1
|
Khan MA, Yumak S, Miyoshi H. Poly(A)-binding protein promotes VPg-dependent translation of potyvirus through enhanced binding of phosphorylated eIFiso4F and eIFiso4F∙eIF4B. PLoS One 2024; 19:e0300287. [PMID: 38696388 PMCID: PMC11065315 DOI: 10.1371/journal.pone.0300287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 02/24/2024] [Indexed: 05/04/2024] Open
Abstract
The phosphorylation of eukaryotic translational initiation factors has been shown to play a significant role in controlling the synthesis of protein. Viral infection, environmental stress, and growth circumstances cause phosphorylation or dephosphorylation of plant initiation factors. Our findings indicate that casein kinase 2 can phosphorylate recombinant wheat eIFiso4E and eIFiso4G generated from E. coli in vitro. For wheat eIFiso4E, Ser-207 was found to be the in vitro phosphorylation site. eIFiso4E lacks an amino acid that can be phosphorylated at the position corresponding to Ser-209, the phosphorylation site in mammalian eIF4E, yet phosphorylation of eIFiso4E has effects on VPg binding affinity that are similar to those of phosphorylation of mammalian eIF4E. The addition of VPg and phosphorylated eIFiso4F to depleted wheat germ extract (WGE) leads to enhancement of translation of both uncapped and capped viral mRNA. The addition of PABP together with eIFiso4Fp and eIF4B to depleted WGE increases both uncapped and capped mRNA translation. However, it exhibits a translational advantage specifically for uncapped mRNA, implying that the phosphorylation of eIFiso4F hinders cap binding while promoting VPg binding, thereby facilitating uncapped translation. These findings indicate TEV virus mediates VPg-dependent translation by engaging a mechanism entailing phosphorylated eIFiso4Fp and PABP. To elucidate the molecular mechanisms underlying these observed effects, we studied the impact of PABP and/or eIF4B on the binding of VPg with eIFiso4Fp. The inclusion of PABP and eIF4B with eIFiso4Fp resulted in about 2-fold increase in affinity for VPg (Kd = 24 ± 1.7 nM), as compared to the affinity of eIFiso4Fp alone (Kd = 41.0 ± 3.1 nM). The interactions between VPg and eIFiso4Fp were determined to be both enthalpically and entropically favorable, with the enthalpic contribution accounting for 76-97% of the ΔG at 25°C, indicating a substantial role of hydrogen bonding in enhancing the stability of the complex. The binding of PABP to eIFiso4Fp·4B resulted in a conformational alteration, leading to a significant enhancement in the binding affinity to VPg. These observations suggest PABP enhances the affinity between eIFiso4Fp and VPg, leading to an overall conformational change that provides a stable platform for efficient viral translation.
Collapse
Affiliation(s)
- Mateen A. Khan
- Department of Life Sciences, College of Science and General Studies, Alfaisal University Riyadh, Riyadh, Saudi Arabia
| | - Sumeyra Yumak
- Department of Science, Borough of Manhattan Community College, City University of New York, New York, NY, United States of America
| | - Hiroshi Miyoshi
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
2
|
Chang HH, Huang LC, Browning KS, Huq E, Cheng MC. The phosphorylation of carboxyl-terminal eIF2α by SPA kinases contributes to enhanced translation efficiency during photomorphogenesis. Nat Commun 2024; 15:3467. [PMID: 38658612 PMCID: PMC11043401 DOI: 10.1038/s41467-024-47848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
Light triggers an enhancement of global translation during photomorphogenesis in Arabidopsis, but little is known about the underlying mechanisms. The phosphorylation of the α-subunit of eukaryotic initiation factor 2 (eIF2α) at a conserved serine residue in the N-terminus has been shown as an important mechanism for the regulation of protein synthesis in mammalian and yeast cells. However, whether the phosphorylation of this residue in plant eIF2α plays a role in regulation of translation remains elusive. Here, we show that the quadruple mutant of SUPPRESSOR OF PHYA-105 family members (SPA1-SPA4) display repressed translation efficiency after light illumination. Moreover, SPA1 directly phosphorylates the eIF2α C-terminus under light conditions. The C-term-phosphorylated eIF2α promotes translation efficiency and photomorphogenesis, whereas the C-term-unphosphorylated eIF2α results in a decreased translation efficiency. We also demonstrate that the phosphorylated eIF2α enhances ternary complex assembly by promoting its affinity to eIF2β and eIF2γ. This study reveals a unique mechanism by which light promotes translation via SPA1-mediated phosphorylation of the C-terminus of eIF2α in plants.
