collapse
Affiliation(s)
- Yunzhen Gao
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Yan Chen
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Zhongjian Zhang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Xinhua Yu
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Borstel, Germany
| | - Junfeng Zheng
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
34
|
Zhao W, Bendickson L, Nilsen-Hamilton M. The Lipocalin2 Gene is Regulated in Mammary Epithelial Cells by NFκB and C/EBP In Response to Mycoplasma. Sci Rep 2020; 10:7641. [PMID: 32376831 PMCID: PMC7203223 DOI: 10.1038/s41598-020-63393-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/25/2020] [Indexed: 02/02/2023] Open
Abstract
Lcn2 gene expression increases in response to cell stress signals, particularly in cells involved in the innate immune response. Human Lcn2 (NGAL) is increased in the blood and tissues in response to many stressors including microbial infection and in response to LPS in myeloid and epithelial cells. Here we extend the microbial activators of Lcn2 to mycoplasma and describe studies in which the mechanism of Lcn2 gene regulation by MALP-2 and mycoplasma infection was investigated in mouse mammary epithelial cells. As for the LPS response of myeloid cells, Lcn2 expression in epithelial cells is preceded by increased TNFα, IL-6 and IκBζ expression and selective reduction of IκBζ reduces Lcn2 promoter activity. Lcn2 promoter activation remains elevated well beyond the period of exposure to MALP-2 and is persistently elevated in mycoplasma infected cells. Activation of either the human or the mouse Lcn2 promoter requires both NFκB and C/EBP for activation. Thus, Lcn2 is strongly and enduringly activated by mycoplasma components that stimulate the innate immune response with the same basic regulatory mechanism for the human and mouse genes.
Collapse
Affiliation(s)
- Wei Zhao
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology and the Interdepartmental Molecular, Cellular and Developmental Biology Program, Iowa State University, Ames, IA, 50011, USA
- Interdepartmental Molecular, Cellular and Developmental Biology Program, Iowa State University, Ames, IA, 50011, USA
- Bayview Physicians Group, Battlefield Medical association, 675 North Battlefield Boulevard, Chesapeake, VA, 23320, USA
| | - Lee Bendickson
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology and the Interdepartmental Molecular, Cellular and Developmental Biology Program, Iowa State University, Ames, IA, 50011, USA
| | - Marit Nilsen-Hamilton
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology and the Interdepartmental Molecular, Cellular and Developmental Biology Program, Iowa State University, Ames, IA, 50011, USA.
- Interdepartmental Molecular, Cellular and Developmental Biology Program, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
35
|
Capone A, Volpe E. Transcriptional Regulators of T Helper 17 Cell Differentiation in Health and Autoimmune Diseases. Front Immunol 2020; 11:348. [PMID: 32226427 PMCID: PMC7080699 DOI: 10.3389/fimmu.2020.00348] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
Abstract
T helper (Th) 17 cells are a subtype of CD4 T lymphocytes characterized by the expression of retinoic acid-receptor (RAR)-related orphan receptor (ROR)γt transcription factor, encoded by gene Rorc. These cells are implicated in the pathology of autoimmune inflammatory disorders as well as in the clearance of extracellular infections. The main function of Th17 cells is the production of cytokine called interleukin (IL)-17A. This review highlights recent advances in mechanisms regulating transcription of IL-17A. In particular, we described the lineage defining transcription factor RORγt and other factors that regulate transcription of Il17a or Rorc by interacting with RORγt or by binding their specific DNA regions, which may positively or negatively influence their expression. Moreover, we reported the eventual involvement of those factors in Th17-related diseases, such as multiple sclerosis, rheumatoid arthritis, psoriasis, and Crohn's disease, characterized by an exaggerated Th17 response. Finally, we discussed the potential new therapeutic approaches for Th17-related diseases targeting these transcription factors. The wide knowledge of transcriptional regulators of Th17 cells is crucial for the better understanding of the pathogenic role of these cells and for development of therapeutic strategies aimed at fighting Th17-related diseases.
