1
|
Zhu Z, Fang C, Xu H, Yuan L, Du Y, Ni Y, Xu Y, Shao A, Zhang A, Lou M. Anoikis resistance in diffuse glioma: The potential therapeutic targets in the future. Front Oncol 2022; 12:976557. [PMID: 36046036 PMCID: PMC9423707 DOI: 10.3389/fonc.2022.976557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
Glioma is the most common malignant intracranial tumor and exhibits diffuse metastasis and a high recurrence rate. The invasive property of glioma results from cell detachment. Anoikis is a special form of apoptosis that is activated upon cell detachment. Resistance to anoikis has proven to be a protumor factor. Therefore, it is suggested that anoikis resistance commonly occurs in glioma and promotes diffuse invasion. Several factors, such as integrin, E-cadherin, EGFR, IGFR, Trk, TGF-β, the Hippo pathway, NF-κB, eEF-2 kinase, MOB2, hypoxia, acidosis, ROS, Hsp and protective autophagy, have been shown to induce anoikis resistance in glioma. In our present review, we aim to summarize the underlying mechanism of resistance and the therapeutic potential of these molecules.
Collapse
Affiliation(s)
- Zhengyang Zhu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Du
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunjia Ni
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
MiR-192 and miR-662 enhance chemoresistance and invasiveness of squamous cell lung carcinoma. Lung Cancer 2018; 118:111-118. [PMID: 29571988 DOI: 10.1016/j.lungcan.2018.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Overexpression of miR-192, miR-192* and miR-662 was previously found to correlate with poor prognosis of early-stage squamous cell lung cancer (SCC) patients. In this study, we investigated the relevance of these miRNAs to cancer cell biology and chemoresistance. MATERIALS AND METHODS MiRNA expression profile was analysed in 10 non-small cell lung cancer (NSCLC) cell lines using RT-qPCR. H520 and H1703 cells were transfected with miRNA inhibitors (anti-miR-192, -192* and -662) for functional studies. Chemoresistance to cisplatin and etoposide was evaluated using MTT colorimetric assay. H520 cells were subjected to 3D soft-agar colony formation assay and H1703 cells to wound healing assay. Whole transcriptome analysis was used to assess the effect of miR-192 and miR-662 inhibition on gene expression. RESULTS SCC cell lines, H520 and H1703, differed in miRNA expression and phenotypic features. MiR-192 and miR-662 inhibition decreased clonogenicity and motility of SCC cells. MiR-192 and miR-662 inhibition sensitized SCC cells to etoposide but not to cisplatin. Whole transcriptome analysis revealed genes regulated by miR-192 and miR-662 in SCC, relevant to maintaining chemoresistance, invasiveness, epithelial-mesenchymal transition (EMT) and immune evasion. CONCLUSIONS We showed for the first time that miR-192 and miR-662 have functional role in SCC cells. Our findings suggest that targeting these miRNAs may impact both chemoresistance and invasiveness of SCC, and add to the evidence linking these aspects of tumour biology. Overexpression of miR-192 and miR-662 might be useful as a marker of resistance to etoposide.
Collapse
|
3
|
Nagel JM, Lahm H, Ofner A, Göke B, Kolligs FT. γ-Catenin acts as a tumor suppressor through context-dependent mechanisms in colorectal cancer. Int J Colorectal Dis 2017; 32:1243-1251. [PMID: 28681073 DOI: 10.1007/s00384-017-2846-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2017] [Indexed: 02/04/2023]
Abstract
PURPOSE γ-Catenin is a protein closely related to β-catenin. While the overexpression of β-catenin has been linked with impaired prognosis and survival in various malignancies, both oncogenic and tumor suppressor functions have been described for γ-catenin. Thus, its role in cancer remains controversial. In this study, we examined the impact of γ-catenin expression on the malignant potential of colorectal cancer cells. METHODS γ-Catenin was knocked down by short interfering RNA in the γ-catenin-proficient DLD-1 cell line and stably overexpressed in the γ-catenin-deficient cell line RKO. The effects of these molecular manipulations on the malignant potential of the cell lines were tested in vitro and in vivo in a xenograft tumor model. RESULTS γ-Catenin contributed to Wnt signaling independent of the cellular context. Unlike its sister molecule β-catenin, γ-catenin inhibited cellular invasion and anoikis in cells endogenously expressing γ-catenin. In line with this tumor suppressor function, its de novo expression in RKO cells inhibited proliferation via cell cycle arrest. In a xenograft tumor model, overexpression of γ-catenin starkly reduced tumor growth in vivo. CONCLUSIONS This is the first report demonstrating a tumor-suppressive effect of γ-catenin in colorectal cancer both in vitro and in vivo. Detailed in vitro analysis revealed that effects of γ-catenin differ in γ-catenin proficient and deficient cells, indicating that its function in colorectal cancer is dependent on the cellular context. This finding adds to our understanding of γ-catenin and may have implications for future studies of catenin/Wnt targeted cancer therapies.
Collapse
Affiliation(s)
- Jutta Maria Nagel
- Department of Medicine II, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Harald Lahm
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilian University of Munich (LMU), Feodor-Lynen-Strasse 25, 81377, Munich, Germany
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technical University (TU), Munich Heart Alliance, Lazarettstraße 36, 80636, Munich, Germany
| | - Andrea Ofner
- Department of Medicine II, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Burkhard Göke
- Department of Medicine II, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- University Hospital Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Frank Thomas Kolligs
- Department of Medicine II, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Department of Internal Medicine and Gastroenterology, HELIOS Klinikum Berlin-Buch, Schwanebecker Chaussee 50, 13125, Berlin, Germany
| |
Collapse
|
4
|
Evaluation of MicroRNAs Regulating Anoikis Pathways and Its Therapeutic Potential. BIOMED RESEARCH INTERNATIONAL 2015; 2015:716816. [PMID: 26587543 PMCID: PMC4637442 DOI: 10.1155/2015/716816] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/07/2015] [Indexed: 12/29/2022]
Abstract
Dysregulation of microRNAs (miRNAs) has been implicated in almost every known survival mechanisms utilized by cancer cells. One of such mechanisms, anoikis resistance, plays a pivotal role in enabling metastasis by allowing cancer cells to circumvent cell death induced by lack of attachment. Understanding how miRNAs regulate the various anoikis pathways has become the research question of increasing number of studies published in the past years. Through these studies, a growing list of miRNAs has been identified to be important players in promoting either anoikis or resistance to anoikis. In this review, we will be focusing on these miRNAs and how the findings from those studies can contribute to novel therapeutic strategies against cancer progression. We will be examining miRNAs that have been found to promote anoikis sensitivity in numerous cancer types followed by miRNAs that inhibit anoikis. In addition, we will also be taking a look at major signaling pathways involved in the action of the each of these miRNAs to gain a better understanding on how miRNAs regulate anoikis.
