1
|
Pilhál F, Jákli I, Keszei E, Láng A, Perczel A. Kinetic, thermodynamic, and ab initio insights of AsnGly isomerisation as a ticking time bomb for protein integrity. Commun Chem 2024; 7:303. [PMID: 39702829 DOI: 10.1038/s42004-024-01374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Under physiological conditions in peptides or proteins, the -AsnGly- motif autonomously rearranges within hours/days to β-Asp and α-Asp containing sequence, via succinimide intermedier. The formation of the succinimide is the rate-limiting step, with a strong pH and temperature dependence. We found that Arg(+) at the (n + 2) position (relative to Asn in the nth position) favors isomerisation by forming a transition-state like structure, whereas Glu(-) disfavors isomerisation by adopting a β-turn like conformer. Four to six key intermediate structures (proton transfer, transition-state formation, ring-closure and ammonia-release steps) have been identified along the intrinsic reaction coordinate pathways. We explain how, under the right conditions, the N-atom of a backbone amide, hardly a potent nucleophile, can nevertheless initiate isomerisation. The new data are useful for the design of self-structuring motifs, more resistant protein backbones, antibodies, etc.
Collapse
Affiliation(s)
- Fruzsina Pilhál
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Imre Jákli
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
- HUN-REN-ELTE Protein Modelling Research Group, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Ernő Keszei
- Department of Physical Chemistry and Chemical Kinetics Laboratory, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - András Láng
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary.
- HUN-REN-ELTE Protein Modelling Research Group, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary.
| |
Collapse
|
2
|
Yang ML, Lam TT, Kanyo J, Kang I, Zhou ZS, Clarke SG, Mamula MJ. Natural isoaspartyl protein modification of ZAP70 alters T cell responses in lupus. Autoimmunity 2023; 56:2282945. [PMID: 37994408 PMCID: PMC10897934 DOI: 10.1080/08916934.2023.2282945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
Protein posttranslational modifications (PTMs) arise in a number of normal cellular biological pathways and in response to pathology caused by inflammation and/or infection. Indeed, a number of PTMs have been identified and linked to specific autoimmune responses and metabolic pathways. One particular PTM, termed isoaspartyl (isoAsp or isoD) modification, is among the most common spontaneous PTM occurring at physiological pH and temperature. Herein, we demonstrate that isoAsp modifications arise within the ZAP70 protein tyrosine kinase upon T-cell antigen receptor (TCR) engagement. The enzyme protein L-isoaspartate O-methyltransferase (PCMT1, or PIMT, EC 2.1.1.77) evolved to repair isoaspartyl modifications in cells. In this regard, we observe that increased levels of isoAsp modification that arise under oxidative stress are correlated with reduced PIMT activity in patients with systemic lupus erythematosus (SLE). PIMT deficiency leads to T cell hyper-proliferation and hyper-phosphorylation through ZAP70 signaling. We demonstrate that inducing the overexpression of PIMT can correct the hyper-responsive phenotype in lupus T cells. Our studies reveal a phenotypic role of isoAsp modification and phosphorylation of ZAP70 in lupus T cell autoimmunity and provide a potential therapeutic target through the repair of isoAsp modification.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - TuKiet T. Lam
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
- Department of Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jean Kanyo
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
| | - Insoo Kang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Cao L, Do T, Zhu A, Duan J, Alam N, Link AJ. Genome Mining and Discovery of Imiditides, a Family of RiPPs with a Class-Defining Aspartimide Modification. J Am Chem Soc 2023; 145:18834-18845. [PMID: 37595015 PMCID: PMC10947588 DOI: 10.1021/jacs.3c03991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a large and diverse class of natural products of ribosomal origin. In the past decade, various sophisticated machine-learning-based software packages have been established to discover novel RiPPs that do not resemble the known families. Here, we show that tailoring enzymes that cluster with various RiPP families can serve as effective bioinformatic seeds, providing a complementary approach for novel RiPP discovery. Leveraging the fact that O-methyltransferases homologous to protein isoaspartyl methyltransferases (PIMTs) are associated with lasso peptide, graspetide, and lanthipeptide biosynthetic gene clusters (BGCs), we utilized a C-terminal motif unique to RiPP-associated O-methyltransferases as the search query to discover a novel family of RiPPs, the imiditides. Our genome-mining algorithm reveals a total of 670 imiditide BGCs, distributed across Gram-positive bacterial genomes. In addition, we demonstrate the heterologous production of the founding member of the imiditide family, mNmaAM, encoded in the genome of Nonomuraea maritima. In contrast to other RiPP-associated PIMTs that recognize constrained peptides as substrates, the PIMT homologue in the mNmaAM BGC, NmaM, methylates a specific Asp residue on the linear precursor peptide, NmaA. The methyl ester is then turned into an aspartimide spontaneously. Substrate specificity is achieved by extensive charge-charge interactions between the precursor NmaA and the modifying enzyme NmaM suggested by both experiments and an AlphaFold model prediction. Our study shows that PIMT-mediated aspartimide formation is an emerging backbone modification strategy in the biosynthesis of multiple RiPP families.
Collapse
Affiliation(s)
- Li Cao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Truc Do
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Angela Zhu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Jianshu Duan
- Department of Geosciences, Princeton University, Princeton, NJ 08544, United States
| | - Nathan Alam
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - A. James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
4
|
Cao L, Do T, Zhu AD, Alam N, Link AJ. Genome Mining and Discovery of Imiditides, a Novel Family of RiPPs with a Class-defining Aspartimide Modification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536058. [PMID: 37066262 PMCID: PMC10104114 DOI: 10.1101/2023.04.07.536058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a fascinating class of natural products of ribosomal origins. In the past decade, various sophisticated machine learning-based software packages have been established to discover novel RiPPs that do not resemble the known families. Instead, we argue that tailoring enzymes that cluster with various RiPP families can serve as effective bioinformatic seeds for novel RiPP discovery. Leveraging that O -methyltransferases homologous to protein isoaspartyl methyltransferases (PIMTs) are associated with lasso peptide, graspetide, and lanthipeptide biosynthetic gene clusters (BGCs), we utilized the C-terminal motif unique to RiPP-associated O -methyltransferases as the search query to discover a novel family of RiPPs, imiditides. Our genome-mining algorithm reveals a total of 670 imiditide BGCs, widely distributed in Gram-positive bacterial genomes. In addition, we demonstrate the heterologous production of the founding member of the imiditide family, mNmaA M , encoded in the genome of Nonomuraea maritima . In contrast to other RiPP associated PIMTs that recognize constrained peptides as substrates, the PIMT homolog in mNmaA M BGC, NmaM, methylates a specific Asp residue on the linear precursor peptide, NmaA. The methyl ester is then turned into an aspartimide spontaneously. The aspartimide moiety formed is unusually stable, leading to the accumulation of the aspartimidylated product in vivo . The substrate specificity is achieved by extensive charge-charge interactions between the precursor NmaA and the modifying enzyme NmaM suggested by both experimental validations as well as an AlphaFold model prediction. Our study suggests that PIMT-mediated aspartimide formation is an underappreciated backbone modification strategy in RiPP biosynthesis, compared to the well-studied backbone rigidification chemistries, such as thiazol(in)e and oxazol(in)e formations. Additionally, our findings suggest that aspartimide formation in Gram-positive bacterial proteomes are not limited to spontaneous protein aging and degradation. TOC Figure
Collapse
|
5
|
Zhang Y, Song X, Zhang W, Liu F, Wang C, Liu Y, Dirk LMA, Downie AB, Zhao T. Maize PIMT2 repairs damaged 3-METHYLCROTONYL COA CARBOXYLASE in mitochondria, affecting seed vigor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36999611 DOI: 10.1111/tpj.16225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
PROTEIN l-ISOASPARTYL O-METHYLTRANSFERASE (PIMT) affects seed vigor by repairing damaged proteins. While PIMT is capable of isoaspartyl (isoAsp) repair in all proteins, those proteins most susceptible to isoAsp formation have not been well characterized, and the mechanisms by which PIMT affects seed vigor remain largely unknown. Using co-immunoprecipitation and LC-MS/MS, we found that maize (Zea mays) PIMT2 (ZmPIMT2) interacted predominantly with both subunits of maize 3-METHYLCROTONYL COA CARBOXYLASE (ZmMCC). ZmPIMT2 is specifically expressed in the maize embryo. Both mRNA and protein levels of ZmPIMT2 increased during seed maturation and declined during imbibition. Maize seed vigor was decreased in the zmpimt2 mutant line, while overexpression of ZmPIMT2 in maize and Arabidopsis thaliana increased seed vigor upon artificial aging. ZmPIMT2 was localized in the mitochondria, as determined by subcellular localization assays using maize protoplasts. ZmPIMT2 binding to ZmMCCα was confirmed by luciferase complementation tests in both tobacco (Nicotiana benthamiana) leaves and maize protoplasts. Knockdown of ZmMCCα decreased maize seed aging tolerance. Furthermore, overexpression of ZmPIMT2 decreased the accumulation of isoAsp of ZmMCCα protein in seed embryos that underwent accelerated aging treatment. Taken together, our results demonstrate that ZmPIMT2 binds ZmMCCα in mitochondria, repairs isoAsp damage, and positively affects maize seed vigor.
Collapse
Affiliation(s)
- Yumin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xianbo Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenli Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feijun Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunmei Wang
- Biology Experimental Teaching Center, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lynnette M A Dirk
- Department of Horticulture, Seed Biology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, 40546, USA
| | - A Bruce Downie
- Department of Horticulture, Seed Biology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, 40546, USA
| | - Tianyong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
6
|
Cao L, Elashal HE, Link AJ. Kinetics of Aspartimide Formation and Hydrolysis in Lasso Peptide Lihuanodin. Biochemistry 2023; 62:695-699. [PMID: 36701287 PMCID: PMC10038108 DOI: 10.1021/acs.biochem.2c00707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aspartimides are notorious as undesired side products in solid-phase peptide synthesis and in pharmaceutical formulations. However, we have discovered several ribosomally synthesized and post-translationally modified peptides (RiPPs) in which aspartimide is installed intentionally via enzymatic activity of protein l-isoaspartyl methyltransferase (PIMT) homologues. In the case of the lasso peptide lihuanodin, the methyltransferase LihM recognizes the lassoed substrate pre-lihuanodin, specifically methylating the side chain of an l-Asp residue in the ring portion of the lasso peptide. The subsequent nucleophilic attack from the adjacent amide leads to the formation of an aspartimide. The resulting aspartimide hydrolyzes regioselectively to l-Asp in buffers above pH 7. Here we report the first Michaelis-Menten kinetic measurements of such a RiPP-associated PIMT homologue, LihM, acting on its cognate substrate pre-lihuanodin. Additionally, we measured the rate of aspartimide hydrolysis, which allowed us to deduce the kinetics of the entire reaction network. The relative magnitudes of these rates explain the accumulation and relative stability of aspartimide-containing lihuanodin. We also demonstrate that the residue C-terminal to the aspartimide controls the regioselectivity of hydrolysis and thus the threadedness of the peptide.
