1
|
González D, Peña MJ, Bernal C, García-Acero M, Manotas MC, Suarez-Obando F, Rojas A. Epigenetic control of SOX9 gene by the histone acetyltransferase P300 in human Sertoli cells. Heliyon 2024; 10:e33173. [PMID: 39022079 PMCID: PMC11252772 DOI: 10.1016/j.heliyon.2024.e33173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Background The transcription factor SOX9 is a key regulator of male sexual development and Sertoli cell differentiation. Altered SOX9 expression has been implicated in the pathogenesis of disorders of sexual development (DSD) in mammals. However, limited information exists regarding the epigenetic mechanisms governing its transcriptional control during sexual development. Methods This study employed real-time PCR (qPCR), immunofluorescence (IIF), and chromatin immunoprecipitation (ChIP) assays to investigate the epigenetic mechanisms associated with SOX9 gene transcriptional control in human and mouse Sertoli cell lines. To identify the specific epigenetic enzymes involved in SOX9 epigenetic control, functional assays using siRNAs for P300, GCN5, and WDR5 were performed. Results The transcriptional activation of SOX9 was associated with selective deposition of active histone modifications, such as H3K4me3 and H3K27ac, at its enhancer and promoter regions. Importantly, the histone acetyltransferase P300 was found to be significantly enriched at the SOX9 enhancers, co-localizing with the H3K27ac and the SOX9 transcription factor. Silencing of P300 led to decreased SOX9 expression and reduced H3K27ac levels at the eSR-A and e-ALDI enhancers, demonstrating the crucial role of P300-mediated histone acetylation in SOX9 transcriptional activation. Interestingly, another histone lysine acetyltransferases like GNC5 and methyltransferases as the Trithorax/COMPASS-like may also have a relevant role in male sexual differentiation. Conclusions Histone acetylation by P300 at SOX9 enhancers, is a key mechanism governing the transcriptional control of this essential regulator of male sexual development. These findings provide important insights into the epigenetic basis of sexual differentiation and the potential pathogenesis of DSDs.
Collapse
Affiliation(s)
- Daniel González
- Institute of Human Genetics, Faculty of Medicine, Pontificia Universidad Javeriana. Carrera 7 No. 40-62, 110231, Bogotá, Colombia
| | - María José Peña
- Institute of Human Genetics, Faculty of Medicine, Pontificia Universidad Javeriana. Carrera 7 No. 40-62, 110231, Bogotá, Colombia
| | - Camila Bernal
- Institute of Human Genetics, Faculty of Medicine, Pontificia Universidad Javeriana. Carrera 7 No. 40-62, 110231, Bogotá, Colombia
| | - Mary García-Acero
- Institute of Human Genetics, Faculty of Medicine, Pontificia Universidad Javeriana. Carrera 7 No. 40-62, 110231, Bogotá, Colombia
| | - Maria Carolina Manotas
- Institute of Human Genetics, Faculty of Medicine, Pontificia Universidad Javeriana. Carrera 7 No. 40-62, 110231, Bogotá, Colombia
| | - Fernando Suarez-Obando
- Institute of Human Genetics, Faculty of Medicine, Pontificia Universidad Javeriana. Carrera 7 No. 40-62, 110231, Bogotá, Colombia
| | - Adriana Rojas
- Institute of Human Genetics, Faculty of Medicine, Pontificia Universidad Javeriana. Carrera 7 No. 40-62, 110231, Bogotá, Colombia
- Department of Genetics, University of Córdoba, 14071, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain
- Reina Sofía University Hospital, 14071 Córdoba, Spain
| |
Collapse
|
2
|
Ashton AW, Dhanjal HK, Rossner B, Mahmood H, Patel VI, Nadim M, Lota M, Shahid F, Li Z, Joyce D, Pajkos M, Dosztányi Z, Jiao X, Pestell RG. Acetylation of nuclear receptors in health and disease: an update. FEBS J 2024; 291:217-236. [PMID: 36471658 DOI: 10.1111/febs.16695] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Lysine acetylation is a common reversible post-translational modification of proteins that plays a key role in regulating gene expression. Nuclear receptors (NRs) include ligand-inducible transcription factors and orphan receptors for which the ligand is undetermined, which together regulate the expression of genes involved in development, metabolism, homeostasis, reproduction and human diseases including cancer. Since the original finding that the ERα, AR and HNF4 are acetylated, we now understand that the vast majority of NRs are acetylated and that this modification has profound effects on NR function. Acetylation sites are often conserved and involve both ordered and disordered regions of NRs. The acetylated residues function as part of an intramolecular signalling platform intersecting phosphorylation, methylation and other modifications. Acetylation of NR has been shown to impact recruitment into chromatin, co-repressor and coactivator complex formation, sensitivity and specificity of regulation by ligand and ligand antagonists, DNA binding, subcellular distribution and transcriptional activity. A growing body of evidence in mice indicates a vital role for NR acetylation in metabolism. Additionally, mutations of the NR acetylation site occur in human disease. This review focuses on the role of NR acetylation in coordinating signalling in normal physiology and disease.
Collapse
Affiliation(s)
- Anthony W Ashton
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | | | - Benjamin Rossner
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Huma Mahmood
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Vivek I Patel
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Mohammad Nadim
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Manpreet Lota
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Farhan Shahid
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Zhiping Li
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
| | - David Joyce
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Matyas Pajkos
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsanna Dosztányi
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Xuanmao Jiao
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
| | - Richard G Pestell
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
- The Wistar Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
3
|
Steroidogenic Factor 1, a Goldilocks Transcription Factor from Adrenocortical Organogenesis to Malignancy. Int J Mol Sci 2023; 24:ijms24043585. [PMID: 36835002 PMCID: PMC9959402 DOI: 10.3390/ijms24043585] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Steroidogenic factor-1 (SF-1, also termed Ad4BP; NR5A1 in the official nomenclature) is a nuclear receptor transcription factor that plays a crucial role in the regulation of adrenal and gonadal development, function and maintenance. In addition to its classical role in regulating the expression of P450 steroid hydroxylases and other steroidogenic genes, involvement in other key processes such as cell survival/proliferation and cytoskeleton dynamics have also been highlighted for SF-1. SF-1 has a restricted pattern of expression, being expressed along the hypothalamic-pituitary axis and in steroidogenic organs since the time of their establishment. Reduced SF-1 expression affects proper gonadal and adrenal organogenesis and function. On the other hand, SF-1 overexpression is found in adrenocortical carcinoma and represents a prognostic marker for patients' survival. This review is focused on the current knowledge about SF-1 and the crucial importance of its dosage for adrenal gland development and function, from its involvement in adrenal cortex formation to tumorigenesis. Overall, data converge towards SF-1 being a key player in the complex network of transcriptional regulation within the adrenal gland in a dosage-dependent manner.
Collapse
|
4
|
Emura N, Wang CM, Yang WH, Yang WH. Steroidogenic Factor 1 (NR5A1) Activates ATF3 Transcriptional Activity. Int J Mol Sci 2020; 21:ijms21041429. [PMID: 32093223 PMCID: PMC7073147 DOI: 10.3390/ijms21041429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/16/2022] Open
Abstract
Steroidogenic Factor 1 (SF-1/NR5A1), an orphan nuclear receptor, is important for sexual differentiation and the development of multiple endocrine organs, as well as cell proliferation in cancer cells. Activating transcription factor 3 (ATF3) is a transcriptional repressor, and its expression is rapidly induced by DNA damage and oncogenic stimuli. Since both NR5A1 and ATF3 can regulate and cooperate with several transcription factors, we hypothesized that NR5A1 may interact with ATF3 and plays a functional role in cancer development. First, we found that NR5A1 physically interacts with ATF3. We further demonstrated that ATF3 expression is up-regulated by NR5A1. Moreover, the promoter activity of the ATF3 is activated by NR5A1 in a dose-dependent manner in several cell lines. By mapping the ATF3 promoter as well as the site-directed mutagenesis analysis, we provide evidence that NR5A1 response elements (-695 bp and -665 bp) are required for ATF3 expression by NR5A1. It is well known that the transcriptional activities of NR5A1 are modulated by post-translational modifications, such as small ubiquitin-related modifier (SUMO) modification and phosphorylation. Notably, we found that both SUMOylation and phosphorylation of NR5A1 play roles, at least in part, for NR5A1-mediated ATF3 expression. Overall, our results provide the first evidence of a novel relationship between NR5A1 and ATF3.
Collapse
Affiliation(s)
- Natsuko Emura
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan;
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; (C.-M.W.); (W.H.Y.)
| | - Chiung-Min Wang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; (C.-M.W.); (W.H.Y.)
| | - William Harry Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; (C.-M.W.); (W.H.Y.)
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; (C.-M.W.); (W.H.Y.)
- Correspondence: ; Tel.: +1-912-721-8203; Fax: +1-912-721-8268
| |
Collapse
|
5
|
Sanders K, Mol JA, Slob A, Kooistra HS, Galac S. Steroidogenic factor-1 inverse agonists as a treatment option for canine hypercortisolism: in vitro study. Domest Anim Endocrinol 2018; 63:23-30. [PMID: 29223003 DOI: 10.1016/j.domaniend.2017.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 01/14/2023]
Abstract
Hypercortisolism is one of the most commonly diagnosed endocrinopathies in dogs, and new targeted medical treatment options are desirable. Steroidogenic factor-1 (SF-1), an orphan nuclear hormone receptor, is a key regulator of adrenal steroidogenesis, development, and growth. In pituitary-dependent hypercortisolism (PDH), high plasma ACTH concentrations increase the transcriptional activity of SF-1. In adrenal-dependent hypercortisolism, SF-1 expression is significantly greater in dogs with recurrence after adrenalectomy than in those without recurrence. Inhibition of SF-1 could therefore be an interesting treatment option in canine spontaneous hypercortisolism. We determined the effects of 3 SF-1 inverse agonists, compounds IsoQ A, #31, and #32, on cortisol production, on the messenger RNA (mRNA) expression of steroidogenic enzymes and SFs, and on cell viability, in primary adrenocortical cell cultures of 8 normal adrenal glands and of 3 cortisol-secreting adrenocortical tumors (ATs). To mimic PDH, the normal adrenocortical cell cultures were stimulated with ACTH. The results show that only compound #31 inhibited cortisol production and SF-1 target gene expression in non-ACTH-stimulated and ACTH-stimulated normal adrenocortical cells but did not affect cell viability. In the AT cell cultures, the effects of #31 on cortisol production and target gene expression were variable, possibly caused by a difference in the SF-1 mRNA expressions of the primary tumors. In conclusion, inhibition of SF-1 activity shows much promise as a future treatment for canine hypercortisolism.