Collapse
|
5
|
The N-cadherin cytoplasmic domain confers anchorage-independent growth and the loss of contact inhibition. Sci Rep 2015; 5:15368. [PMID: 26481443 PMCID: PMC4612716 DOI: 10.1038/srep15368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/25/2015] [Indexed: 12/27/2022] Open
Abstract
Tumor growth is characterized by anchorage independence and the loss of contact inhibition. Previously, we showed that either a red fluorescent protein (DsRed)-tagged N-cadherin or E-cadherin cytoplasmic domain (DNCT or DECT) could function as a dominant negative inhibitor by blocking the cell surface localization of endogenous E-cadherin and inducing cell dissociation. Here, we show that expression of DNCT abrogated contact inhibition of proliferation and conferred anchorage-independent growth. DNCT expression induced the relocation of the tumor suppressor Merlin from the cell surface to intracellular compartments. Although DNCT expression induced redistribution of TAZ from the cytoplasm to the nucleus, YAP/TAZ signaling was not activated. An E-cadherin–α-catenin chimera that functions as a β-catenin–independent cell adhesion molecule restored contact inhibition and anchorage-dependency of growth. Addition of the SV40 large T antigen nuclear localization signal reversed the effects of DNCT expression, indicating that DNCT functioned outside of the nucleus.
Collapse
|
6
|
Cadmium-Induced Ototoxicity in Rat Cochlear Organotypic Cultures. Neurotox Res 2014; 26:179-89. [DOI: 10.1007/s12640-014-9461-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
|
7
|
Jiang L, Chan JYW, Fung KP. Epigenetic loss of CDH1 correlates with multidrug resistance in human hepatocellular carcinoma cells. Biochem Biophys Res Commun 2012; 422:739-44. [PMID: 22634315 DOI: 10.1016/j.bbrc.2012.05.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 05/12/2012] [Indexed: 01/31/2023]
Abstract
Promoter CpG hypermethylation of tumor suppressor genes is an essential step in cancer progression but little is known about its effect on cancer multidrug resistance. In this study, we showed that CDH1 promoter was hypermethylated in drug resistance of a doxorubicin-induced multidrug resistant hepatocellular carcinoma cell line R-HepG2. Transfection of CDH1 cDNA into R-HepG2 cells led to increased amount of doxorubicin uptake, decreased cell viability, decreased P-glycoprotein expression and increased apoptotic population of cells exposed to doxorubicin. Proto-oncogene tyrosine-protein kinase FYN was over-expressed in R-HepG2 cells which displayed a negative correlation with the expression of CDH1. FYN was knocked down in R-HepG2 cells, leading to less drug resistance by increased cell viability, increased doxorubicin uptake and attenuated P-glycoprotein expression. Our findings identified epigenetic silencing of CDH1 in cancer cells might be a new molecular event of multidrug resistance.
Collapse
Affiliation(s)
- Lei Jiang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | | | | |
Collapse
|
8
|
Lee SS, Tsai CH, Tsai LL, Chou MC, Chou MY, Chang YC. β-catenin expression in areca quid chewing-associated oral squamous cell carcinomas and upregulated by arecoline in human oral epithelial cells. J Formos Med Assoc 2012; 111:194-200. [PMID: 22526207 DOI: 10.1016/j.jfma.2010.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 11/15/2010] [Accepted: 11/18/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND/PURPOSE Nuclear localization of β-catenin is known to associate with malignant transformation of many squamous cell carcinomas. The aim of this study was to compare β-catenin expression in normal human oral epithelium and areca quid chewing associated oral squamous cell carcinomas (OSCCs) and further to explore the potential mechanisms that may lead to induce β-catenin expression. METHODS A total of 40 areca quid chewing-associated OSCCs and 10 normal oral tissue biopsy samples without areca quid chewing were analyzed by immunohistochemistry. The oral epithelial cell line GNM cells were challenged with arecoline, a major areca nut alkaloid, by using Western blot analysis. Furthermore, extracellular signal-regulated protein kinase inhibitor PD98059, glutathione precursor N-acetyl-l-cysteine (NAC), tyrosine kinase inhibitor herbimycin-A, p38 inhibitor SB203580, and phosphatidylinositaol 3-kinase inhibitor LY294002 were added to find the possible regulatory mechanisms. RESULTS β-catenin expression was significantly higher in OSCC specimens than that in normal oral epithelial specimens (p < 0.05). It was demonstrated that normal oral epithelium showed only membranous staining for β-catenin, and membranous staining was lost or reduced with an increase in cytoplasmic/nuclear staining in OSCCs. Arecoline was found to elevate β-catenin expression in a dose-dependent manner (p < 0.05). The addition of PD98059, NAC, herbimycin-A, SB203580, and LY294002 markedly inhibited the arecoline-induced β-catenin expression (p < 0.05). CONCLUSION β-catenin expression is significantly upregulated in areca quid chewing-associated OSCC. The localization of β-catenin expression is correlated with the tumor size and clinical stage. In addition, β-catenin expression induced by arecoline is downregulated by PD98059, NAC, herbimycin-A, SB203580, and LY294002.