Collapse
Affiliation(s)
- Li Cao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Hader E. Elashal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - A. James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
7
|
Aswad DW, O'Leary KS, Williams K. Characterization of a polyclonal antibody that is highly selective for the D-isoAsp-25 variant of mammalian histone H2B. Amino Acids 2023; 55:541-544. [PMID: 36717395 PMCID: PMC10140013 DOI: 10.1007/s00726-023-03242-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023]
Abstract
Approximately 12% of histone H2B molecules in mammalian brain contain a modification wherein Asp25 is present as the D-enantiomer, and is mostly linked to Gly26 via the side-chain carboxyl. Here we (1) demonstrate the high specificity of a polyclonal antibody to this modification, and (2) use this Ab to demonstrate that this modification is enriched in brain relative to liver, thymus, and HeLa cells.
Collapse
Affiliation(s)
- Dana W Aswad
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA.
| | - Kevin S O'Leary
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA
| | - Katherine Williams
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA
| |
Collapse
|
8
|
Elashal HE, Koos JD, Cheung-Lee WL, Choi B, Cao L, Richardson MA, White HL, Link AJ. Biosynthesis and characterization of fuscimiditide, an aspartimidylated graspetide. Nat Chem 2022; 14:1325-1334. [PMID: 35982233 PMCID: PMC10078976 DOI: 10.1038/s41557-022-01022-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Microviridins and other ω-ester-linked peptides, collectively known as graspetides, are characterized by side-chain-side-chain linkages installed by ATP-grasp enzymes. Here we report the discovery of a family of graspetides, the gene clusters of which also encode an O-methyltransferase with homology to the protein repair catalyst protein L-isoaspartyl methyltransferase. Using heterologous expression, we produced fuscimiditide, a ribosomally synthesized and post-translationally modified peptide (RiPP). NMR analysis of fuscimiditide revealed that the peptide contains two ester cross-links forming a stem-loop macrocycle. Furthermore, an unusually stable aspartimide moiety is found within the loop macrocycle. We fully reconstituted fuscimiditide biosynthesis in vitro including formation of the ester and aspartimide moieties. The aspartimide moiety embedded in fuscimiditide hydrolyses regioselectively to isoaspartate. Surprisingly, this isoaspartate-containing peptide is also a substrate for the L-isoaspartyl methyltransferase homologue, thus driving any hydrolysis products back to the aspartimide form. Whereas an aspartimide is often considered a nuisance product in protein formulations, our data suggest that some RiPPs have aspartimide residues intentionally installed via enzymatic activity.
Collapse
Affiliation(s)
- Hader E Elashal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Joseph D Koos
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Wai Ling Cheung-Lee
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Brian Choi
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Li Cao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Michelle A Richardson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Heather L White
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - A James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
9
|
Cavalieri V. The Expanding Constellation of Histone Post-Translational Modifications in the Epigenetic Landscape. Genes (Basel) 2021; 12:genes12101596. [PMID: 34680990 PMCID: PMC8535662 DOI: 10.3390/genes12101596] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022] Open
Abstract
The emergence of a nucleosome-based chromatin structure accompanied the evolutionary transition from prokaryotes to eukaryotes. In this scenario, histones became the heart of the complex and precisely timed coordination between chromatin architecture and functions during adaptive responses to environmental influence by means of epigenetic mechanisms. Notably, such an epigenetic machinery involves an overwhelming number of post-translational modifications at multiple residues of core and linker histones. This review aims to comprehensively describe old and recent evidence in this exciting field of research. In particular, histone post-translational modification establishing/removal mechanisms, their genomic locations and implication in nucleosome dynamics and chromatin-based processes, as well as their harmonious combination and interdependence will be discussed.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
10
|
Cao L, Beiser M, Koos JD, Orlova M, Elashal HE, Schröder HV, Link AJ. Cellulonodin-2 and Lihuanodin: Lasso Peptides with an Aspartimide Post-Translational Modification. J Am Chem Soc 2021; 143:11690-11702. [PMID: 34283601 PMCID: PMC9206484 DOI: 10.1021/jacs.1c05017] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lasso peptides are a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) defined by their threaded structure. Besides the class-defining isopeptide bond, other post-translational modifications (PTMs) that further tailor lasso peptides have been previously reported. Using genome mining tools, we identified a subset of lasso peptide biosynthetic gene clusters (BGCs) that are colocalized with genes encoding protein l-isoaspartyl methyltransferase (PIMT) homologues. PIMTs have an important role in protein repair, restoring isoaspartate residues formed from asparagine deamidation to aspartate. Here we report a new function for PIMT enzymes in the post-translational modification of lasso peptides. The PIMTs associated with lasso peptide BGCs first methylate an l-aspartate side chain found within the ring of the lasso peptide. The methyl ester is then converted into a stable aspartimide moiety, endowing the lasso peptide ring with rigidity relative to its unmodified counterpart. We describe the heterologous expression and structural characterization of two examples of aspartimide-modified lasso peptides from thermophilic Gram-positive bacteria. The lasso peptide cellulonodin-2 is encoded in the genome of actinobacterium Thermobifida cellulosilytica, while lihuanodin is encoded in the genome of firmicute Lihuaxuella thermophila. Additional genome mining revealed PIMT-containing lasso peptide BGCs in 48 organisms. In addition to heterologous expression, we have reconstituted PIMT-mediated aspartimide formation in vitro, showing that lasso peptide-associated PIMTs transfer methyl groups very rapidly as compared to canonical PIMTs. Furthermore, in stark contrast to other characterized lasso peptide PTMs, the methyltransferase functions only on lassoed substrates.
Collapse
Affiliation(s)
- Li Cao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Moshe Beiser
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Joseph D. Koos
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| | - Margarita Orlova
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Hader E. Elashal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Hendrik V. Schröder
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - A. James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
11
|
Belkourchia F, Desrosiers RR. The enzyme L-isoaspartyl (D-aspartyl) methyltransferase promotes migration and invasion in human U-87 MG and U-251 MG glioblastoma cell lines. Biomed Pharmacother 2021; 140:111766. [PMID: 34082401 DOI: 10.1016/j.biopha.2021.111766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022] Open
Abstract
The protein L-isoaspartyl (D-aspartyl) methyltransferase (PIMT) recognizes abnormal L-isoaspartyl and D-aspartyl residues in proteins. Among examined tissues, PIMT shows the highest level in the brain. The U-87 MG cell line is a commonly used cellular model to study the most frequent brain tumor, glioblastoma. Previously, we reported that PIMT amount increased when U-87 MG cells were detached from the extracellular matrix. Recently, we also showed that PIMT possessed pro-angiogenic properties. Together, these PIMT features led us to postulate that PIMT could play a critical role in glioblastoma growth. Here, we investigate PIMT role in U-87 MG cell viability, adhesion, migration, invasion, and colony formation and in the reorganization of the actin and tubulin cytoskeleton. PIMT inhibition by siRNA significantly reduced in vitro cell migration and invasion in various assays, including wound-healing assay, Boyden chambers coated with gelatin and Matrigel invasion assay. Conversely, in stably transfected U-87 MG cells overexpressing wild-type PIMT, cell migration, invasive capacity and colony formation significantly increased. However, in stably transfected cells with the gene encoding for mutated PIMT(D83V), despite of its overexpression, migration and invasion remained similar to those observed in control cells. In all these conditions, cell viability was unaffected. Importantly, overexpressed wild-type PIMT and mutated PIMT(D83V) have opposite effects on the organization of microtubules and actin cytoskeleton and thus on morphology of U-87 cells. These data highlighted the importance of PIMT level and its catalytic activity in migration and invasion of U-87 glioma cells and its possible contribution in cancer invasion during glioma growth.
Collapse
Affiliation(s)
- Fatima Belkourchia
- Université du Québec à Montréal, Département de chimie, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Richard R Desrosiers
- Université du Québec à Montréal, Département de chimie, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
12
|
PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT) in plants: regulations and functions. Biochem J 2020; 477:4453-4471. [PMID: 33245750 DOI: 10.1042/bcj20200794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Proteins are essential molecules that carry out key functions in a cell. However, as a result of aging or stressful environments, the protein undergoes a range of spontaneous covalent modifications, including the formation of abnormal l-isoaspartyl residues from aspartyl or asparaginyl residues, which can disrupt the protein's inherent structure and function. PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT: EC 2.1.1.77), an evolutionarily conserved ancient protein repairing enzyme (PRE), converts such abnormal l-isoaspartyl residues to normal l-aspartyl residues and re-establishes the protein's native structure and function. Although originally discovered in animals as a PRE, PIMT emerged as a key PRE in plants, particularly in seeds, in which PIMT plays a predominant role in preserving seed vigor and viability for prolonged periods of time. Interestingly, higher plants encode a second PIMT (PIMT2) protein which possesses a unique N-terminal extension, and exhibits several distinct features and far more complexity than non-plant PIMTs. Recent studies indicate that the role of PIMT is not restricted to preserving seed vigor and longevity but is also implicated in enhancing the growth and survivability of plants under stressful environments. Furthermore, expression studies indicate the tantalizing possibility that PIMT is involved in various physiological processes apart from its role in seed vigor, longevity and plant's survivability under abiotic stress. This review article particularly describes new insights and emerging interest in all facets of this enzyme in plants along with a concise comparative overview on isoAsp formation, and the role and regulation of PIMTs across evolutionary diverse species. Additionally, recent methods and their challenges in identifying isoaspartyl containing proteins (PIMT substrates) are highlighted.
Collapse
|
13
|
Piganelli JD, Mamula MJ, James EA. The Role of β Cell Stress and Neo-Epitopes in the Immunopathology of Type 1 Diabetes. Front Endocrinol (Lausanne) 2020; 11:624590. [PMID: 33679609 PMCID: PMC7930070 DOI: 10.3389/fendo.2020.624590] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Due to their secretory function, β cells are predisposed to higher levels of endoplasmic reticulum (ER) stress and greater sensitivity to inflammation than other cell types. These stresses elicit changes in β cells that alter their function and immunogenicity, including defective ribosomal initiation, post-translational modifications (PTMs) of endogenous β cell proteins, and alternative splicing. Multiple published reports confirm the presence of not only CD8+ T cells, but also autoreactive CD4+ T cells within pancreatic islets. Although the specificities of T cells that infiltrate human islets are incompletely characterized, they have been confirmed to include neo-epitopes that are formed through stress-related enzymatic modifications of β cell proteins. This article summarizes emerging knowledge about stress-induced changes in β cells and data supporting a role for neo-antigen formation and cross-talk between immune cells and β cells that provokes autoimmune attack - leading to a breakdown in tissue-specific tolerance in subjects who develop type 1 diabetes.
