1
|
Khan MZ, Zugaza JL, Torres Aleman I. The signaling landscape of insulin-like growth factor 1. J Biol Chem 2025; 301:108047. [PMID: 39638246 PMCID: PMC11748690 DOI: 10.1016/j.jbc.2024.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The sheer amplitude of biological actions of insulin-like growth factor I (IGF-1) affecting all types of cells in all tissues suggests a vast signaling landscape for this ubiquitous humoral signal. While the canonical signaling pathways primarily involve the Ras/MAPK and PI3K/AKT cascades, the evolutionary conservation of insulin-like peptides (ILPs) and their pathways hints at the potential for novel functions to emerge over time. Indeed, the evolutionary trajectory of ILPs opens the possibility of either novel functions for these two pathways, novel downstream routes, or both. Evidence supporting this notion includes observations of neofunctionalization in bony fishes or crustaceans, and the involvement of ILPs pathways in invertebrate eusociality or in vertebrate bone physiology, respectively. Such evolutionary processes likely contribute to the rich diversity of ILPs signaling observed today. Moreover, the interplay between conserved signaling pathways, such as those implicated in aging (predominantly involving the PI3K-AKT route), and lesser known pathways, such as those mediated by biased G-protein coupled receptors and others even less known, may underpin the context-dependent actions characteristic of ILPs signaling. While canonical IGF-1 signaling is often assumed to account for the intracellular pathways utilized by this growth factor, a comprehensive analysis of all the pathways mediated by the IGF-1 receptor (IGF-1R) remains lacking. This review aims to explore both canonical and non-canonical routes of IGF-1R action across various cell types, offering a detailed examination of the mechanisms underlying IGF-1 signaling and highlighting the significant gaps in our current understanding.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain
| | - Jose Luis Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque Science Foundation, Bilbao, Spain
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain; Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
2
|
Zhou X, Zhu H, Luo C, Xiao H, Zou X, Zou J, Zhang G. Targeting integrin α5β1 in urological tumors: opportunities and challenges. Front Oncol 2023; 13:1165073. [PMID: 37483505 PMCID: PMC10358839 DOI: 10.3389/fonc.2023.1165073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Urological tumors, such as prostate cancer, renal cell carcinoma, and bladder cancer, have shown a significant rise in prevalence in recent years and account for a significant proportion of malignant tumors. It has been established that metastasis to distant organs caused by urological tumors is the main cause of death, although the mechanisms underlying metastasis have not been fully elucidated. The fibronectin receptor integrin α5β1 reportedly plays an important role in distant metastasis and is closely related to tumor development. It is widely thought to be an important cancer mediator by interacting with different ligands, mediating tumor adhesion, invasion, and migration, and leading to immune escape. In this paper, we expound on the relationship and regulatory mechanisms of integrin α5β1 in these three cancers. In addition, the clinical applications of integrin α5β1 in these cancers, especially against treatment resistance, are discussed. Last but not least, the possibility of integrin α5β1 as a potential target for treatment is examined, with new ideas for future research being proposed.
Collapse
Affiliation(s)
- Xuming Zhou
- The First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Hezhen Zhu
- The First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Cong Luo
- The First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Huan Xiao
- The First Clinical College, Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, China
| | - Guoxi Zhang
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, China
| |
Collapse
|
3
|
Sanz‐Castillo B, Hurtado B, Vara‐Ciruelos D, El Bakkali A, Hermida D, Salvador‐Barbero B, Martínez‐Alonso D, González‐Martínez J, Santiveri C, Campos‐Olivas R, Ximénez‐Embún P, Muñoz J, Álvarez‐Fernández M, Malumbres M. The MASTL/PP2A cell cycle kinase-phosphatase module restrains PI3K-Akt activity in an mTORC1-dependent manner. EMBO J 2023; 42:e110833. [PMID: 36354735 PMCID: PMC9841333 DOI: 10.15252/embj.2022110833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
The AKT-mTOR pathway is a central regulator of cell growth and metabolism. Upon sustained mTOR activity, AKT activity is attenuated by a feedback loop that restrains upstream signaling. However, how cells control the signals that limit AKT activity is not fully understood. Here, we show that MASTL/Greatwall, a cell cycle kinase that supports mitosis by phosphorylating the PP2A/B55 inhibitors ENSA/ARPP19, inhibits PI3K-AKT activity by sustaining mTORC1- and S6K1-dependent phosphorylation of IRS1 and GRB10. Genetic depletion of MASTL results in an inefficient feedback loop and AKT hyperactivity. These defects are rescued by the expression of phosphomimetic ENSA/ARPP19 or inhibition of PP2A/B55 phosphatases. MASTL is directly phosphorylated by mTORC1, thereby limiting the PP2A/B55-dependent dephosphorylation of IRS1 and GRB10 downstream of mTORC1. Downregulation of MASTL results in increased glucose uptake in vitro and increased glucose tolerance in adult mice, suggesting the relevance of the MASTL-PP2A/B55 kinase-phosphatase module in controlling AKT and maintaining metabolic homeostasis.
Collapse
Affiliation(s)
- Belén Sanz‐Castillo
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Begoña Hurtado
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Diana Vara‐Ciruelos
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Aicha El Bakkali
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Dario Hermida
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | | | - Diego Martínez‐Alonso
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | | | - Clara Santiveri
- Spectroscopy and Nuclear Magnetic Resonance UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Ramón Campos‐Olivas
- Spectroscopy and Nuclear Magnetic Resonance UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
| | | | - Javier Muñoz
- Proteomics UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Mónica Álvarez‐Fernández
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)Instituto Universitario de Oncología del Principado de Asturias (IUOPA)OviedoSpain
| | - Marcos Malumbres
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| |
Collapse
|
4
|
Lee JS, Tocheny CE, Shaw LM. The Insulin-like Growth Factor Signaling Pathway in Breast Cancer: An Elusive Therapeutic Target. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121992. [PMID: 36556357 PMCID: PMC9782138 DOI: 10.3390/life12121992] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
In this review, we provide an overview of the role of the insulin-like growth factor (IGF) signaling pathway in breast cancer and discuss its potential as a therapeutic target. The IGF pathway ligands, IGF-1 and IGF-2, and their receptors, primarily IGF-1R, are important for normal mammary gland biology, and dysregulation of their expression and function drives breast cancer risk and progression through activation of downstream signaling effectors, often in a subtype-dependent manner. The IGF signaling pathway has also been implicated in resistance to current therapeutic strategies, including ER and HER2 targeting drugs. Unfortunately, efforts to target IGF signaling for the treatment of breast cancer have been unsuccessful, due to a number of factors, most significantly the adverse effects of disrupting IGF signaling on normal glucose metabolism. We highlight here the recent discoveries that provide enthusiasm for continuing efforts to target IGF signaling for the treatment of breast cancer patients.
Collapse
Affiliation(s)
| | | | - Leslie M. Shaw
- Correspondence: ; Tel.: +1-508-856-8675; Fax: +1-508-856-1310
| |
Collapse
|
5
|
Serrano-Aparicio N, Ferrer S, Świderek K. Covalent Inhibition of the Human 20S Proteasome with Homobelactosin C Inquired by QM/MM Studies. Pharmaceuticals (Basel) 2022; 15:ph15050531. [PMID: 35631358 PMCID: PMC9143130 DOI: 10.3390/ph15050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/02/2022] Open
Abstract
20S proteasome is a main player in the protein degradation pathway in the cytosol, thus intervening in multiple pivotal cellular processes. Over the years the proteasome has emerged as a crucial target for the treatment of many diseases such as neurodegenerative diseases, cancer, autoimmune diseases, developmental disorders, cystic fibrosis, diabetes, cardiac diseases, atherosclerosis, and aging. In this work, the mechanism of proteasome covalent inhibition with bisbenzyl-protected homobelactosin C (hBelC) was explored using quantum mechanics/molecular mechanics (QM/MM) methods. Molecular dynamic simulations were used to describe key interactions established between the hBelC and its unique binding mode in the primed site of the β5 subunit. The free energy surfaces were computed to characterize the kinetics and thermodynamics of the inhibition process. This study revealed that although the final inhibition product for hBelC is formed according to the same molecular mechanism as one described for hSalA, the free energy profile of the reaction pathway differs significantly from the one previously reported for γ-lactam-β-lactone containing inhibitors in terms of the height of the activation barrier as well as the stabilization of the final product. Moreover, it was proved that high stabilization of the covalent adduct formed between β5-subunit and hBelC, together with the presence of aminocarbonyl side chain in the structure of the inhibitor which prevents the hydrolysis of the ester bond from taking place, determines its irreversible character.
Collapse
|
6
|
Su S, Jing X, Zhang C, Hou Y, Li Z, Yang X, Zhou X, Xu P, Tang Y, Zhu J. Interaction Between the Intestinal Microbial Community and Transcriptome Profile in Common Carp ( Cyprinus carpio L.). Front Microbiol 2021; 12:659602. [PMID: 34127924 PMCID: PMC8195870 DOI: 10.3389/fmicb.2021.659602] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
In a previous study, we found that the growth performance of the new strain of Huanghe carp is related to gene expression and bacterial community in the gut. In order to better understand the relationship between the gene expression level and bacterial abundance in the gut, we studied the growth performance, gut bacterial structure, and transcriptome profile in the 4th generation of the new carp strain (selection group) at harvesting time, and compared them with the control line (traditional Huanghe carp). Body weight, depth, width, and length increased 14.58, 7.14, 5.04, and 5.07%, respectively. The gut microbiome of the selection group also exhibited significantly higher species diversity parameters (Shannon, Simpson, and chao1). Both PCA and phylogenetic analyses divided all gut samples into two parts: control and selection group. Aeromonas was the dominant taxon in the control group, followed by Firmicutes and Roseomonas; in the selection group, Roseomonas was the dominant taxon, followed by Firmicutes and then Aeromonas. Among the 249 significantly differentially expressed genes, 194 were downregulated and 55 were upregulated. Functional GO annotation produced 13 terms in the biological process, 8 in the cellular component, and 7 in the molecular function categories. KEGG annotation indicated that most of these genes were associated with the immune-related pathways. A total of 2,892 pairs of genes (245) and baceterial genera (256) were analyzed using Pearson's correlation analysis. Most of the identified associations were mapped to the immune system, bacterial community, and cell differentiation categories. The top-10 bacterial genera identified by these analyses were Methylocystis, Ohtaekwangia, Roseomonas, Shewanella, Lutispora, GpVI, Desulfovibrio, Candidatus_Berkiella, Bordetella, and Azorhizobium. Genes paired with bacteria flora were divided into four functional categories: immune, growth, adipocyte differentiation, and nerve regulation. These genes may be related to the comparatively fast growth and high muscle polyunsaturated fatty acid content of the Huanghe carp new strain. Meanwhile, nerve regulation-related genes may be a reflection of the microbiota-gut-brain axis. These results illustrate that gut bacterial community structure is associated with the growth performance and gene expression in the Huanghe carp new strain.