Collapse
Affiliation(s)
- Hui-Hsien Chang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Lin-Chen Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Karen S Browning
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Enamul Huq
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Mei-Chun Cheng
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
3
|
Fang JC, Liu MJ. Translation initiation at AUG and non-AUG triplets in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111822. [PMID: 37574140 DOI: 10.1016/j.plantsci.2023.111822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/22/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
In plants and other eukaryotes, precise selection of translation initiation site (TIS) on mRNAs shapes the proteome in response to cellular events or environmental cues. The canonical translation of mRNAs initiates at a 5' proximal AUG codon in a favorable context. However, the coding and non-coding regions of plant genomes contain numerous unannotated alternative AUG and non-AUG TISs. Determining how and why these unexpected and prevalent TISs are activated in plants has emerged as an exciting research area. In this review, we focus on the selection of plant TISs and highlight studies that revealed previously unannotated TISs used in vivo via comparative genomics and genome-wide profiling of ribosome positioning and protein N-terminal ends. The biological signatures of non-AUG TIS-initiated open reading frames (ORFs) in plants are also discussed. We describe what is understood about cis-regulatory RNA elements and trans-acting eukaryotic initiation factors (eIFs) in the site selection for translation initiation by featuring the findings in plants along with supporting findings in non-plant species. The prevalent, unannotated TISs provide a hidden reservoir of ORFs that likely help reshape plant proteomes in response to developmental or environmental cues. These findings underscore the importance of understanding the mechanistic basis of TIS selection to functionally annotate plant genomes, especially for crops with large genomes.
Collapse
Affiliation(s)
- Jhen-Cheng Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Ming-Jung Liu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
4
|
Wang G, Gao G, Yang X, Yang X, Ma P. Casein kinase CK2 structure and activities in plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153767. [PMID: 35841742 DOI: 10.1016/j.jplph.2022.153767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/10/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Casein kinase CK2 is a highly conserved serine/threonine protein kinase and exists in all eukaryotes. It has been demonstrated to be widely involved in the biological processes of plants. The CK2 holoenzyme is a heterotetramer consisting of two catalytic subunits (α and/or α') and two regulatory subunits (β). CK2 in plants is generally encoded by multiple genes, with monomeric and oligomeric forms present in the tissue. Various subunit genes of CK2 have been cloned and characterized from Arabidopsis thaliana, tobacco, maize, wheat, tomato, and other plants. This paper reviews the structural features of CK2, provides a clear classification of its physiological functions and mechanisms of action, and elaborates on the regulation of CK2 activity to provide a knowledge base for subsequent studies of CK2 in plants.
Collapse
Affiliation(s)
- Guanfeng Wang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Geling Gao
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xiangna Yang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xiangdong Yang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
5
|
Mancera-Martínez E, Dong Y, Makarian J, Srour O, Thiébeauld O, Jamsheer M, Chicher J, Hammann P, Schepetilnikov M, Ryabova LA. Phosphorylation of a reinitiation supporting protein, RISP, determines its function in translation reinitiation. Nucleic Acids Res 2021; 49:6908-6924. [PMID: 34133725 PMCID: PMC8266674 DOI: 10.1093/nar/gkab501] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/14/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Reinitiation supporting protein, RISP, interacts with 60S (60S ribosomal subunit) and eIF3 (eukaryotic initiation factor 3) in plants. TOR (target-of-rapamycin) mediates RISP phosphorylation at residue Ser267, favoring its binding to eL24 (60S ribosomal protein L24). In a viral context, RISP, when phosphorylated, binds the CaMV transactivator/ viroplasmin, TAV, to assist in an exceptional mechanism of reinitiation after long ORF translation. Moreover, we show here that RISP interacts with eIF2 via eIF2β and TOR downstream target 40S ribosomal protein eS6. A RISP phosphorylation knockout, RISP-S267A, binds preferentially eIF2β, and both form a ternary complex with eIF3a in vitro. Accordingly, transient overexpression in plant protoplasts of RISP-S267A, but not a RISP phosphorylation mimic, RISP-S267D, favors translation initiation. In contrast, RISP-S267D preferentially binds eS6, and, when bound to the C-terminus of eS6, can capture 60S in a highly specific manner in vitro, suggesting that it mediates 60S loading during reinitiation. Indeed, eS6-deficient plants are highly resistant to CaMV due to their reduced reinitiation capacity. Strikingly, an eS6 phosphomimic, when stably expressed in eS6-deficient plants, can fully restore the reinitiation deficiency of these plants in cellular and viral contexts. These results suggest that RISP function in translation (re)initiation is regulated by phosphorylation at Ser267.