Collapse
Affiliation(s)
- Jon D. Piganelli
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Mark J. Mamula
- Section of Rheumatology, Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Eddie A. James
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
- *Correspondence: Eddie A. James,
| |
Collapse
|
14
|
Abstract
Cells are continuously subjected to an array of reactive/toxic chemical species which are produced both endogenously through metabolic pathways and taken up exogenously by diet and exposure to drugs or toxins. As a result, proteins often undergo non-enzymatic covalent modifications (NECMs) by these species, which can alter protein structure, function, stability, and binding partner affinity. NECMs accumulate over time and are linked to various diseases such as Alzheimer's disease, cancer, and diabetes. In the cellular proteome, histones have some of the longest half-lives, making them prime targets for NECMs. In addition, histones have emerged as key regulators of transcription, a function that is primarily controlled by modification of their tails. These modifications are usually installed or removed enzymatically, but recent evidence suggests that some may also occur non-enzymatically. Despite the vast knowledge detailing the relationship between histone modifications and gene regulation, NECMs on histones remain poorly explored. A major reason for this difference stems from the fact that, unlike their enzymatically installed counterparts, NECMs are difficult to both control and test in vivo. Here, we review advances in our understanding of the effect non-enzymatic covalent modifications (NECMs) have on the epigenetic landscape, cellular fate, and their implications in disease. Cumulatively, this illustrates how the epigenetic code is directly toxified by chemicals and detoxified by corresponding eraser enzymes.
Collapse
Affiliation(s)
- Qingfei Zheng
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nicholas A. Prescott
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-institutional PhD Program in Chemical Biology, New York, NY
| | - Igor Maksimovic
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-institutional PhD Program in Chemical Biology, New York, NY
| | - Yael David
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-institutional PhD Program in Chemical Biology, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY
| |
Collapse
|
15
|
|
16
|
Beaumatin F, El Dhaybi M, Lasserre JP, Salin B, Moyer MP, Verdier M, Manon S, Priault M. N52 monodeamidated Bcl‑xL shows impaired oncogenic properties in vivo and in vitro. Oncotarget 2017; 7:17129-43. [PMID: 26958941 PMCID: PMC4941376 DOI: 10.18632/oncotarget.7938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/31/2016] [Indexed: 12/19/2022] Open
Abstract
Bcl-xL is a member of the Bcl-2 family, playing a critical role in the survival of tumor cells. Here, we show that Bcl-xL oncogenic function can be uncoupled from its anti-apoptotic activity when it is regulated by the post-translational deamidation of its Asn52. Bcl-xL activity can be regulated by post-translational modifications: deamidation of Asn52 and 66 into Asp residues was reported to occur exclusively in response to DNA damage, and to cripple its anti-apoptotic activity. Our work reports for the first time the spontaneous occurrence of monodeamidated Asp52Bcl-xL in control conditions, in vivo and in vitro. In the normal and cancer cell lines tested, no less than 30% and up to 56% of Bcl-xL was singly deamidated on Asn52. Functional analyses revealed that singly deamidated Bcl-xL retains anti-apoptotic functions, and exhibits enhanced autophagic activity while harboring impaired clonogenic and tumorigenic properties compared to native Bcl-xL. Additionally, Asp52Bcl-xL remains phosphorylatable, and thus is still an eligible target of anti-neoplasic agents. Altogether our results complement the existing data on Bcl-xL deamidation: they challenge the common acceptance that Asn52 and Asn66 are equally eligible for deamidation, and provide a valuable improvement of our knowledge on the regulation of Bcl-xLoncogenic functions by deamidation.
Collapse
Affiliation(s)
- Florian Beaumatin
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 33077 Bordeaux, France.,Université Bordeaux Ségalen, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 33077 Bordeaux, France
| | - Mohamad El Dhaybi
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 33077 Bordeaux, France.,Université Bordeaux Ségalen, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 33077 Bordeaux, France.,EA 3842, Homéostasie Cellulaire et Pathologies, Université de Limoges, 87025 Limoges Cedex, France
| | - Jean-Paul Lasserre
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 33077 Bordeaux, France.,Université Bordeaux Ségalen, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 33077 Bordeaux, France
| | - Bénédicte Salin
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 33077 Bordeaux, France.,Université Bordeaux Ségalen, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 33077 Bordeaux, France
| | | | - Mireille Verdier
- EA 3842, Homéostasie Cellulaire et Pathologies, Université de Limoges, 87025 Limoges Cedex, France
| | - Stéphen Manon
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 33077 Bordeaux, France.,Université Bordeaux Ségalen, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 33077 Bordeaux, France
| | - Muriel Priault
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 33077 Bordeaux, France.,Université Bordeaux Ségalen, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 33077 Bordeaux, France
| |
Collapse
|
17
|
Müller MM. Post-Translational Modifications of Protein Backbones: Unique Functions, Mechanisms, and Challenges. Biochemistry 2017; 57:177-185. [PMID: 29064683 PMCID: PMC5770884 DOI: 10.1021/acs.biochem.7b00861] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Post-translational
modifications (PTMs) dramatically enhance the
capabilities of proteins. They introduce new functionalities and dynamically
control protein activity by modulating intra- and intermolecular interactions.
Traditionally, PTMs have been considered as reversible attachments
to nucleophilic functional groups on amino acid side chains, whereas
the polypeptide backbone is often thought to be inert. This paradigm
is shifting as chemically and functionally diverse alterations of
the protein backbone are discovered. Importantly, backbone PTMs can
control protein structure and function just as side chain modifications
do and operate through unique mechanisms to achieve these features.
In this Perspective, I outline the various types of protein backbone
modifications discovered so far and highlight their contributions
to biology as well as the challenges in studying this versatile yet
poorly characterized class of PTMs.
Collapse
Affiliation(s)
- Manuel M Müller
- Department of Chemistry, King's College London , 7 Trinity Street, London SE1 1DB, United Kingdom
| |
Collapse
|
18
|
Qin Z, Zhu JX, Aswad DW. The D-isoAsp-25 variant of histone H2B is highly enriched in active chromatin: potential role in the regulation of gene expression? Amino Acids 2015; 48:599-603. [PMID: 26666674 DOI: 10.1007/s00726-015-2140-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 11/26/2022]
Abstract
Approximately 12 % of histone H2B in mammalian brain contains an unusual D-aspartate residue in its N-terminal tail. Most of this D-aspartate is linked to the C-flanking glycine via an isopeptide bond. To explore the possible significance of these modifications, we generated an antibody to the D-isoaspartyl form of H2B, and used it to assess its levels in H2B associated with "active" vs. "silent" chromatin. We found that the D-isoaspartyl form of H2B appears to be highly enriched in the former. This irreversible modification could serve a novel regulatory function in gene expression.
Collapse
Affiliation(s)
- Zhenxia Qin
- Department of Molecular Biology and Biochemistry, University of California, 3205 McGaugh Hall, Irvine, CA, 92697-3900, USA.
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jeff X Zhu
- Department of Molecular Biology and Biochemistry, University of California, 3205 McGaugh Hall, Irvine, CA, 92697-3900, USA.
- USP-China, No. 520 North Fute Road, Waigaoqlao Free Trade Zone, Shanghai, 200131, China.
| | - Dana W Aswad
- Department of Molecular Biology and Biochemistry, University of California, 3205 McGaugh Hall, Irvine, CA, 92697-3900, USA.
| |
Collapse
|
19
|
Banerjee S, Dutta T, Lahiri S, Sengupta S, Gangopadhyay A, Kumar Karri S, Chakraborty S, Bhattacharya D, Ghosh AK. Enzymatic attributes of an l-isoaspartyl methyltransferase from Candida utilis and its role in cell survival. Biochem Biophys Rep 2015; 4:59-75. [PMID: 29124188 PMCID: PMC5668901 DOI: 10.1016/j.bbrep.2015.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUNDS Spontaneous deamidation and isoaspartate (IsoAsp) formation contributes to aging and reduced longevity in cells. A protein-l-isoaspartate (d-aspartate) O-methyltransferase (PCMT) is responsible for minimizing IsoAsp moieties in most organisms. METHODS PCMT was purified in its native form from yeast Candida utilis. The role of the native PCMT in cell survival and protein repair was investigated by manipulating intracellular PCMT levels with Oxidized Adenosine (AdOx) and Lithium Chloride (LiCl). Proteomic Identification of possible cellular targets was carried out using 2-dimensional gel electrophoresis, followed by on-Blot methylation and mass spectrometric analysis. RESULTS The 25.4 kDa native PCMT from C. utilis was found to have a Km of 3.5 µM for AdoMet and 33.36 µM for IsoAsp containing Delta Sleep Inducing Peptide (DSIP) at pH 7.0. Native PCMT comprises of 232 amino acids which is coded by a 698 bp long nucleotide sequence. Phylogenetic comparison revealed the PCMT to be related more closely with the prokaryotic homologs. Increase in PCMT levels in vivo correlated with increased cell survival under physiological stresses. PCMT expression was seen to be linked with increased intracellular reactive oxygen species (ROS) concentration. Proteomic identification of possible cellular substrates revealed that PCMT interacts with proteins mainly involved with cellular housekeeping. PCMT effected both functional and structural repair in aged proteins in vitro. GENERAL SIGNIFICANCE Identification of PCMT in unicellular eukaryotes like C. utilis promises to make investigations into its control machinery easier owing to the familiarity and flexibility of the system.