Collapse
Affiliation(s)
- Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
9
|
Matthes SA, Taffet S, Delmar M. Plakophilin-2 and the migration, differentiation and transformation of cells derived from the epicardium of neonatal rat hearts. ACTA ACUST UNITED AC 2011; 18:73-84. [PMID: 21985446 DOI: 10.3109/15419061.2011.621561] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During development, epicardial cells act as progenitors for a large fraction of non-myocyte cardiac cells. Expression and function of molecules of the desmosome in the postnatal epicardium has not been studied. The objective of this study was to assess the expression of desmosomal molecules, and the functional importance of the desmosomal protein plakophilin-2 (PKP2), in epicardial and epicardium-derived cells. Epicardial explants were obtained from neonatal rat hearts. Presence of mechanical junction proteins was assessed by immunocytochemistry. Explants after PKP2 knockdown showed increased abundance of alpha smooth muscle actin-positive cells, increased abundance of lipid markers, enhanced cell migration velocity and increased abundance of a marker of cell proliferation. We conclude that a population of non-excitable, cardiac-resident cells express desmosomal molecules and, in vitro, show functional properties (including lipid accumulation) that depend on PKP2 expression. The possible relevance of our data to the pathophysiology of arrhythmogenic right ventricular cardiomyopathy, is discussed.
Collapse
Affiliation(s)
- Stephanie A Matthes
- Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | |
Collapse
|
10
|
Lau MT, Klausen C, Leung PCK. E-cadherin inhibits tumor cell growth by suppressing PI3K/Akt signaling via β-catenin-Egr1-mediated PTEN expression. Oncogene 2011; 30:2753-66. [DOI: 10.1038/onc.2011.6] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Gan L, Liu P, Lu H, Chen S, Yang J, McCarthy JB, Knudsen KE, Huang H. Cyclin D1 promotes anchorage-independent cell survival by inhibiting FOXO-mediated anoikis. Cell Death Differ 2009; 16:1408-17. [PMID: 19575018 DOI: 10.1038/cdd.2009.86] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
O-class forkhead box (FOXO) transcription factors are critical regulators of diverse cellular processes, including apoptosis, cell-cycle arrest, DNA damage repair and oxidative stress resistance. Here, we show that FOXO1 and FOXO3a have an essential function in promoting cell detachment-induced anoikis, resistance to which is implicated in cancer development and metastasis. In contrast, the oncoprotein cyclin D1 inhibits anoikis. We further show that cyclin D1 interacts with FOXO proteins and impedes their transcriptional regulatory and anoikis-promoting functions. This effect of cyclin D1 requires its transcription repression domain but is independent of cyclin-dependent kinases CDK4 and CDK6. Moreover, we show that cancer-derived mutants of cyclin D1 are much more stable than wild-type cyclin D1 under anchorage-independent conditions and possess a greater antagonistic effect on FOXO-regulated anoikis and anchorage-independent growth of cancer cells. These data suggest that cyclin D1 may have a critical function in tumorigenesis and cancer metastasis by inhibiting the anoikis-promoting function of FOXO proteins.
Collapse
Affiliation(s)
- L Gan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Leong KG, Niessen K, Kulic I, Raouf A, Eaves C, Pollet I, Karsan A. Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. ACTA ACUST UNITED AC 2007; 204:2935-48. [PMID: 17984306 PMCID: PMC2118507 DOI: 10.1084/jem.20071082] [Citation(s) in RCA: 379] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aberrant expression of Jagged1 and Notch1 are associated with poor outcome in breast cancer. However, the reason that Jagged1 and/or Notch overexpression portends a poor prognosis is unknown. We identify Slug, a transcriptional repressor, as a novel Notch target and show that elevated levels of Slug correlate with increased expression of Jagged1 in various human cancers. Slug was essential for Notch-mediated repression of E-cadherin, which resulted in beta-catenin activation and resistance to anoikis. Inhibition of ligand-induced Notch signaling in xenografted Slug-positive/E-cadherin-negative breast tumors promoted apoptosis and inhibited tumor growth and metastasis. This response was associated with down-regulated Slug expression, reexpression of E-cadherin, and suppression of active beta-catenin. Our findings suggest that ligand-induced Notch activation, through the induction of Slug, promotes tumor growth and metastasis characterized by epithelial-to-mesenchymal transition and inhibition of anoikis.
Collapse
Affiliation(s)
- Kevin G Leong
- Department of Medical Biophysics, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Toyoshima M, Tanaka N, Aoki J, Tanaka Y, Murata K, Kyuuma M, Kobayashi H, Ishii N, Yaegashi N, Sugamura K. Inhibition of tumor growth and metastasis by depletion of vesicular sorting protein Hrs: its regulatory role on E-cadherin and beta-catenin. Cancer Res 2007; 67:5162-71. [PMID: 17545595 DOI: 10.1158/0008-5472.can-06-2756] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abnormally high signals from receptor tyrosine kinases (RTK) are associated with carcinogenesis, and impaired deactivation of RTKs may also be a mechanism in cancer. Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is one of the master regulators that sort activated receptors toward lysosomes and shut down their signals. Hrs contains a ubiquitin-interacting motif and is involved in the endosomal sorting of monoubiquitinated membrane proteins, such as growth factor receptor and E-cadherin. Here, we investigated the role of Hrs in determining the malignancy of cancer cells and discovered that the targeted disruption of Hrs by small interfering RNA effectively attenuated the proliferation, anchorage-independent growth, tumorigenesis, and metastatic potential of HeLa cells in vitro and in vivo. The restoration of Hrs expression increased cell proliferation and anchorage-independent growth in a mouse embryonic fibroblast line established from a Hrs knockout mouse. Further analysis revealed that Hrs depletion was associated with the up-regulation of E-cadherin and reduced beta-catenin signaling. The aberrant accumulation of E-cadherin most likely resulted from impaired E-cadherin degradation in lysosomes. These results suggest that Hrs may play a critical role in determining the malignancy of cancer cells by regulating the degradation of E-cadherin.