Collapse
Affiliation(s)
- Shengyan Su
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Xiaojun Jing
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.,College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chengfeng Zhang
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yiran Hou
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Zhixun Li
- Henan Academy of Fishery Sciences, Zhengzhou, China
| | - Xingli Yang
- Henan Academy of Fishery Sciences, Zhengzhou, China
| | - Xiaolin Zhou
- Henan Academy of Fishery Sciences, Zhengzhou, China
| | - Pao Xu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yongkai Tang
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jian Zhu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
7
|
Lero MW, Shaw LM. Diversity of insulin and IGF signaling in breast cancer: Implications for therapy. Mol Cell Endocrinol 2021; 527:111213. [PMID: 33607269 PMCID: PMC8035314 DOI: 10.1016/j.mce.2021.111213] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
This review highlights the significance of the insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF-1R) signaling pathway in cancer and assesses its potential as a therapeutic target. Our emphasis is on breast cancer, but this pathway is central to the behavior of many cancers. An understanding of how IR/IGF-1R signaling contributes to the function of the normal mammary gland provides a foundation for understanding its aberrations in breast cancer. Specifically, dysregulation of the expression and function of ligands (insulin, IGF-1 and IGF-2), receptors and their downstream signaling effectors drive breast cancer initiation and progression, often in a subtype-dependent manner. Efforts to target this pathway for the treatment of cancer have been hindered by several factors including a lack of biomarkers to select patients that could respond to targeted therapy and adverse effects on normal metabolism. To this end, we discuss ongoing efforts aimed at overcoming such obstacles.
Collapse
Affiliation(s)
- Michael W Lero
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Leslie M Shaw
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
8
|
Zhang L, Chen Z, Wang Y, Tweardy DJ, Mitch WE. Stat3 activation induces insulin resistance via a muscle-specific E3 ubiquitin ligase Fbxo40. Am J Physiol Endocrinol Metab 2020; 318:E625-E635. [PMID: 32101031 PMCID: PMC7272729 DOI: 10.1152/ajpendo.00480.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cellular mechanisms causing insulin resistance (IR) in chronic kidney disease (CKD) are poorly understood. One potential mechanism is that CKD-induced inflammation activates the signal transducer and activator of transcription 3 (Stat3) in muscle. We uncovered increased p-Stat3 in muscles of mice with CKD or mice fed high-fat diet (HFD). Activated Stat3 stimulates the expression of Fbxo40, a muscle-specific E3 ubiquitin ligase that stimulates ubiquitin conjugation leading to degradation of insulin receptor substrate 1 (IRS1). Evidence that Stat3 activates Fbxo40 includes 1) potential Stat3 binding sites in Fbxo40 promoters; 2) Stat3 binding to the Fbxo40 promoter; and 3) constitutively active Stat3 stimulating both Fbxo40 expression and its promoter activity. We found that IL-6 activates Stat3 in myotubes, increasing Fbxo40 expression with reduced IRS1 and p-Akt. Knockdown Fbxo40 using siRNA from myotubes results in higher levels of IRS1 and p-Akt despite the presence of IL-6. We treated mice with a small-molecule inhibitor of Stat3 (TTI-101) and found improved glucose tolerance and insulin signaling in skeletal muscles of mice with CKD or fed an HFD. Finally, we uncovered improved glucose tolerance in mice with muscle-specific Stat3 KO versus results in Stat3f/f mice in response to the HFD. Thus Stat3 activation in muscle increases IR in mice. Inhibition of Stat3 by TTI-101 could be developed into clinical strategies to improve muscle insulin signaling in inflammation and other catabolic diseases.
Collapse
Affiliation(s)
- Liping Zhang
- Baylor College of Medicine, Department of Medicine, Nephrology Division, Houston, Texas
| | - Zihong Chen
- Baylor College of Medicine, Department of Medicine, Nephrology Division, Houston, Texas
| | - Ying Wang
- Baylor College of Medicine, Department of Medicine, Nephrology Division, Houston, Texas
| | - David J Tweardy
- University of Texas MD Anderson Cancer Center, Division of Internal Medicine, Houston, Texas
- University of Texas MD Anderson Cancer Center, Department of Infectious Diseases, Infection Control and Employee Health, Houston, Texas
- University of Texas MD Anderson Cancer Center, Department of Molecular and Cellular Oncology, Houston, Texas
| | - William E Mitch
- Baylor College of Medicine, Department of Medicine, Nephrology Division, Houston, Texas
| |
Collapse
|
9
|
Rachdaoui N. Insulin: The Friend and the Foe in the Development of Type 2 Diabetes Mellitus. Int J Mol Sci 2020; 21:ijms21051770. [PMID: 32150819 PMCID: PMC7084909 DOI: 10.3390/ijms21051770] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
Insulin, a hormone produced by pancreatic β-cells, has a primary function of maintaining glucose homeostasis. Deficiencies in β-cell insulin secretion result in the development of type 1 and type 2 diabetes, metabolic disorders characterized by high levels of blood glucose. Type 2 diabetes mellitus (T2DM) is characterized by the presence of peripheral insulin resistance in tissues such as skeletal muscle, adipose tissue and liver and develops when β-cells fail to compensate for the peripheral insulin resistance. Insulin resistance triggers a rise in insulin demand and leads to β-cell compensation by increasing both β-cell mass and insulin secretion and leads to the development of hyperinsulinemia. In a vicious cycle, hyperinsulinemia exacerbates the metabolic dysregulations that lead to β-cell failure and the development of T2DM. Insulin and IGF-1 signaling pathways play critical roles in maintaining the differentiated phenotype of β-cells. The autocrine actions of secreted insulin on β-cells is still controversial; work by us and others has shown positive and negative actions by insulin on β-cells. We discuss findings that support the concept of an autocrine action of secreted insulin on β-cells. The hypothesis of whether, during the development of T2DM, secreted insulin initially acts as a friend and contributes to β-cell compensation and then, at a later stage, becomes a foe and contributes to β-cell decompensation will be discussed.
Collapse
Affiliation(s)
- Nadia Rachdaoui
- Department of Animal Sciences, Room 108, Foran Hall, Rutgers, the State University of New Jersey, 59 Dudley Rd, New Brunswick, NJ 08901, USA
| |
Collapse
|
10
|
Neuregulin-1 triggers GLUT4 translocation and enhances glucose uptake independently of insulin receptor substrate and ErbB3 in neonatal rat cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118562. [PMID: 31669265 DOI: 10.1016/j.bbamcr.2019.118562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/15/2019] [Accepted: 10/16/2019] [Indexed: 12/28/2022]
Abstract
During stress conditions such as pressure overload and acute ischemia, the myocardial endothelium releases neuregulin-1β (NRG-1), which acts as a cardioprotective factor and supports recovery of the heart. Recently, we demonstrated that recombinant human (rh)NRG-1 enhances glucose uptake in neonatal rat ventricular myocytes via the ErbB2/ErbB4 heterodimer and PI3Kα. The present study aimed to further elucidate the mechanism whereby rhNRG-1 activates glucose uptake in comparison to the well-established insulin and to extend the findings to adult models. Combinations of rhNRG-1 with increasing doses of insulin did not yield any additive effect on glucose uptake measured as 3H-deoxy-d-glucose incorporation, indicating that the mechanisms of the two stimuli are similar. In c-Myc-GLUT4-mCherry-transfected neonatal rat cardiomyocytes, rhNRG-1 increased sarcolemmal GLUT4 by 16-fold, similar to insulin. In contrast to insulin, rhNRG-1 did not phosphorylate IRS-1 at Tyr612, indicating that IRS-1 is not implicated in the signal transmission. Treatment of neonatal rats with rhNRG-1 induced a signaling response comparable with that observed in vitro, including increased ErbB4-pTyr1284, Akt-pThr308 and Erk1/2-pThr202/Tyr204. In contrast, in adult cardiomyocytes rhNRG-1 only increased the phosphorylation of Erk1/2 without having any significant effect on Akt and AS160 phosphorylation and glucose uptake, suggesting that rhNRG-1 function in neonatal cardiomyocytes differs from that in adult cardiomyocytes. In conclusion, our results show that similar to insulin, rhNRG-1 can induce glucose uptake by activating the PI3Kα-Akt-AS160 pathway and GLUT4 translocation. Unlike insulin, the rhNRG-1-induced effect is not mediated by IRS proteins and is observed in neonatal, but not in adult rat cardiomyocytes.
Collapse
|
11
|
|
12
|
PGC1A regulates the IRS1:IRS2 ratio during fasting to influence hepatic metabolism downstream of insulin. Proc Natl Acad Sci U S A 2019; 116:4285-4290. [PMID: 30770439 PMCID: PMC6410797 DOI: 10.1073/pnas.1815150116] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Precise modulation of hepatic glucose metabolism is crucial during the fasting and feeding cycle and is controlled by the actions of circulating insulin and glucagon. The insulin-signaling pathway requires insulin receptor substrate 1 (IRS1) and IRS2, which are found to be dysregulated in diabetes and obesity. The peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1A) is a fasting-induced transcriptional coactivator. In nonalcoholic fatty liver disease and in patients with type 2 diabetes, low hepatic PGC1A levels are associated with insulin resistance. However, how PGC1A activity impacts the hepatic insulin-signaling pathway is still unclear. We used gain- and loss-of-function models in mouse primary hepatocytes and measured hepatocyte insulin response by gene and protein expression and ex vivo glucose production. We found that the PGC1A level determines the relative ratio of IRS1 and IRS2 in hepatocytes, impacting insulin receptor signaling via protein kinase B/AKT (AKT). PGC1A drove the expression of IRS2 downstream of glucagon signaling while simultaneously reducing IRS1 expression. We illustrate that glucagon- or PGC1A-induced IRS2 expression was dependent on cAMP Response Element Binding Protein activity and that this was essential for suppression of hepatocyte gluconeogenesis in response to insulin in vitro. We also show that increased hepatic PGC1A improves glucose homeostasis in vivo, revealing a counterregulatory role for PGC1A in repressing uncontrolled glucose production in response to insulin signaling. These data highlight a mechanism by which PGC1A plays dual roles in the control of gluconeogenesis during the fasting-to-fed transition through regulated balance between IRS1 and IRS2 expression.
Collapse
|
13
|
Green CL, Lamming DW. Regulation of metabolic health by essential dietary amino acids. Mech Ageing Dev 2019; 177:186-200. [PMID: 30044947 PMCID: PMC6333505 DOI: 10.1016/j.mad.2018.07.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/27/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022]
Abstract
Although the beneficial effects of calorie restriction (CR) on health and aging were first observed a century ago, the specific macronutrients and molecular processes that mediate the effect of CR have been heavily debated. Recently, it has become clear that dietary protein plays a key role in regulating both metabolic health and longevity, and that both the quantity and quality - the specific amino acid composition - of dietary protein mediates metabolic health. Here, we discuss recent findings in model organisms ranging from yeast to mice and humans regarding the influence of dietary protein as well as specific amino acids on metabolic health, and the physiological and molecular mechanisms which may mediate these effects. We then discuss recent findings which suggest that the restriction of specific dietary amino acids may be a potent therapy to treat or prevent metabolic syndrome. Finally, we discuss the potential for dietary restriction of specific amino acids - or pharmaceuticals which harness these same mechanisms - to promote healthy aging.