Collapse
Affiliation(s)
- Alessia Capone
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy.,Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | | |
Collapse
|
36
|
Mulero MC, Wang VYF, Huxford T, Ghosh G. Genome reading by the NF-κB transcription factors. Nucleic Acids Res 2019; 47:9967-9989. [PMID: 31501881 PMCID: PMC6821244 DOI: 10.1093/nar/gkz739] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 12/25/2022] Open
Abstract
The NF-κB family of dimeric transcription factors regulates transcription by selectively binding to DNA response elements present within promoters or enhancers of target genes. The DNA response elements, collectively known as κB sites or κB DNA, share the consensus 5'-GGGRNNNYCC-3' (where R, Y and N are purine, pyrimidine and any nucleotide base, respectively). In addition, several DNA sequences that deviate significantly from the consensus have been shown to accommodate binding by NF-κB dimers. X-ray crystal structures of NF-κB in complex with diverse κB DNA have helped elucidate the chemical principles that underlie target selection in vitro. However, NF-κB dimers encounter additional impediments to selective DNA binding in vivo. Work carried out during the past decades has identified some of the barriers to sequence selective DNA target binding within the context of chromatin and suggests possible mechanisms by which NF-κB might overcome these obstacles. In this review, we first highlight structural features of NF-κB:DNA complexes and how distinctive features of NF-κB proteins and DNA sequences contribute to specific complex formation. We then discuss how native NF-κB dimers identify DNA binding targets in the nucleus with support from additional factors and how post-translational modifications enable NF-κB to selectively bind κB sites in vivo.
Collapse
Affiliation(s)
- Maria Carmen Mulero
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
37
|
He L, Xu R, Chen Y, Liu X, Pan Y, Cao S, Xu T, Tian H, Zeng J. Intra-CA1 Administration of Minocycline Alters the Expression of Inflammation-Related Genes in Hippocampus of CCI Rats. Front Mol Neurosci 2019; 12:248. [PMID: 31708740 PMCID: PMC6822549 DOI: 10.3389/fnmol.2019.00248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 09/26/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Li He
- Department of Physiology, Zunyi Medical University, Zunyi, China
| | - Rui Xu
- Department of Physiology, Zunyi Medical University, Zunyi, China
| | - Yuanshou Chen
- Department of Physiology, Zunyi Medical University, Zunyi, China
| | - Xiaohong Liu
- Department of Physiology, Zunyi Medical University, Zunyi, China
| | - Youfu Pan
- Department of Genetics, Zunyi Medical University, Zunyi, China
| | - Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical Univerisity, Zunyi, China
| | - Tao Xu
- Department of Physiology, Zunyi Medical University, Zunyi, China
| | - Hong Tian
- Department of Physiology, Zunyi Medical University, Zunyi, China
| | - Junwei Zeng
- Department of Physiology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
38
|
Bertelsen T, Ljungberg C, Litman T, Huppertz C, Hennze R, Rønholt K, Iversen L, Johansen C. IκBζ is a key player in the antipsoriatic effects of secukinumab. J Allergy Clin Immunol 2019; 145:379-390. [PMID: 31622687 DOI: 10.1016/j.jaci.2019.09.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND IκBζ plays a key role in psoriasis by mediating IL-17A-driven effects, but the molecular mechanism by which IL-17A regulates IκBζ expression is not clarified. OBJECTIVE We sought to explore the molecular transformation in patients with psoriasis during anti-IL-17A (secukinumab) treatment with a focus on IκBζ. METHODS The study was an open-label, single-arm, single-center secukinumab treatment study that included 14 patients with plaque psoriasis. Skin biopsy specimens and blood samples were collected on days 0, 4, 14, 42, and 84 and processed for microarray gene expression analysis. Furthermore, in vitro experiments with human keratinocytes and synovial fibroblasts were conducted. RESULTS Secukinumab improved clinical scores and histologic psoriasis features. Moreover, secukinumab altered the skin transcriptome. The major transcriptional shift appeared between day 14 and day 42 after treatment initiation, although 80 genes were differentially expressed already at day 4. Expression of nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor (IκB) ζ (NFKBIZ, the gene encoding IκBζ) was reduced already after 4 days of treatment in the skin. NFKBIZ expression correlated to Psoriasis Area and Severity Index score, and NFKBIZ mRNA levels in the skin decreased during anti-IL-17A treatment. Moreover, specific NFKBIZ signature genes were significantly altered during anti-IL-17A treatment. Finally, we identified NF-κB activator 1 (Act1), p38 mitogen-activated protein kinase (MAPK), Jun NH2-terminal kinase (JNK), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) as key signaling pathways in NFKBIZ/IκBζ regulation. CONCLUSION Our results define a crucial role for IκBζ in the antipsoriatic effect of secukinumab. Because IκBζ signature genes were regulated already after 4 days of treatment, this strongly indicates that IκBζ plays a crucial role in the antipsoriatic effects mediated by anti-IL-17A treatment.