Collapse
Affiliation(s)
- Shakri Banerjee
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Trina Dutta
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Sagar Lahiri
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Shinjinee Sengupta
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Anushila Gangopadhyay
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Suresh Kumar Karri
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Sandeep Chakraborty
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Debasish Bhattacharya
- Structural Biology and Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Anil K. Ghosh
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
20
|
Graffmann N, Brands J, Görgens A, Vitoriano da Conceição Castro S, Santourlidis S, Reckert A, Michele I, Ritz-Timme S, Fischer JC, Adjaye J, Kögler G, Giebel B, Uhrberg M. Age-Related Increase of EED Expression in Early Hematopoietic Progenitor Cells is Associated with Global Increase of the Histone Modification H3K27me3. Stem Cells Dev 2015; 24:2018-31. [PMID: 25961873 DOI: 10.1089/scd.2014.0435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human hematopoietic stem and progenitor cells (HSPCs) from umbilical cord blood exhibit higher differentiation potential and repopulation capacity compared to adult HSPCs. The molecular basis for these functional differences is currently unknown. Upon screening for epigenetic effector genes being differentially expressed in neonatal and adult HSPC subpopulations, the Polycomb Repressive Complex 2 (PRC2) member EED was identified. Even though EED is expressed at comparable amounts in neonatal and adult multipotent HSPCs, early adult lineage committed progenitors of the lymphomyeloid (LM) and erythromyeloid lineages expressed higher EED amounts than neonatal HPCs. We demonstrate that EED overexpression directly leads to higher H3K27me3 levels, a repressive histone modification that is mediated by the PRC2 complex. Quantitative analysis of H3K27me3 levels by FPLC-based ELISA revealed elevated levels in primary blood cells from adults. Besides quantitative changes, gene ontology analysis of the genome-wide H3K27me3 distribution revealed qualitative changes in adult HSPCs with elevated levels in genes associated with nonhematopoietic development pathways. In contrast, H3K4me3 which labels active chromatin was enriched on hematopoietic genes. In vitro differentiation of EED-transfected neonatal HSPCs revealed aberrant expression of the myelopoietic marker CD14, suggesting that EED affects the lymphoid versus myeloid decision processes within the lymphomyeloid lineage. This is in line with LM progenitors having the most pronounced differences in EED expression. Highlighting the dynamic roles of epigenetic modifications in human hematopoiesis, the present data demonstrate shifts in the PRC2-associated histone modification H3K27me3 from birth to adulthood.
Collapse
Affiliation(s)
- Nina Graffmann
- 1 Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf , Medical Faculty, Düsseldorf, Germany .,2 Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf , Medical Faculty, Düsseldorf, Germany
| | - Jens Brands
- 2 Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf , Medical Faculty, Düsseldorf, Germany
| | - André Görgens
- 3 Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen , Essen, Germany
| | - Symone Vitoriano da Conceição Castro
- 3 Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen , Essen, Germany .,4 CAPES Foundation, Ministry of Education of Brazil , Brasília, Brazil
| | - Simeon Santourlidis
- 2 Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf , Medical Faculty, Düsseldorf, Germany
| | - Alexandra Reckert
- 5 Institute of Forensic Medicine, Heinrich Heine University Düsseldorf , Medical Faculty, Düsseldorf, Germany
| | - Inga Michele
- 5 Institute of Forensic Medicine, Heinrich Heine University Düsseldorf , Medical Faculty, Düsseldorf, Germany
| | - Stefanie Ritz-Timme
- 5 Institute of Forensic Medicine, Heinrich Heine University Düsseldorf , Medical Faculty, Düsseldorf, Germany
| | - Johannes C Fischer
- 2 Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf , Medical Faculty, Düsseldorf, Germany
| | - James Adjaye
- 1 Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf , Medical Faculty, Düsseldorf, Germany
| | - Gesine Kögler
- 2 Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf , Medical Faculty, Düsseldorf, Germany
| | - Bernd Giebel
- 3 Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen , Essen, Germany
| | - Markus Uhrberg
- 2 Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf , Medical Faculty, Düsseldorf, Germany
| |
Collapse
|
21
|
Kamanda Ngugi D, Blom J, Alam I, Rashid M, Ba-Alawi W, Zhang G, Hikmawan T, Guan Y, Antunes A, Siam R, El Dorry H, Bajic V, Stingl U. Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea. THE ISME JOURNAL 2015; 9:396-411. [PMID: 25105904 PMCID: PMC4303633 DOI: 10.1038/ismej.2014.137] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/29/2014] [Accepted: 06/21/2014] [Indexed: 02/05/2023]
Abstract
The bottom of the Red Sea harbors over 25 deep hypersaline anoxic basins that are geochemically distinct and characterized by vertical gradients of extreme physicochemical conditions. Because of strong changes in density, particulate and microbial debris get entrapped in the brine-seawater interface (BSI), resulting in increased dissolved organic carbon, reduced dissolved oxygen toward the brines and enhanced microbial activities in the BSI. These features coupled with the deep-sea prevalence of ammonia-oxidizing archaea (AOA) in the global ocean make the BSI a suitable environment for studying the osmotic adaptations and ecology of these important players in the marine nitrogen cycle. Using phylogenomic-based approaches, we show that the local archaeal community of five different BSI habitats (with up to 18.2% salinity) is composed mostly of a single, highly abundant Nitrosopumilus-like phylotype that is phylogenetically distinct from the bathypelagic thaumarchaea; ammonia-oxidizing bacteria were absent. The composite genome of this novel Nitrosopumilus-like subpopulation (RSA3) co-assembled from multiple single-cell amplified genomes (SAGs) from one such BSI habitat further revealed that it shares ∼54% of its predicted genomic inventory with sequenced Nitrosopumilus species. RSA3 also carries several, albeit variable gene sets that further illuminate the phylogenetic diversity and metabolic plasticity of this genus. Specifically, it encodes for a putative proline-glutamate 'switch' with a potential role in osmotolerance and indirect impact on carbon and energy flows. Metagenomic fragment recruitment analyses against the composite RSA3 genome, Nitrosopumilus maritimus, and SAGs of mesopelagic thaumarchaea also reiterate the divergence of the BSI genotypes from other AOA.
Collapse
Affiliation(s)
- David Kamanda Ngugi
- Red Sea Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University, Giessen, Germany
| | - Intikhab Alam
- Computational Bioscience Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mamoon Rashid
- Red Sea Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Wail Ba-Alawi
- Computational Bioscience Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Guishan Zhang
- Red Sea Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Tyas Hikmawan
- Red Sea Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yue Guan
- Red Sea Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Andre Antunes
- Red Sea Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Rania Siam
- Department of Biology, American University in Cairo, Cairo, Egypt
| | - Hamza El Dorry
- Department of Biology, American University in Cairo, Cairo, Egypt
| | - Vladimir Bajic
- Computational Bioscience Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ulrich Stingl
- Red Sea Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
22
|
Sadakierska-Chudy A, Filip M. A comprehensive view of the epigenetic landscape. Part II: Histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. Neurotox Res 2014; 27:172-97. [PMID: 25516120 PMCID: PMC4300421 DOI: 10.1007/s12640-014-9508-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/31/2022]
Abstract
The complexity of the genome is regulated by epigenetic mechanisms, which act on the level of DNA, histones, and nucleosomes. Epigenetic machinery is involved in various biological processes, including embryonic development, cell differentiation, neurogenesis, and adult cell renewal. In the last few years, it has become clear that the number of players identified in the regulation of chromatin structure and function is still increasing. In addition to well-known phenomena, including DNA methylation and histone modification, new, important elements, including nucleosome mobility, histone tail clipping, and regulatory ncRNA molecules, are being discovered. The present paper provides the current state of knowledge about the role of 16 different histone post-translational modifications, nucleosome positioning, and histone tail clipping in the structure and function of chromatin. We also emphasize the significance of cross-talk among chromatin marks and ncRNAs in epigenetic control.
Collapse
Affiliation(s)
- Anna Sadakierska-Chudy
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343, Kraków, Poland,
| | | |
Collapse
|
23
|
Autoantibodies to posttranslational modifications in rheumatoid arthritis. Mediators Inflamm 2014; 2014:492873. [PMID: 24782594 PMCID: PMC3981057 DOI: 10.1155/2014/492873] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/10/2014] [Indexed: 12/11/2022] Open
Abstract
Autoantibodies have been associated with human pathologies for a long time, particularly with autoimmune diseases (AIDs). Rheumatoid factor (RF) is known since the late 1930s to be associated with rheumatoid arthritis (RA). The discovery of anticitrullinated protein antibodies in the last century has changed this and other posttranslational modifications (PTM) relevant to RA have since been described. Such PTM introduce neoepitopes in proteins that can generate novel autoantibody specificities. The recent recognition of these novel specificities in RA provides a unique opportunity to understand human B-cell development in vivo. In this paper, we will review the three of the main classes of PTMs already associated with RA: citrullination, carbamylation, and oxidation. With the advancement of research methodologies it should be expected that other autoantibodies against PTM proteins could be discovered in patients with autoimmune diseases. Many of such autoantibodies may provide significant biomarker potential.
Collapse
|
24
|
Qin Z, Kaufman RS, Khoury RN, Khoury MK, Aswad DW. Isoaspartate accumulation in mouse brain is associated with altered patterns of protein phosphorylation and acetylation, some of which are highly sex-dependent. PLoS One 2013; 8:e80758. [PMID: 24224061 PMCID: PMC3818261 DOI: 10.1371/journal.pone.0080758] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/14/2013] [Indexed: 12/05/2022] Open
Abstract
Isoaspartate (isoAsp) formation is a major source of protein damage that is kept in check by the repair function of protein L-isoaspartyl methyltransferase (PIMT). Mice deficient in PIMT accumulate isoAsp-containing proteins, resulting in cognitive deficits, abnormal neuronal physiology and cytoarchitecture, and fatal epileptic seizures 30–60 days after birth. Synapsins I and II, dynamin-1, collapsin response mediator protein 2 (CRMP2), and α/β-tubulin are major targets of PIMT in brain. To investigate links between isoAsp accumulation and the neurological phenotype of the KO mice, we used Western blotting to compare patterns of in vivo phosphorylation or acetylation of the major PIMT targets listed above. Phosphorylations of synapsins I and II at Ser-9 were increased in female KO vs. WT mice, and acetylation of tubulin at Lys-40 was decreased in male KO vs. WT mice. Average levels of dynamin-1 phosphorylation at Ser-778 and Ser-795 were higher in male KO vs. WT mice, but the statistical significance (P>0.1) was low. No changes in phosphorylation were found in synapsins I and II at Ser-603, in CRMP2 at Ser-522 or Thr-514, in DARPP-32 at Thr-34, or in PDK1 at Ser-241. General levels of phosphorylation assessed with Pro-Q Diamond stain, or an anti-phosphotyrosine antibody, appeared similar in the WT and KO mice. We conclude that isoAsp accumulation is associated with altered functional status of several neuronal proteins that are highly susceptible to this type of damage. We also uncovered unexpected differences in how male and female mice respond to isoAsp accumulation in the brain.