Collapse
Affiliation(s)
- K Sanders
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands
| | - J A Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands
| | - A Slob
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands
| | - H S Kooistra
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands
| | - S Galac
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands.
| |
Collapse
|
6
|
Robevska G, van den Bergen JA, Ohnesorg T, Eggers S, Hanna C, Hersmus R, Thompson EM, Baxendale A, Verge CF, Lafferty AR, Marzuki NS, Santosa A, Listyasari NA, Riedl S, Warne G, Looijenga L, Faradz S, Ayers KL, Sinclair AH. Functional characterization of novel NR5A1 variants reveals multiple complex roles in disorders of sex development. Hum Mutat 2017; 39:124-139. [PMID: 29027299 PMCID: PMC5765430 DOI: 10.1002/humu.23354] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 12/23/2022]
Abstract
Variants in the NR5A1 gene encoding SF1 have been described in a diverse spectrum of disorders of sex development (DSD). Recently, we reported the use of a targeted gene panel for DSD where we identified 15 individuals with a variant in NR5A1, nine of which are novel. Here, we examine the functional effect of these changes in relation to the patient phenotype. All novel variants tested had reduced trans‐activational activity, while several had altered protein level, localization, or conformation. In addition, we found evidence of new roles for SF1 protein domains including a region within the ligand binding domain that appears to contribute to SF1 regulation of Müllerian development. There was little correlation between the severity of the phenotype and the nature of the NR5A1 variant. We report two familial cases of NR5A1 deficiency with evidence of variable expressivity; we also report on individuals with oligogenic inheritance. Finally, we found that the nature of the NR5A1 variant does not inform patient outcomes (including pubertal androgenization and malignancy risk). This study adds nine novel pathogenic NR5A1 variants to the pool of diagnostic variants. It highlights a greater need for understanding the complexity of SF1 function and the additional factors that contribute.
Collapse
Affiliation(s)
| | | | | | | | - Chloe Hanna
- Murdoch Children's Research Institute, Melbourne, Australia.,Royal Children's Hospital, Melbourne, Australia
| | - Remko Hersmus
- Department of Pathology, Josephine Nefkens Institute, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Elizabeth M Thompson
- SA Clinical Genetics Service, SA Pathology at the Women's and Children's Hospital, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Anne Baxendale
- SA Clinical Genetics Service, SA Pathology at the Women's and Children's Hospital, Adelaide, Australia
| | - Charles F Verge
- Sydney Children's Hospital, Sydney, Australia.,School of Women's and Children's Health, UNSW, Sydney, Australia
| | - Antony R Lafferty
- Centenary Hospital for Women and Children, Canberra, Australia.,ANU Medical School, Canberra, Australia
| | | | - Ardy Santosa
- Division of Urology, Department of Surgery, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Nurin A Listyasari
- Division of Human Genetics, Centre for Biomedical Research Faculty of Medicine Diponegoro University (FMDU), Semarang, Indonesia
| | - Stefan Riedl
- St Anna Children's Hospital, Department of Paediatrics, Medical University of Vienna, Wien, Austria.,Division of Paediatric Pulmology, Allergology, and Endocrinology, Department of Paediatrics, Medical University of Vienna, Wien, Austria
| | - Garry Warne
- Murdoch Children's Research Institute, Melbourne, Australia.,Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Leendert Looijenga
- Department of Pathology, Josephine Nefkens Institute, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Sultana Faradz
- Division of Human Genetics, Centre for Biomedical Research Faculty of Medicine Diponegoro University (FMDU), Semarang, Indonesia
| | - Katie L Ayers
- Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
7
|
Diencephalic Size Is Restricted by a Novel Interplay Between GCN5 Acetyltransferase Activity and Retinoic Acid Signaling. J Neurosci 2017; 37:2565-2579. [PMID: 28154153 DOI: 10.1523/jneurosci.2121-16.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 01/20/2023] Open
Abstract
Diencephalic defects underlie an array of neurological diseases. Previous studies have suggested that retinoic acid (RA) signaling is involved in diencephalic development at late stages of embryonic development, but its roles and mechanisms of action during early neural development are still unclear. Here we demonstrate that mice lacking enzymatic activity of the acetyltransferase GCN5 ((Gcn5hat/hat )), which were previously characterized with respect to their exencephalic phenotype, exhibit significant diencephalic expansion, decreased diencephalic RA signaling, and increased diencephalic WNT and SHH signaling. Using a variety of molecular biology techniques in both cultured neuroepithelial cells treated with a GCN5 inhibitor and forebrain tissue from (Gcn5hat/hat ) embryos, we demonstrate that GCN5, RARα/γ, and the poorly characterized protein TACC1 form a complex in the nucleus that binds specific retinoic acid response elements in the absence of RA. Furthermore, RA triggers GCN5-mediated acetylation of TACC1, which results in dissociation of TACC1 from retinoic acid response elements and leads to transcriptional activation of RA target genes. Intriguingly, RA signaling defects caused by in vitro inhibition of GCN5 can be rescued through RA-dependent mechanisms that require RARβ. Last, we demonstrate that the diencephalic expansion and transcriptional defects seen in (Gcn5hat/hat ) mutants can be rescued with gestational RA supplementation, supporting a direct link between GCN5, TACC1, and RA signaling in the developing diencephalon. Together, our studies identify a novel, nonhistone substrate for GCN5 whose modification regulates a previously undescribed, tissue-specific mechanism of RA signaling that is required to restrict diencephalic size during early forebrain development.SIGNIFICANCE STATEMENT Changes in diencephalic size and shape, as well as SNPs associated with retinoic acid (RA) signaling-associated genes, have been linked to neuropsychiatric disorders. However, the mechanisms that regulate diencephalic morphogenesis and the involvement of RA signaling in this process are poorly understood. Here we demonstrate a novel role of the acetyltransferase GCN5 in a previously undescribed mechanism of RA signaling in the developing forebrain that is required to maintain the appropriate size of the diencephalon. Together, our experiments identify a novel nonhistone substrate of GCN5, highlight an essential role for both GCN5 and RA signaling in early diencephalic development, and elucidate a novel molecular regulatory mechanism for RA signaling that is specific to the developing forebrain.
Collapse
|
8
|
The Function and Evolution of Nuclear Receptors in Insect Embryonic Development. Curr Top Dev Biol 2017; 125:39-70. [DOI: 10.1016/bs.ctdb.2017.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Lee J, Yang DJ, Lee S, Hammer GD, Kim KW, Elmquist JK. Nutritional conditions regulate transcriptional activity of SF-1 by controlling sumoylation and ubiquitination. Sci Rep 2016; 6:19143. [PMID: 26750456 PMCID: PMC4707483 DOI: 10.1038/srep19143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 11/20/2015] [Indexed: 12/23/2022] Open
Abstract
Steroidogenic factor 1 (SF-1) is a transcription factor expressed in the ventral medial nucleus of the hypothalamus that regulates energy homeostasis. However, the molecular mechanisms of SF-1 in the control of energy balance are largely unknown. Here, we show that nutritional conditions, such as the presence or absence of serum, affect SF-1 action. Serum starvation significantly decreased hypothalamic SF-1 levels by promoting ubiquitin-dependent degradation, and sumoylation was required for this process. SF-1 transcriptional activity was also differentially regulated by nutritional status. Under normal conditions, the transcriptional activity of hypothalamic SF-1 was activated by SUMO, but this was attenuated during starvation. Taken together, these results indicate that sumoylation and ubiquitination play crucial roles in the regulation of SF-1 function and that these effects are dependent on nutritional conditions, further supporting the importance of SF-1 in the control of energy homeostasis.
Collapse
Affiliation(s)
- Jiwon Lee
- Departments of Pharmacology and Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Dong Joo Yang
- Departments of Pharmacology and Global Medical Science, Institute of Lifestyle Medicine and Nuclear Receptor Research Consortium, Wonju College of Medicine, Yonsei University, Wonju, 26426, South Korea
| | - Syann Lee
- Departments of Pharmacology and Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Gary D Hammer
- Endocrine Oncology Program, Center for Organogenesis, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
| | - Ki Woo Kim
- Departments of Pharmacology and Global Medical Science, Institute of Lifestyle Medicine and Nuclear Receptor Research Consortium, Wonju College of Medicine, Yonsei University, Wonju, 26426, South Korea
| | - Joel K Elmquist
- Departments of Pharmacology and Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
10
|
Tian L, Wang C, Hagen FK, Gormley M, Addya S, Soccio R, Casimiro MC, Zhou J, Powell MJ, Xu P, Deng H, Sauve AA, Pestell RG. Acetylation-defective mutant of Pparγ is associated with decreased lipid synthesis in breast cancer cells. Oncotarget 2014; 5:7303-15. [PMID: 25229978 PMCID: PMC4202124 DOI: 10.18632/oncotarget.2371] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/18/2014] [Indexed: 01/09/2023] Open
Abstract
In our prior publications we characterized a conserved acetylation motif (K(R)xxKK) of evolutionarily related nuclear receptors. Recent reports showed that peroxisome proliferator activated receptor gamma (PPARγ) deacetylation by SIRT1 is involved in delaying cellular senescence and maintaining the brown remodeling of white adipose tissue. However, it still remains unknown whether lysyl residues 154 and 155 (K154/155) of the conserved acetylation motif (RIHKK) in Pparγ1 are acetylated. Herein, we demonstrate that Pparγ1 is acetylated and regulated by both endogenous TSA-sensitive and NAD-dependent deacetylases. Acetylation of lysine 154 was identified by mass spectrometry (MS) while deacetylation of lysine 155 by SIRT1 was confirmed by in vitro deacetylation assay. An in vivo labeling assay revealed K154/K155 as bona fide acetylation sites. The conserved acetylation sites of Pparγ1 and the catalytic domain of SIRT1 are both required for the interaction between Pparγ1 and SIRT1. Sirt1 and Pparγ1 converge to govern lipid metabolism in vivo. Acetylation-defective mutants of Pparγ1 were associated with reduced lipid synthesis in ErbB2 overexpressing breast cancer cells. Together, these results suggest that the conserved lysyl residues K154/K155 of Pparγ1 are acetylated and play an important role in lipid synthesis in ErbB2-positive breast cancer cells.