Collapse
Affiliation(s)
- Masafumi Toyoshima
- Department of Microbiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chen CH, Lu PJ, Chen YC, Fu SL, Wu KJ, Tsou AP, Lee YCG, Lin TCE, Hsu SL, Lin WJ, Huang CYF, Chou CK. FLJ10540-elicited cell transformation is through the activation of PI3-kinase/AKT pathway. Oncogene 2007; 26:4272-83. [PMID: 17237822 DOI: 10.1038/sj.onc.1210207] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A significant challenge in the post-genomic era is how to prioritize differentially expressed and uncharacterized novel genes found in hepatocellular carcinoma (HCC) microarray profiling. One such category is cell cycle regulated genes that have only evolved in higher organisms but not in lower eukaryotic cells. Characterization of these genes may reveal some novel human cancer-specific abnormalities. A novel transcript, FLJ10540 was identified. FLJ10540 is overexpressed in HCC as examined by quantitative reverse transcription-polymerase chain reaction and immunohistochemistry. The patients with higher FLJ10540 expression had a poor survival than those with lower FLJ10540 expression. Functional characterization indicates that FLJ10540 displays a number of characteristics associated with an oncogene, including anchorage-independent growth, enhanced cell growth at low serum levels and induction of tumorigenesis in nude mice. FLJ10540-elicited cell transformation is mediated by activation of the phosphatidylinositol 3'-kinase (PI3K)/AKT pathway. Moreover, FLJ10540 forms a complex with PI3K and can activate PI3K activity, which provides a mechanistic basis for FLJ10540-mediated oncogenesis. Together, using a combination of bioinformatics searches and empirical data, we have identified a novel oncogene, FLJ10540, which is conserved only in higher organisms. The finding raises the possibility that FLJ10540 is a potential new therapeutic target for HCC treatment. These findings may contribute to the development of new therapeutic strategies that are able to block the PI3K/AKT pathway in cancer cells.
Collapse
Affiliation(s)
- C-H Chen
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Fischer ANM, Fuchs E, Mikula M, Huber H, Beug H, Mikulits W. PDGF essentially links TGF-beta signaling to nuclear beta-catenin accumulation in hepatocellular carcinoma progression. Oncogene 2006; 26:3395-405. [PMID: 17130832 DOI: 10.1038/sj.onc.1210121] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The cooperation of Ras - extracellular signal-regulated kinase/mitogen-activated protein kinase and transforming growth factor (TGF)-beta signaling provokes an epithelial to mesenchymal transition (EMT) of differentiated p19(ARF) null hepatocytes, which is accompanied by a shift in malignancy and gain of metastatic properties. Upon EMT, TGF-beta induces the secretion and autocrine regulation of platelet-derived growth factor (PDGF) by upregulation of PDGF-A and both PDGF receptors. Here, we demonstrate by loss-of-function analyses that PDGF provides adhesive and migratory properties in vitro as well as proliferative stimuli during tumor formation. PDGF signaling resulted in the activation of phosphatidylinositol-3 kinase, and furthermore associated with nuclear beta-catenin accumulation upon EMT. Hepatocytes expressing constitutively active beta-catenin or its negative regulator Axin were employed to study the impact of nuclear beta-catenin. Unexpectedly, active beta-catenin failed to accelerate proliferation during tumor formation, but in contrast, correlated with growth arrest. Nuclear localization of beta-catenin was accompanied by strong expression of the Cdk inhibitor p16(INK4A) and the concomitant induction of the beta-catenin target genes cyclin D1 and c-myc. In addition, active beta-catenin revealed protection of malignant hepatocytes against anoikis, which provides a prerequisite for the dissemination of carcinoma. From these data, we conclude that TGF-beta acts tumor progressive by induction of PDGF signaling and subsequent activation of beta-catenin, which endows a subpopulation of neoplastic hepatocytes with features of cancer stem cells..
Collapse
Affiliation(s)
- A N M Fischer
- Department of Medicine I, Division: Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
16
|
Neria F, Caramelo C, Peinado H, González-Pacheco FR, Deudero JJP, de Solis AJ, Fernández-Sánchez R, Peñate S, Cano A, Castilla MA. Mechanisms of endothelial cell protection by blockade of the JAK2 pathway. Am J Physiol Cell Physiol 2006; 292:C1123-31. [PMID: 17035297 DOI: 10.1152/ajpcell.00548.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inhibition of the JAK2/STAT pathway has been implicated recently in cytoprotective mechanisms in both vascular smooth muscle cells and astrocytes. The advent of JAK2-specific inhibitors provides a practical tool for the study of this pathway in different cellular types. An interest in finding methods to improve endothelial cell (EC) resistance to injury led us to examine the effect of JAK2/STAT inhibition on EC protection. Furthermore, the signaling pathways involved in JAK2/STAT inhibition-related actions were examined. Our results reveal, for the first time, that blockade of JAK2 with the tyrosine kinase inhibitor AG490 strongly protects cultured EC against cell detachment-dependent death and serum deprivation and increases reseeding efficiency. Confirmation of the specificity of the effects of JAK2 inhibition was attained by finding protective effects on transfection with a dominant negative JAK2. Furthermore, AG490 blocked serum deprivation-induced phosphorylation of JAK2. In terms of mechanism, treatment with AG490 induces several relevant responses, both in monolayer and detached cells. These mechanisms include the following: 1) Increase and nuclear translocation of the active, dephosphorylated form of beta-catenin. In functional terms, this translocation is transcriptionally active, and its protective effect is further supported by the stimulation of EC cytoprotection by transfectionally induced excess of beta-catenin. 2) Increase of platelet endothelial cell adhesion molecule (PECAM)/CD31 levels. 3) Increase in total and phosphorylated AKT. 4) Increase in phosphorylated glycogen synthase kinase (GSK)3alpha/beta. The present findings imply potential practical applications of JAK2 inhibition on EC. These applications affect not only EC in the monolayer but also circulating detached cells and involve mechanistic interactions not previously described.