Collapse
Affiliation(s)
- Zhenxia Qin
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Rachel S. Kaufman
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Rana N. Khoury
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Mitri K. Khoury
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Dana W. Aswad
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Vigneswara V, Cass S, Wayne D, Bolt EL, Ray DE, Carter WG. Molecular ageing of alpha- and Beta-synucleins: protein damage and repair mechanisms. PLoS One 2013; 8:e61442. [PMID: 23630590 PMCID: PMC3632608 DOI: 10.1371/journal.pone.0061442] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 03/14/2013] [Indexed: 11/19/2022] Open
Abstract
Abnormal α-synuclein aggregates are hallmarks of a number of neurodegenerative diseases. Alpha synuclein and β-synucleins are susceptible to post-translational modification as isoaspartate protein damage, which is regulated in vivo by the action of the repair enzyme protein L-isoaspartyl O-methyltransferase (PIMT). We aged in vitro native α-synuclein, the α-synuclein familial mutants A30P and A53T that give rise to Parkinsonian phenotypes, and β-synuclein, at physiological pH and temperature for a time course of up to 20 days. Resolution of native α-synuclein and β-synuclein by two dimensional techniques showed the accumulation of a number of post-translationally modified forms of both proteins. The levels of isoaspartate formed over the 20 day time course were quantified by exogenous methylation with PIMT using S-Adenosyl-L-[3H-methyl]methionine as a methyl donor, and liquid scintillation counting of liberated 3H-methanol. All α-synuclein proteins accumulated isoaspartate at ∼1% of molecules/day, ∼20 times faster than for β-synuclein. This disparity between rates of isoaspartate was confirmed by exogenous methylation of synucleins by PIMT, protein resolution by one-dimensional denaturing gel electrophoresis, and visualisation of 3H-methyl esters by autoradiography. Protein silver staining and autoradiography also revealed that α-synucleins accumulated stable oligomers that were resistant to denaturing conditions, and which also contained isoaspartate. Co-incubation of approximately equimolar β-synuclein with α-synuclein resulted in a significant reduction of isoaspartate formed in all α-synucleins after 20 days of ageing. Co-incubated α- and β-synucleins, or α, or β synucleins alone, were resolved by non-denaturing size exclusion chromatography and all formed oligomers of ∼57.5 kDa; consistent with tetramerization. Direct association of α-synuclein with β-synuclein in column fractions or from in vitro ageing co-incubations was demonstrated by their co-immunoprecipitation. These results provide an insight into the molecular differences between α- and β-synucleins during ageing, and highlight the susceptibility of α-synuclein to protein damage, and the potential protective role of β-synuclein.
Collapse
Affiliation(s)
- Vasanthy Vigneswara
- School of Biomedical Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Simon Cass
- School of Biomedical Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Declan Wayne
- School of Graduate Entry Medicine and Health, University of Nottingham Medical School, Royal Derby Hospital, Derby, United Kingdom
| | - Edward L. Bolt
- School of Biomedical Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - David E. Ray
- School of Biomedical Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Wayne G. Carter
- School of Graduate Entry Medicine and Health, University of Nottingham Medical School, Royal Derby Hospital, Derby, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Verma P, Kaur H, Petla BP, Rao V, Saxena SC, Majee M. PROTEIN L-ISOASPARTYL METHYLTRANSFERASE2 is differentially expressed in chickpea and enhances seed vigor and longevity by reducing abnormal isoaspartyl accumulation predominantly in seed nuclear proteins. PLANT PHYSIOLOGY 2013; 161:1141-57. [PMID: 23284083 PMCID: PMC3585586 DOI: 10.1104/pp.112.206243] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/01/2013] [Indexed: 05/02/2023]
Abstract
PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT) is a widely distributed protein-repairing enzyme that catalyzes the conversion of abnormal l-isoaspartyl residues in spontaneously damaged proteins to normal aspartyl residues. This enzyme is encoded by two divergent genes (PIMT1 and PIMT2) in plants, unlike many other organisms. While the biological role of PIMT1 has been elucidated, the role and significance of the PIMT2 gene in plants is not well defined. Here, we isolated the PIMT2 gene (CaPIMT2) from chickpea (Cicer arietinum), which exhibits a significant increase in isoaspartyl residues in seed proteins coupled with reduced germination vigor under artificial aging conditions. The CaPIMT2 gene is found to be highly divergent and encodes two possible isoforms (CaPIMT2 and CaPIMT2') differing by two amino acids in the region I catalytic domain through alternative splicing. Unlike CaPIMT1, both isoforms possess a unique 56-amino acid amino terminus and exhibit similar yet distinct enzymatic properties. Expression analysis revealed that CaPIMT2 is differentially regulated by stresses and abscisic acid. Confocal visualization of stably expressed green fluorescent protein-fused PIMT proteins and cell fractionation-immunoblot analysis revealed that apart from the plasma membrane, both CaPIMT2 isoforms localize predominantly in the nucleus, while CaPIMT1 localizes in the cytosol. Remarkably, CaPIMT2 enhances seed vigor and longevity by repairing abnormal isoaspartyl residues predominantly in nuclear proteins upon seed-specific expression in Arabidopsis (Arabidopsis thaliana), while CaPIMT1 enhances seed vigor and longevity by repairing such abnormal proteins mainly in the cytosolic fraction. Together, our data suggest that CaPIMT2 has most likely evolved through gene duplication, followed by subfunctionalization to specialize in repairing the nuclear proteome.
Collapse
Affiliation(s)
- Pooja Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Harmeet Kaur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Bhanu Prakash Petla
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Venkateswara Rao
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh C. Saxena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Majee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
27
|
Güttler BHO, Cynis H, Seifert F, Ludwig HH, Porzel A, Schilling S. A quantitative analysis of spontaneous isoaspartate formation from N-terminal asparaginyl and aspartyl residues. Amino Acids 2013; 44:1205-14. [DOI: 10.1007/s00726-012-1454-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/24/2012] [Indexed: 10/27/2022]
|
28
|
Doyle HA, Aswad DW, Mamula MJ. Autoimmunity to isomerized histone H2B in systemic lupus erythematosus. Autoimmunity 2012; 46:6-13. [PMID: 22967069 DOI: 10.3109/08916934.2012.710859] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Histone H2B is a common target of autoantibodies in both spontaneous and drug-induced systemic lupus erythematosus (SLE). Recent studies demonstrate that Asp(25) of histone H2B (H2B) spontaneously converts to an isoaspartic acid (isoAsp) in vivo. Our laboratory has demonstrated that the posttranslational modification of an aspartic acid to an isoaspartic acid within self-peptides renders otherwise ignored peptides immunogenic. Analysis of serum from lupus-prone mice and histone antibody positive SLE patients revealed antibodies specific to the Asp and isoAsp H2B(21-35) peptide, and that the expression of these antibodies is dependent on TLR9. IsoAsp H2B(21-35) is immunogenic in non-autoimmune prone mice and mice lacking the ability to repair isoAsp have significantly reduced levels of antibodies to H2B. Asp H2B(21-35) incubated at physiological temperatures and pH acquires the isoAsp modification, demonstrating that H2B(21-35) is prone to spontaneous isoAsp formation in vivo. Autoimmunity to isoAsp H2B suggests that this form of the autoantigen may be critical in the induction of anti-histone autoantibodies in human SLE and in murine models of disease.
Collapse
Affiliation(s)
- Hester A Doyle
- Department of Rheumatology, Yale University School of Medicine, New Haven, Connecticut 06520-8031, USA
| | | | | |
Collapse
|
29
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
30
|
Karsdal MA, Nielsen MJ, Sand JM, Henriksen K, Genovese F, Bay-Jensen AC, Smith V, Adamkewicz JI, Christiansen C, Leeming DJ. Extracellular matrix remodeling: the common denominator in connective tissue diseases. Possibilities for evaluation and current understanding of the matrix as more than a passive architecture, but a key player in tissue failure. Assay Drug Dev Technol 2012; 11:70-92. [PMID: 23046407 DOI: 10.1089/adt.2012.474] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Increased attention is paid to the structural components of tissues. These components are mostly collagens and various proteoglycans. Emerging evidence suggests that altered components and noncoded modifications of the matrix may be both initiators and drivers of disease, exemplified by excessive tissue remodeling leading to tissue stiffness, as well as by changes in the signaling potential of both intact matrix and fragments thereof. Although tissue structure until recently was viewed as a simple architecture anchoring cells and proteins, this complex grid may contain essential information enabling the maintenance of the structure and normal functioning of tissue. The aims of this review are to (1) discuss the structural components of the matrix and the relevance of their mutations to the pathology of diseases such as fibrosis and cancer, (2) introduce the possibility that post-translational modifications (PTMs), such as protease cleavage, citrullination, cross-linking, nitrosylation, glycosylation, and isomerization, generated during pathology, may be unique, disease-specific biochemical markers, (3) list and review the range of simple enzyme-linked immunosorbent assays (ELISAs) that have been developed for assessing the extracellular matrix (ECM) and detecting abnormal ECM remodeling, and (4) discuss whether some PTMs are the cause or consequence of disease. New evidence clearly suggests that the ECM at some point in the pathogenesis becomes a driver of disease. These pathological modified ECM proteins may allow insights into complicated pathologies in which the end stage is excessive tissue remodeling, and provide unique and more pathology-specific biochemical markers.
Collapse
|
31
|
Morrison GJ, Ganesan R, Qin Z, Aswad DW. Considerations in the identification of endogenous substrates for protein L-isoaspartyl methyltransferase: the case of synuclein. PLoS One 2012; 7:e43288. [PMID: 22905247 PMCID: PMC3419188 DOI: 10.1371/journal.pone.0043288] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/18/2012] [Indexed: 01/06/2023] Open
Abstract
Protein L-isoaspartyl methyltransferase (PIMT) repairs abnormal isoaspartyl peptide bonds in age-damaged proteins. It has been reported that synuclein, a protein implicated in neurodegenerative diseases, is a major target of PIMT in mouse brain. To extend this finding and explore its possible relevance to neurodegenerative diseases, we attempted to determine the stoichiometry of isoaspartate accumulation in synuclein in vivo and in vitro. Brain proteins from PIMT knockout mice were separated by 2D electrophoresis followed by on-blot [3H]-methylation to label isoaspartyl proteins, and by immunoblotting to confirm the coincident presence of synuclein. On-blot 3H-methylation revealed numerous isoaspartyl proteins, but no signal in the position of synuclein. This finding was corroborated by immunoprecipitation of synuclein followed by on-blot 3H-methylation. To assess the propensity of synuclein to form isoaspartyl sites in vitro, samples of recombinant mouse and human α-synucleins were aged for two weeks by incubation at pH 7.5 and 37°C. The stoichiometries of isoaspartate accumulation were extremely low at 0.02 and 0.07 mol of isoaspartate per mol of protein respectively. Using a simple mathematical model based on the first order kinetics of isoaspartyl protein methyl ester hydrolysis, we ascribe the discrepancy between our results and the previous report to methodological limitations of the latter stemming from an inherent, and somewhat counterintuitive, relationship between the propensity of proteins to form isoaspartyl sites and the instability of the 3H-methyl esters used to tag them. The results presented here indicate that synuclein is not a major target of PIMT in vivo, and emphasize the need to minimize methyl ester hydrolysis when using methylation to assess the abundance of isoaspartyl sites in proteins.