Collapse
Affiliation(s)
- Lifeng Tian
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Chenguang Wang
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Fred K Hagen
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| | - Michael Gormley
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sankar Addya
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Raymond Soccio
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mathew C Casimiro
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jie Zhou
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael J Powell
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ping Xu
- Department of Pharmacology, Weill Medical College of Cornell University, York Avenue LC216, New York, NY, USA
| | - Haiteng Deng
- Proteomics Resource Center, Rockefeller University, New York, NY, USA
| | - Anthony A Sauve
- Department of Pharmacology, Weill Medical College of Cornell University, York Avenue LC216, New York, NY, USA
| | - Richard G Pestell
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Ping J, Wang JF, Liu L, Yan YE, Liu F, Lei YY, Wang H. Prenatal caffeine ingestion induces aberrant DNA methylation and histone acetylation of steroidogenic factor 1 and inhibits fetal adrenal steroidogenesis. Toxicology 2014; 321:53-61. [DOI: 10.1016/j.tox.2014.03.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/29/2014] [Accepted: 03/30/2014] [Indexed: 10/25/2022]
|
12
|
Yan YE, Liu L, Wang JF, Liu F, Li XH, Qin HQ, Wang H. Prenatal nicotinic exposure suppresses fetal adrenal steroidogenesis via steroidogenic factor 1 (SF-1) deacetylation. Toxicol Appl Pharmacol 2014; 277:231-41. [DOI: 10.1016/j.taap.2014.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 02/26/2014] [Accepted: 03/22/2014] [Indexed: 10/25/2022]
|
13
|
Lewis SR, Hedman CJ, Ziegler T, Ricke WA, Jorgensen JS. Steroidogenic factor 1 promotes aggressive growth of castration-resistant prostate cancer cells by stimulating steroid synthesis and cell proliferation. Endocrinology 2014; 155:358-69. [PMID: 24265454 PMCID: PMC3891934 DOI: 10.1210/en.2013-1583] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 11/09/2013] [Indexed: 11/19/2022]
Abstract
The dependence of prostate cancer on androgens provides a targeted means of treating advanced disease. Unfortunately, androgen deprivation therapies eventually become ineffective, leading to deadly castration-resistant prostate cancer (CRPC). One of many factors implicated in the transition to CRPC is the onset of de novo steroidogenesis. Although reactivation of steroid receptors likely plays a pivotal role in aggressive CRPC, little is understood regarding the mechanisms whereby prostate cancer cells initiate and maintain steroidogenesis. We hypothesize that steroidogenic factor 1 (SF1, NR5A1, AD4BP), a key regulator of steroidogenesis in normal endocrine tissues, is expressed in CRPC where it stimulates aberrant steroidogenesis and fuels aggressive growth. Notably, SF1 is not expressed in normal prostate tissue. Our results indicated that SF1 was absent in benign cells but present in aggressive prostate cancer cell lines. Introduction of ectopic SF1 expression in benign human prostate epithelial cells (BPH-1) stimulated increased steroidogenic enzyme expression, steroid synthesis, and cell proliferation. In contrast, data from an aggressive human prostate cancer cell line (BCaPT10) demonstrated that SF1 was required for steroid-mediated cell growth because BCaPT10 cell growth was diminished by abiraterone treatment and short hairpin RNA-mediated knockdown of SF1 (shSF1). SF1-depleted cells also exhibited defective centrosome homeostasis. Finally, whereas xenograft experiments in castrated hosts with BCaPT10 control transplants grew large, invasive tumors, BCaPT10-shSF1 knockdown transplants failed to grow. Therefore, we conclude that SF1 stimulates steroid accumulation and controls centrosome homeostasis to mediate aggressive prostate cancer cell growth within a castrate environment. These findings present a new molecular mechanism and therapeutic target for deadly CRPC.
Collapse
Affiliation(s)
- Samantha R Lewis
- Department of Comparative Biosciences (S.R.L., J.S.J.), University of Wisconsin, Madison, Wisconsin 53706; University of Wisconsin Carbone Cancer Center (J.S.J., W.A.R.), Madison, Wisconsin 53792, Environmental Health Division (C.J.H.), Wisconsin State Laboratory of Hygiene, Madison, Wisconsin 53706; Wisconsin National Primate Research Center (C.J.H., T.Z.) Madison, Wisconsin 53715; Institute of Clinical and Translational Research (J.S.J., C.J.H., T.Z., W.A.R.), University of Wisconsin, Madison, Wisconsin 53705; and Department of Urology (W.A.R.), University of Wisconsin, Madison, Wisconsin 53792
| | | | | | | | | |
Collapse
|
14
|
Bcrp1 transcription in mouse testis is controlled by a promoter upstream of a novel first exon (E1U) regulated by steroidogenic factor-1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1288-99. [PMID: 24189494 DOI: 10.1016/j.bbagrm.2013.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/07/2013] [Accepted: 10/28/2013] [Indexed: 01/06/2023]
Abstract
Alternative promoter usage is typically associated with mRNAs with differing first exons that contain or consist entirely of a 5' untranslated region. The murine Bcrp1 (Abcg2) transporter has three alternative promoters associated with mRNAs containing alternative untranslated first exons designated as E1A, E1B, and E1C. The E1B promoter regulates Bcrp1 transcription in mouse intestine. Here, we report the identification and characterization of a novel Bcrp1 promoter and first exon, E1U, located upstream from the other Bcrp1 promoters/first exons, which is the predominant alternative promoter utilized in murine testis. Using in silico analysis we identified a putative steroidogenic factor-1 (SF-1) response element that was unique to the Bcrp1 E1U alternative promoter. Overexpression of SF-1 in murine TM4 Sertoli cells enhanced Bcrp1 E1U mRNA expression and increased Bcrp1 E1U alternative promoter activity in a reporter assay, whereas mutation of the SF-1 binding site totally eliminated Bcrp1 E1U alternative promoter activity. Moreover, expression of Bcrp1 E1U and total mRNA and Bcrp1 protein was markedly diminished in the testes from adult Sertoli cell-specific SF-1 knockout mice, in comparison to the testes from wild-type mice. Binding of SF-1 to the SF-1 response element in the E1U promoter was demonstrated by chromatin immunoprecipitation assays. In conclusion, nuclear transcription factor SF-1 is involved with the regulation of a novel promoter of Bcrp1 that governs transcription of the E1U mRNA isoform in mice. The present study furthers understanding of the complex regulation of Bcrp1 expression in specific tissues of a mammalian model.
Collapse
|
15
|
Cai K, Sewer MB. cAMP-stimulated transcription of DGKθ requires steroidogenic factor 1 and sterol regulatory element binding protein 1. J Lipid Res 2013; 54:2121-2132. [PMID: 23610160 DOI: 10.1194/jlr.m035634] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diacylglycerol kinase (DGK)θ is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid (PA). We have previously shown that PA is a ligand for the nuclear receptor steroidogenic factor 1 (SF1) and that cAMP-stimulated expression of SF1 target genes requires DGKθ. In this study, we sought to investigate the role of cAMP signaling in regulating DGKθ gene expression. Real time RT-PCR and Western blot analysis revealed that dibutyryl cAMP (Bt2cAMP) increased the mRNA and protein expression, respectively, of DGKθ in H295R human adrenocortical cells. SF1 and sterol regulatory element binding protein 1 (SREBP1) increased the transcriptional activity of a reporter plasmid containing 1.5 kb of the DGKθ promoter fused to the luciferase gene. Mutation of putative cAMP responsive sequences abolished SF1- and SREBP-dependent DGKθ reporter gene activation. Consistent with this finding, chromatin immunoprecipitation assay demonstrated that Bt2cAMP signaling increased the recruitment of SF1 and SREBP1 to the DGKθ promoter. Coimmunoprecipitation assay revealed that SF1 and SREBP1 interact, suggesting that the two transcription factors form a complex on the DGKθ promoter. Finally, silencing SF1 and SREBP1 abolished cAMP-stimulated DGKθ expression. Taken together, we demonstrate that SF1 and SREBP1 activate DGKθ transcription in a cAMP-dependent manner in human adrenocortical cells.
Collapse
Affiliation(s)
- Kai Cai
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Marion B Sewer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093.
| |
Collapse
|
16
|
Acid ceramidase (ASAH1) represses steroidogenic factor 1-dependent gene transcription in H295R human adrenocortical cells by binding to the receptor. Mol Cell Biol 2012; 32:4419-31. [PMID: 22927646 DOI: 10.1128/mcb.00378-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adrenocorticotropin (ACTH) signaling increases glucocorticoid production by promoting the interaction of transcription factors and coactivator proteins with the promoter of steroidogenic genes. The nuclear receptor steroidogenic factor 1 (SF-1) is essential for steroidogenic gene transcription. Sphingosine (SPH) is a ligand for SF-1. Moreover, suppression of expression of acid ceramidase (ASAH1), an enzyme that produces SPH, increases the transcription of multiple steroidogenic genes. Given that SF-1 is a nuclear protein, we sought to define the molecular mechanisms by which ASAH1 regulates SF-1 function. We show that ASAH1 is localized in the nuclei of H295R adrenocortical cells and that cyclic AMP (cAMP) signaling promotes nuclear sphingolipid metabolism in an ASAH1-dependent manner. ASAH1 suppresses SF-1 activity by directly interacting with the receptor. Chromatin immunoprecipitation (ChIP) assays revealed that ASAH1 is recruited to the promoter of various SF-1 target genes and that ASAH1 and SF-1 colocalize on the same promoter region of the CYP17A1 and steroidogenic acute regulatory protein (StAR) genes. Taken together, these results demonstrate that ASAH1 is a novel coregulatory protein that represses SF-1 function by directly binding to the receptor on SF-1 target gene promoters and identify a key role for nuclear lipid metabolism in regulating gene transcription.