Collapse
Affiliation(s)
- Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
14
|
Rachdaoui N, Polo-Parada L, Ismail-Beigi F. Prolonged Exposure to Insulin Inactivates Akt and Erk 1/2 and Increases Pancreatic Islet and INS1E β-Cell Apoptosis. J Endocr Soc 2018; 3:69-90. [PMID: 30697602 PMCID: PMC6344346 DOI: 10.1210/js.2018-00140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Chronic hyperinsulinemia, in vivo, increases the resistance of peripheral tissues to insulin by desensitizing insulin signaling. Insulin, in a heterologous manner, can also cause IGF-1 resistance. The aim of the current study was to investigate whether insulin-mediated insulin and IGF-1 resistance develops in pancreatic β-cells and whether this resistance results in β-cell decompensation. Chronic exposure of rat islets or INS1E β-cells to increasing concentrations of insulin decreased AktS473 phosphorylation in response to subsequent acute stimulation with 10 nM insulin or IGF-1. Prolonged exposure to high insulin levels not only inhibited AktS473 phosphorylation, but it also resulted in a significant inhibition of the phosphorylation of P70S6 kinase and Erk1/2 phosphorylation in response to the acute stimulation by glucose, insulin, or IGF-1. Decreased activation of Akt, P70S6K, and Erk1/2 was associated with decreased insulin receptor substrate 2 tyrosine phosphorylation and insulin receptor β-subunit abundance; neither IGF receptor β-subunit content nor its phosphorylation were affected. These signaling impairments were associated with decreased SERCA2 expression, perturbed plasma membrane calcium current and intracellular calcium handling, increased endoplasmic reticulum stress markers such as eIF2αS51 phosphorylation and Bip (GRP78) expression, and increased islet and β-cell apoptosis. We demonstrate that prolonged exposure to high insulin levels induces not only insulin resistance, but in a heterologous manner causes resistance to IGF-1 in rat islets and insulinoma cells resulting in decreased cell survival. These findings suggest the possibility that chronic exposure to hyperinsulinemia may negatively affect β-cell mass by increasing β-cell apoptosis.
Collapse
Affiliation(s)
- Nadia Rachdaoui
- Division of Clinical and Molecular Endocrinology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Luis Polo-Parada
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Faramarz Ismail-Beigi
- Division of Clinical and Molecular Endocrinology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
15
|
Koh A, Molinaro A, Ståhlman M, Khan MT, Schmidt C, Mannerås-Holm L, Wu H, Carreras A, Jeong H, Olofsson LE, Bergh PO, Gerdes V, Hartstra A, de Brauw M, Perkins R, Nieuwdorp M, Bergström G, Bäckhed F. Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1. Cell 2018; 175:947-961.e17. [DOI: 10.1016/j.cell.2018.09.055] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/30/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023]
|
16
|
Prevalence of type 2 diabetes mellitus among patients with hidradenitis suppurativa in the United States. J Am Acad Dermatol 2018; 79:71-76. [PMID: 29339240 DOI: 10.1016/j.jaad.2018.01.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/31/2022]
|
17
|
Abstract
PURPOSE OF REVIEW Insulin resistance is an early complication of chronic kidney disease (CKD) associated with worsening cardiovascular outcomes. This review will evaluate mechanisms responsible for CKD-induced insulin resistance and therapies currently available. RECENT FINDINGS Recent mechanisms have been identified including SIRPα and specific E3 ubiquitin ligases causing insulin resistance in CKD. The hallmark finding in these mechanisms is degradation of the insulin receptor substrate 1 (IRS1) which impairs intracellular insulin signaling and ultimately metabolism. The mechanisms responsible for insulin resistance in CKD include inflammation, oxidative stress, elevations in aldosterone, angiotensin II, uremic toxins, and metabolic acidosis. Potential treatments currently available for CKD-induced insulin resistance include lifestyle modification and metformin. Potential future treatments may include glucagon-like peptide agonists, SGLT2 inhibitors, and thiazolidinediones. Investigations into molecular mechanisms responsible for insulin resistance in CKD may provide new therapeutic targets while current therapies may prevent the catabolic sequelae of CKD and ameliorate its cardiovascular consequences.
Collapse
Affiliation(s)
- Natasha Dave
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Selzman Institute for Kidney Health, Houston, TX, 77030, USA
| | - Jiao Wu
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Selzman Institute for Kidney Health, Houston, TX, 77030, USA
| | - Sandhya Thomas
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Selzman Institute for Kidney Health, Houston, TX, 77030, USA.
- Michael E. Debakey Veterans Affairs Medical Center, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Mishra R, Upadhyay A, Prajapati VK, Mishra A. Proteasome-mediated proteostasis: Novel medicinal and pharmacological strategies for diseases. Med Res Rev 2018; 38:1916-1973. [DOI: 10.1002/med.21502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Ribhav Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Vijay Kumar Prajapati
- Department of Biochemistry; School of Life Sciences; Central University of Rajasthan; Rajasthan India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| |
Collapse
|
19
|
Analysis of Association of Genetic Markers in the LUZP2 and FBXO40 Genes with the Normal Variability in Cognitive Performance in the Elderly. Int J Alzheimers Dis 2018; 2018:2686045. [PMID: 29850221 PMCID: PMC5933020 DOI: 10.1155/2018/2686045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/15/2018] [Indexed: 11/17/2022] Open
Abstract
Cognitive performance is an important endophenotype for various neurodegenerative and neuropsychiatric traits. In the present study two genetic variants in the leucine-zipper protein (LUZP2) and the F-box 40 protein (FBXO40) genes, previously reported to be genome-wide significant for Alzheimer's diseases and schizophrenia, were examined for an association with cognitive abilities in normal elderly from the Russian population. Rs1021261 in the LUZP2 and rs3772130 in the FBXO40 were genotyped by multiplex PCR and MALDI-TOF mass spectrometry in a sample of 708 normal elderly subjects tested for cognitive performance using the Montreal Cognitive Assessment (MoCA). Association of genetic variability with the MoCA scores was estimated by parametric and nonparametric analysis of variance and by the frequency comparison between upper and lower quartiles of MoCA distribution. Significantly higher frequency of "TT" genotype of rs1021261 in the LUZP2 gene as well as "A" allele and "AA" genotype of rs3772130 in the FBXO40 gene was found in a subsample of individuals with the MoCA score less than 20 comparing to the fourth quartile's subsample (MoCA > 25). The data of the present study suggests that genetic variability in the LUZP2 and FBXO40 loci associated with neurodegenerative and neuropsychiatric diseases is also contributed to the normal variability in cognitive performance in the elderly.
Collapse
|
20
|
Amtul Z, Hill DJ, Arany EJ, Cechetto DF. Altered Insulin/Insulin-Like Growth Factor Signaling in a Comorbid Rat model of Ischemia and β-Amyloid Toxicity. Sci Rep 2018; 8:5136. [PMID: 29572520 PMCID: PMC5865153 DOI: 10.1038/s41598-018-22985-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke and diabetes are vascular risk factors for the development of impaired memory such as dementia and/or Alzheimer's disease. Clinical studies have demonstrated that minor striatal ischemic lesions in combination with β-amyloid (Aβ) load are critical in generating cognitive deficits. These cognitive deficits are likely to be associated with impaired insulin signaling. In this study, we examined the histological presence of insulin-like growth factor-I (IGF-1) and insulin receptor substrate (IRS-1) in anatomically distinct brain circuits compared with morphological brain damage in a co-morbid rat model of striatal ischemia (ET1) and Aβ toxicity. The results demonstrated a rapid increase in the presence of IGF-1 and IRS-1 immunoreactive cells in Aβ + ET1 rats, mainly in the ipsilateral striatum and distant regions with synaptic links to the striatal lesion. These regions included subcortical white matter, motor cortex, thalamus, dentate gyrus, septohippocampal nucleus, periventricular region and horizontal diagonal band of Broca in the basal forebrain. The alteration in IGF-1 and IRS-1 presence induced by ET1 or Aβ rats alone was not severe enough to affect the entire brain circuit. Understanding the causal or etiologic interaction between insulin and IGF signaling and co-morbidity after ischemia and Aβ toxicity will help design more effective therapeutics.
Collapse
Affiliation(s)
- Zareen Amtul
- Department of Anatomy and Cell Biology, University of Western Ontario, London, N6A 5C1, Canada.
| | - David J Hill
- Departments of Medicine, Physiology and Pharmacology, and Pediatrics, University of Western Ontario, London, N6A 5C1, Canada
- Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
| | - Edith J Arany
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, N6A 5C1, Canada
| | - David F Cechetto
- Department of Anatomy and Cell Biology, University of Western Ontario, London, N6A 5C1, Canada
| |
Collapse
|
21
|
Torii S, Kubota C, Saito N, Kawano A, Hou N, Kobayashi M, Torii R, Hosaka M, Kitamura T, Takeuchi T, Gomi H. The pseudophosphatase phogrin enables glucose-stimulated insulin signaling in pancreatic β cells. J Biol Chem 2018; 293:5920-5933. [PMID: 29483197 DOI: 10.1074/jbc.ra117.000301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/14/2018] [Indexed: 12/18/2022] Open
Abstract
Autocrine insulin signaling is critical for pancreatic β-cell growth and activity and is at least partially controlled by protein-tyrosine phosphatases (PTPs) that act on insulin receptors (IRs). The receptor-type PTP phogrin primarily localizes on insulin secretory granules in pancreatic β cells. We recently reported that phogrin knockdown decreases the protein levels of insulin receptor substrate 2 (IRS2), whereas high-glucose stimulation promotes formation of a phogrin-IR complex that stabilizes IRS2. However, the underlying molecular mechanisms by which phogrin affects IRS2 levels are unclear. Here, we found that relative to wildtype mice, IRS2 levels in phogrin-knockout mice islets decreased by 44%. When phogrin was silenced by shRNA in pancreatic β-cell lines, glucose-induced insulin signaling led to proteasomal degradation of IRS2 via a negative feedback mechanism. Phogrin overexpression in a murine hepatocyte cell line consistently prevented chronic insulin treatment-induced IRS2 degradation. In vitro, phogrin directly bound the IR without the assistance of other proteins and protected recombinant PTP1B from oxidation to potentiate its activity toward the IR. Furthermore, phogrin expression suppressed insulin-induced local generation of hydrogen peroxide and subsequent PTP1B oxidation, which allowed progression of IR dephosphorylation. Together, these results suggest that a transient interaction of phogrin with the IR enables glucose-stimulated autocrine insulin signaling through the regulation of PTP1B activity, which is essential for suppressing feedback-mediated IRS2 degradation in pancreatic β cells.