Collapse
Affiliation(s)
- Trine Bertelsen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark.
| | | | - Thomas Litman
- Department of Immunology and Microbiology, Copenhagen University, Copenhagen, Denmark
| | - Christine Huppertz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Robert Hennze
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Kirsten Rønholt
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
39
|
Ahn JH, Cho J, Kwon BE, Lee GS, Yoon SI, Kang SG, Kim PH, Kweon MN, Yang H, Vallance BA, Kim YI, Chang SY, Ko HJ. IκBζ facilitates protective immunity against Salmonella infection via Th1 differentiation and IgG production. Sci Rep 2019; 9:8397. [PMID: 31182790 PMCID: PMC6557891 DOI: 10.1038/s41598-019-44019-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/23/2019] [Indexed: 01/12/2023] Open
Abstract
Inhibitor of kappa B (IκB)-ζ transcription is rapidly induced by stimulation with TLR ligands and IL-1. Despite high IκBζ expression in inflammation sites, the association of IκBζ with host defence via systemic immune responses against bacterial infection remains unclear. Oral immunisation with a recombinant attenuated Salmonella vaccine (RASV) strain did not protect IκBζ-deficient mice against a lethal Salmonella challenge. IκBζ-deficient mice failed to produce Salmonella LPS-specific IgG, especially IgG2a, although inflammatory cytokine production and immune cell infiltration into the liver increased after oral RASV administration. Moreover, IκBζ-deficient mice exhibited enhanced splenic germinal centre reactions followed by increased total IgG production, despite IκBζ-deficient B cells having an intrinsic antibody class switching defect. IκBζ-deficient CD4+ T cells poorly differentiated into Th1 cells. IFN-γ production by CD4+ T cells from IκBζ-deficient mice immunised with RASV significantly decreased after restimulation with heat-killed RASV in vitro, suggesting that IκBζ-deficient mice failed to mount protective immune responses against Salmonella infection because of insufficient Th1 and IgG production. Therefore, IκBζ is crucial in protecting against Salmonella infection by inducing Th1 differentiation followed by IgG production.
Collapse
Affiliation(s)
- Jae-Hee Ahn
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jaewon Cho
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Bo-Eun Kwon
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, School of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung Goo Kang
- Division of Biomedical Convergence, School of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience, School of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Hyungjun Yang
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A Vallance
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Young-In Kim
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea.