Collapse
Affiliation(s)
- Fernando Neria
- Laboratorio de Nefrología-Hipertensión, Fundación Jiménez Díaz, Universidad Autónoma, Avda. Reyes Católicos 2, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Park KS, Jeon SH, Kim SE, Bahk YY, Holmen SL, Williams BO, Chung KC, Surh YJ, Choi KY. APC inhibits ERK pathway activation and cellular proliferation induced by RAS. J Cell Sci 2006; 119:819-27. [PMID: 16478791 DOI: 10.1242/jcs.02779] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inactivating mutations in the adenomatous polyposis coli gene (APC), and activating mutations in RAS, occur in a majority of colorectal carcinomas. However, the relationship between these changes and tumorigenesis is poorly understood. RAS-induced activation of the ERK pathway was reduced by overexpressing APC in DLD-1 colorectal cancer cells. ERK activity was increased by Cre-virus-induced Apc knockout in primary Apc(flox/flox) mouse embryonic fibroblasts, indicating that APC inhibits ERK activity. ERK activity was increased by overexpression and decreased by knock down of beta-catenin. The activation of Raf1, MEK and ERK kinases by beta-catenin was reduced by co-expression of APC. These results indicate that APC inhibits the ERK pathway by an action on beta-catenin. RAS-induced activation of the ERK pathway was reduced by the dominant negative form of TCF4, indicating that the ERK pathway regulation by APC/beta-catenin signaling is, at least, partly caused by effects on beta-catenin/TCF4-mediated gene expression. The GTP loading and the protein level of mutated RAS were decreased in cells with reduced ERK activity as a result of APC overexpression, indicating that APC regulates RAS-induced ERK activation at least partly by reduction of the RAS protein level. APC regulates cellular proliferation and transformation induced by activation of both RAS and beta-catenin signaling.
Collapse
Affiliation(s)
- Ki-Sook Park
- Division of Molecular and Cellular Biology, Department of Biotechnology, Yonsei University, Seoul 120-752, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Almeida M, Han L, Bellido T, Manolagas SC, Kousteni S. Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and -independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J Biol Chem 2005; 280:41342-51. [PMID: 16251184 DOI: 10.1074/jbc.m502168200] [Citation(s) in RCA: 327] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic studies in humans and mice have revealed an important role of the Wnt signaling pathway in the regulation of bone mass, resulting from potent effects on the control of osteoblast progenitor proliferation, commitment, differentiation, and perhaps osteoblast apoptosis. To establish the linkage between Wnts and osteoblast survival and to elucidate the molecular pathways that link the two, we have utilized three cell models: the uncommitted bipotential C2C12 cells, the pre-osteoblastic cell line MC3T3-E1, and bone marrow-derived OB-6 osteoblasts. Serum withdrawal-induced apoptosis was prevented by the canonical Wnts (Wnt3a and Wnt1) and the noncanonical Wnt5a in all cell types. Wnt3a induced LRP5-independent transient phosphorylation and nuclear accumulation of ERKs and phosphorylation of Src and Akt. The anti-apoptotic effect of Wnt3a was abrogated by inhibitors of canonical Wnt signaling, as well as by inhibitors of MEK, Src, phosphatidylinositol 3-kinase (PI3K), or Akt kinases, or by the addition of cycloheximide to the culture medium. Wnt3a-induced phosphorylation of GSK-3beta and downstream activation of beta-catenin-mediated transcription required ERK, PI3K, and Akt signaling. Wnt3a increased the expression of the anti-apoptotic protein Bcl-2 in an ERK-dependent manner. Beta-catenin-mediated transcription was permissive for the anti-apoptotic actions of Wnt1 and Wnt3a but was dispensable for the anti-apoptotic action of Wnt5a. However, Src, ERKs, PI3K, and Akt kinases were required for the anti-apoptotic effects of Wnt5a. These results demonstrate for the first time that Wnt proteins, irrespective of their ability to stimulate canonical Wnt signaling, prolong the survival of osteoblasts and uncommitted osteoblast progenitors via activation of the Src/ERK and PI3K/Akt signaling cascades.
Collapse
Affiliation(s)
- Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Health Care System, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
19
|
Salceda S, Tang T, Kmet M, Munteanu A, Ghosh M, Macina R, Liu W, Pilkington G, Papkoff J. The immunomodulatory protein B7-H4 is overexpressed in breast and ovarian cancers and promotes epithelial cell transformation. Exp Cell Res 2005; 306:128-41. [PMID: 15878339 DOI: 10.1016/j.yexcr.2005.01.018] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 01/14/2005] [Accepted: 01/18/2005] [Indexed: 10/25/2022]
Abstract
B7-H4 protein is expressed on the surface of a variety of immune cells and functions as a negative regulator of T cell responses. We independently identified B7-H4 (DD-O110) through a genomic effort to discover genes upregulated in tumors and here we describe a new functional role for B7-H4 protein in cancer. We show that B7-H4 mRNA and protein are overexpressed in human serous ovarian cancers and breast cancers with relatively little or no expression in normal tissues. B7-H4 protein is extensively glycosylated and displayed on the surface of tumor cells and we provide the first demonstration of a direct role for B7-H4 in promoting malignant transformation of epithelial cells. Overexpression of B7-H4 in a human ovarian cancer cell line with little endogenous B7-H4 expression increased tumor formation in SCID mice. Whereas overexpression of B7-H4 protected epithelial cells from anoikis, siRNA-mediated knockdown of B7-H4 mRNA and protein expression in a breast cancer cell line increased caspase activity and apoptosis. The restricted normal tissue distribution of B7-H4, its overexpression in a majority of breast and ovarian cancers and functional activity in transformation validate this cell surface protein as a new target for therapeutic intervention. A therapeutic antibody strategy aimed at B7-H4 could offer an exciting opportunity to inhibit the growth and progression of human ovarian and breast cancers.