Collapse
|
17
|
Gardiner JR, Shima Y, Morohashi KI, Swain A. SF-1 expression during adrenal development and tumourigenesis. Mol Cell Endocrinol 2012; 351:12-8. [PMID: 22024498 DOI: 10.1016/j.mce.2011.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/05/2011] [Accepted: 10/07/2011] [Indexed: 02/01/2023]
Abstract
SF-1 is a master regulator of steroidogenesis whose expression is critical for normal adrenal and gonadal organogenesis. Strict maintenance of SF-1 levels is essential, and mutations causing under- or overexpression result in congenital adrenal and gonadal defects or hyperplasia, respectively. Data from transgenic mouse models points to a network of transcription factors responsible for stringent regulation of Sf-1 expression during development, which bind to intronic enhancer elements in addition to the basal promoter to specifically modulate transcription in each Sf-1-expressing tissue. Furthermore, analysis of the role of SF-1 in adrenal tumourigenesis implies that improper developmental regulation of Sf-1 expression may have postnatal consequences separate from the well-documented developmental defects.
Collapse
|
18
|
Lucki NC, Bandyopadhyay S, Wang E, Merrill AH, Sewer MB. Acid ceramidase (ASAH1) is a global regulator of steroidogenic capacity and adrenocortical gene expression. Mol Endocrinol 2012; 26:228-43. [PMID: 22261821 PMCID: PMC3275158 DOI: 10.1210/me.2011-1150] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 12/14/2011] [Indexed: 11/19/2022] Open
Abstract
In H295R human adrenocortical cells, ACTH rapidly activates ceramide (Cer) and sphingosine (SPH) turnover with a concomitant increase in SPH-1-phosphate secretion. These bioactive lipids modulate adrenocortical steroidogenesis, primarily by acting as second messengers in the protein kinase A/cAMP-dependent pathway. Acid ceramidase (ASAH1) directly regulates the intracellular balance of Cer, SPH, and SPH-1-phosphate by catalyzing the hydrolysis of Cer into SPH. ACTH/cAMP signaling stimulates ASAH1 transcription and activity, supporting a role for this enzyme in glucocorticoid production. Here, the role of ASAH1 in regulating steroidogenic capacity was examined using a tetracycline-inducible ASAH1 short hairpin RNA H295R human adrenocortical stable cell line. We show that ASAH1 suppression increases the transcription of multiple steroidogenic genes, including Cytochrome P450 monooxygenase (CYP)17A1, CYP11B1/2, CYP21A2, steroidogenic acute regulatory protein, hormone-sensitive lipase, 18-kDa translocator protein, and the melanocortin-2 receptor. Induced gene expression positively correlated with enhanced histone H3 acetylation at target promoters. Repression of ASAH1 expression also induced the expression of members of the nuclear receptor nuclear receptor subfamily 4 (NR4A) family while concomitantly suppressing the expression of dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1. ASAH1 knockdown altered the expression of genes involved in sphingolipid metabolism and changed the cellular amounts of distinct sphingolipid species. Finally, ASAH1 silencing increased basal and cAMP-dependent cortisol and dehydroepiandrosterone secretion, establishing ASAH1 as a pivotal regulator of steroidogenic capacity in the human adrenal cortex.
Collapse
Affiliation(s)
- Natasha C Lucki
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA
| | | | | | | | | |
Collapse
|
19
|
Burger LL, Haisenleder DJ, Marshall JC. GnRH pulse frequency differentially regulates steroidogenic factor 1 (SF1), dosage-sensitive sex reversal-AHC critical region on the X chromosome gene 1 (DAX1), and serum response factor (SRF): potential mechanism for GnRH pulse frequency regulation of LH beta transcription in the rat. Endocrine 2011; 39:212-9. [PMID: 21409515 DOI: 10.1007/s12020-011-9440-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 01/30/2011] [Indexed: 10/18/2022]
Abstract
The issue of how rapid frequency GnRH pulses selectively stimulate LH transcription is not fully understood. The rat LHβ promoter contains two GnRH-responsive regions: the proximal region has binding elements for SF1, and the distal site contains a CArG box, which binds SRF. This study determined whether GnRH stimulates pituitary SF1, DAX1 (an endogenous SF1 inhibitor), and SRF transcription in vivo, and whether regulation is frequency dependent. Male rats were pulsed with 25 ng GnRH i.v. every 30 min or every 240 min for 1-24 h, and primary transcripts (PTs) and mRNAs were measured by real time PCR. Fast frequency GnRH pulses (every 30 min) increased SF1 PT (threefold) within 1 h, and then declined after 6 h. SF1 mRNA also increased within 1 h and remained elevated through 24 h. Fast frequency GnRH also stimulated a transient increase in DAX1 PT (twofold after 1 h) and mRNA (1.7-fold after 6 h), while SRF mRNA rose briefly at 1 h. Slow frequency pulses did not affect gene expression of SF1, DAX1, or SRF. These findings support a mechanistic link between SF1 in the frequency regulation of LHβ transcription by pulsatile GnRH.
Collapse
Affiliation(s)
- Laura L Burger
- University of Michigan, Medical Sciences Building II, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
20
|
Suda N, Shibata H, Kurihara I, Ikeda Y, Kobayashi S, Yokota K, Murai-Takeda A, Nakagawa K, Oya M, Murai M, Rainey WE, Saruta T, Itoh H. Coactivation of SF-1-mediated transcription of steroidogenic enzymes by Ubc9 and PIAS1. Endocrinology 2011; 152:2266-77. [PMID: 21467194 PMCID: PMC3100613 DOI: 10.1210/en.2010-1232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 03/10/2011] [Indexed: 01/07/2023]
Abstract
Steroidogenic factor-1 (SF-1) is a nuclear orphan receptor, which is essential for adrenal development and regulation of steroidogenic enzyme expression. SF-1 is posttranslationally modified by small ubiquitin-related modifier-1 (SUMO-1), thus mostly resulting in attenuation of transcription. We investigated the role of sumoylation enzymes, Ubc9 and protein inhibitors of activated STAT1 (PIAS1), in SF-1-mediated transcription of steroidogenic enzyme genes in the adrenal cortex. Coimmunoprecipitation assays showed that both Ubc9 and PIAS1 interacted with SF-1. Transient transfection assays in adrenocortical H295R cells showed Ubc9 and PIAS1 potentiated SF-1-mediated transactivation of reporter constructs containing human CYP17, CYP11A1, and CYP11B1 but not CYP11B2 promoters. Reduction of endogenous Ubc9 and PIAS1 by introducing corresponding small interfering RNA significantly reduced endogenous CYP17, CYP11A1, and CYP11B1 mRNA levels, indicating that they normally function as coactivators of SF-1. Wild type and sumoylation-inactive mutants of Ubc9 and PIAS1 can similarly enhance the SF-1-mediated transactivation of the CYP17 gene, indicating that the coactivation potency of Ubc9 and PIAS1 is independent of sumoylation activity. Chromatin immunoprecipitation assays demonstrated that SF-1, Ubc9, and PIAS1 were recruited to an endogenous CYP17 gene promoter in the context of chromatin in vivo. Immunohistochemistry and Western blotting showed that SF-1, Ubc9, and PIAS1 were expressed in the nuclei of the human adrenal cortex. In cortisol-producing adenomas, the expression pattern of SF-1 and Ubc9 were markedly increased, whereas that of PIAS1 was decreased compared with adjacent normal adrenals. These results showed the physiological roles of Ubc9 and PIAS1 as SF-1 coactivators beyond sumoylation enzymes in adrenocortical steroidogenesis and suggested their possible pathophysiological roles in human cortisol-producing adenomas.
Collapse
Affiliation(s)
- Noriko Suda
- Department of Internal Medicine, School of Medicine, Keio University, Shinjujku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang C, Tian L, Popov VM, Pestell RG. Acetylation and nuclear receptor action. J Steroid Biochem Mol Biol 2011; 123:91-100. [PMID: 21167281 PMCID: PMC3056342 DOI: 10.1016/j.jsbmb.2010.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 12/03/2010] [Accepted: 12/06/2010] [Indexed: 01/06/2023]
Abstract
Acetylation is an essential post-translational modification featuring an acetyl group that is covalently conjugated to a protein substrate. Histone acetylation was first proposed nearly half a century ago by Dr. Vincent Allfrey. Subsequent studies have shown that the acetylated core histones are often associated with transcriptionally active chromatin. Acetylation at lysine residues of histone tails neutralizes the positive charge, which decreases their binding ability to DNA and increases the accessibility of transcription factors and coactivators to the chromatin template. In addition to histones, a number of non-histone substrates are acetylated. Acetylation of non-histone proteins governs biological processes, such as cellular proliferation and survival, transcriptional activity, and intracellular trafficking. We demonstrated that acetylation of transcription factors can regulate cellular growth. Furthermore, we showed that nuclear receptors (NRs) are acetylated at a phylogenetically conserved motif. Since our initial observations with the estrogen and androgen receptors, more than a dozen NRs have been shown to function as substrates for acetyltransferases with diverse functional consequences. This review focuses on the acetylation of NRs and the effect of acetylation on NR function. We discuss the potential role of acetylation in disease initiation and progression with an emphasis on tumorigenesis.
Collapse
Affiliation(s)
- Chenguang Wang
- Department of Stem Cell Biology and Regenerative Medicine, Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10th Street, Philadelphia, PA 19107, USA
| | - Lifeng Tian
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10th Street, Philadelphia, PA 19107, USA
| | - Vladimir M. Popov
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10th Street, Philadelphia, PA 19107, USA
| | - Richard G. Pestell
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10th Street, Philadelphia, PA 19107, USA
| |
Collapse
|
22
|
Manipulating protein acetylation in breast cancer: a promising approach in combination with hormonal therapies? J Biomed Biotechnol 2010; 2011:856985. [PMID: 21188173 PMCID: PMC3004450 DOI: 10.1155/2011/856985] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 11/03/2010] [Indexed: 01/17/2023] Open
Abstract
Estrogens play an essential role in the normal physiology of the breast as well as in mammary tumorigenesis. Their effects are mediated by two nuclear estrogen receptors, ERα and β, which regulate transcription of specific genes by interacting with multiprotein complexes, including histone deacetylases (HDACs). During the past few years, HDACs have raised great interest as therapeutic targets in the field of cancer therapy. In breast cancer, several experimental arguments suggest that HDACs are involved at multiple levels in mammary tumorigenesis: their expression is deregulated in breast tumors; they interfere with ER signaling in intricate ways, restoring hormone sensitivity in models of estrogen resistance, and they clinically represent new potential targets for HDACs inhibitors (HDIs) in combination with hormonal therapies. In this paper, we will describe these different aspects and underline the clinical interest of HDIs in the context of breast cancer resistance to hormone therapies (HTs).