Collapse
Affiliation(s)
- Gareth J. Morrison
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Ranjani Ganesan
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Zhenxia Qin
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Dana W. Aswad
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Park JW, Lee JC, Ha SW, Bang SY, Park EK, Yi SA, Lee MG, Kim DS, Nam KH, Yoo JH, Kwon SH, Han JW. Requirement of protein l-isoaspartyl O-methyltransferase for transcriptional activation of trefoil factor 1 (TFF1) gene by estrogen receptor alpha. Biochem Biophys Res Commun 2012; 420:223-9. [PMID: 22382029 DOI: 10.1016/j.bbrc.2012.02.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 02/12/2012] [Indexed: 10/28/2022]
Abstract
Lysine- and arginine-specific methyltransferases have been shown to act as either direct or secondary transcriptional co-activator of the estrogen receptor (ERα). However, little is known about the role of protein l-isoaspartyl O-methyltransferase (PIMT) on transcriptional regulation. Here, we show that PIMT acts as a co-activator for ERα-mediated transcription. Activation of the estrogen response element (ERE) promoter by β-estradiol (E(2)) was suppressed by knockdown of PIMT, and enhanced by overexpression of wild-type PIMT. However, the ERE promoter activity was resistant to E(2) stimulation in cells overexpressing a catalytically inactive PIMT mutant, G88A. Consistent with these results, the expression of the endogenous ERα response gene trefoil factor 1 (TFF1) by E(2) was completely abrogated by PIMT depletion and decreased to approximately 50% when PIMT mutant G88A was expressed. In addition, over-expression of PIMT significantly increased the levels of TFF1 mRNA in the presence or absence of E(2). Interestingly, PIMT interacted with ERα and was distributed to the cytosol and the nucleus. The chromatin immunoprecipitation analysis revealed that PIMT was recruited to the promoter of TFF1 gene together with ERα in an E(2)-dependent manner, which was accompanied by uploading of RNA polymerase II on the promoter. Taken together, the results suggest that PIMT may act as a co-activator in ERα-mediated transcription through its recruitment to the promoter via interacting with ERα.
Collapse
Affiliation(s)
- Jong Woo Park
- Research Center for Epigenome Regulation, School of Pharmacy, Sungkyunkwan University, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Leeming DJ, Bay-Jensen AC, Vassiliadis E, Larsen MR, Henriksen K, Karsdal MA. Post-translational modifications of the extracellular matrix are key events in cancer progression: opportunities for biochemical marker development. Biomarkers 2011; 16:193-205. [PMID: 21506694 DOI: 10.3109/1354750x.2011.557440] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim of this review is to discuss the potential usefulness of a novel class of biochemical markers, designated neoepitopes. Neoepitopes are post-translational modifications (PTMs) of proteins and are derived by processes, such as protease cleavage, citrullination, nitrosylation, glycosylation and isomerization. Each PTM results from a specific local physiological or pathobiological process. Identification of each modification to a tissue-specific protein may reveal a unique disease-specific biochemical marker. During cancer metastasis, the host tissue is extensively degraded and replaced by cancer-associated extracellular matrix (ECM) proteins. Furthermore, severe cellular stress and inflammation, caused by cancer, results in generation of PTMs, which will be distributed throughout the ECM. This gives rise to release of protein-specific fragments to the circulation. Here we highlight the importance of remodeling of the ECM in cancer and the generation of PTMs, which may be cancer specific and reflect disease progression; thus having potential for biochemical marker development.
Collapse
Affiliation(s)
- D J Leeming
- Nordic Bioscience A/S, Herlev Hovedgade 207, Herlev, Denmark
| | | | | | | | | | | |
Collapse
|
34
|
Chen T, Nayak N, Majee SM, Lowenson J, Schäfermeyer KR, Eliopoulos AC, Lloyd TD, Dinkins R, Perry SE, Forsthoefel NR, Clarke SG, Vernon DM, Zhou ZS, Rejtar T, Downie AB. Substrates of the Arabidopsis thaliana protein isoaspartyl methyltransferase 1 identified using phage display and biopanning. J Biol Chem 2010; 285:37281-92. [PMID: 20870712 DOI: 10.1074/jbc.m110.157008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The role of protein isoaspartyl methyltransferase (PIMT) in repairing a wide assortment of damaged proteins in a host of organisms has been inferred from the affinity of the enzyme for isoaspartyl residues in a plethora of amino acid contexts. The identification of PIMT target proteins in plant seeds, where the enzyme is highly active and proteome long-lived, has been hindered by large amounts of isoaspartate-containing storage proteins. Mature seed phage display libraries circumvented this problem. Inclusion of the PIMT co-substrate, S-adenosylmethionine (AdoMet), during panning permitted PIMT to retain aged phage in greater numbers than controls lacking co-substrate or when PIMT protein binding was poisoned with S-adenosyl homocysteine. After four rounds, phage titer plateaued in AdoMet-containing pans, whereas titer declined in both controls. This strategy identified 17 in-frame PIMT target proteins, including a cupin-family protein similar to those identified previously using on-blot methylation. All recovered phage had at least one susceptible Asp or Asn residue. Five targets were recovered independently. Two in-frame targets were produced in Escherichia coli as recombinant proteins and shown by on-blot methylation to acquire isoAsp, becoming a PIMT target. Both gained isoAsp rapidly in solution upon thermal insult. Mutant analysis of plants deficient in any of three in-frame PIMT targets resulted in demonstrable phenotypes. An over-representation of clones encoding proteins involved in protein production suggests that the translational apparatus comprises a subgroup for which PIMT-mediated repair is vital for orthodox seed longevity. Impaired PIMT activity would hinder protein function in these targets, possibly resulting in poor seed performance.
Collapse
Affiliation(s)
- Tingsu Chen
- Department of Horticulture, University of Kentucky, Lexington, Kentucky 40546-0312, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Karsdal MA, Henriksen K, Leeming DJ, Woodworth T, Vassiliadis E, Bay-Jensen AC. Novel combinations of Post-Translational Modification (PTM) neo-epitopes provide tissue-specific biochemical markers—are they the cause or the consequence of the disease? Clin Biochem 2010; 43:793-804. [DOI: 10.1016/j.clinbiochem.2010.03.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/22/2010] [Accepted: 03/28/2010] [Indexed: 12/31/2022]
|
36
|
Uysal H, Nandakumar KS, Kessel C, Haag S, Carlsen S, Burkhardt H, Holmdahl R. Antibodies to citrullinated proteins: molecular interactions and arthritogenicity. Immunol Rev 2010; 233:9-33. [DOI: 10.1111/j.0105-2896.2009.00853.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Rutherford K, Daggett V. The V119I polymorphism in protein L-isoaspartate O-methyltransferase alters the substrate-binding interface. Protein Eng Des Sel 2009; 22:713-21. [PMID: 19801578 DOI: 10.1093/protein/gzp056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein L-isoaspartate O-methyltransferase (PIMT) repairs isoaspartate residues in damaged proteins, and it contains a Val-Ile polymorphismin in alpha5, approximately 13 A from its active site. Val119 has lower activity and thermal stability but increased affinity for endogenous substrates. Studies suggest that heterozygosity for Val/Ile favors efficient isoaspartate repair. We have performed multiple molecular dynamics simulations of 119I and 119V PIMT. Both V119 and I119 interact with the same residues throughout all of the simulations. However, the larger Ile altered the orientations of alpha5 and beta5, both of which have co-substrate binding residues on their distal ends. I119 increases the flexibility of several residues, loosening up the S-adenosylmethionine (SAM)-binding site. These subtle changes are propagated towards the isoaspartate-docking site via residues common to both active sites. The increased mobility in 119I PIMT reorients alpha3, resulting in a salt-bridge network at the substrate-binding interface that disrupts several key side-chain interactions in the isoaspartate site. In contrast, 119V PIMT remains quite rigid with little change to the co-substrate binding site, which could hinder SAM's binding and release, accounting for the decreased activity. These results shed light on the molecular basis behind the decreased activity and increased specificity for endogenous substrates of 119V PIMT relative to the 119I variant. 119I PIMT catalyzes the methylation reaction but may have difficulties recognizing and orienting specific substrates due to its distorted substrate-binding site. Heterozygosity for both the Ile and Val alleles may provide the best of both worlds, allowing the fast and specific methylation of damaged proteins.
Collapse
Affiliation(s)
- Karen Rutherford
- Department of Biochemistry, University of Washington, Box 355013, Seattle, WA 98195-5013, USA
| | | |
Collapse
|
38
|
Kharbanda KK, Vigneswara V, McVicker BL, Newlaczyl AU, Bailey K, Tuma D, Ray DE, Carter WG. Proteomics reveal a concerted upregulation of methionine metabolic pathway enzymes, and downregulation of carbonic anhydrase-III, in betaine supplemented ethanol-fed rats. Biochem Biophys Res Commun 2009; 381:523-7. [PMID: 19239903 PMCID: PMC2670967 DOI: 10.1016/j.bbrc.2009.02.082] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Accepted: 02/16/2009] [Indexed: 02/07/2023]
Abstract
We employed a proteomic profiling strategy to examine the effects of ethanol and betaine diet supplementation on major liver protein level changes. Male Wistar rats were fed control, ethanol or betaine supplemented diets for 4 weeks. Livers were removed and liver cytosolic proteins resolved by one-dimensional and two-dimensional separation techniques. Significant upregulation of betaine homocysteine methyltransferase-1, methionine adenosyl transferase-1, and glycine N-methyltransferase were the most visually prominent protein changes observed in livers of rats fed the betaine supplemented ethanol diet. We hypothesise that this concerted upregulation of these methionine metabolic pathway enzymes is the protective mechanism by which betaine restores a normal metabolic ratio of liver S-adenosylmethionine to S-adenosylhomocysteine. Ethanol also induced significant downregulation of carbonic anhydrase-III protein levels which was not restored by betaine supplementation. Carbonic anhydrase-III can function to resist oxidative stress, and we therefore hypothesise that carbonic anhydrase-III protein levels compromised by ethanol consumption, contribute to ethanol-induced redox stress.