Collapse
Affiliation(s)
| | | | | | | | - Ni Hou
- From the Biosignal Research Center and
| | - Masaki Kobayashi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | | | - Masahiro Hosaka
- the Department of Biotechnology, Akita Prefectural University, Akita 010-0195, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Toshiyuki Takeuchi
- From the Biosignal Research Center and.,the Administration Office, Gunma University, Maebashi, Gunma 371-8512, Japan, and
| | - Hiroshi Gomi
- the Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-8510, Japan
| |
Collapse
|
22
|
Lay AC, Hurcombe JA, Betin VMS, Barrington F, Rollason R, Ni L, Gillam L, Pearson GME, Østergaard MV, Hamidi H, Lennon R, Welsh GI, Coward RJM. Prolonged exposure of mouse and human podocytes to insulin induces insulin resistance through lysosomal and proteasomal degradation of the insulin receptor. Diabetologia 2017; 60:2299-2311. [PMID: 28852804 PMCID: PMC6448913 DOI: 10.1007/s00125-017-4394-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS Podocytes are insulin-responsive cells of the glomerular filtration barrier and are key in preventing albuminuria, a hallmark feature of diabetic nephropathy. While there is evidence that a loss of insulin signalling to podocytes is detrimental, the molecular mechanisms underpinning the development of podocyte insulin resistance in diabetes remain unclear. Thus, we aimed to further investigate podocyte insulin responses early in the context of diabetic nephropathy. METHODS Conditionally immortalised human and mouse podocyte cell lines and glomeruli isolated from db/db DBA/2J mice were studied. Podocyte insulin responses were investigated with western blotting, cellular glucose uptake assays and automated fluorescent imaging of the actin cytoskeleton. Quantitative (q)RT-PCR was employed to investigate changes in mRNA. Human cell lines stably overproducing the insulin receptor (IR) and nephrin were also generated, using lentiviral constructs. RESULTS Podocytes exposed to a diabetic environment (high glucose, high insulin and the proinflammatory cytokines TNF-α and IL-6) become insulin resistant with respect to glucose uptake and activation of phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signalling. These podocytes lose expression of the IR as a direct consequence of prolonged exposure to high insulin concentrations, which causes an increase in IR protein degradation via a proteasome-dependent and bafilomycin-sensitive pathway. Reintroducing the IR into insulin-resistant human podocytes rescues upstream phosphorylation events, but not glucose uptake. Stable expression of nephrin is also required for the insulin-stimulated glucose uptake response in podocytes and for efficient insulin-stimulated remodelling of the actin cytoskeleton. CONCLUSIONS/INTERPRETATION Together, these results suggest that IR degradation, caused by high levels of insulin, drives early podocyte insulin resistance, and that both the IR and nephrin are required for full insulin sensitivity of this cell. This could be highly relevant for the development of nephropathy in individuals with type 2 diabetes, who are commonly hyperinsulinaemic in the early phases of their disease.
Collapse
Affiliation(s)
- Abigail C Lay
- Bristol Renal, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Jenny A Hurcombe
- Bristol Renal, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Virginie M S Betin
- Bristol Renal, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Fern Barrington
- Bristol Renal, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Ruth Rollason
- Bristol Renal, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Lan Ni
- Bristol Renal, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Lawrence Gillam
- Bristol Renal, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Grace M E Pearson
- Bristol Renal, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Mette V Østergaard
- Bristol Renal, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
- Global Research, Novo Nordisk A/S, Måløv, Denmark
| | - Hellyeh Hamidi
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Rachel Lennon
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Richard J M Coward
- Bristol Renal, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK.
| |
Collapse
|
23
|
Wang X, Yue P, Tao H, Sun SY. Inhibition of p70S6K does not mimic the enhancement of Akt phosphorylation by rapamycin. Heliyon 2017; 3:e00378. [PMID: 28831455 PMCID: PMC5552102 DOI: 10.1016/j.heliyon.2017.e00378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/03/2017] [Accepted: 08/02/2017] [Indexed: 11/18/2022] Open
Abstract
It has been suggested that the mTOR complex 1 (mTORC1)/p70S6K axis represses upstream PI3K/Akt signaling through phosphorylation of IRS-1 and its subsequent degradation. One potential and current model that explains Akt activation induced by the mTOR inhibitor rapamycin is the relief of mTORC1/p70S6K-mediated feedback inhibition of IRS-1/PI3K/Akt signaling, although this has not been experimentally proven. In this study, we found that chemical inhibition of p70S6K did not increase Akt phosphorylation. Surprisingly, knockdown of p70S6K even substantially inhibited Akt phosphorylation. Hence, p70S6K inhibition clearly does not mimic the activation of Akt by rapamycin. Inhibition or enforced activation of p70S6K did not affect the ability of rapamycin to increase Akt phosphorylation. Moreover, inhibition of mTORC1 with either rapamycin or raptor knockdown did not elevate IRS-1 levels, despite potently increasing Akt phosphorylation. Critically, knockdown or knockout of IRS-1 or IRS-2 failed to abolish the ability of rapamycin to increase Akt phosphorylation. Therefore, IRS-1 and IRS-2 are not essential for mediating rapamycin-induced Akt activation. Collectively, our findings suggest that Akt activation by rapamycin or mTORC1 inhibition is unlikely due to relief of p70S6K-mediated feedback inhibition of IRS-1/PI3K/Akt signaling.
Collapse
Affiliation(s)
- Xuerong Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Yue
- Departments of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA
| | - Hui Tao
- Departments of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA
| | - Shi-Yong Sun
- Departments of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA
| |
Collapse
|
24
|
Regulation of CHK1 by mTOR contributes to the evasion of DNA damage barrier of cancer cells. Sci Rep 2017; 7:1535. [PMID: 28484242 PMCID: PMC5431544 DOI: 10.1038/s41598-017-01729-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/03/2017] [Indexed: 02/05/2023] Open
Abstract
Oncogenic transformation leads to dysregulated cell proliferation, nutrient deficiency, and hypoxia resulting in metabolic stress and increased DNA damage. In normal cells, such metabolic stress leads to inhibition of signaling through the mammalian Target of Rapamycin Complex 1 (mTORC1), reduction of protein translation, cell cycle arrest, and conservation of energy. In contrast, negative regulation of mTORC1 signaling by DNA damage is abrogated in many cancer cells, thus mTORC1 signaling remains active under microenvironmental conditions that potentially promote endogenous DNA damage. Here we report that mTORC1 signaling suppresses endogenous DNA damage and replication stress. Pharmacological inhibition of mTOR signaling resulted in phosphorylation of H2AX concomitant with the decrease of CHK1 levels both in cell culture and mouse rhadomyosarcoma xenografts. Further results demonstrated that mTORC1-S6K1 signaling controls transcription of CHK1 via Rb-E2F by upregulating cyclin D and E. Consistent with these results, downregulation of CHK1 by inhibition of mTOR kinase resulted in defects in the slow S phase progression following DNA damage. These results indicate that, under stressful conditions, maintained mTORC1 signaling in cancer cells promotes survival by suppressing endogenous DNA damage, and may control cell fate through the regulation of CHK1.
Collapse
|
25
|
Nagarajan SR, Brandon AE, McKenna JA, Shtein HC, Nguyen TQ, Suryana E, Poronnik P, Cooney GJ, Saunders DN, Hoy AJ. Insulin and diet-induced changes in the ubiquitin-modified proteome of rat liver. PLoS One 2017; 12:e0174431. [PMID: 28329008 PMCID: PMC5362237 DOI: 10.1371/journal.pone.0174431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/08/2017] [Indexed: 12/14/2022] Open
Abstract
Ubiquitin is a crucial post-translational modification regulating numerous cellular processes, but its role in metabolic disease is not well characterized. In this study, we identified the in vivo ubiquitin-modified proteome in rat liver and determined changes in this ubiquitome under acute insulin stimulation and high-fat and sucrose diet-induced insulin resistance. We identified 1267 ubiquitinated proteins in rat liver across diet and insulin-stimulated conditions, with 882 proteins common to all conditions. KEGG pathway analysis of these proteins identified enrichment of metabolic pathways, TCA cycle, glycolysis/gluconeogenesis, fatty acid metabolism, and carbon metabolism, with similar pathways altered by diet and insulin resistance. Thus, the rat liver ubiquitome is sensitive to diet and insulin stimulation and this is perturbed in insulin resistance.
Collapse
Affiliation(s)
- Shilpa R. Nagarajan
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Amanda E. Brandon
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Jessie A. McKenna
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Harrison C. Shtein
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Thinh Q. Nguyen
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Eurwin Suryana
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Philip Poronnik
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Gregory J. Cooney
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Darren N. Saunders
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- * E-mail: (AJH); (DNS)
| | - Andrew J. Hoy
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- * E-mail: (AJH); (DNS)
| |
Collapse
|
26
|
Abstract
IRS proteins are cellular adaptor molecules that mediate many of the key metabolic actions of insulin. When tyrosine is phosphorylated by the activated insulin receptor, IRS proteins recruit downstream effectors, such as phosphoinositide 3-kinase and mitogen-activated protein kinase, in order to elicit cellular responses such as glucose uptake, lipid metabolism and cell proliferation. There are two main IRS proteins in humans (IRS1 and IRS2), both of which are widely expressed. Given their central role in the insulin signalling pathway, it is not surprising that male mice lacking Irs1 or Irs2 present with elevated blood glucose or type 2 diabetes, respectively. For reasons yet to be identified, female Irs2 (-/-) mice do not develop type 2 diabetes. A number of organs are affected by complications of diabetes; macrovascular complications include stroke and coronary artery disease, while nephropathy, neuropathy and retinopathy fall into the category of microvascular complications. Given the serious consequences of these complications on patient morbidity and mortality, it is essential to identify the molecular pathogenesis underlying diabetic complications, with a view to improving therapeutic intervention and patient outcomes. A number of recently published papers have converged on the hypothesis that the loss of insulin signalling and IRS proteins is instrumental to the development and/or progression of diabetic complications. This review will summarise some highlights from the published work in which this hypothesis is discussed.