Collapse
|
23
|
Singh BN, Zhang G, Hwa YL, Li J, Dowdy SC, Jiang SW. Nonhistone protein acetylation as cancer therapy targets. Expert Rev Anticancer Ther 2010; 10:935-54. [PMID: 20553216 DOI: 10.1586/era.10.62] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acetylation and deacetylation are counteracting, post-translational modifications that affect a large number of histone and nonhistone proteins. The significance of histone acetylation in the modification of chromatin structure and dynamics, and thereby gene transcription regulation, has been well recognized. A steadily growing number of nonhistone proteins have been identified as acetylation targets and reversible lysine acetylation in these proteins plays an important role(s) in the regulation of mRNA stability, protein localization and degradation, and protein-protein and protein-DNA interactions. The recruitment of histone acetyltransferases (HATs) and histone deacetylases (HDACs) to the transcriptional machinery is a key element in the dynamic regulation of genes controlling cellular proliferation, differentiation and apoptosis. Many nonhistone proteins targeted by acetylation are the products of oncogenes or tumor-suppressor genes and are directly involved in tumorigenesis, tumor progression and metastasis. Aberrant activity of HDACs has been documented in several types of cancers and HDAC inhibitors (HDACi) have been employed for therapeutic purposes. Here we review the published literature in this field and provide updated information on the regulation and function of nonhistone protein acetylation. While concentrating on the molecular mechanism and pathways involved in the addition and removal of the acetyl moiety, therapeutic modalities of HDACi are also discussed.
Collapse
Affiliation(s)
- Brahma N Singh
- Department of Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | | | | | | | | | | |
Collapse
|
24
|
Schimmer BP, White PC. Minireview: steroidogenic factor 1: its roles in differentiation, development, and disease. Mol Endocrinol 2010; 24:1322-37. [PMID: 20203099 DOI: 10.1210/me.2009-0519] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The orphan nuclear receptor steroidogenic factor 1 (SF-1, also called Ad4BP, encoded by the NR5A1 gene) is an essential regulator of endocrine development and function. Initially identified as a tissue-specific transcriptional regulator of cytochrome P450 steroid hydroxylases, studies of both global and tissue-specific knockout mice have demonstrated that SF-1 is required for the development of the adrenal glands, gonads, and ventromedial hypothalamus and for the proper functioning of pituitary gonadotropes. Many genes are transcriptionally regulated by SF-1, and many proteins, in turn, interact with SF-1 and modulate its activity. Whereas mice with heterozygous mutations that disrupt SF-1 function have only subtle abnormalities, humans with heterozygous SF-1 mutations can present with XY sex reversal (i.e. testicular failure), ovarian failure, and occasionally adrenal insufficiency; dysregulation of SF-1 has been linked to diseases such as endometriosis and adrenocortical carcinoma. The current state of knowledge of this important transcription factor will be reviewed with a particular emphasis on the pioneering work on SF-1 by the late Keith Parker.
Collapse
Affiliation(s)
- Bernard P Schimmer
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G1L6, Canada
| | | |
Collapse
|
25
|
Hoivik EA, Lewis AE, Aumo L, Bakke M. Molecular aspects of steroidogenic factor 1 (SF-1). Mol Cell Endocrinol 2010; 315:27-39. [PMID: 19616058 DOI: 10.1016/j.mce.2009.07.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/01/2009] [Accepted: 07/08/2009] [Indexed: 12/24/2022]
Abstract
Steroidogenic factor 1 (SF-1, also called Ad4BP and NR5A1) is a nuclear receptor with critical roles in steroidogenic tissues, as well as in the brain and pituitary. In particular, SF-1 has emerged as an essential regulator of adrenal and gonadal functions and development. In the last few years, our knowledge on SF-1 has increased considerably at all levels, from the gene to the protein, and on its specific roles in different physiological processes. In this review, we discuss the current understanding on SF-1 with focus on the parameters that control the transcriptional capacity of SF-1 and the mechanisms that ensure proper stage- and tissue-specific expression of the gene encoding SF-1.
Collapse
Affiliation(s)
- Erling A Hoivik
- Department of Biomedicine, University of Bergen, Jonas Lies vei 9, N-5009 Bergen, Norway.
| | | | | | | |
Collapse
|
26
|
SUMO and ubiquitin modifications during steroid hormone synthesis and function. Biochem Soc Trans 2010; 38:54-9. [DOI: 10.1042/bst0380054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Steroid hormones control many aspects of animal physiology and behaviour. They are highly regulated, among other mechanisms, by post-translational modifications of the transcription factors involved in their synthesis and response. In the present review, we will focus on the influence of SUMO (small ubiquitin-related modifier) and ubiquitin modifications on the function of transcription factors involved in adrenal cortex formation, steroidogenesis and the hormonal response.
Collapse
|
27
|
Andrieu T, Pezzi V, Sirianni R, Le Bas R, Feral C, Benhaim A, Mittre H. cAMP-dependent regulation of CYP19 gene in rabbit preovulatory granulosa cells and corpus luteum. J Steroid Biochem Mol Biol 2009; 116:110-7. [PMID: 19460434 DOI: 10.1016/j.jsbmb.2009.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/05/2009] [Accepted: 05/08/2009] [Indexed: 11/30/2022]
Abstract
Transcription of the CYP19 gene encoding the aromatase P450 enzyme in ovarian cells is under the control of the two gonadotropins, follicle stimulating hormone (FSH) and luteinizing hormone (LH), via modulation of intracellular cyclic 3',5'-adenosine monophosphate (cAMP) levels. Primary cultures of rabbit ovarian cells were used to identify the functional regions of the ovarian promoter (PII) that are responsive to the gonadotropic secondary messenger and to estradiol. Transfection experiments in granulosa and luteal cells with deleted constructs of the PII promoter show that the region between -274 and -193bp is critical for cAMP-dependent transcriptional activity. A comparison of PII activities in granulosa and small luteal cells highlights a 50% decrease consecutive to the LH surge. Sequence analysis of the above mentioned region revealed the presence of a cAMP responsive element like sequence (CLS) and of a nuclear receptor element A (NREA). Binding of CREB to CLS has been shown using granulosa and luteal cells nuclear extracts. In addition, we identified the expression of NR5A1 (Steroidogenic Factor 1) and NR5A2 (Liver Receptor Homologue 1) in granulosa and luteal cells. However, the binding to NREA is observed only with granulosa cells nuclear extracts. Data suggest that the NR5A factors are not the main regulators of CYP19 gene, in contrast with the others genes of streroidogenesis enzymes, and additional sites may play an important role during the post-LH surge down-regulation of CYP19 transcription.
Collapse
Affiliation(s)
- Thomas Andrieu
- Laboratoire, EA 2608, INRA, USC 2006, Universite, Esplanade de la Paix, F-14000 Caen, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Shang E, Wang X, Wen D, Greenberg DA, Wolgemuth DJ. Double bromodomain-containing gene Brd2 is essential for embryonic development in mouse. Dev Dyn 2009; 238:908-17. [PMID: 19301389 DOI: 10.1002/dvdy.21911] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The BET subfamily of bromodomain-containing genes is characterized by the presence of two bromodomains and a unique ET domain at their carboxyl termini. Here, we show that the founding member of this subfamily, Brd2, is an essential gene by generating a mutant mouse line lacking Brd2 function. Homozygous Brd2 mutants are embryonic lethal, with most Brd2(-/-) embryos dying by embryonic day 11.5. Before death, the homozygous embryos were notably smaller and exhibited abnormalities in the neural tube where the gene is highly expressed. Brd2-deficient embryonic fibroblast cells were observed to proliferate more slowly than controls. Experiments to explore whether placental insufficiency could be a cause of the embryonic lethality showed that injecting diploid mutant embryonic stem cells into tetraploid wild-type blastocysts did not rescue the lethality; that is Brd2-deficient embryos could not be rescued by wild-type extraembryonic tissues. Furthermore, there were enhanced levels of cell death in Brd2-deficient embryos.
Collapse
Affiliation(s)
- Enyuan Shang
- Division of Statistical Genetics, Department of Biostatistics, Mailman School of Public Health and Department of Psychiatry, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
29
|
Tremblay JJ, Robert NM, Laguë E. Nuclear receptors, testosterone, and posttranslational modifications in human INSL3 promoter activity in testicular Leydig cells. Ann N Y Acad Sci 2009; 1160:205-12. [PMID: 19416189 DOI: 10.1111/j.1749-6632.2008.03807.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Insulin-like peptide 3 (INSL3) is a hormone produced by fetal and adult Leydig cells of the mammalian testis. During embryonic life INSL3 is required for testicular descent, whereas in adults it is involved in bone metabolism and male germ cell survival. Despite these important roles, the molecular mechanisms regulating INSL3 expression remain poorly understood. So far, two transcription factors have been implicated in INSL3 transcription: the nuclear receptors SF1 and NUR77. Circumstantial evidence also points to a role for androgens. Using transient transfections in MA-10 Leydig cells, we found that testosterone regulates in a time- and dose-dependent manner the human INSL3 promoter. The INSL3 promoter, however, does not contain a classical androgen-responsive element. Testosterone responsiveness was found to be mediated through an element located in the proximal INSL3 promoter, which also contains a NUR77-SF1-binding site. Furthermore, we found that posttranslational modifications, such as phosphorylation and acetylation, modulate transcription factor activity and therefore also contribute to INSL3 promoter activity in Leydig cells. All together, these data provide new insights into the molecular mechanisms regulating INSL3 expression in the mammalian testis.