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
40
|
Cataisson C, Salcedo R, Michalowski AM, Klosterman M, Naik S, Li L, Pan MJ, Sweet A, Chen JQ, Kostecka LG, Karwan M, Smith L, Dai RM, Stewart CA, Lyakh L, Hsieh WT, Khan A, Yang H, Lee M, Trinchieri G, Yuspa SH. T-Cell Deletion of MyD88 Connects IL17 and IκBζ to RAS Oncogenesis. Mol Cancer Res 2019; 17:1759-1773. [PMID: 31164412 DOI: 10.1158/1541-7786.mcr-19-0227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/13/2019] [Accepted: 05/30/2019] [Indexed: 01/15/2023]
Abstract
Cancer development requires a favorable tissue microenvironment. By deleting Myd88 in keratinocytes or specific bone marrow subpopulations in oncogenic RAS-mediated skin carcinogenesis, we show that IL17 from infiltrating T cells and IκBζ signaling in keratinocytes are essential to produce a permissive microenvironment and tumor formation. Both normal and RAS-transformed keratinocytes respond to tumor promoters by activating canonical NF-κB and IκBζ signaling, releasing specific cytokines and chemokines that attract Th17 cells through MyD88-dependent signaling in T cells. The release of IL17 into the microenvironment elevates IκBζ in normal and RAS-transformed keratinocytes. Activation of IκBζ signaling is required for the expression of specific promoting factors induced by IL17 in normal keratinocytes and constitutively expressed in RAS-initiated keratinocytes. Deletion of Nfkbiz in keratinocytes impairs RAS-mediated benign tumor formation. Transcriptional profiling and gene set enrichment analysis of IκBζ-deficient RAS-initiated keratinocytes indicate that IκBζ signaling is common for RAS transformation of multiple epithelial cancers. Probing The Cancer Genome Atlas datasets using this transcriptional profile indicates that reduction of IκBζ signaling during cancer progression associates with poor prognosis in RAS-driven human cancers. IMPLICATIONS: The paradox that elevation of IκBζ and stimulation of IκBζ signaling through tumor extrinsic factors is required for RAS-mediated benign tumor formation while relative IκBζ expression is reduced in advanced cancers with poor prognosis implies that tumor cells switch from microenvironmental dependency early in carcinogenesis to cell-autonomous pathways during cancer progression.
Collapse
Affiliation(s)
| | - Rosalba Salcedo
- Cancer and Inflammation Program (CIP), NCI, Bethesda Maryland
| | | | - Mary Klosterman
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, Maryland
| | - Shruti Naik
- Department of Pathology and Ronald O. Perelman Department of Dermatology, NYU School of Medicine, New York, New York
| | - Luowei Li
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, Maryland
| | - Michelle J Pan
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, Maryland
| | - Amalia Sweet
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, Maryland
| | - Jin-Qiu Chen
- Collaborative Protein Technology Resource, Center for Cancer Research, NCI, Bethesda, Maryland
| | | | - Megan Karwan
- Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Loretta Smith
- Cancer and Inflammation Program (CIP), NCI, Bethesda Maryland
| | - Ren-Ming Dai
- Leidos Biomedical Research, Inc., Frederick, Maryland
| | | | - Lyudmila Lyakh
- Cancer and Inflammation Program (CIP), NCI, Bethesda Maryland.,Division of Allergy, Immunology & Transplantation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda Maryland
| | | | - Asra Khan
- Cancer and Inflammation Program (CIP), NCI, Bethesda Maryland
| | - Howard Yang
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, Maryland
| | - Maxwell Lee
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, Maryland
| | | | - Stuart H Yuspa
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, Maryland.
| |
Collapse
|
41
|
Rex J, Lutz A, Faletti LE, Albrecht U, Thomas M, Bode JG, Borner C, Sawodny O, Merfort I. IL-1β and TNFα Differentially Influence NF-κB Activity and FasL-Induced Apoptosis in Primary Murine Hepatocytes During LPS-Induced Inflammation. Front Physiol 2019; 10:117. [PMID: 30842741 PMCID: PMC6391654 DOI: 10.3389/fphys.2019.00117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/30/2019] [Indexed: 12/12/2022] Open
Abstract
Macrophage-derived cytokines largely influence the behavior of hepatocytes during an inflammatory response. We previously reported that both TNFα and IL-1β, which are released by macrophages upon LPS stimulation, affect Fas ligand (FasL)-induced apoptotic signaling. Whereas TNFα preincubation leads to elevated levels of caspase-3 activity and cell death, pretreatment with IL-1β induces increased caspase-3 activity but keeps cells alive. We now report that IL-1β and TNFα differentially influence NF-κB activity resulting in a differential upregulation of target genes, which may contribute to the distinct effects on cell viability. A reduced NF-κB activation model was established to further investigate the molecular mechanisms which determine the distinct cell fate decisions after IL-1β and TNFα stimulation. To study this aspect in a more physiological setting, we used supernatants from LPS-stimulated bone marrow-derived macrophages (BMDMs). The treatment of hepatocytes with the BMDM supernatant, which contains both IL-1β and TNFα, sensitized to FasL-induced caspase-3 activation and cell death. However, when TNFα action was blocked by neutralizing antibodies, cell viability after stimulation with the BMDM supernatant and FasL increased as compared to single FasL stimulation. This indicates the important role of TNFα in the sensitization of apoptosis in hepatocytes. These results give first insights into the complex interplay between macrophages and hepatocytes which may influence life/death decisions of hepatocytes during an inflammatory reaction of the liver in response to a bacterial infection.