Collapse
Affiliation(s)
- Deborah P Lavin
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Morris F White
- Division of Endocrinology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Derek P Brazil
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
27
|
Yang XD, Xiang DX, Yang YY. Role of E3 ubiquitin ligases in insulin resistance. Diabetes Obes Metab 2016; 18:747-754. [PMID: 27097743 DOI: 10.1111/dom.12677] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/09/2016] [Accepted: 04/17/2016] [Indexed: 12/19/2022]
Abstract
E3 ubiquitin ligases are a large family of proteins that catalyse the ubiquitination of many proteins for degradation by the 26S proteasome. E3 ubiquitin ligases play pivotal roles in the process of insulin resistance and diabetes. In this review, we summarize the currently available studies to analyse the potential role of E3 ubiquitin ligases in the development of insulin resistance. We propose two mechanisms by which E3 ubiquitin ligases can affect the process of insulin resistance. First, E3 ubiquitin ligases directly degrade the insulin receptor, insulin receptor substrate and other key insulin signalling molecules via the UPS. Second, E3 ubiquitin ligases indirectly regulate insulin signalling by regulating pro-inflammatory mediators that are involved in the regulation of insulin signalling molecules, such as tumour necrosis factor-α, interleukin (IL)-6, IL-4, IL-13, IL-1β, monocyte chemoattractant protein-1 and hypoxia-inducible factor 1α. Determining the mechanism by which E3 ubiquitin ligases affect the development of insulin resistance can identify a novel strategy to protect against insulin resistance and diabetes.
Collapse
Affiliation(s)
- X-D Yang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - D-X Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Y-Y Yang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
28
|
Blandino-Rosano M, Scheys JO, Jimenez-Palomares M, Barbaresso R, Bender AS, Yanagiya A, Liu M, Rui L, Sonenberg N, Bernal-Mizrachi E. 4E-BP2/SH2B1/IRS2 Are Part of a Novel Feedback Loop That Controls β-Cell Mass. Diabetes 2016; 65:2235-48. [PMID: 27217487 PMCID: PMC4955981 DOI: 10.2337/db15-1443] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/09/2016] [Indexed: 01/08/2023]
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) regulates several biological processes, although the key downstream mechanisms responsible for these effects are poorly defined. Using mice with deletion of eukaryotic translation initiation factor 4E-binding protein 2 (4E-BP2), we determine that this downstream target is a major regulator of glucose homeostasis and β-cell mass, proliferation, and survival by increasing insulin receptor substrate 2 (IRS2) levels and identify a novel feedback mechanism by which mTORC1 signaling increases IRS2 levels. In this feedback loop, we show that 4E-BP2 deletion induces translation of the adaptor protein SH2B1 and promotes the formation of a complex with IRS2 and Janus kinase 2, preventing IRS2 ubiquitination. The changes in IRS2 levels result in increases in cell cycle progression, cell survival, and β-cell mass by increasing Akt signaling and reducing p27 levels. Importantly, 4E-BP2 deletion confers resistance to cytokine treatment in vitro. Our data identify SH2B1 as a major regulator of IRS2 stability, demonstrate a novel feedback mechanism linking mTORC1 signaling with IRS2, and identify 4E-BP2 as a major regulator of proliferation and survival of β-cells.
Collapse
Affiliation(s)
- Manuel Blandino-Rosano
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI
| | - Joshua O Scheys
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI
| | - Margarita Jimenez-Palomares
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI
| | - Rebecca Barbaresso
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI
| | - Aaron S Bender
- Diabetes, Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Akiko Yanagiya
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Ming Liu
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI
| | - Liangyou Rui
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Ernesto Bernal-Mizrachi
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI VA Ann Arbor Healthcare System, Ann Arbor, MI
| |
Collapse
|
29
|
Girnita L, Takahashi SI, Crudden C, Fukushima T, Worrall C, Furuta H, Yoshihara H, Hakuno F, Girnita A. Chapter Seven - When Phosphorylation Encounters Ubiquitination: A Balanced Perspective on IGF-1R Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:277-311. [PMID: 27378760 DOI: 10.1016/bs.pmbts.2016.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell-surface receptors govern the critical information passage from outside to inside the cell and hence control important cellular decisions such as survival, growth, and differentiation. These receptors, structurally grouped into different families, utilize common intracellular signaling-proteins and pathways, yet promote divergent biological consequences. In rapid processing of extracellular signals to biological outcomes, posttranslational modifications offer a repertoire of protein processing options. Protein ubiquitination was originally identified as a signal for protein degradation through the proteasome system. It is now becoming increasingly recognized that both ubiquitin and ubiquitin-like proteins, all evolved from a common ubiquitin structural superfold, are used extensively by the cell and encompass signal tags for many different cellular fates. In this chapter we examine the current understanding of the ubiquitin regulation surrounding the insulin-like growth factor and insulin signaling systems, major members of the larger family of receptor tyrosine kinases (RTKs) and key regulators of fundamental physiological and pathological states.
Collapse
Affiliation(s)
- L Girnita
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - S-I Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - C Crudden
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - T Fukushima
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan; Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
| | - C Worrall
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - H Furuta
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - H Yoshihara
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - F Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - A Girnita
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Dermatology Department, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
30
|
Hepatocyte nuclear factor 1 coordinates multiple processes in a model of intestinal epithelial cell function. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:591-8. [PMID: 26855178 DOI: 10.1016/j.bbagrm.2016.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 12/26/2022]
Abstract
Mutations in hepatocyte nuclear factor 1 transcription factors (HNF1α/β) are associated with diabetes. These factors are well studied in the liver, pancreas and kidney, where they direct tissue-specific gene regulation. However, they also have an important role in the biology of many other tissues, including the intestine. We investigated the transcriptional network governed by HNF1 in an intestinal epithelial cell line (Caco2). We used chromatin immunoprecipitation followed by direct sequencing (ChIP-seq) to identify HNF1 binding sites genome-wide. Direct targets of HNF1 were validated using conventional ChIP assays and confirmed by siRNA-mediated depletion of HNF1, followed by RT-qPCR. Gene ontology process enrichment analysis of the HNF1 targets identified multiple processes with a role in intestinal epithelial cell function, including properties of the cell membrane, cellular response to hormones, and regulation of biosynthetic processes. Approximately 50% of HNF1 binding sites were also occupied by other members of the intestinal transcriptional network, including hepatocyte nuclear factor 4A (HNF4A), caudal type homeobox 2 (CDX2), and forkhead box A2 (FOXA2). Depletion of HNF1 in Caco2 cells increases FOXA2 abundance and decreases levels of CDX2, illustrating the coordinated activities of the network. These data suggest that HNF1 plays an important role in regulating intestinal epithelial cell function, both directly and through interactions with other intestinal transcription factors.
Collapse
|
31
|
Martos-Sitcha JA, Mancera JM, Calduch-Giner JA, Yúfera M, Martínez-Rodríguez G, Pérez-Sánchez J. Unraveling the Tissue-Specific Gene Signatures of Gilthead Sea Bream (Sparus aurata L.) after Hyper- and Hypo-Osmotic Challenges. PLoS One 2016; 11:e0148113. [PMID: 26828928 PMCID: PMC4734831 DOI: 10.1371/journal.pone.0148113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/13/2016] [Indexed: 11/19/2022] Open
Abstract
A custom microarray was used for the transcriptomic profiling of liver, gills and hypothalamus in response to hypo- (38‰ → 5‰) or hyper- (38‰ → 55‰) osmotic challenges (7 days after salinity transfer) in gilthead sea bream (Sparus aurata) juveniles. The total number of differentially expressed genes was 777. Among them, 341 and 310 were differentially expressed in liver after hypo- and hyper-osmotic challenges, respectively. The magnitude of changes was lower in gills and hypothalamus with around 131 and 160 responsive genes in at least one osmotic stress condition, respectively. Regardless of tissue, a number of genes were equally regulated in either hypo- and hyper-osmotic challenges: 127 out of 524 in liver, 11 out of 131 in gills and 19 out of 160 in hypothalamus. In liver and gills, functional analysis of differentially expressed genes recognized two major clusters of overlapping canonical pathways that were mostly related to “Energy Metabolism” and “Oxidative Stress”. The later cluster was represented in all the analyzed tissues, including the hypothalamus, where differentially expressed genes related to “Cell and tissue architecture” were also over-represented. Overall the response for “Energy Metabolism” was the up-regulation, whereas for oxidative stress-related genes the type of response was highly dependent of tissue. These results support common and different osmoregulatory responses in the three analyzed tissues, helping to load new allostatic conditions or even to return to basal levels after hypo- or hyper-osmotic challenges according to the different physiological role of each tissue.
Collapse
Affiliation(s)
- Juan Antonio Martos-Sitcha
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), E-11519, Puerto Real (Cádiz), Spain
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, E-11519, Puerto Real (Cádiz), Spain
- * E-mail:
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, E-11519, Puerto Real (Cádiz), Spain
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, E-12595, Castellón, Spain
| | - Manuel Yúfera
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), E-11519, Puerto Real (Cádiz), Spain
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), E-11519, Puerto Real (Cádiz), Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, E-12595, Castellón, Spain
| |
Collapse
|
32
|
White MF, Copps KD. The Mechanisms of Insulin Action. ENDOCRINOLOGY: ADULT AND PEDIATRIC 2016:556-585.e13. [DOI: 10.1016/b978-0-323-18907-1.00033-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
33
|
McCormick SM, Heller NM. Regulation of Macrophage, Dendritic Cell, and Microglial Phenotype and Function by the SOCS Proteins. Front Immunol 2015; 6:549. [PMID: 26579124 PMCID: PMC4621458 DOI: 10.3389/fimmu.2015.00549] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022] Open
Abstract
Macrophages are innate immune cells of dynamic phenotype that rapidly respond to external stimuli in the microenvironment by altering their phenotype to respond to and to direct the immune response. The ability to dynamically change phenotype must be carefully regulated to prevent uncontrolled inflammatory responses and subsequently to promote resolution of inflammation. The suppressor of cytokine signaling (SOCS) proteins play a key role in regulating macrophage phenotype. In this review, we summarize research to date from mouse and human studies on the role of the SOCS proteins in determining the phenotype and function of macrophages. We will also touch on the influence of the SOCS on dendritic cell (DC) and microglial phenotype and function. The molecular mechanisms of SOCS function in macrophages and DCs are discussed, along with how dysregulation of SOCS expression or function can lead to alterations in macrophage/DC/microglial phenotype and function and to disease. Regulation of SOCS expression by microRNA is discussed. Novel therapies and unanswered questions with regard to SOCS regulation of monocyte-macrophage phenotype and function are highlighted.
Collapse
Affiliation(s)
- Sarah M McCormick
- Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA
| | - Nicola M Heller
- Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA ; Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA
| |
Collapse
|
34
|
Molecular mechanisms of insulin resistance in chronic kidney disease. Kidney Int 2015; 88:1233-1239. [PMID: 26444029 PMCID: PMC4675674 DOI: 10.1038/ki.2015.305] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 02/06/2023]
Abstract
Insulin resistance refers to reduced sensitivity of organs to insulin-initiated biologic processes that result in metabolic defects. Insulin resistance is common in patients with end-stage renal disease but also occurs in patients with chronic kidney disease (CKD), even when the serum creatinine is minimally increased. Following insulin binding to its receptor, auto-phosphorylation of the insulin receptor is followed by kinase reactions that phosphorylate insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase (PI3K) and Akt. In fact, low levels of Akt phosphorylation (p-Akt) identifies the presence of the insulin resistance that leads to metabolic defects in insulin-initiated metabolism of glucose, lipids and muscle proteins. Besides CKD, other complex conditions (e.g., inflammation, oxidative stress, metabolic acidosis, aging and excess angiotensin II) reduce p-Akt resulting in insulin resistance. Insulin resistance in each of these conditions is due to activation of different, E3 ubiquitin ligases which specifically conjugate ubiquitin to IRS-1 marking it for degradation in the ubiquitin-proteasome system (UPS). Consequently, IRS-1 degradation suppresses insulin-induced intracellular signaling, causing insulin resistance. Understanding mechanisms of insulin resistance could lead to therapeutic strategies that improve the metabolism of patients with CKD.