Collapse
Affiliation(s)
- Jacques J Tremblay
- Reproduction, Perinatal and Child Health, CHUQ Research Centre, Québec City, Québec, Canada.
| | | | | |
Collapse
|
30
|
Yokoyama C, Komatsu T, Ogawa H, Morohashi KI, Azuma M, Tachibana T. Generation of Rat Monoclonal Antibodies Specific for Ad4BPSF-1. Hybridoma (Larchmt) 2009; 28:113-9. [DOI: 10.1089/hyb.2008.0084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chikako Yokoyama
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Tomoko Komatsu
- Division for Sex Differentiation, National Institute for Basic Biology, National Institutes of Natural Sciences, Aichi, Japan
| | - Hidesato Ogawa
- Division for Sex Differentiation, National Institute for Basic Biology, National Institutes of Natural Sciences, Aichi, Japan
| | - Ken-ichirou Morohashi
- Division for Sex Differentiation, National Institute for Basic Biology, National Institutes of Natural Sciences, Aichi, Japan
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Masayuki Azuma
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| |
Collapse
|
31
|
Sewer MB, Jagarlapudi S. Complex assembly on the human CYP17 promoter. Mol Cell Endocrinol 2009; 300:109-14. [PMID: 19007851 PMCID: PMC2754694 DOI: 10.1016/j.mce.2008.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 10/01/2008] [Accepted: 10/03/2008] [Indexed: 12/01/2022]
Abstract
Optimal steroid hormone biosynthesis occurs via the integration of multiple regulatory processes, one of which entails a coordinate increase in the transcription of all genes required for steroidogenesis. In the human adrenal cortex adrenocorticotropin (ACTH) activates a signaling cascade that promotes the dynamic assembly of protein complexes on the promoters of steroidogenic genes. For CYP17, multiple transcription factors, including steroidogenic factor-1 (SF-1), GATA-6, and sterol regulatory binding protein 1 (SREBP1), are recruited to the promoter during activated transcription. The ability of these factors to increase CYP17 mRNA expression requires the formation of higher order coregulatory complexes, many of which contain enzymatic activities that post-translationally modify both the transcription factors and histones. We discuss the mechanisms by which transcription factors and coregulatory proteins regulate CYP17 transcription and summarize the role of kinases, phosphatases, acetyltransferases, and histone deacetylases in controlling CYP17 mRNA expression.
Collapse
Affiliation(s)
- Marion B Sewer
- School of Biology and the Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| | | |
Collapse
|
32
|
Wang S, Zhu Y, Melamed P. The molecular regulation of Chinook salmon gonadotropin beta-subunit gene transcription. Gen Comp Endocrinol 2009; 161:34-41. [PMID: 18789942 DOI: 10.1016/j.ygcen.2008.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 08/22/2008] [Indexed: 11/25/2022]
Abstract
Expression of the gonadotropin beta-subunit genes is tightly regulated both cell-specifically and by the regulatory hormones to achieve the appropriate gonadotropic hormone levels required for reproductive development and function. Although the cDNA sequences of these genes are highly conserved across species, their promoter sequences are not and few functional studies have been carried out to understand the molecular mechanisms through which their expression is regulated. We and others have carried out several studies on the LHbeta gene promoter of Chinook salmon (Oncorhynchus tschawytscha), and also isolated the FSHbeta gene from the same species. We present here a review of these studies and also novel data pertaining to both genes, in an attempt to collate the current understanding of the molecular regulation of the gonadotropin beta-subunit genes in these fish.
Collapse
Affiliation(s)
- Sihui Wang
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | |
Collapse
|
33
|
Fantappié MR, de Oliveira FMB, de Moraes Maciel R, Rumjanek FD, Wu W, LoVerde PT. Cloning of SmNCoA-62, a novel nuclear receptor co-activator from Schistosoma mansoni: Assembly of a complex with a SmRXR1/SmNR1 heterodimer, SmGCN5 and SmCBP1. Int J Parasitol 2008; 38:1133-47. [DOI: 10.1016/j.ijpara.2008.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 02/07/2008] [Accepted: 02/10/2008] [Indexed: 11/16/2022]
|
34
|
Chen WY, Weng JH, Huang CC, Chung BC. Histone deacetylase inhibitors reduce steroidogenesis through SCF-mediated ubiquitination and degradation of steroidogenic factor 1 (NR5A1). Mol Cell Biol 2007; 27:7284-90. [PMID: 17709382 PMCID: PMC2168912 DOI: 10.1128/mcb.00476-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors such as trichostatin A and valproic acid modulate transcription of many genes by inhibiting the activities of HDACs, resulting in the remodeling of chromatin. Yet this effect is not universal for all genes. Here we show that HDAC inhibitors suppressed the expression of steroidogenic gene CYP11A1 and decreased steroid secretion by increasing the ubiquitination and degradation of SF-1, a factor important for the transcription of all steroidogenic genes. This was accompanied by increased expression of Ube2D1 and SKP1A, an E2 ubiquitin conjugase and a subunit of the E3 ubiquitin ligase in the Skp1/Cul1/F-box protein (SCF) family, respectively. Reducing SKP1A expression with small interfering RNA resulted in recovery of SF-1 levels, demonstrating that the activity of SCF E3 ubiquitin ligase is required for the SF-1 degradation induced by HDAC inhibitors. Overexpression of exogenous SF-1 restored steroidogenic activities even in the presence of HDAC inhibitors. Thus, increased SF-1 degradation is the cause of the reduction in steroidogenesis caused by HDAC inhibitors. The increased SKP1A expression and SCF-mediated protein degradation could be the mechanism underlying the mode of action of HDAC inhibitors.
Collapse
Affiliation(s)
- Wei-Yi Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | | | | | | |
Collapse
|
35
|
Li D, Urs AN, Allegood J, Leon A, Merrill AH, Sewer MB. Cyclic AMP-stimulated interaction between steroidogenic factor 1 and diacylglycerol kinase theta facilitates induction of CYP17. Mol Cell Biol 2007; 27:6669-85. [PMID: 17664281 PMCID: PMC2099220 DOI: 10.1128/mcb.00355-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the human adrenal cortex, adrenocorticotropin (ACTH) activates CYP17 transcription by promoting the binding of the nuclear receptor steroidogenic factor 1 (SF1) (Ad4BP, NR5A1) to the promoter. We recently found that sphingosine is an antagonist for SF1 and inhibits cyclic AMP (cAMP)-dependent CYP17 gene transcription. The aim of the current study was to identify phospholipids that bind to SF1 and to characterize the mechanism by which ACTH/cAMP regulates the biosynthesis of this molecule(s). Using tandem mass spectrometry, we show that in H295R human adrenocortical cells, SF1 is bound to phosphatidic acid (PA). Activation of the ACTH/cAMP signal transduction cascade rapidly increases nuclear diacylglycerol kinase (DGK) activity and PA production. PA stimulates SF1-dependent transcription of CYP17 reporter plasmids, promotes coactivator recruitment, and induces the mRNA expression of CYP17 and several other steroidogenic genes. Inhibition of DGK activity attenuates the binding of SF1 to the CYP17 promoter, and silencing of DGK-theta expression inhibits cAMP-dependent CYP17 transcription. LXXLL motifs in DGK-theta mediate a direct interaction of SF1 with the kinase and may facilitate binding of PA to the receptor. We conclude that ACTH/cAMP stimulates PA production in the nucleus of H295R cells and that this increase in PA concentrations facilitates CYP17 induction.
Collapse
Affiliation(s)
- Donghui Li
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | | | | | | | | | | |
Collapse
|
36
|
Urs AN, Dammer E, Kelly S, Wang E, Merrill AH, Sewer MB. Steroidogenic factor-1 is a sphingolipid binding protein. Mol Cell Endocrinol 2007; 265-266:174-8. [PMID: 17196738 PMCID: PMC1850975 DOI: 10.1016/j.mce.2006.12.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Steroidogenic factor (SF1, NR5A1, Ad4BP) is an orphan nuclear receptor that is essential for steroid hormone-biosynthesis and endocrine development. Studies have found that the ability of this receptor to increase target gene expression can be regulated by post-translational modification, subnuclear localization, and protein-protein interactions. Recent crystallographic studies and our mass spectrometric analyses of the endogenous receptor have demonstrated an integral role for ligand-binding in the control of SF1 transactivation activity. Herein, we discuss our findings that sphingosine is an endogenous ligand for SF1. These studies and the structural findings of others have demonstrated that the receptor can bind both sphingolipids and phospholipids. Thus, it is likely that multiple bioactive lipids are ligands for SF1 and that these lipids will differentially act to control SF1 activity in a context-dependent manner. Finally, these findings highlight a central role for bioactive lipids as mediators of trophic hormone-stimulated steroid hormone biosynthesis.
Collapse
Affiliation(s)
- Aarti N Urs
- School of Biology and the Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332-0230, United States
| | | | | | | | | | | |
Collapse
|
37
|
Dammer EB, Leon A, Sewer MB. Coregulator exchange and sphingosine-sensitive cooperativity of steroidogenic factor-1, general control nonderepressed 5, p54, and p160 coactivators regulate cyclic adenosine 3',5'-monophosphate-dependent cytochrome P450c17 transcription rate. Mol Endocrinol 2006; 21:415-38. [PMID: 17121866 DOI: 10.1210/me.2006-0361] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transcription of the cytochrome P450 17 (CYP17) gene is regulated by cAMP-dependent binding of steroidogenic factor-1 (SF-1) to its promoter in the adrenal cortex. Using temporal chromatin immunoprecipitation and mammalian two-hybrid experiments, we establish the reciprocal presence of coactivators [general control nonderepressed (GCN5), cAMP response element-binding protein-binding protein, p300, p300/cAMP response element-binding protein-binding protein CBP associated factor, p160s, polypyrimidine tract associated splicing factor, and p54(nrb)], corepressors (class I histone deacetylases, receptor interacting protein, nuclear receptor corepressor, and Sin3A), and SWI/SNF (human homolog of yeast mating type switching/sucrose nonfermenting) and imitation SWI chromatin remodeling ATPases on the CYP17 promoter during transcription cycles in the H295R adrenocortical cell line. A ternary GCN5/SRC-1/SF-1 complex forms on the CYP17 promoter with cAMP-dependence within 30 min of cAMP stimulation, and corresponds with SWI/SNF chromatin remodeling. This complex is sensitive to the SF-1 antagonist sphingosine and results in decreased transcription of CYP17. GCN5 acetyltransferase activity and carboxy terminus binding proteins alternatively mediate disassembly of the complex. This work establishes the temporal order of cAMP-induced events on the promoter of a key steroidogenic gene during SF-1-mediated transcription.