Collapse
Affiliation(s)
- Susana Salceda
- diaDexus, Inc., 343 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Loza-Coll MA, Perera S, Shi W, Filmus J. A transient increase in the activity of Src-family kinases induced by cell detachment delays anoikis of intestinal epithelial cells. Oncogene 2005; 24:1727-37. [PMID: 15674335 DOI: 10.1038/sj.onc.1208379] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Detachment of epithelial cells from the basement membrane (BM) induces apoptosis, a phenomenon now widely known as anoikis. Studies in mammary and intestinal epithelial cells have shown that the loss of attachment to the BM rapidly triggers reversible proapoptotic events from which the cells can recover if they reattach within a certain period. Thus, cells seem to be transiently protected from the initial detachment-induced proapoptotic events. The molecular mechanisms underlying such transient protection against anoikis are unknown. In this paper, we present evidence indicating that detachment of intestinal epithelial cells triggers a transient, yet significant increase in the activity of the tyrosine kinases c-Src and c-Fyn, and that this activation of Src-family kinases (SFK) contributes to the transient protection against anoikis in these cells. The protective signals from SFK are mediated by the PI3K pathway, and caveolin-1. In addition, we show that the MEK1-ERK1/2 pathway acts in a synergistic manner with SFK to protect intestinal epithelial cells from anoikis.
Collapse
Affiliation(s)
- Mariano Andres Loza-Coll
- Division of Molecular and Cellular Biology, Sunnybrook and Women's College Health Sciences Center, Department of Medical Biophysics, University of Toronto, 2075 Bayview Avenue, S Wing, Room S218, Toronto, ON, Canada M4N 3M5
| | | | | | | |
Collapse
|
21
|
Tang T, Kmet M, Corral L, Vartanian S, Tobler A, Papkoff J. Testisin, a Glycosyl-Phosphatidylinositol–Linked Serine Protease, Promotes Malignant Transformation In vitro and In vivo. Cancer Res 2005. [DOI: 10.1158/0008-5472.868.65.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Human testisin, a serine protease, is highly expressed in ovarian cancer and premeiotic spermatocytes with relatively little expression in other normal tissues. We first showed that testisin was localized on the surface of cultured tumor cells as a glycosyl-phosphatidylinositol–linked protein. We next explored the biological function of testisin in malignant transformation through manipulation of testisin expression in cell culture model systems. Small interfering RNA–mediated knockdown of endogenous testisin mRNA and protein expression in tumor cell lines led to increased apoptosis and diminished growth in soft agar. Conversely, overexpression of testisin in an epithelial cell line induced colony formation in soft agar as well as s.c. tumor growth in severe combined immunodeficient mice. A catalytic domain mutant was unable to induce soft-agar growth indicating that testisin protease activity is required for transformation. Ectopic expression of testisin in a human ovarian cancer cell line without endogenous testisin expression, led to the formation of larger tumors in severe combined immunodeficient mice. Data presented here provide the first demonstration that testisin can promote cellular processes that drive malignant transformation. Our functional data coupled with the restricted normal tissue distribution of testisin and its overexpression in a majority of ovarian cancers validates this cell surface protein as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Tenny Tang
- diaDexus, Inc., South San Francisco, California
| | - Muriel Kmet
- diaDexus, Inc., South San Francisco, California
| | | | | | | | | |
Collapse
|
22
|
Abstract
Plakophilins (pkp-1, -2, and -3) comprise a family of armadillo-repeat containing proteins that are found in the desmosomal plaque and in the nucleus. Plakophilin-1 is most highly expressed in the suprabasal layers of the epidermis and loss of plakophilin-1 expression results in skin fragility-ectodermal dysplasia syndrome, which is characterized by a reduction in the number and size of desmosomes in the epithelia of affected individuals. To investigate the role of plakophilin-1 during desmosome formation, we fused plakophilin-1 to the hormone-binding domain of the estrogen receptor to create a fusion protein (plakophilin-1/ER) that can be activated in cell culture by the addition of 4-hydroxytamoxifen. When plakophilin-1/ER was expressed in A431 cells it was incorporated into endogenous desmosomes and did not disrupt desmosome formation. A derivative of A431 cells (A431D) do not form desmosomes, even though they express all the components believed to be necessary for desmosome assembly. Expression and activation of plakophilin-1/ER in A431D cells resulted in punctate desmoplakin staining on the cell surface. Co-expression of a classical cadherin (N-cadherin) and plakophilin-1/ER in A431D cells resulted in punctate desmoplakin staining at cell-cell borders. These data suggest that plakophilin-1 can induce assembly of desmosomal components in A431D cells in the absence of a classical cadherin; however a classical cadherin (N-cadherin) is required to direct assembly of desmosomes between adjacent cells. The activatable plakophilin-1/ER system provides a unique culture system to study the assembly of the desmosomal plaque in culture.
Collapse
Affiliation(s)
- James K Wahl
- University of Nebraska Medical Center, College of Dentistry, Department of Oral Biology and Nebraska Center for Cellular Signaling, Omaha, Nebraska 68198, USA.
| |
Collapse
|
23
|
Lo Celso C, Prowse DM, Watt FM. Transient activation of beta-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development 2004; 131:1787-99. [PMID: 15084463 DOI: 10.1242/dev.01052] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When beta-catenin signalling is disturbed from mid-gestation onwards lineage commitment is profoundly altered in postnatal mouse epidermis. We have investigated whether adult epidermis has the capacity for beta-catenin-induced lineage conversion without prior embryonic priming. We fused N-terminally truncated, stabilised beta-catenin to the ligand-binding domain of a mutant oestrogen receptor (DeltaNbeta-cateninER). DeltaNbeta-cateninER was expressed in the epidermis of transgenic mice under the control of the keratin 14 promoter and beta-catenin activity was induced in adult epidermis by topical application of 4-hydroxytamoxifen (4OHT). Within 7 days of daily 4OHT treatment resting hair follicles were recruited into the hair growth cycle and epithelial outgrowths formed from existing hair follicles and from interfollicular epidermis. The outgrowths expressed Sonic hedgehog, Patched and markers of hair follicle differentiation, indicative of de novo follicle formation. The interfollicular epidermal differentiation program was largely unaffected but after an initial wave of sebaceous gland duplication sebocyte differentiation was inhibited. A single application of 4OHT was as effective as repeated doses in inducing new follicles and growth of existing follicles. Treatment of epidermis with 4OHT for 21 days resulted in conversion of hair follicles to benign tumours resembling trichofolliculomas. The tumours were dependent on continuous activation of beta-catenin and by 28 days after removal of the drug they had largely regressed. We conclude that interfollicular epidermis and sebaceous glands retain the ability to be reprogrammed in adult life and that continuous beta-catenin signalling is required to maintain hair follicle tumours.