Collapse
Affiliation(s)
- Julia Rex
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Laura E Faletti
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Ute Albrecht
- Clinic of Gastroenterology, Hepatology and Infection Diseases, Heinrich-Heine-University, Duesseldorf, Germany
| | - Maria Thomas
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Tuebingen, Germany
| | - Johannes G Bode
- Clinic of Gastroenterology, Hepatology and Infection Diseases, Heinrich-Heine-University, Duesseldorf, Germany
| | - Christoph Borner
- Department of Pharmaceutical Biology and Biotechnology, Albert Ludwigs University Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Oliver Sawodny
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, Albert Ludwigs University Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| |
Collapse
|
42
|
Mulero MC, Huxford T, Ghosh G. NF-κB, IκB, and IKK: Integral Components of Immune System Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:207-226. [PMID: 31628658 DOI: 10.1007/978-981-13-9367-9_10] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The NF-κB (Nuclear Factor kappa B) transcription factor plays crucial roles in the regulation of numerous biological processes including development of the immune system, inflammation, and innate and adaptive immune responses. Control over the immune cell functions of NF-κB results from signaling through one of two different routes: the canonical and noncanonical NF-κB signaling pathways. Present at the end of both pathways are the proteins NF-κB, IκB, and the IκB kinase (IKK). These proteins work together to deliver the myriad outcomes that influence context-dependent transcriptional control in immune cells. In the present chapter, we review the structural information available on NF-κB, IκB, and IKK, the critical terminal components of the NF-κB signaling, in relation to their physiological function.
Collapse
Affiliation(s)
- Maria Carmen Mulero
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Gourisankar Ghosh
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
43
|
Heterogeneity of Ly6G + Ly6C + Myeloid-Derived Suppressor Cell Infiltrates during Staphylococcus aureus Biofilm Infection. Infect Immun 2018; 86:IAI.00684-18. [PMID: 30249747 DOI: 10.1128/iai.00684-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/20/2018] [Indexed: 01/11/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature monocytes and granulocytes. While neutrophils (polymorphonuclear leukocytes [PMNs]) are classically identified as highly differentiated cells specialized for antimicrobial defense, our laboratory has reported minor contributions of PMNs to the immune response during Staphylococcus aureus biofilm infection. However, these two cell types can be difficult to differentiate because of shared surface marker expression. Here we describe a more refined approach to distinguish MDSCs from PMNs utilizing the integrin receptor CD11b combined with conventional Ly6G and Ly6C expression. This approach separated the Ly6G+ Ly6C+ population that we previously identified in a mouse model of S. aureus orthopedic implant infection into two subsets, namely, CD11bhigh Ly6G+ Ly6C+ MDSCs and CD11blow Ly6G+ Ly6C+ PMNs, which was confirmed by characteristic nuclear morphology using cytospins. CD11bhigh Ly6G+ Ly6C+ MDSCs suppressed T cell proliferation throughout the 28-day infection period, whereas CD11blow Ly6G+ Ly6C+ PMNs had no effect early (day 3 postinfection), although this population acquired suppressive activity at later stages of biofilm development. To further highlight the distinctions between biofilm-associated MDSCs and PMNs versus monocytes, transcriptional profiles were compared by transcriptome sequencing (RNA-Seq). A total of 6,466 genes were significantly differentially expressed in MDSCs versus monocytes, whereas only 297 genes were significantly different between MDSCs and PMNs. A number of genes implicated in cell cycle regulation were identified, and in vivo ethynyldeoxyuridine (EdU) labeling revealed that approximately 50% of MDSCs proliferated locally at the site of S. aureus biofilm infection. Based on their similar transcriptomic profiles to those of PMNs, biofilm-associated MDSCs are of a granulocytic lineage and can be classified as granulocytic MDSCs (G-MDSCs).