Collapse
|
35
|
Monfrecola G, Balato A, Caiazzo G, De Vita V, Di Caprio R, Donnarumma M, Lembo S, Fabbrocini G. Mammalian target of rapamycin, insulin resistance and hidradenitis suppurativa: a possible metabolic loop. J Eur Acad Dermatol Venereol 2015; 30:1631-3. [DOI: 10.1111/jdv.13233] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- G. Monfrecola
- Department of Dermatology; University of Naples Federico II; Via S. Pansini, 5 Napoli 80131 Italy
| | - A. Balato
- Department of Dermatology; University of Naples Federico II; Via S. Pansini, 5 Napoli 80131 Italy
| | - G. Caiazzo
- Department of Dermatology; University of Naples Federico II; Via S. Pansini, 5 Napoli 80131 Italy
| | - V. De Vita
- Department of Dermatology; University of Naples Federico II; Via S. Pansini, 5 Napoli 80131 Italy
| | - R. Di Caprio
- Department of Dermatology; University of Naples Federico II; Via S. Pansini, 5 Napoli 80131 Italy
| | - M. Donnarumma
- Department of Dermatology; University of Naples Federico II; Via S. Pansini, 5 Napoli 80131 Italy
| | - S. Lembo
- Department of Dermatology; University of Naples Federico II; Via S. Pansini, 5 Napoli 80131 Italy
| | - G. Fabbrocini
- Department of Dermatology; University of Naples Federico II; Via S. Pansini, 5 Napoli 80131 Italy
| |
Collapse
|
36
|
Song J, Kang SM, Kim E, Kim CH, Song HT, Lee JE. Impairment of insulin receptor substrate 1 signaling by insulin resistance inhibits neurite outgrowth and aggravates neuronal cell death. Neuroscience 2015; 301:26-38. [PMID: 26047734 DOI: 10.1016/j.neuroscience.2015.05.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 02/02/2023]
Abstract
In the central nervous system (CNS), insulin resistance (I/R) can cause defective neurite outgrowth and neuronal cell death, which can eventually lead to cognitive deficits. Recent research has focused on the relationship between I/R and the cognitive impairment caused by dementia, with the goal of developing treatments for dementia. Insulin signal transduction mediated by insulin receptor substrate (IRS-1) has been thoroughly studied in the CNS of patients with I/R. In the present study, we investigated whether the impairment of IRS-1-mediated insulin signaling contributes to neurite outgrowth and neuronal loss, both in mice fed a high-fat diet and in mouse neuroblastoma (Neuro2A) cells. To investigate the changes caused by the inhibition of IRS-1-mediated insulin signaling in the brain, we performed Cresyl Violet staining and immunochemical analysis. To investigate the changes caused by the inhibition of IRS-1-mediated insulin signaling in neuroblastoma cells, we performed Western blot analysis, reverse transcription-PCR, and immunochemical analysis. We show that the deactivation of IRS-1-mediated insulin signaling can inhibit neuronal outgrowth and aggravate neuronal cell death in the insulin-resistant CNS. Thus, IRS-1-mediated insulin signal transduction may be an important factor in the treatment of cognitive decline induced by I/R.
Collapse
Affiliation(s)
- J Song
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| | - S M Kang
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, South Korea; BK21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| | - E Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| | - C-H Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| | - H-T Song
- Department of Diagnostic Radiology, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| | - J E Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, South Korea; BK21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| |
Collapse
|
37
|
|
38
|
Hakuno F, Fukushima T, Yoneyama Y, Kamei H, Ozoe A, Yoshihara H, Yamanaka D, Shibano T, Sone-Yonezawa M, Yu BC, Chida K, Takahashi SI. The Novel Functions of High-Molecular-Mass Complexes Containing Insulin Receptor Substrates in Mediation and Modulation of Insulin-Like Activities: Emerging Concept of Diverse Functions by IRS-Associated Proteins. Front Endocrinol (Lausanne) 2015; 6:73. [PMID: 26074875 PMCID: PMC4443775 DOI: 10.3389/fendo.2015.00073] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/25/2015] [Indexed: 12/25/2022] Open
Abstract
Insulin-like peptides, such as insulin-like growth factors (IGFs) and insulin, induce a variety of bioactivities, such as growth, differentiation, survival, increased anabolism, and decreased catabolism in many cell types and in vivo. In general, IGFs or insulin bind to IGF-I receptor (IGF-IR) or insulin receptor (IR), activating the receptor tyrosine kinase. Insulin receptor substrates (IRSs) are known to be major substrates of receptor kinases, mediating IGF/insulin signals to direct bioactivities. Recently, we discovered that IRSs form high-molecular-mass complexes (referred to here as IRSomes) even without IGF/insulin stimulation. These complexes contain proteins (referred to here as IRSAPs; IRS-associated proteins), which modulate tyrosine phosphorylation of IRSs by receptor kinases, control IRS stability, and determine intracellular localization of IRSs. In addition, in these complexes, we found not only proteins that are involved in RNA metabolism but also RNAs themselves. Thus, IRSAPs possibly contribute to modulation of IGF/insulin bioactivities. Since it is established that disorder of modulation of insulin-like activities causes various age-related diseases including cancer, we could propose that the IRSome is an important target for treatment of these diseases.
Collapse
Affiliation(s)
- Fumihiko Hakuno
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Fukushima
- Laboratory of Biomedical Chemistry, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Yosuke Yoneyama
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyasu Kamei
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsufumi Ozoe
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidehito Yoshihara
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Daisuke Yamanaka
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Shibano
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Meri Sone-Yonezawa
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Bu-Chin Yu
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Chida
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Shin-Ichiro Takahashi, Laboratory of Cell Regulation, Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan,
| |
Collapse
|
39
|
Guo S. Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol 2014; 220:T1-T23. [PMID: 24281010 PMCID: PMC4087161 DOI: 10.1530/joe-13-0327] [Citation(s) in RCA: 338] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insulin resistance is a major underlying mechanism responsible for the 'metabolic syndrome', which is also known as insulin resistance syndrome. The incidence of the metabolic syndrome is increasing at an alarming rate, becoming a major public and clinical problem worldwide. The metabolic syndrome is represented by a group of interrelated disorders, including obesity, hyperglycemia, hyperlipidemia, and hypertension. It is also a significant risk factor for cardiovascular disease and increased morbidity and mortality. Animal studies have demonstrated that insulin and its signaling cascade normally control cell growth, metabolism, and survival through the activation of MAPKs and activation of phosphatidylinositide-3-kinase (PI3K), in which the activation of PI3K associated with insulin receptor substrate 1 (IRS1) and IRS2 and subsequent Akt→Foxo1 phosphorylation cascade has a central role in the control of nutrient homeostasis and organ survival. The inactivation of Akt and activation of Foxo1, through the suppression IRS1 and IRS2 in different organs following hyperinsulinemia, metabolic inflammation, and overnutrition, may act as the underlying mechanisms for the metabolic syndrome in humans. Targeting the IRS→Akt→Foxo1 signaling cascade will probably provide a strategy for therapeutic intervention in the treatment of type 2 diabetes and its complications. This review discusses the basis of insulin signaling, insulin resistance in different mouse models, and how a deficiency of insulin signaling components in different organs contributes to the features of the metabolic syndrome. Emphasis is placed on the role of IRS1, IRS2, and associated signaling pathways that are coupled to Akt and the forkhead/winged helix transcription factor Foxo1.
Collapse
Affiliation(s)
- Shaodong Guo
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Scott & White, Central Texas Veterans Health Care System, 1901 South 1st Street, Bldg. 205, Temple, Texas 76504, USA
| |
Collapse
|
40
|
Ozaki Y, Takeda T, Akanishi N, Hakuno F, Toyoshima Y, Takahashi SI, Takenaka A. Insulin injection restored increased insulin receptor substrate (IRS)-2 protein during short-term protein restriction but did not affect reduced insulin-like growth factor (IGF)-I mRNA or increased triglyceride accumulation in the liver of rats. Biosci Biotechnol Biochem 2014; 78:130-8. [DOI: 10.1080/09168451.2014.877825] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Dietary protein restriction reduces insulin-like growth factor (IGF)-I synthesis and impairs growth. Moreover, insulin secretion is impaired and hepatic insulin signaling is activated presumably through upregulation of insulin receptor substrate (IRS)-2, which can stimulate lipogenesis thereby resulting in steatosis. In order to determine whether impaired insulin secretion is the primary cause of these changes, we injected insulin into protein-restricted rats and compensated for the reduction in insulin secretion for 1 and 7 d. Insulin infusion did not overcome the reduction in liver IGF-I mRNA nor the hepatic triglyceride accumulation. In contrast, it clearly suppressed the upregulation of hepatic IRS-2 on day 1, but not on day 7. Furthermore, insulin elimination increased IRS-2 in H4IIE-C3 cells. In summary, we found that reduced insulin secretion during protein restriction directly increased hepatic IRS-2 as a rapid response on day 1, while additional mechanisms contributed to the upregulation of IRS-2 on day 7.
Collapse
Affiliation(s)
- Yori Ozaki
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Tomoya Takeda
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Narumi Akanishi
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Fumihiko Hakuno
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuka Toyoshima
- Department of Bioregulation, Nippon Medical School, Kawasaki, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Asako Takenaka
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Japan
| |
Collapse
|
41
|
Toyoshima Y, Tokita R, Taguchi Y, Akiyama-Akanishi N, Takenaka A, Kato H, Chida K, Hakuno F, Minami S, Takahashi SI. Tissue-specific effects of protein malnutrition on insulin signaling pathway and lipid accumulation in growing rats. Endocr J 2014; 61:499-512. [PMID: 24621780 DOI: 10.1507/endocrj.ej13-0514] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Our previous studies have revealed that protein malnutrition enhances insulin signaling in rat liver and muscle in response to a bolus insulin injection. However, it has not been established whether protein malnutrition up-regulates insulin signaling under physiological conditions, such as feeding. Here, we studied the effects of protein malnutrition on insulin signaling after feeding in rat liver, muscle and white adipose tissue (WAT). Six-week-old rats were fed a 15% casein diet (15C) or a calorie-matched 5% casein diet (5C) for 8 h/day during 14 days. On the 15th day, blood and tissues were collected at various time points after feeding. Feeding-induced insulin secretion was reduced in 5C-fed rats compared to 15C-fed rats. The 5C-feeding suppressed immediate activation of insulin receptor after feeding in the liver, muscle, and WAT. However, 5C-feeding constantly increased tyrosine phosphorylation of insulin receptor substrate (IRS)-2 and threonine phosphorylation of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) in the liver during the examined periods, corresponding to the changes of their amounts. In skeletal muscle, 5C-feeding did not appreciably alter insulin signaling. In WAT, 5C-feeding decreased tyrosine phosphorylation of IRS-1 compared to 15C-feeding. Furthermore, hepatic triglyceride content was increased and feeding-induced acetyl-CoA carboxylase 1 gene expression was enhanced in 5C-fed rats. The 5C-feeding decreased insulin-dependent glucose uptake in adipocytes. These results suggest that enhanced insulin signaling through increased IRS-2 and 4E-BP1 levels in the liver and repressed insulin signaling through decreased IRS-1 levels in WAT contribute to the preferential hepatic lipid accumulation under protein malnutrition.