Collapse
Affiliation(s)
- Kusum K. Kharbanda
- Liver Study Unit, Department of Veterans Affairs Medical Centre, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Vasanthy Vigneswara
- School of Biomedical Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Benita L. McVicker
- Liver Study Unit, Department of Veterans Affairs Medical Centre, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Anna U. Newlaczyl
- School of Biomedical Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Kevin Bailey
- School of Biomedical Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Dean Tuma
- Liver Study Unit, Department of Veterans Affairs Medical Centre, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - David E. Ray
- School of Biomedical Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Wayne G. Carter
- School of Biomedical Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
39
|
Wägner AM, Cloos P, Bergholdt R, Eising S, Brorsson C, Stalhut M, Christgau S, Nerup J, Pociot F. Posttranslational Protein Modifications in Type 1 Diabetes - Genetic Studies with PCMT1, the Repair Enzyme Protein Isoaspartate Methyltransferase (PIMT) Encoding Gene. Rev Diabet Stud 2009; 5:225-31. [PMID: 19290383 DOI: 10.1900/rds.2008.5.225] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Posttranslational protein modifications have been implicated in the development of autoimmunity. Protein L-isoaspartate (D-aspartate) O-methyltransferase (PIMT) repairs modified proteins and is encoded by PCMT1, located in a region linked to type 1 diabetes (T1D), namely IDDM5. AIM To evaluate the association between genetic variations in the PCMT1 gene and T1D. METHODS Firstly, PCMT1 was sequenced in 26 patients with T1D (linked to IDDM5) and 10 control subjects. The variations found in PCMT1 were then tested (alone and interacting with a functional polymorphism in SUMO4 and with HLA) for association with T1D in 253 families (using transmission disequilibrium test). In a third step, the association of the functional variation in PCMT1 (rs4816) with T1D was analyzed in 778 T1D patients and 749 controls (using chi-square test). In vitro promoter activity was assessed by transfecting INS-1E cells with PCMT1 promoter constructs and a reporter gene, with or without cytokine stimulation. RESULTS Four polymorphisms in complete linkage disequilibrium were identified in PCMT1 (5' to the gene (rs11155676), exon 5 (rs4816) and exon 8 (rs7818 and rs4552)). In the whole cohort of 253 families, the allele associated with increased PIMT enzyme activity (rs4816, allele A) was less frequently transmitted to the affected than to the non-affected offspring (46% vs. 53%, p = 0.099). This finding was even more evident in the subset of families where the proband had high-risk SUMO4 (p = 0.069) or low-risk HLA (p = 0.086). Surprisingly, in the case-control study with 778 cases and 749 controls, an inverse trend was found (40.36% of patients and 36.98% of controls had the allele, p = 0.055). PCMT1 promoter activity increased with cytokine stimulation, but no differences were detected between the constructs adjacent to rs11155676. CONCLUSION PCMT1 was virtually associated with T1D in groups defined by other risk genes (SUMO4 and HLA). A general association in a not further defined sample of T1D patients was not evident. Verification in a larger population is needed.
Collapse
|
40
|
Banfield KL, Gomez TA, Lee W, Clarke S, Larsen PL. Protein-repair and hormone-signaling pathways specify dauer and adult longevity and dauer development in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2008; 63:798-808. [PMID: 18772467 DOI: 10.1093/gerona/63.8.798] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein damage that accumulates during aging can be mitigated by a repair methyltransferase, the l-isoaspartyl-O-methyltransferase. In Caenorhabditis elegans, the pcm-1 gene encodes this enzyme. In response to pheromone, we show that pcm-1 mutants form fewer dauer larvae with reduced survival due to loss of the methyltransferase activity. Mutations in daf-2, an insulin/insulin-like growth factor-1-like receptor, and daf-7, a transforming growth factor-beta-like ligand, modulate pcm-1 dauer defects. Additionally, daf-2 and daf-7 mutant dauer larvae live significantly longer than wild type. Although dauer larvae are resistant to many environmental stressors, a proportionately larger decrease in dauer larvae life spans occurred at 25 degrees C compared to 20 degrees C than in adult life span. At 25 degrees C, mutation of the daf-7 or pcm-1 genes does not change adult life span, whereas mutation of the daf-2 gene and overexpression of PCM-1 increases adult life span. Thus, there are both overlapping and distinct mechanisms that specify dauer and adult longevity.
Collapse
Affiliation(s)
- Kelley L Banfield
- Department of Cellular and Structural Biology, University of Texas Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
41
|
Griffiths HR. Is the generation of neo-antigenic determinants by free radicals central to the development of autoimmune rheumatoid disease? Autoimmun Rev 2008; 7:544-9. [DOI: 10.1016/j.autrev.2008.04.013] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Chapter 16 Analysis of Deamidation in Proteins. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s0166-526x(08)00216-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
43
|
Zhao R, Oxley D, Smith TS, Follows GA, Green AR, Alexander DR. DNA damage-induced Bcl-xL deamidation is mediated by NHE-1 antiport regulated intracellular pH. PLoS Biol 2007; 5:e1. [PMID: 17177603 PMCID: PMC1702560 DOI: 10.1371/journal.pbio.0050001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 10/25/2006] [Indexed: 12/30/2022] Open
Abstract
The pro-survival protein Bcl-xL is critical for the resistance of tumour cells to DNA damage. We have previously demonstrated, using a mouse cancer model, that oncogenic tyrosine kinase inhibition of DNA damage–induced Bcl-xL deamidation tightly correlates with T cell transformation in vivo, although the pathway to Bcl-xL deamidation remains unknown and its functional consequences unclear. We show here that rBcl-xL deamidation generates an iso-Asp52/iso-Asp66 species that is unable to sequester pro-apoptotic BH3-only proteins such as Bim and Puma. DNA damage in thymocytes results in increased expression of the NHE-1 Na/H antiport, an event both necessary and sufficient for subsequent intracellular alkalinisation, Bcl-xL deamidation, and apoptosis. In murine thymocytes and tumour cells expressing an oncogenic tyrosine kinase, this DNA damage–induced cascade is blocked. Enforced intracellular alkalinisation mimics the effects of DNA damage in murine tumour cells and human B-lineage chronic lymphocytic leukaemia cells, thereby causing Bcl-xL deamidation and increased apoptosis. Our results define a signalling pathway leading from DNA damage to up-regulation of the NHE-1 antiport, to intracellular alkalanisation to Bcl-xL deamidation, to apoptosis, representing the first example, to our knowledge, of how deamidation of internal asparagine residues can be regulated in a protein in vivo. Our findings also suggest novel approaches to cancer therapy. Cell survival and cell death (apoptosis) are controlled by a finely tuned ensemble of pro-survival and pro-apoptotic proteins. When the two types of protein are balanced, cells survive. But if the pro-survival proteins dominate, there is a danger that cells with damaged DNA will stay alive, leading to malignancy. One of the key pro-survival proteins, Bcl-xL, acts by blocking the actions of pro-apoptotic proteins. We show here that DNA damage results in an important modification of Bcl-xL. Specifically, when the amide groups are removed from two critical asparagine (amino acid) residues, Bcl-xL can no longer block pro-apoptotic proteins, leading to cell death. Surprisingly, Bcl-xL deamidation is catalysed not by an enzyme, but by increased pH inside the cell due to the up-regulation of an NHE-1 transporter that moves positive ions across the cell membrane. Indeed, artificially increasing pH causes Bcl-xL deamidation and apoptosis in the absence of initial DNA damage. Exploring this novel pathway may ultimately suggest approaches to cancer therapy, especially when malignant cells are resistant to chemotherapy or radiotherapy. Until now, the mechanisms and functional implications for DNA damage-induced Bcl-xL deamidation were unknown. Here the authors provide important new insights into this phenomenon and its impact on cell survival.
Collapse
Affiliation(s)
- Rui Zhao
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham, Cambridge, United Kingdom
| | - David Oxley
- Protein Technologies Laboratory, The Babraham Institute, Babraham, Cambridge, United Kingdom
| | - Trevor S Smith
- Protein Technologies Laboratory, The Babraham Institute, Babraham, Cambridge, United Kingdom
| | - George A Follows
- Department of Haematology, University of Cambridge, Hills Road, Cambridge, United Kingdom
| | - Anthony R Green
- Department of Haematology, University of Cambridge, Hills Road, Cambridge, United Kingdom
| | - Denis R Alexander
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham, Cambridge, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Kharbanda KK, Mailliard ME, Baldwin CR, Sorrell MF, Tuma DJ. Accumulation of proteins bearing atypical isoaspartyl residues in livers of alcohol-fed rats is prevented by betaine administration: effects on protein-L-isoaspartyl methyltransferase activity. J Hepatol 2007; 46:1119-25. [PMID: 17336420 DOI: 10.1016/j.jhep.2007.01.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 12/27/2006] [Accepted: 01/15/2007] [Indexed: 01/30/2023]
Abstract
BACKGROUND/AIMS Protein-L-isoaspartyl methyltransferase (PIMT) is a methyltransferase that plays a crucial role in the repair of damaged proteins. In this study, we investigated whether ethanol exposure causes an accumulation of modified proteins bearing atypical isoaspartyl residues that may be related to impaired PIMT activity. We further sought to determine whether betaine administration could prevent the accumulation of these types of damaged proteins. METHODS Livers of male Wistar rats, fed the Lieber DeCarli control, ethanol or 1% betaine-supplemented diets for 4 weeks, were processed for PIMT-related analyses. RESULTS We observed a significant increase in the accumulation of modified proteins bearing isoaspartyl residues, i.e. the substrates for PIMT, in homogenate samples and various subcellular fractions of livers from ethanol-fed rats. Betaine supplementation prevented this accumulation of damaged proteins. In contrast, ethanol exposure induced no changes in the PIMT enzyme activity levels as compared to controls. The accumulation of damaged proteins negatively correlated with hepatic S-adenosylmethionine (SAM) to S-adenosylhomocysteine (SAH) ratios. CONCLUSIONS Ethanol consumption results in the accumulation of modified proteins bearing atypical isoaspartyl residues via impaired in vivo PIMT activity. Betaine administration prevents the ethanol-induced accumulation of isoaspartyl-containing proteins by restoring the PIMT-catalyzed protein repair reaction through normalizing the hepatocellular SAM:SAH ratios.