Collapse
|
44
|
Yang Y, Li L, Hang Q, Fang Y, Dong X, Cao P, Yin Z, Luo L. γ-glutamylcysteine exhibits anti-inflammatory effects by increasing cellular glutathione level. Redox Biol 2018; 20:157-166. [PMID: 30326393 PMCID: PMC6197438 DOI: 10.1016/j.redox.2018.09.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by dysregulated host response to infection and characterized by redox imbalance and severe oxidative stress. Glutathione (GSH) serves several vital functions, including scavenging free radicals and maintaining intracellular redox balance. Extracellular GSH is unable to be taken into the majority of human cells, and the GSH prodrug N-acetyl-l-cysteine (NAC) does not exhibit promising clinical effects. γ-glutamylcysteine (γ-GC), an intermediate dipeptide of the GSH-synthesis pathway and harboring anti-inflammatory properties, represents a relatively unexplored option for sepsis treatment. The anti-inflammatory efficiency of γ-GC and the associated molecular mechanism need to be explored. In vivo investigation showed that γ-GC reduced sepsis lethality and attenuated systemic inflammatory responses in mice, as well as inhibited lipopolysaccharide (LPS)-stimulated production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), high-mobility group box 1 (HMGB1), and nitric oxide (NO) and the expression of inducible NO synthase and cyclooxygenase 2 in RAW264.7 cells. Moreover, both in vivo and in vitro experiments demonstrated that γ-GC exhibited better therapeutic effects against inflammation compared with N-acetyl-L-cysteine (NAC) and GSH. Mechanistically, γ-GC suppressed LPS-induced reactive oxygen species accumulation and GSH depletion. Inflammatory stimuli, such as LPS treatment, upregulated the expression of glutathione synthetase via activating nuclear factor-erythroid 2-related factor (Nrf2) and nuclear factor kappa B (NF-κB) pathways, thereby promoting synthesis of GSH from γ-GC. These findings suggested that γ-GC might represent a potential therapeutic agent for sepsis treatment. γ-GC reduces sepsis lethality and attenuates inflammatory responses in BALB/c mice. γ-GC suppresses LPS-induced inflammation, ROS accumulation, and GSH depletion. Nrf2 and NF-κB pathways are essential for upregulating GSS level to promote GSH synthesis from γ-GC. γ-GC is more effective in attenuation inflammation than NAC and GSH.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Ling Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Qiyun Hang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yuan Fang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Xiaoliang Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, Jiangsu, China.