Collapse
Affiliation(s)
- Yuka Toyoshima
- Department of Bioregulation, Nippon Medical School, Kawasaki 211-8533, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zerzaihi O, Chriett S, Vidal H, Pirola L. Insulin-dependent transcriptional control in L6 rat myotubes is associated with modulation of histone acetylation and accumulation of the histone variant H2A.Z in the proximity of the transcriptional start site. Biochem Cell Biol 2013; 92:61-7. [PMID: 24471919 DOI: 10.1139/bcb-2013-0071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Besides its direct metabolic effects, insulin induces transcriptional alterations in its target tissues. However, whether such changes are accompanied by epigenetic changes on the chromatin template encompassing insulin responsive genes is unclear. Here, mRNA levels of insulin-responsive genes hexokinase 2 (Hk2), insulin receptor substrate (Irs2), and the PI3K subunit p85β (Pik3r2) were compared in control versus insulin-stimulated L6 myotubes. Chromatin immunoprecipitation (ChIP) was performed with antibodies directed to histone H2A, histone variant H2A.Z, acetylated histone H3 on lysines 9/14, and acetylated H2A.Z. Insulin induced a more than 2-fold Hk2 mRNA increase, while Irs2 and Pik3r2 were downregulated. ChIP to H2A and H2A.Z showed higher H2A.Z accumulation around the transcriptional start site (TSS) of these insulin-modulated genes, while H2A.Z accumulation was lower distally to the TSS in the Hk2 promoter. H2A.Z levels and H3K9/14 acetylation correlated on several loci along the Hk2 gene, and H3K9/14 as well as H2A.Z acetylation was enhanced by insulin treatment. On the contrary, reduced H3K9/14 acetylation was observed in insulin-repressed Irs2 and Pik3r2, and recovery of acetylation by treatment with the histone deacetylase inhibitor trichostatin A reverted insulin-induced Irs2 downregulation. The chromatin regions encompassing selected insulin-responsive genes are thus featured by accumulation of H2A.Z around the TSS. H2A.Z accumulation facilitates insulin-dependent modulation of pharmacologically treatable H3K9/14 and H2A.Z acetylations. Indeed, inhibition of histone deacetylases by TSA treatment reverted insulin induced Irs2 gene downregulation. Dysregulated histone acetylation may thus be potentially targeted with histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Ouafa Zerzaihi
- Carmen (Cardiology, Metabolism and Nutrition) Laboratory, INSERM U1060, Lyon-1 University, South Lyon Medical Faculty, 165 Ch. du Grand Revoyet - BP12, 69921 Oullins, France
| | | | | | | |
Collapse
|
43
|
Sayeed A, Fedele C, Trerotola M, Ganguly KK, Languino LR. IGF-IR promotes prostate cancer growth by stabilizing α5β1 integrin protein levels. PLoS One 2013; 8:e76513. [PMID: 24130778 PMCID: PMC3793919 DOI: 10.1371/journal.pone.0076513] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/23/2013] [Indexed: 01/23/2023] Open
Abstract
Dynamic crosstalk between growth factor receptors, cell adhesion molecules and extracellular matrix is essential for cancer cell migration and invasion. Integrins are transmembrane receptors that bind extracellular matrix proteins and enable cell adhesion and cytoskeletal organization. They also mediate signal transduction to regulate cell proliferation and survival. The type 1 insulin-like growth factor receptor (IGF-IR) mediates tumor cell growth, adhesion and inhibition of apoptosis in several types of cancer. We have previously demonstrated that β1 integrins regulate anchorage-independent growth of prostate cancer (PrCa) cells by regulating IGF-IR expression and androgen receptor-mediated transcriptional functions. Furthermore, we have recently reported that IGF-IR regulates the expression of β1 integrins in PrCa cells. We have dissected the mechanism through which IGF-IR regulates β1 integrin expression in PrCa. Here we report that IGF-IR is crucial for PrCa cell growth and that β1 integrins contribute to the regulation of proliferation by IGF-IR. We demonstrate that β1 integrin regulation by IGF-IR does not occur at the mRNA level. Exogenous expression of a CD4 - β1 integrin cytoplasmic domain chimera does not interfere with such regulation and fails to stabilize β1 integrin expression in the absence of IGF-IR. This appears to be due to the lack of interaction between the β1 cytoplasmic domain and IGF-IR. We demonstrate that IGF-IR stabilizes the β1 subunit by protecting it from proteasomal degradation. The α5 subunit, one of the binding partners of β1, is also downregulated along with β1 upon IGF-IR knockdown while no change is observed in the expression of the α2, α3, α4, α6 and α7 subunits. Our results reveal a crucial mechanistic role for the α5β1 integrin, downstream of IGF-IR, in regulating cancer growth.
Collapse
Affiliation(s)
- Aejaz Sayeed
- Department of Cancer Biology, Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Carmine Fedele
- Department of Cancer Biology, Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Marco Trerotola
- Department of Cancer Biology, Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Kirat K. Ganguly
- Department of Cancer Biology, Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Lucia R. Languino
- Department of Cancer Biology, Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
44
|
Zhang L, Pan J, Dong Y, Tweardy DJ, Dong Y, Garibotto G, Mitch WE. Stat3 activation links a C/EBPδ to myostatin pathway to stimulate loss of muscle mass. Cell Metab 2013; 18:368-79. [PMID: 24011072 PMCID: PMC3794464 DOI: 10.1016/j.cmet.2013.07.012] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 03/17/2013] [Accepted: 07/24/2013] [Indexed: 01/02/2023]
Abstract
Catabolic conditions like chronic kidney disease (CKD) cause loss of muscle mass by unclear mechanisms. In muscle biopsies from CKD patients, we found activated Stat3 (p-Stat3) and hypothesized that p-Stat3 initiates muscle wasting. We created mice with muscle-specific knockout (KO) that prevents activation of Stat3. In these mice, losses of body and muscle weights were suppressed in models with CKD or acute diabetes. A small-molecule that inhibits Stat3 activation produced similar responses, suggesting a potential for translation strategies. Using CCAAT/enhancer-binding protein δ (C/EBPδ) KO mice and C2C12 myotubes with knockdown of C/EBPδ or myostatin, we determined that p-Stat3 initiates muscle wasting via C/EBPδ, stimulating myostatin, a negative muscle growth regulator. C/EBPδ KO also improved survival of CKD mice. We verified that p-Stat3, C/EBPδ, and myostatin were increased in muscles of CKD patients. The pathway from p-Stat3 to C/EBPδ to myostatin and muscle wasting could identify therapeutic targets that prevent muscle wasting.
Collapse
Affiliation(s)
- Liping Zhang
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Shen C, Oswald D, Phelps D, Cam H, Pelloski CE, Pang Q, Houghton PJ. Regulation of FANCD2 by the mTOR pathway contributes to the resistance of cancer cells to DNA double-strand breaks. Cancer Res 2013; 73:3393-401. [PMID: 23633493 DOI: 10.1158/0008-5472.can-12-4282] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Deregulation of the mTOR pathway is closely associated with tumorigenesis. Accordingly, mTOR inhibitors such as rapamycin and mTOR-selective kinase inhibitors have been tested as cancer therapeutic agents. Inhibition of mTOR results in sensitization to DNA-damaging agents; however, the molecular mechanism is not well understood. We found that an mTOR-selective kinase inhibitor, AZD8055, significantly enhanced sensitivity of a pediatric rhabdomyosarcoma xenograft to radiotherapy and sensitized rhabdomyosarcoma cells to the DNA interstrand cross-linker (ICL) melphalan. Sensitization correlated with drug-induced downregulation of a key component of the Fanconi anemia pathway, FANCD2 through mTOR regulation of FANCD2 gene transcripts via mTORC1-S6K1. Importantly, we show that FANCD2 is required for the proper activation of ATM-Chk2 checkpoint in response to ICL and that mTOR signaling promotes ICL-induced ATM-Chk2 checkpoint activation by sustaining FANCD2. In FANCD2-deficient lymphoblasts, FANCD2 is essential to suppress endogenous and induced DNA damage, and FANCD2-deficient cells showed impaired ATM-Chk2 and ATR-Chk1 activation, which was rescued by reintroduction of wild-type FANCD2. Pharmacologic inhibition of PI3K-mTOR-AKT pathway in Rh30 rhabdomyosarcoma cells attenuated ICL-induced activation of ATM, accompanied with the decrease of FANCD2. These data suggest that the mTOR pathway may promote the repair of DNA double-strand breaks by sustaining FANCD2 and provide a novel mechanism of how the Fanconi anemia pathway modulates DNA damage response and repair.
Collapse
Affiliation(s)
- Changxian Shen
- Center for Childhood Cancer & Blood Diseases, The Research Institute, Nationwide Children's Hospital, 700 Children's Drive,ResearchBuilding II,Columbus,OH 43205, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Neukamm SS, Ott J, Dammeier S, Lehmann R, Häring HU, Schleicher E, Weigert C. Phosphorylation of serine 1137/1138 of mouse insulin receptor substrate (IRS) 2 regulates cAMP-dependent binding to 14-3-3 proteins and IRS2 protein degradation. J Biol Chem 2013; 288:16403-16415. [PMID: 23615913 DOI: 10.1074/jbc.m113.474593] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Insulin receptor substrate (IRS) 2 as intermediate docking platform transduces the insulin/IGF-1 (insulin like growth factor 1) signal to intracellular effector molecules that regulate glucose homeostasis, β-cell growth, and survival. Previously, IRS2 has been identified as a 14-3-3 interaction protein. 14-3-3 proteins can bind their target proteins via phosphorylated serine/threonine residues located within distinct motifs. In this study the binding of 14-3-3 to IRS2 upon stimulation with forskolin or the cAMP analog 8-(4-chlorophenylthio)-cAMP was demonstrated in HEK293 cells. Binding was reduced with PKA inhibitors H89 or Rp-8-Br-cAMPS. Phosphorylation of IRS2 on PKA consensus motifs was induced by forskolin and the PKA activator N(6)-Phe-cAMP and prevented by both PKA inhibitors. The amino acid region after position 952 on IRS2 was identified as the 14-3-3 binding region by GST-14-3-3 pulldown assays. Mass spectrometric analysis revealed serine 1137 and serine 1138 as cAMP-dependent, potential PKA phosphorylation sites. Mutation of serine 1137/1138 to alanine strongly reduced the cAMP-dependent 14-3-3 binding. Application of cycloheximide revealed that forskolin enhanced IRS2 protein stability in HEK293 cells stably expressing IRS2 as well as in primary hepatocytes. Stimulation with forskolin did not increase protein stability either in the presence of a 14-3-3 antagonist or in the double 1137/1138 alanine mutant. Thus the reduced IRS2 protein degradation was dependent on the interaction with 14-3-3 proteins and the presence of serine 1137/1138. We present serine 1137/1138 as novel cAMP-dependent phosphorylation sites on IRS2 and show their importance in 14-3-3 binding and IRS2 protein stability.