Collapse
Affiliation(s)
- Eric B Dammer
- School of Biology, Parker H. Petit Institute for Bioengineering & Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, Georgia 30332-0230, USA
| | | | | |
Collapse
|
38
|
Melamed P, Kadir MNA, Wijeweera A, Seah S. Transcription of gonadotropin beta subunit genes involves cross-talk between the transcription factors and co-regulators that mediate actions of the regulatory hormones. Mol Cell Endocrinol 2006; 252:167-83. [PMID: 16644099 DOI: 10.1016/j.mce.2006.03.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The gonadotropins LH and FSH have distinct temporal patterns of expression as a result of differential regulation by hormones such as GnRH, steroids and activin. This specific regulation is due to diverse sets of transcription factors that are recruited to the promoters of these genes, and recruit specific co-activator complexes which function to stabilize interactions with the general transcription factors and RNA polymerase II, and also to induce covalent modifications of the histone tails at these gene loci. As these molecular mechanisms are elucidated, the nature of nuclear cross-talk between the various hormonally induced pathways is becoming evident, revealing both negative and positive effects of interacting transcription factors and co-regulators. This paper will review current knowledge on the transcriptional regulation of gonadotropin beta subunit gene expression in the chromatin setting, and will present new data pertaining to nuclear cross-talk between the various endocrine-induced pathways regulating gonadotropin gene transcription.
Collapse
Affiliation(s)
- P Melamed
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117542, Singapore.
| | | | | | | |
Collapse
|
39
|
Ferris HA, Shupnik MA. Mechanisms for pulsatile regulation of the gonadotropin subunit genes by GNRH1. Biol Reprod 2006; 74:993-8. [PMID: 16481592 DOI: 10.1095/biolreprod.105.049049] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The frequency of gonadotropin-releasing hormone (GNRH1, or GnRH) pulses secreted from the hypothalamus determine the ratios of the gonadotropin subunit genes luteinizing hormone beta (Lhb), follicle-stimulating hormone beta (Fshb) and the common alpha-glycoprotein subunit gene (Cga) transcribed in the anterior pituitaries of mammals. Fshb is preferentially transcribed at slower GNRH1 pulse frequencies, whereas Lhb and Cga are preferentially transcribed at more rapid pulse frequencies. Producing the gonadotropins in the correct proportions is critical for normal fertility. Currently, there is no definitive explanation for how GNRH1 pulses differentially activate gonadotropin subunit gene transcription. Several pathways may contribute to this regulation. For example, GNRH1-regulated GNRH1-receptor concentrations may lead to variable signaling pathway activation. Several signaling pathways are activated by GnRH, including mitogen-activated protein kinase, protein kinase C, calcium influx, and calcium-calmodulin kinase, and these may be preferentially regulated under certain conditions. In addition, some signaling proteins feed back to downregulate their own levels. Other arms of gonadotroph signaling appear to be regulated by synthesis, modification, and degradation of either transcription factors or regulatory proteins. Finally, the dynamic binding of proteins to the chromatin, and how that might be regulated by chromatin-modifying proteins, is addressed. Oscillations in expression, modification, and chromatin binding of the proteins involved in gonadotropin gene expression are likely a link between GNRH1 pulsatility and differential gonadotropin transcription.
Collapse
MESH Headings
- Animals
- Chromatin/physiology
- Follicle Stimulating Hormone, beta Subunit/genetics
- Follicle Stimulating Hormone, beta Subunit/metabolism
- Follicle Stimulating Hormone, beta Subunit/physiology
- Gene Expression Regulation/physiology
- Glycoprotein Hormones, alpha Subunit/genetics
- Glycoprotein Hormones, alpha Subunit/metabolism
- Glycoprotein Hormones, alpha Subunit/physiology
- Gonadotropin-Releasing Hormone/physiology
- Gonadotropins/genetics
- Gonadotropins/metabolism
- Gonadotropins/physiology
- Gonads/physiology
- Humans
- Hypothalamo-Hypophyseal System/physiology
- Hypothalamus/metabolism
- Luteinizing Hormone, beta Subunit/genetics
- Luteinizing Hormone, beta Subunit/metabolism
- Luteinizing Hormone, beta Subunit/physiology
- Protein Processing, Post-Translational/genetics
- Protein Processing, Post-Translational/physiology
- Signal Transduction/genetics
- Signal Transduction/physiology
- Transcription, Genetic/genetics
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Heather A Ferris
- Department of Physiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
40
|
Taylor J, Grote SK, Xia J, Vandelft M, Graczyk J, Ellerby LM, La Spada AR, Truant R. Ataxin-7 can export from the nucleus via a conserved exportin-dependent signal. J Biol Chem 2006; 281:2730-9. [PMID: 16314424 DOI: 10.1074/jbc.m506751200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spinocerebellar ataxia type 7 is a progressive neurodegenerative disorder caused by a CAG DNA triplet repeat expansion leading to an expanded polyglutamine tract in the ataxin-7 protein. Ataxin-7 appears to be a transcription factor and a component of the STAGA transcription coactivator complex. Here, using live cell imaging and inverted fluorescence recovery after photobleaching, we demonstrate that ataxin-7 has the ability to export from the nucleus via the CRM-1/exportin pathway and that ataxin-7 contains a classic leucine-type nuclear export signal (NES). We have precisely defined the location of this NES in ataxin-7 and found it to be fully conserved in all vertebrate species. Polyglutamine expansion was seen to reduce the nuclear export rate of mutant ataxin-7 relative to wild-type ataxin-7. Subtle point mutation of the NES in polyglutamine expanded ataxin-7 increased toxicity in primary cerebellar neurons in a polyglutamine length-dependent manner in the context of full-length ataxin-7. Our results add ataxin-7 to a growing list of polyglutamine disease proteins that are capable of nuclear shuttling, and we define an activity of ataxin-7 in the STAGA complex of trafficking between the nucleus and cytoplasm.
Collapse
Affiliation(s)
- Jillian Taylor
- Department of Biochemistry and Biomedical Sciences, McMaster University, HSC4H45 Hamilton, Ontario L8N3Z5 Canada
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Weck J, Mayo KE. Switching of NR5A proteins associated with the inhibin alpha-subunit gene promoter after activation of the gene in granulosa cells. Mol Endocrinol 2006; 20:1090-103. [PMID: 16423880 DOI: 10.1210/me.2005-0199] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The inhibin alpha-subunit gene is transcriptionally activated by FSH in ovarian granulosa cells during follicular growth. We have investigated the roles of the NR5A family nuclear receptors steroidogenic factor 1 (SF-1) and liver receptor homolog 1 (LRH-1) in transcriptional activation of the inhibin alpha-subunit gene. Transfection assays using an inhibin alpha-subunit promoter reporter in GRMO2 granulosa cells show that LRH-1 and SF-1 act similarly to increase promoter activity, and that the activity of both transcription factors is augmented by the coactivators cAMP response element-binding protein-binding protein and steroid receptor coactivator 1. However, chromatin immunoprecipitation experiments illustrate differential dynamic association of LRH-1 and SF-1 with the alpha-subunit inhibin promoter in both primary cells and the GRMO2 granulosa cell line such that hormonal stimulation of transcription results in an apparent replacement of SF-1 with LRH-1. Transcriptional stimulation of the inhibin alpha-subunit gene is dependent on MAPK kinase activity, as is the dynamic association/disassociation of SF-1 and LRH-1 with the promoter. Inhibition of the phosphatidylinositol 3-kinase signaling pathway influences promoter occupancy and transcriptional activation by SF-1 but not LRH-1, suggesting a possible mechanistic basis for the distinct functions of these NR5A proteins in inhibin alpha-subunit gene regulation.
Collapse
Affiliation(s)
- Jennifer Weck
- Department of Biochemistry, Molecular Biology, and Cell Biology, and Center for Reproductive Science, 2205 Tech Drive, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
42
|
Pick L, Anderson WR, Shultz J, Woodard CT. The Ftz‐F1 family: Orphan nuclear receptors regulated by novel protein–protein interactions. NUCLEAR RECEPTORS IN DEVELOPMENT 2006. [DOI: 10.1016/s1574-3349(06)16008-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Winnay JN, Hammer GD. Adrenocorticotropic Hormone-Mediated Signaling Cascades Coordinate a Cyclic Pattern of Steroidogenic Factor 1-Dependent Transcriptional Activation. Mol Endocrinol 2006; 20:147-66. [PMID: 16109736 DOI: 10.1210/me.2005-0215] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractSteroidogenic factor 1 (SF-1) is an orphan nuclear receptor that has emerged as a critical mediator of endocrine function at multiple levels of the hypothalamic-pituitary-steroidogenic axis. Within the adrenal cortex, ACTH-dependent transcriptional responses, including transcriptional activation of several key steroidogenic enzymes within the steroid biosynthetic pathway, are largely dependent upon SF-1 action. The absence of a bona fide endogenous eukaryotic ligand for SF-1 suggests that signaling pathway activation downstream of the melanocortin 2 receptor (Mc2r) modulates this transcriptional response. We have used the chromatin immunoprecipitation assay to examine the temporal formation of ACTH-dependent transcription complexes on the Mc2r gene promoter. In parallel, ACTH-dependent signaling events were examined in an attempt to correlate transcriptional events with the upstream activation of signaling pathways. Our results demonstrate that ACTH-dependent signaling cascades modulate the temporal dynamics of SF-1-dependent complex assembly on the Mc2r promoter. Strikingly, the pattern of SF-1 recruitment and the subsequent attainment of active rounds of transcription support a kinetic model of SF-1 transcriptional activation, a model originally established in the context of ligand-dependent transcription by several classical nuclear hormone receptors. An assessment of the major ACTH-dependent signaling pathways highlights pivotal roles for the MAPK as well as the cAMP-dependent protein kinase A pathway in the entrainment of SF-1-mediated transcriptional events. In addition, the current study demonstrates that specific enzymatic activities are capable of regulating distinct facets of a highly ordered transcriptional response.
Collapse
Affiliation(s)
- Jonathon N Winnay
- Department of Molecular and Integrative Pysiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0678, USA
| | | |
Collapse
|
44
|
Chen WY, Juan LJ, Chung BC. SF-1 (nuclear receptor 5A1) activity is activated by cyclic AMP via p300-mediated recruitment to active foci, acetylation, and increased DNA binding. Mol Cell Biol 2005; 25:10442-53. [PMID: 16287857 PMCID: PMC1291237 DOI: 10.1128/mcb.25.23.10442-10453.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Steroidogenic factor 1 (SF-1) is a nuclear receptor essential for steroidogenic gene expression, but how its activity is regulated is unclear. Here we demonstrate that p300 plays an important role in regulating SF-1 function. SF-1 was acetylated in vitro and in vivo by p300 at the KQQKK motif in the Ftz-F1 (Fushi-tarazu factor 1) box adjacent to its DNA-binding domain. Mutation of the KQQKK motif reduced the DNA-binding activity and p300-dependent activation of SF-1. When stimulated with cyclic AMP (cAMP), adrenocortical Y1 cells expressed more p300, leading to additional SF-1 association with p300 and increased SF-1 acetylation and DNA binding. It also increased SF-1 colocalization with p300 in nuclear foci. Collectively, these results indicate that SF-1 transcriptional activity is regulated by p300 in response to the cAMP signaling pathway by way of increased acetylation, DNA binding, and recruitment to nuclear foci.