Collapse
Affiliation(s)
- Cristina Lo Celso
- Keratinocyte Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | |
Collapse
|
24
|
Abstract
Carcinogenesis is a multistage process. At each step of this process, there are natural mechanisms protecting against development of cancer. The majority of cancers in humans is induced by carcinogenic factors present in our environment including our food. However, some natural substances present in our diet or synthesized in our cells are able to block, trap or decompose reactive oxygen species (ROS) participating in carcinogenesis. Carcinogens can also be removed from our cells. If DNA damage occurs, it is repaired in most of the cases. Unrepaired DNA alterations can be fixed as mutations in proliferating cells only and mutations of very few strategic genes can induce tumor formation, the most relevant are those activating proto-oncogenes and inactivating tumor suppressor genes. A series of mutations and/or epigenetic changes is required to drive transformation of a normal cell into malignant tumor. The apparently unrestricted growth has to be accompanied by a mechanism preserving telomeres which otherwise shorten with succeeding cell divisions leading to growth arrest. Tumor can not develop beyond the size of 1-2mm in diameter without the induction of angiogenesis which is regulated by natural inhibitors. To invade the surrounding tissues epithelial tumor cells have to lose some adhesion molecules keeping them attached to each other and to produce enzymes able to dissolve the elements of the basement membrane. On the other hand, acquisition of other adhesion molecules enables interaction of circulating tumor cells with endothelial cells facilitating extravasation and metastasis. One of the last barriers protecting against cancer is the activity of the immune system. Both innate and adaptive immunity participates in anti-tumor effects including the activity of natural killer (NK) cells, natural killer T cells, macrophages, neutrophils and eosinophils, complement, various cytokines, specific antibodies, and specific T cytotoxic cells. Upon activation neutrophils and macrophages are able to kill tumor cells but they can also release ROS, angiogenic and immunosuppressive substances. Many cytokines belonging to different families display anti-tumor activity but their role in natural anti-tumor defense remains largely to be established.
Collapse
Affiliation(s)
- Marek Jakóbisiak
- Department of Immunology, Center of Biostructure, The Medical University of Warsaw, Chalubińskiego 5, 02-004 Warsaw, Poland.
| | | | | |
Collapse
|
25
|
Seidelin JB. Colonic epithelial cell turnover: possible implications for ulcerative colitis and cancer initiation. Scand J Gastroenterol 2004; 39:201-11. [PMID: 15074387 DOI: 10.1080/00365520310005974] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- J B Seidelin
- Dept of Medical Gastroenterology C, Herlev Hospital, University of Copenhagen, Denmark.
| |
Collapse
|
26
|
Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze'ev A. Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. ACTA ACUST UNITED AC 2003; 163:847-57. [PMID: 14623871 PMCID: PMC2173691 DOI: 10.1083/jcb.200308162] [Citation(s) in RCA: 392] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Transcriptional repression of E-cadherin, characteristic of epithelial to mesenchymal transition, is often found also during tumor cell invasion. At metastases, migratory fibroblasts sometimes revert to an epithelial phenotype, by a process involving regulation of the E-cadherin–β-catenin complex. We investigated the molecular basis of this regulation, using human colon cancer cells with aberrantly activated β-catenin signaling. Sparse cultures mimicked invasive tumor cells, displaying low levels of E-cadherin due to transcriptional repression of E-cadherin by Slug. Slug was induced by β-catenin signaling and, independently, by ERK. Dense cultures resembled a differentiated epithelium with high levels of E-cadherin and β-catenin in adherens junctions. In such cells, β-catenin signaling, ErbB-1/2 levels, and ERK activation were reduced and Slug was undetectable. Disruption of E-cadherin–mediated contacts resulted in nuclear localization and signaling by β-catenin, induction of Slug and inhibition of E-cadherin transcription, without changes in ErbB-1/2 and ERK activation. This autoregulation of E-cadherin by cell–cell adhesion involving Slug, β-catenin and ERK could be important in tumorigenesis.
Collapse
|
27
|
Grueneberg DA, Pablo L, Hu KQ, August P, Weng Z, Papkoff J. A functional screen in human cells identifies UBF2 as an RNA polymerase II transcription factor that enhances the beta-catenin signaling pathway. Mol Cell Biol 2003; 23:3936-50. [PMID: 12748295 PMCID: PMC155208 DOI: 10.1128/mcb.23.11.3936-3950.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Revised: 10/21/2002] [Accepted: 02/28/2003] [Indexed: 11/20/2022] Open
Abstract
beta-Catenin signaling plays an important role in the development of many organisms and has a key part in driving the malignant transformation of epithelial cells comprising a variety of cancers. beta-Catenin can activate gene expression through its association with transcription factors of the lymphoid enhancer factor 1 (LEF-1)/T-cell factor (TCF) family. We designed a screen in human cells to identify novel genes that activate a beta-catenin-LEF/TCF-responsive promoter and isolated the high-mobility group box transcription factor, UBF2. UBF1 and UBF2 are splice variants of a common precursor RNA. Although UBF1 has been shown to activate RNA polymerase I-regulated genes, the function of UBF2 has remained obscure. Here, we show for the first time that both UBF1 and UBF2 activate RNA polymerase II-regulated promoters. UBF2 associates with LEF-1, as shown by coimmunoprecipitation experiments, and potentiates transcriptional activation stimulated by LEF-1/beta-catenin from a synthetic promoter with multimerized LEF/TCF binding sites and a natural cyclin D1 promoter with consensus LEF/TCF binding sites. Downregulation of endogenous UBF expression using an RNA interference approach reduces transcriptional activation of a beta-catenin-LEF/TCF-responsive promoter by means of overexpressed beta-catenin, further implicating UBF as a transcriptional enhancer of the beta-catenin pathway.