Collapse
Affiliation(s)
- Sabine S Neukamm
- Division of Clinical Chemistry and Pathobiochemistry, Tuebingen 72076, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen (Paul Langerhans Institute Tuebingen), Tuebingen, Germany; German Center for Diabetes Research (DZD), Tuebingen 72076, Germany
| | - Jennifer Ott
- Medical Proteome Center, Institute for Ophtalmic Research, University Hospital Tuebingen, Tuebingen 72076, Germany
| | - Sascha Dammeier
- Medical Proteome Center, Institute for Ophtalmic Research, University Hospital Tuebingen, Tuebingen 72076, Germany
| | - Rainer Lehmann
- Division of Clinical Chemistry and Pathobiochemistry, Tuebingen 72076, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen (Paul Langerhans Institute Tuebingen), Tuebingen, Germany; German Center for Diabetes Research (DZD), Tuebingen 72076, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen (Paul Langerhans Institute Tuebingen), Tuebingen, Germany; German Center for Diabetes Research (DZD), Tuebingen 72076, Germany; Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, Department of Internal Medicine IV, Tuebingen 72076, Germany
| | - Erwin Schleicher
- Division of Clinical Chemistry and Pathobiochemistry, Tuebingen 72076, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen (Paul Langerhans Institute Tuebingen), Tuebingen, Germany; German Center for Diabetes Research (DZD), Tuebingen 72076, Germany
| | - Cora Weigert
- Division of Clinical Chemistry and Pathobiochemistry, Tuebingen 72076, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen (Paul Langerhans Institute Tuebingen), Tuebingen, Germany; German Center for Diabetes Research (DZD), Tuebingen 72076, Germany.
| |
Collapse
|
47
|
Bonaventura MM, Rodriguez D, Ferreira ML, Crivello M, Repetto EM, Bettler B, Libertun C, Lux-Lantos VA. Sex differences in insulin resistance in GABAB1 knockout mice. Life Sci 2013; 92:175-82. [PMID: 23178152 DOI: 10.1016/j.lfs.2012.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 10/16/2012] [Accepted: 11/07/2012] [Indexed: 11/17/2022]
Abstract
AIMS We have previously demonstrated that the absence of functional GABA B receptors (GABABRs) disturbs glucose homeostasis in GABAB1KO mice. The aim of this work was to extend our studies of these alterations in GABAB1KO mice and investigate the sexual differences therein. MAIN METHODS Male and female, GABAB1KO and WT mice were used. Glucose and insulin tolerance tests (GTT and ITT), and insulin and glucagon secretion tests (IST and GST) were performed. Blood glucose, serum insulin and hyperglycemic hormones were determined, and HOMA-IR calculated. Skeletal muscle insulin receptor β subunit (IRβ), insulin receptor substrates 1/2 (IRS1, IRS2) and hexokinase-II levels were determined by Western blot. Skeletal muscle insulin sensitivity was assessed by in vivo insulin-induced Akt phosphorylation (Western blot). Food intake and hypothalamic NPY mRNA expression (by qPCR) were also evaluated. KEY FINDINGS Fasted insulin and HOMA-IR were augmented in GABAB1KO males, with no alterations in females. Areas under the curve (AUC) for GTT and ITT were increased in GABAB1KO mice of both genders, indicating compromised insulin sensitivity. No genotype differences were observed in IST, GST or in IRβ, IRS1, IRS2 and hexokinase-II expression. Akt activation was severely impaired in GABAB1KO males while no alterations were observed in females. GABAB1KO mice showed increased food intake and NPY expression. SIGNIFICANCE Glucose metabolism and energy balance disruptions were more pronounced in GABAB1KO males, which develop peripheral insulin resistance probably due to augmented insulin secretion. Metabolic alterations in females were milder and possibly due to previously described reproductive disorders, such as persistent estrus.
Collapse
Affiliation(s)
- M M Bonaventura
- Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Perturbations in early life environments, including intrauterine exposure to maternal gestational diabetes (GDM), are hypothesized to lead to metabolic imprinting resulting in increased risk of cardiometabolic outcomes later in life. We aimed to 1) identify candidate genes and biological pathways associated with differentially methylated regions (DMRs) in relation to exposure to GDM in utero and, 2) using mediation analysis, more definitively investigate the potential for mediation of the effect of exposure to maternal diabetes in utero on cardiometabolic traits in childhood risk through our identified DMRs. Genome-wide methylation analysis of peripheral blood mononuclear cell's DNA was conducted in 21 healthy children, ages 8-12 years. P-values from multiple linear regression analyses for >27,000 CpG sites were ranked to identify DMRs between the exposure groups. Among the top 10 ranked DMRs, we identified several genes, including NPR1, PANK1, SCAND1, and GJA4, which are known to be associated with cardiometabolic traits. Gene enrichment analysis of the top 84 genes, each with p<=0.005, identified the ubiquitin proteasome system (UPS) as the most enriched biological pathway (p = 0.07). The UPS pathway reflects biological processes known to be associated with endothelial function, inflammation, lipid metabolism, insulin resistance and β-cell apoptosis, whose derangements are central to the pathogenesis of cardiometabolic diseases. Increased methylation of PYGO1 and CLN8 had the greatest relative mediation effect (RME = 87%, p=0.005 and RME=50%, p=0.01) on the impact of exposure to maternal diabetes in utero on VCAM-1 levels in the offspring. Multiple candidate genes and the UPS were identified for future study as possible links between exposure to maternal gestational diabetes in utero and adverse cardiometabolic traits in the offspring. In particular, increased methylation of PYGO1 and CLN8 may be biological links between intrauterine exposure to maternal diabetes and significantly increased VCAM-1 levels in the offspring.
Collapse
|
49
|
A Novel Role of IGF1 in Apo2L/TRAIL-Mediated Apoptosis of Ewing Tumor Cells. Sarcoma 2012; 2012:782970. [PMID: 23091403 PMCID: PMC3469244 DOI: 10.1155/2012/782970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/15/2012] [Indexed: 12/26/2022] Open
Abstract
Insulin-like growth factor 1 (IGF1) reputedly opposes chemotoxicity in Ewing sarcoma family of tumor (ESFT) cells. However, the effect of IGF1 on apoptosis induced by apoptosis ligand 2 (Apo2L)/tumor necrosis factor (TNF-) related apoptosis-inducing ligand (TRAIL) remains to be established. We find that opposite to the partial survival effect of short-term IGF1 treatment, long-term IGF1 treatment amplified Apo2L/TRAIL-induced apoptosis in Apo2L/TRAIL-sensitive but not resistant ESFT cell lines. Remarkably, the specific IGF1 receptor (IGF1R) antibody α-IR3 was functionally equivalent to IGF1. Short-term IGF1 incubation of cells stimulated survival kinase AKT and increased X-linked inhibitor of apoptosis (XIAP) protein which was associated with Apo2L/TRAIL resistance. In contrast, long-term IGF1 incubation resulted in repression of XIAP protein through ceramide (Cer) formation derived from de novo synthesis which was associated with Apo2L/TRAIL sensitization. Addition of ceramide synthase (CerS) inhibitor fumonisin B1 during long-term IGF1 treatment reduced XIAP repression and Apo2L/TRAIL-induced apoptosis. Noteworthy, the resistance to conventional chemotherapeutic agents was maintained in cells following chronic IGF1 treatment. Overall, the results suggest that chronic IGF1 treatment renders ESFT cells susceptible to Apo2L/TRAIL-induced apoptosis and may have important implications for the biology as well as the clinical management of refractory ESFT.
Collapse
|
50
|
Fukushima T, Nakamura Y, Yamanaka D, Shibano T, Chida K, Minami S, Asano T, Hakuno F, Takahashi SI. Phosphatidylinositol 3-kinase (PI3K) activity bound to insulin-like growth factor-I (IGF-I) receptor, which is continuously sustained by IGF-I stimulation, is required for IGF-I-induced cell proliferation. J Biol Chem 2012; 287:29713-21. [PMID: 22767591 DOI: 10.1074/jbc.m112.393074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Continuous stimulation of cells with insulin-like growth factors (IGFs) in G(1) phase is a well established requirement for IGF-induced cell proliferation; however, the molecular components of this prolonged signaling pathway that is essential for cell cycle progression from G(1) to S phase are unclear. IGF-I activates IGF-I receptor (IGF-IR) tyrosine kinase, followed by phosphorylation of substrates such as insulin receptor substrates (IRS) leading to binding of signaling molecules containing SH2 domains, including phosphatidylinositol 3-kinase (PI3K) to IRS and activation of the downstream signaling pathways. In this study, we found prolonged (>9 h) association of PI3K with IGF-IR induced by IGF-I stimulation. PI3K activity was present in this complex in thyrocytes and fibroblasts, although tyrosine phosphorylation of IRS was not yet evident after 9 h of IGF-I stimulation. IGF-I withdrawal in mid-G(1) phase impaired the association of PI3K with IGF-IR and suppressed DNA synthesis the same as when PI3K inhibitor was added. Furthermore, we demonstrated that Tyr(1316)-X-X-Met of IGF-IR functioned as a PI3K binding sequence when this tyrosine is phosphorylated. We then analyzed IGF signaling and proliferation of IGF-IR(-/-) fibroblasts expressing exogenous mutant IGF-IR in which Tyr(1316) was substituted with Phe (Y1316F). In these cells, IGF-I stimulation induced tyrosine phosphorylation of IGF-IR and IRS-1/2, but mutated IGF-IR failed to bind PI3K and to induce maximal phosphorylation of GSK3β and cell proliferation in response to IGF-I. Based on these results, we concluded that PI3K activity bound to IGF-IR, which is continuously sustained by IGF-I stimulation, is required for IGF-I-induced cell proliferation.
Collapse
Affiliation(s)
- Toshiaki Fukushima
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|