Collapse
Affiliation(s)
- Wei-Yi Chen
- Institute of Molecular Biology, 48, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | |
Collapse
|
45
|
Mansure JJ, Furtado DR, de Oliveira FMB, Rumjanek FD, Franco GR, Fantappié MR. Cloning of a protein arginine methyltransferase PRMT1 homologue from Schistosoma mansoni: Evidence for roles in nuclear receptor signaling and RNA metabolism. Biochem Biophys Res Commun 2005; 335:1163-72. [PMID: 16129092 DOI: 10.1016/j.bbrc.2005.07.192] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 07/29/2005] [Indexed: 11/30/2022]
Abstract
The most studied arginine methyltransferase is the type I enzyme, which catalyzes the transfer of an S-adenosyl-L-methionine to a broad spectrum of substrates, including histones, RNA-transporting proteins, and nuclear hormone receptor coactivators. We cloned a cDNA encoding a protein arginine methyltransferase in Schistosoma mansoni (SmPRMT1). SmPRMT1 is highly homologous to the vertebrate PRMT1 enzyme. In vitro methylation assays showed that SmPRMT1 recombinant protein was able to specifically methylate histone H4. Two schistosome proteins likely to be involved in RNA metabolism, SMYB1 and SmSmD3, that display a number of RGG motifs, were strongly methylated by SmPRMT1. In vitro GST pull-down assays showed that SMYB1 and SmSmD3 physically interacted with SmPRMT1. Additional GST pull-down assay suggested the occurrence of a ternary complex including SmPRMT1, SmRXR1 nuclear receptor, and the p160 (SRC-1) nuclear receptor coactivator. Together, these data suggest a mechanism by which SmPRMT1 plays a role in nuclear receptor-mediated chromatin remodeling and RNA transactions.
Collapse
Affiliation(s)
- José João Mansure
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-590, Brazil
| | | | | | | | | | | |
Collapse
|
46
|
Caron C, Boyault C, Khochbin S. Regulatory cross-talk between lysine acetylation and ubiquitination: role in the control of protein stability. Bioessays 2005; 27:408-15. [PMID: 15770681 DOI: 10.1002/bies.20210] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It is now becoming apparent that cross-talk between two protein lysine modifications, acetylation and ubiquitination, is a critical regulatory mechanism controlling vital cellular functions. The most apparent effect is the inhibition of proteasome-mediated protein degradation by lysine acetylation. Analysis of the underlying mechanisms, however, shows that, besides a direct competition between the two lysine modifications, more complex and indirect processes also connect these two signalling pathways. These findings point to protein lysine acetylation as a potential regulator of various cellular functions involving protein ubiquitination.
Collapse
Affiliation(s)
- Cécile Caron
- Laboratoire de Biologie Moléculaie et Cellulaire de la Différenciation- INSERM U309 Equipe Chromatine et expression des gènes, Institut Albert Bonniot, Faculté de. Médecine-Pharmacie, 38706 La Tronche, France
| | | | | |
Collapse
|
47
|
Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC. Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 2005; 45:495-528. [PMID: 15822187 DOI: 10.1146/annurev.pharmtox.45.120403.095825] [Citation(s) in RCA: 444] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acetylation is a key posttranslational modification of many proteins responsible for regulating critical intracellular pathways. Although histones are the most thoroughly studied of acetylated protein substrates, histone acetyltransferases (HATs) and deacetylases (HDACs) are also responsible for modifying the activity of diverse types of nonhistone proteins, including transcription factors and signal transduction mediators. HDACs have emerged as uncredentialed molecular targets for the development of enzymatic inhibitors to treat human cancer, and six structurally distinct drug classes have been identified with in vivo bioavailability and intracellular capability to inhibit many of the known mammalian members representing the two general types of NAD+-independent yeast HDACs, Rpd3 (HDACs 1, 2, 3, 8) and Hda1 (HDACs 4, 5, 6, 7, 9a, 9b, 10). Initial clinical trials indicate that HDAC inhibitors from several different structural classes are very well tolerated and exhibit clinical activity against a variety of human malignancies; however, the molecular basis for their anticancer selectivity remains largely unknown. HDAC inhibitors have also shown preclinical promise when combined with other therapeutic agents, and innovative drug delivery strategies, including liposome encapsulation, may further enhance their clinical development and anticancer potential. An improved understanding of the mechanistic role of specific HDACs in human tumorigenesis, as well as the identification of more specific HDAC inhibitors, will likely accelerate the clinical development and broaden the future scope and utility of HDAC inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Daryl C Drummond
- Hermes Biosciences, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Lysine acetylation has been shown to occur in many protein targets, including core histones, about 40 transcription factors and over 30 other proteins. This modification is reversible in vivo, with its specificity and level being largely controlled by signal-dependent association of substrates with acetyltransferases and deacetylases. Like other covalent modifications, lysine acetylation exerts its effects through "loss-of-function" and "gain-of-function" mechanisms. Among the latter, lysine acetylation generates specific docking sites for bromodomain proteins. For example, bromodomains of Gcn5, PCAF, TAF1 and CBP are able to recognize acetyllysine residues in histones, HIV Tat, p53, c-Myb or MyoD. In addition to the acetyllysine moiety, the flanking sequences also contribute to efficient recognition. The relationship between acetyllysine and bromodomains is reminiscent of the specific recognition of phosphorylated residues by phospho-specific binding modules such as SH2 domains and 14-3-3 proteins. Therefore, lysine acetylation forges a novel signaling partnership with bromodomains to govern the temporal and spatial regulation of protein functions in vivo.
Collapse
Affiliation(s)
- Xiang-Jiao Yang
- Molecular Oncology Group, Royal Victoria Hospital, Room H5.41, Department of Medicine, McGill University Health Center, 687 Pine Avenue West, Montreal, Quebec H3A 1A1, Canada.
| |
Collapse
|
49
|
Zheng W, Jefcoate CR. Steroidogenic factor-1 interacts with cAMP response element-binding protein to mediate cAMP stimulation of CYP1B1 via a far upstream enhancer. Mol Pharmacol 2004; 67:499-512. [PMID: 15523052 DOI: 10.1124/mol.104.005504] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP1B1 activates polycyclic aromatic hydrocarbon carcinogens in cAMP-regulated tissues such as the adrenal, ovary, and testis. A 27-fold cAMP stimulation of the CYP1B1-luciferase reporter in Y-1 adrenal cells depends entirely on a far upstream enhancer region (FUER; -5298 to -5110). Cooperative participation of multiple steroidogenic factor 1 (SF-1) elements with the downstream cAMP response element (CRE) in FUER is essential for both basal and cAMP-stimulated activities of FUER. Basal and induced activities were similarly lowered by DAX-1, an SF-1 suppressor, and raised by steroid receptor coactivator 1, an SF-1 coactivator. cAMP response element-binding protein (CREB)-binding protein (CBP) that interacts preferentially with the phosphorylated-CREB increased the cAMP-induced FUER. 10T1/2 cells and human embryonic kidney (HEK)293 cells do not express SF-1. Introduction of exogenous SF-1 generated cAMP stimulation of the FUER in 10T1/2 fibroblasts. The same transfection only increased basal activity of FUER in HEK293 cells, despite presence of active CREB in cells. HEK293 cells therefore remain deficient in additional factor(s) critical to the cAMP stimulation of CYP1B1. Mutations of the protein kinase A (PKA) and the mitogen-activated protein kinase phosphorylation sites (Ser-430 and Ser-203) on SF-1 had no effect on the SF-1-dependent FUER stimulation in Y-1 and 10T1/2 cells. This contrasts with loss of activity with mutation of CREB at PKA phosphorylation site (Ser-133). SF-1 phosphorylation at these sites is therefore not essential for the cAMP stimulation and the cooperation with CREB. cAMP-enhanced activation protein 1 (AP-1) and stimulatory protein 1 (Sp1) complexes in the proximal promoter region contributed substantially to both basal and cAMP-stimulated FUER activity. Chromatin immunoprecipitation from primary rat adrenal cells demonstrated cAMP stimulation of histone acetylation proximal to, respectively, the FUER and AP-1 sites of CYP1B1.
Collapse
Affiliation(s)
- Wenchao Zheng
- Department of Pharmacology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA
| | | |
Collapse
|
50
|
Margueron R, Duong V, Castet A, Cavaillès V. Histone deacetylase inhibition and estrogen signalling in human breast cancer cells. Biochem Pharmacol 2004; 68:1239-46. [PMID: 15313422 DOI: 10.1016/j.bcp.2004.04.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 04/19/2004] [Indexed: 11/30/2022]
Abstract
Estrogens are steroid hormones, which act through specific nuclear estrogen receptors (ERalpha and ERbeta) and are important regulators of breast cancer growth. These receptors control gene expression by recruiting transcriptional cofactors that exhibit various enzymatic activities such as histone acetyltransferase or histone deacetylase (HDAC) which target histone as well as non-histone substrates. The ERalpha itself and some of the transcriptional regulators have been shown to be acetylated proteins. Research performed over the last decade has highlighted the role of HDAC inhibitors (HDACi) as modulators of transcriptional activity and as a new class of therapeutic agents. In human cancer cells, inhibition of HDACs controls the expression of the ERalpha gene and the transcriptional activity in response to partial antiestrogens such as 4-hydroxytamoxifen. Various HDACi strongly inhibit breast cancer cell proliferation and ERalpha-negative (ER-) appear less sensitive than ERalpha-positive (ER+) cell lines. p21WAF1/CIP1 gene expression, in relation with ERalpha levels, could play a role in this differential response of breast cancer cells to hyperacetylating agents.
Collapse
Affiliation(s)
- Raphaël Margueron
- INSERM U540 Endocrinologie Moléculaire et Cellulaire des Cancers and Université de Montpellier I, 60 Rue de Navacelles, 34090, France
| | | | | | | |
Collapse
|