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
45
|
Choi MC, MaruYama T, Chun CH, Park Y. Alleviation of Murine Osteoarthritis by Cartilage-Specific Deletion of IκBζ. Arthritis Rheumatol 2018; 70:1440-1449. [PMID: 29604191 DOI: 10.1002/art.40514] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/22/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVE IκBζ, an atypical IκB family member, regulates gene expression in the nucleus as a transcriptional cofactor. Although IκBζ has been extensively studied in the immune system, its specific roles in osteoarthritis (OA) are currently unknown. The objective of this study was to investigate the potential role of IκBζ in chondrocyte catabolism and OA pathogenesis. We also determined the molecular mechanism underlying its relationship to the transcription factor NF-κB. METHODS We determined expression levels of IκBζ in mouse chondrocytes treated with interleukin-1β (IL-1β), in human OA cartilage, and in mouse experimental OA cartilage. Adenovirus-mediated overexpression and small interfering RNA knockdown of IκBζ were performed to determine the impact of IκBζ on catabolic gene expression in vitro. Cartilage-specific IκBζ-transgenic and -knockout mice were generated and used for in vivo studies. Experimental and spontaneous OA were induced by surgical destabilization of the medial meniscus and by aging, respectively. Coimmunoprecipitation assay was used to examine the association between IκBζ and NF-κB subunits. RESULTS IκBζ was highly up-regulated in chondrocytes in response to IL-1β and in OA cartilage of human and mouse knee joints. Overexpression of IκBζ in chondrocytes promoted spontaneous OA development by activating chondrocyte catabolism. Genetic ablation of IκBζ in chondrocytes abolished catabolic gene induction by IL-1β and protected against the development of experimental OA. IκBζ formed complexes with NF-κB members to regulate catabolic factor expression. CONCLUSION These findings demonstrate a critical role for IκBζ in OA pathogenesis. Inhibition of IκBζ function might be an effective therapeutic approach for OA treatment.
Collapse
Affiliation(s)
- Moon-Chang Choi
- Gwangju Institute of Science and Technology and Chosun University, Gwangju, Republic of Korea
| | | | - Churl-Hong Chun
- Wonkwang University School of Medicine, Iksan, Republic of Korea
| | | |
Collapse
|
46
|
Dvorak CM, Puvanendiran S, Murtaugh MP. Porcine circovirus 2 infection induces IFNβ expression through increased expression of genes involved in RIG-I and IRF7 signaling pathways. Virus Res 2018; 253:38-47. [DOI: 10.1016/j.virusres.2018.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022]
|
47
|
STAT3 Interactors as Potential Therapeutic Targets for Cancer Treatment. Int J Mol Sci 2018; 19:ijms19061787. [PMID: 29914167 PMCID: PMC6032216 DOI: 10.3390/ijms19061787] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023] Open
Abstract
Signal transducers and activators of transcription (STATs) mediate essential signaling pathways in different biological processes, including immune responses, hematopoiesis, and neurogenesis. Among the STAT members, STAT3 plays crucial roles in cell proliferation, survival, and differentiation. While STAT3 activation is transient in physiological conditions, STAT3 becomes persistently activated in a high percentage of solid and hematopoietic malignancies (e.g., melanoma, multiple myeloma, breast, prostate, ovarian, and colon cancers), thus contributing to malignant transformation and progression. This makes STAT3 an attractive therapeutic target for cancers. Initial strategies aimed at inhibiting STAT3 functions have focused on blocking the action of its activating kinases or sequestering its DNA binding ability. More recently, the diffusion of proteomic-based techniques, which have allowed for the identification and characterization of novel STAT3-interacting proteins able to modulate STAT3 activity via its subcellular localization, interact with upstream kinases, and recruit transcriptional machinery, has raised the possibility to target such cofactors to specifically restrain STAT3 oncogenic functions. In this article, we summarize the available data about the function of STAT3 interactors in malignant cells and discuss their role as potential therapeutic targets for cancer treatment.
Collapse
|
48
|
Noncanonical NF-κB in Cancer. Biomedicines 2018; 6:biomedicines6020066. [PMID: 29874793 PMCID: PMC6027307 DOI: 10.3390/biomedicines6020066] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022] Open
Abstract
The NF-κB pathway is a critical regulator of immune responses and is often dysregulated in cancer. Two NF-κB pathways have been described to mediate these responses, the canonical and the noncanonical. While understudied compared to the canonical NF-κB pathway, noncanonical NF-κB and its components have been shown to have effects, usually protumorigenic, in many different cancer types. Here, we review noncanonical NF-κB pathways and discuss its important roles in promoting cancer. We also discuss alternative NF-κB-independent functions of some the components of noncanonical NF-κB signaling. Finally, we discuss important crosstalk between canonical and noncanonical signaling, which blurs the two pathways, indicating that understanding the full picture of NF-κB regulation is critical to deciphering how this broad pathway promotes oncogenesis.