Collapse
|
28
|
Bain G, Müller T, Wang X, Papkoff J. Activated beta-catenin induces osteoblast differentiation of C3H10T1/2 cells and participates in BMP2 mediated signal transduction. Biochem Biophys Res Commun 2003; 301:84-91. [PMID: 12535644 DOI: 10.1016/s0006-291x(02)02951-0] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Wnt glycoproteins are important regulators of cellular differentiation and embryonic development. Some Wnt proteins induce stabilization of beta-catenin which cooperatively regulates gene expression with LEF/Tcf transcription factors. Here we demonstrate a direct role for beta-catenin signaling in osteoblast differentiation and in BMP2-mediated signal transduction. Similar to treatment with BMP-2 protein, ectopic expression of stabilized beta-catenin in C3H10T1/2 cells or activation of endogenous beta-catenin signaling with LiCl induces expression of alkaline phosphatase mRNA and protein, a defined marker of early osteoblast differentiation. Unlike BMP2 protein, stabilized beta-catenin does not induce osteocalcin gene expression, a marker of late osteoblast differentiation. BMP2-induced differentiation also leads to activation of endogenous beta-catenin signaling thus implicating beta-catenin in early steps of BMP2-mediated osteoblast differentiation. Effects of beta-catenin and BMP2 on C3H10T1/2 differentiation are not completely overlapping, implying that some aspects of BMP2-induced differentiation may be mediated by beta-catenin signaling and that beta-catenin can also participate in non-BMP2-dependent differentiation processes.
Collapse
Affiliation(s)
- Gerard Bain
- Aventis Cambridge Genomics Center, 26 Landsdowne Street, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
29
|
Windham TC, Parikh NU, Siwak DR, Summy JM, McConkey DJ, Kraker AJ, Gallick GE. Src activation regulates anoikis in human colon tumor cell lines. Oncogene 2002; 21:7797-807. [PMID: 12420216 DOI: 10.1038/sj.onc.1205989] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2002] [Revised: 08/20/2002] [Accepted: 08/20/2002] [Indexed: 12/18/2022]
Abstract
Src is a non-receptor protein tyrosine kinase, the expression and activity of which is increased in >80% of human colon cancers with respect to normal colonic epithelium. Previous studies from this and other laboratories have demonstrated that Src activity contributes to tumorigenicity of established colon adenocarcinoma cell lines. Src participates in the regulation of many signal transduction pathways, among which are those leading to cellular survival. In this study, we addressed the potential role of Src activation to a specific aspect of tumor cell survival, resistance to detachment-induced apoptosis (anoikis). Using five colon tumor cell lines with different biologic properties and genetic alterations, we demonstrate that expression and activity of Src corresponds with resistance to anoikis. Enforced expression of activated Src in subclones of SW480 cells (of low intrinsic Src expression and activity) increases resistance to anoikis; whereas decreased Src expression in HT29 cells (of high Src expression and activity) by transfection with anti-sense Src expression vectors increases susceptibility to anoikis. In contrast, increasing or decreasing Src expression had no effect on susceptibility to staurosporine-induced apoptosis in attached cells. PD173955, a Src family-specific tyrosine kinase inhibitor, increases the susceptibility of HT29 cells to anoikis in a dose- and time-dependent manner. Increasing Src expression and activity led to increased phosphorylation of Akt, a mediator of cellular survival pathways, whereas decreasing Src activity led to decreased Akt phosphorylation. In colon tumor cells with high Src activity, the PI3 kinase inhibitor LY 294002 sensitized cells to anoikis. These results suggest that Src activation may contribute to colon tumor progression and metastasis in part by activating Akt-mediated survival pathways that decrease sensitivity of detached cells to anoikis.
Collapse
Affiliation(s)
- T Christopher Windham
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Müller T, Bain G, Wang X, Papkoff J. Regulation of epithelial cell migration and tumor formation by beta-catenin signaling. Exp Cell Res 2002; 280:119-33. [PMID: 12372345 DOI: 10.1006/excr.2002.5630] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cell migration requires precise control, which is altered or lost when tumor cells become invasive and metastatic. beta-catenin plays a dual role in this process: as a member of adherens junctions it is essential to link cadherins to the cytoskeleton thereby allowing tight intercellular adhesion, and as a member of the Wnt-signaling pathway, beta-catenin is translocated into the nucleus and serves together with the LEF1/TCF-transcription factors to drive gene expression necessary for the epithelial-to-mesenchymal transition (EMT). Activated beta-catenin signaling has been implicated in the genesis of a variety of tumors. Here we demonstrate a pivotal function for beta-catenin signaling in epithelial cell migration and tumorigenesis. Hepatocyte growth factor (HGF) and epidermal growth factor (EGF) induce beta-catenin signaling under conditions where they stimulate cell motility. Ectopic expression of either stabilized beta-catenin or a regulatable form of activated beta-catenin induces cell migration in different cell types and cooperates with EGF and HGF in this process. Activation of beta-catenin signaling induces expression of the new target gene osteopontin during migration. Cells expressing stabilized beta-catenin also exhibit significantly increased capability to form tumors in a nude mouse xenograft model. The data suggest that a critical threshold of beta-catenin signaling, activated by cooperative mechanisms, may be important during the EMT and tumorigenesis.
Collapse
Affiliation(s)
- Thomas Müller
- Aventis Pharmaceuticals, Cambridge Genomics Center, Massachusetts 02139, USA.
| | | | | | | |
Collapse
|