Collapse
Affiliation(s)
- Kusum K Kharbanda
- VA Alcohol Research Center, Department of Veterans Affairs Medical Center, Omaha, NE 68105, USA.
| | | | | | | | | |
Collapse
|
45
|
Zhu JX, Aswad DW. Selective cleavage of isoaspartyl peptide bonds by hydroxylamine after methyltransferase priming. Anal Biochem 2007; 364:1-7. [PMID: 17376395 PMCID: PMC1885207 DOI: 10.1016/j.ab.2007.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 02/02/2007] [Accepted: 02/15/2007] [Indexed: 11/29/2022]
Abstract
Formation of atypical isoaspartyl (isoAsp) sites in peptides and proteins via the deamidation-linked isomerization of asparaginyl-Xaa bonds or direct isomerization of aspartyl-Xaa bonds is a major contributor to spontaneous protein damage under mild conditions. This nonenzymatic reaction reroutes the Asx-Xaa peptide bond through the beta-carbonyl of asparaginyl or aspartyl residues, thereby adding an extra carbon to the polypeptide backbone. Formation of isoAsp has been implicated in protein inactivation, aggregation, degradation, and autoimmunity. Knowing the location of isoAsp sites in proteins is important for understanding mechanisms of protein damage and for characterizing protein pharmaceuticals. Here we present a simple nonradioactive method for direct localization of isoAsp residues in peptides or proteins. Using three model peptides, we demonstrate that isoAsp linkages can be cleaved selectively and in high yield by a two-step process in which (i) the isoAsp linkage is converted into a succinimide on incubation with S-adenosyl-l-methionine and the commercially available enzyme, protein l-isoaspartyl-O-methyltransferase, and (ii) the succinimidyl bond is then cleaved by hydroxylamine under conditions that minimize cleavage of the traditional hydroxylamine-sensitive Asn-Gly and related peptide bonds. Location of the isoAsp linkage is then inferred by identifying the cleavage products by mass spectrometry or N-terminal sequencing.
Collapse
Affiliation(s)
- Jeff X Zhu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
46
|
McCudden CR, Kraus VB. Biochemistry of amino acid racemization and clinical application to musculoskeletal disease. Clin Biochem 2006; 39:1112-30. [PMID: 17046734 DOI: 10.1016/j.clinbiochem.2006.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 06/27/2006] [Accepted: 07/13/2006] [Indexed: 11/30/2022]
Abstract
During aging, proteins are subject to numerous forms of damage. Several types of non-enzymatic post-translational modifications have been described in aging proteins, including oxidation, nitration, glycation, and racemization. Racemization of amino acids is the spontaneous conversion of L-enantiomers to the D-form, which is dependent on temperature, pH, and time. Because of the time-dependent nature of racemization, it can be used to determine the relative age and turnover rates of long-lived proteins. There are many such long-lived proteins within the body; they are found in the brain, eye, and heart, but are particularly abundant in proteins found in musculoskeletal tissues such as bone and cartilage. During disease, musculoskeletal tissues have pathologically altered turnover rates. Because turnover rates can be estimated from levels of racemization, racemized musculoskeletal protein fragments may serve as useful biomarkers of disease. This review discusses the biochemistry of amino acid racemization in proteins and its clinical application to musculoskeletal disease.
Collapse
Affiliation(s)
- Christopher R McCudden
- Division of Rheumatology, Department of Medicine, Box 3416, Duke University, Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
47
|
Gomez TA, Banfield KL, Trogler DM, Clarke SG. The L-isoaspartyl-O-methyltransferase in Caenorhabditis elegans larval longevity and autophagy. Dev Biol 2006; 303:493-500. [PMID: 17187774 PMCID: PMC1868680 DOI: 10.1016/j.ydbio.2006.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 11/03/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
The protein L-isoaspartyl-O-methyltransferase, coded by the pcm-1 gene in Caenorhabditis elegans, participates in the repair of age-damaged proteins. We tested the ability of pcm-1-deficient nematodes to survive starvation stress as developmentally-arrested L1 larvae. We found that pcm-1 mutant L1 larvae do not survive as well as wild-type L1 larvae when incubated in M9 medium without nutrients. We then tested whether the starved L1 larvae could continue development when allowed access to food in a recovery assay. A loss of recovery ability with age was observed for all larvae, with little or no difference between the pcm-1 mutant and wild-type N2 larvae. Interestingly, when L1 larvae were starved in cholesterol-containing S medium or M9 medium supplemented with cholesterol, the survival rates of both mutant and wild-type animals nearly doubles, with pcm-1 larvae again faring more poorly than N2 larvae. Furthermore, L1 larvae cultured in these cholesterol-containing media show an increase in Sudan Black staining over animals cultured in M9 medium. The longevity defects of pcm-1 mutants previously seen in dauer larvae and here in L1 larvae suggest a defect in the ability of pcm-1 mutants to recycle and reuse old cellular components in pathways such as autophagy. Using an autophagosomal marker, we found evidence suggesting that the pcm-1 mutation may inhibit autophagy during dauer formation, suggesting that the absence of protein repair may also interfere with protein degradation pathways.
Collapse
Affiliation(s)
- Tara A Gomez
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California-Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
48
|
Vigneswara V, Lowenson JD, Powell CD, Thakur M, Bailey K, Clarke S, Ray DE, Carter WG. Proteomic Identification of Novel Substrates of a Protein Isoaspartyl Methyltransferase Repair Enzyme. J Biol Chem 2006; 281:32619-29. [PMID: 16923807 DOI: 10.1074/jbc.m605421200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the use of a proteomic strategy to identify hitherto unknown substrates for mammalian protein l-isoaspartate O-methyltransferase. This methyltransferase initiates the repair of isoaspartyl residues in aged or stress-damaged proteins in vivo. Tissues from mice lacking the methyltransferase (Pcmt1(-/-)) accumulate more isoaspartyl residues than their wild-type littermates, with the most "damaged" residues arising in the brain. To identify the proteins containing these residues, brain homogenates from Pcmt1(-/-) mice were methylated by exogenous repair enzyme and the radiolabeled methyl donor S-adenosyl-[methyl-(3)H]methionine. Methylated proteins in the homogenates were resolved by both one-dimensional and two-dimensional electrophoresis, and methyltransferase substrates were identified by their increased radiolabeling when isolated from Pcmt1(-/-) animals compared with Pcmt1(+/+) littermates. Mass spectrometric analyses of these isolated brain proteins reveal for the first time that microtubule-associated protein-2, calreticulin, clathrin light chains a and b, ubiquitin carboxyl-terminal hydrolase L1, phosphatidylethanolamine-binding protein, stathmin, beta-synuclein, and alpha-synuclein, are all substrates for the l-isoaspartate methyltransferase in vivo. Our methodology for methyltransferase substrate identification was further supplemented by demonstrating that one of these methyltransferase targets, microtubule-associated protein-2, could be radiolabeled within Pcmt1(-/-) brain extracts using radioactive methyl donor and exogenous methyltransferase enzyme and then specifically immunoprecipitated with microtubule-associated protein-2 antibodies to recover co-localized protein with radioactivity. We comment on the functional significance of accumulation of relatively high levels of isoaspartate within these methyltransferase targets in the context of the histological and phenotypical changes associated with the methyltransferase knock-out mice.
Collapse
Affiliation(s)
- Vasanthy Vigneswara
- Medical Research Council Applied Neuroscience Group, School of Biomedical Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhu JX, Doyle HA, Mamula MJ, Aswad DW. Protein repair in the brain, proteomic analysis of endogenous substrates for protein L-isoaspartyl methyltransferase in mouse brain. J Biol Chem 2006; 281:33802-13. [PMID: 16959769 DOI: 10.1074/jbc.m606958200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein L-isoaspartyl methyltransferase (PIMT) catalyzes repair of L-isoaspartyl peptide bonds, a major source of protein damage under physiological conditions. PIMT knock-out (KO) mice exhibit brain enlargement and fatal epileptic seizures. All organs accumulate isoaspartyl proteins, but only the brain manifests an overt pathology. To further explore the role of PIMT in brain function, we undertook a global analysis of endogenous substrates for PIMT in mouse brain. Extracts from PIMT-KO mice were subjected to two-dimensional gel electrophoresis and blotted onto membranes. Isoaspartyl proteins were radiolabeled on-blot using [methyl-(3)H]S-adenosyl-L-methionine and recombinant PIMT. Fluorography of the blot revealed 30-35 (3)H-labeled proteins, 22 of which were identified by peptide mass fingerprinting. These isoaspartate-prone proteins represent a wide range of cellular functions, including neuronal development, synaptic transmission, cytoskeletal structure and dynamics, energy metabolism, nitrogen metabolism, pH homeostasis, and protein folding. The following five proteins, all of which are rich in neurons, accumulated exceptional levels of isoaspartate: collapsin response mediator protein 2 (CRMP2/ULIP2/DRP-2), dynamin 1, synapsin I, synapsin II, and tubulin. Several of the proteins identified here are prone to age-dependent oxidation in vivo, and many have been identified as autoimmune antigens, of particular interest because isoaspartate can greatly enhance the antigenicity of self-peptides. We propose that the PIMT-KO phenotype results from the cumulative effect of isoaspartate-related damage to a number of the neuron-rich proteins detected in this study. Further study of the isoaspartate-prone proteins identified here may help elucidate the molecular basis of one or more developmental and/or age-related neurological diseases.
Collapse
Affiliation(s)
- Jeff X Zhu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
50
|
Reissner KJ, Paranandi MV, Luc TM, Doyle HA, Mamula MJ, Lowenson JD, Aswad DW. Synapsin I is a major endogenous substrate for protein L-isoaspartyl methyltransferase in mammalian brain. J Biol Chem 2006; 281:8389-98. [PMID: 16443604 DOI: 10.1074/jbc.m510716200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The accumulation of potentially deleterious L-isoaspartyl linkages in proteins is prevented by the action of protein L-isoaspartyl O-methyltransferase, a widely distributed enzyme that is particularly active in mammalian brain. Methyltransferase-deficient (knock-out) mice exhibit greatly increased levels of isoaspartate and typically succumb to fatal epileptic seizures at 4-10 weeks of age. The link between isoaspartate accumulation and the neurological abnormalities of these mice is poorly understood. Here, we demonstrate that synapsin I from knock-out mice contains 0.9 +/- 0.3 mol of isoaspartate/mol of synapsin, whereas the levels in wild-type and heterozygous mice are undetectable. Transgenic mice that selectively express methyltransferase only in neurons show reduced levels of synapsin damage, and the degree of reduction correlates with the phenotype of these mice. Isoaspartate levels in synapsin from the knock-out mice are five to seven times greater than those in the average protein from brain cytosol or from a synaptic vesicle-enriched fraction. The isoaspartyl sites in synapsin from knock-out mice are efficiently repaired in vitro by incubation with purified methyltransferase and S-adenosyl-L-methionine. These findings demonstrate that synapsin I is a major substrate for the isoaspartyl methyltransferase in neurons and suggest that isoaspartate-related alterations in the function of presynaptic proteins may contribute to the neurological abnormalities of mice deficient in this enzyme.
Collapse
Affiliation(s)
- Kathryn J Reissner
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA
| | | | | | | | | | | | | |
Collapse
|