Collapse
|
49
|
Rozas-Serri M, Peña A, Maldonado L. Transcriptomic profiles of post-smolt Atlantic salmon challenged with Piscirickettsia salmonis reveal a strategy to evade the adaptive immune response and modify cell-autonomous immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:348-362. [PMID: 29288676 DOI: 10.1016/j.dci.2017.12.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/23/2017] [Accepted: 12/23/2017] [Indexed: 06/07/2023]
Abstract
Piscirickettsiosis is the main bacterial disease affecting the Chilean salmon farming industry and is responsible for high economic losses. The development of effective strategies to control piscirickettsiosis has been limited in part by insufficient knowledge of the host response. The aim of this study was to use RNA sequencing to describe the transcriptional profiles of the responses of post-smolt Atlantic salmon infected with LF-89-like or EM-90-like Piscirickettsia salmonis. Enrichment and pathway analyses of the differentially expressed genes revealed several central signatures following infection, including positive regulation of DC-SIGN and TLR5 signalling, which converged at the NF-κB level to modulate the pro-inflammatory cytokine response, particularly in the PS-EM-90-infected fish. P. salmonis induced an IFN-inducible response (e.g., IRF-1 and GBP-1) but inhibited the humoral and cell-mediated immune responses. P. salmonis induced significant cytoskeletal reorganization but decreased lysosomal protease activity and caused the degradation of proteins associated with cellular stress. Infection with these isolates also delayed protein transport, antigen processing, vesicle trafficking and autophagy. Both P. salmonis isolates promoted cell survival and proliferation and inhibited apoptosis. Both groups of Trojan fish used similar pathways to modulate the immune response at 5 dpi, but the transcriptomic profiles in the head kidneys of the cohabitant fish infected with PS-LF-89 and PS-MS-90 were relatively different at day 35 post-infection of the Trojan fish, probably due to the different degree of pathogenicity of each isolate. Our study showed the most important biological mechanisms used by P. salmonis, regardless of the isolate, to evade the immune response, maintain the viability of host cells and increase intracellular replication and persistence at the infection site. These results improve the understanding of the mechanisms by which P. salmonis interacts with its host and may serve as a basis for the development of effective strategies for the control of piscirickettsiosis.
Collapse
Affiliation(s)
| | - Andrea Peña
- Pathovet Laboratory Ltd., Puerto Montt, Chile.
| | | |
Collapse
|
50
|
Involvement of NF-κBIZ and related cytokines in age-associated renal fibrosis. Oncotarget 2018; 8:7315-7327. [PMID: 28099916 PMCID: PMC5352323 DOI: 10.18632/oncotarget.14614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation is a major contributor to age-related nephropathic changes, including renal fibrosis. In this study, various experimental paradigms were designed to delineate the role played by NF-κBIZ (also known as IκBζ) in age-associated renal fibrosis. Analyses based on RNA-sequencing findings obtained by next generation sequencing (NGS) revealed the upregulations of NF-κBIZ and of IL-6 and MCP-1 (both known to be regulated by NF-κBIZ) during aging. The up-regulation of NF-κBIZ in aged rat kidneys coincided with increased macrophage infiltration. In LPS-treated macrophages, oxidative stress was found to play a pivotal role in NF-κBIZ expression, suggesting age-related oxidative stress is associated with NF-κBIZ activation. Furthermore, these in vitro findings were confirmed in LPS-treated old rats, which showed higher levels of oxidative stress and NF-κBIZ in kidneys than LPS-treated young rats. Additional in vitro experiments using macrophages and kidney fibroblasts demonstrated NF-κBIZ and related cytokines participate in fibrosis. In particular, increased levels of NF-κBIZ-associated cytokines in macrophages significantly up-regulated TGF-β induced kidney fibroblast activation. Moreover, experiments with NF-κBIZ knocked down macrophages showed reduced TGF-β-induced kidney fibroblast activation. The findings of the present study provide evidence regarding an involvement of NF-κBIZ in age-associated progressive renal fibrosis and provides potential targets for its prevention.
Collapse
|