Collapse
Affiliation(s)
- Eder Mancera-Martínez
- Institut de biologie de moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Yihan Dong
- Institut de biologie de moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Joelle Makarian
- Institut de biologie de moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Ola Srour
- Institut de biologie de moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Odon Thiébeauld
- Institut de biologie de moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Muhammed Jamsheer
- Institut de biologie de moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade FRC1589 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Plateforme protéomique Strasbourg Esplanade FRC1589 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Mikhail Schepetilnikov
- Institut de biologie de moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Lyubov A Ryabova
- Institut de biologie de moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
6
|
Wei P, Demulder M, David P, Eekhout T, Yoshiyama KO, Nguyen L, Vercauteren I, Eeckhout D, Galle M, De Jaeger G, Larsen P, Audenaert D, Desnos T, Nussaume L, Loris R, De Veylder L. Arabidopsis casein kinase 2 triggers stem cell exhaustion under Al toxicity and phosphate deficiency through activating the DNA damage response pathway. THE PLANT CELL 2021; 33:1361-1380. [PMID: 33793856 DOI: 10.1093/plcell/koab005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Aluminum (Al) toxicity and inorganic phosphate (Pi) limitation are widespread chronic abiotic and mutually enhancing stresses that profoundly affect crop yield. Both stresses strongly inhibit root growth, resulting from a progressive exhaustion of the stem cell niche. Here, we report on a casein kinase 2 (CK2) inhibitor identified by its capability to maintain a functional root stem cell niche in Arabidopsis thaliana under Al toxic conditions. CK2 operates through phosphorylation of the cell cycle checkpoint activator SUPPRESSOR OF GAMMA RADIATION1 (SOG1), priming its activity under DNA-damaging conditions. In addition to yielding Al tolerance, CK2 and SOG1 inactivation prevents meristem exhaustion under Pi starvation, revealing the existence of a low Pi-induced cell cycle checkpoint that depends on the DNA damage activator ATAXIA-TELANGIECTASIA MUTATED (ATM). Overall, our data reveal an important physiological role for the plant DNA damage response pathway under agriculturally limiting growth conditions, opening new avenues to cope with Pi limitation.
Collapse
Affiliation(s)
- Pengliang Wei
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Manon Demulder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussel B-1050, Belgium
- VIB Center for Structural Biology, Brussel B-1050, Belgium
| | - Pascale David
- CEA, CNRS, BIAM, UMR7265, SAVE (Signalisation pour l'Adaptation des V�g�taux � leur Environnement), Aix Marseille Univ, F-13108, Saint-Paul lez Durance, France
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | | | - Long Nguyen
- VIB Screening Core, VIB, Ghent B-9052, Belgium
- Expertise Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent 9000, Belgium
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Margot Galle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussel B-1050, Belgium
- VIB Center for Structural Biology, Brussel B-1050, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Paul Larsen
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Dominique Audenaert
- VIB Screening Core, VIB, Ghent B-9052, Belgium
- Expertise Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent 9000, Belgium
| | - Thierry Desnos
- CEA, CNRS, BIAM, UMR7265, SAVE (Signalisation pour l'Adaptation des V�g�taux � leur Environnement), Aix Marseille Univ, F-13108, Saint-Paul lez Durance, France
| | - Laurent Nussaume
- CEA, CNRS, BIAM, UMR7265, SAVE (Signalisation pour l'Adaptation des V�g�taux � leur Environnement), Aix Marseille Univ, F-13108, Saint-Paul lez Durance, France
| | - Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussel B-1050, Belgium
- VIB Center for Structural Biology, Brussel B-1050, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| |
Collapse
|
7
|
Urquidi-Camacho RA, Lokdarshi A, von Arnim AG. Translational gene regulation in plants: A green new deal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1597. [PMID: 32367681 PMCID: PMC9258721 DOI: 10.1002/wrna.1597] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/09/2023]
Abstract
The molecular machinery for protein synthesis is profoundly similar between plants and other eukaryotes. Mechanisms of translational gene regulation are embedded into the broader network of RNA-level processes including RNA quality control and RNA turnover. However, over eons of their separate history, plants acquired new components, dropped others, and generally evolved an alternate way of making the parts list of protein synthesis work. Research over the past 5 years has unveiled how plants utilize translational control to defend themselves against viruses, regulate translation in response to metabolites, and reversibly adjust translation to a wide variety of environmental parameters. Moreover, during seed and pollen development plants make use of RNA granules and other translational controls to underpin developmental transitions between quiescent and metabolically active stages. The economics of resource allocation over the daily light-dark cycle also include controls over cellular protein synthesis. Important new insights into translational control on cytosolic ribosomes continue to emerge from studies of translational control mechanisms in viruses. Finally, sketches of coherent signaling pathways that connect external stimuli with a translational response are emerging, anchored in part around TOR and GCN2 kinase signaling networks. These again reveal some mechanisms that are familiar and others that are different from other eukaryotes, motivating deeper studies on translational control in plants. This article is categorized under: Translation > Translation Regulation RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Ricardo A. Urquidi-Camacho
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996
| | - Ansul Lokdarshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Albrecht G von Arnim
- Department of Biochemistry & Cellular and Molecular Biology and UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
8
|
Wagner S, Herrmannová A, Hronová V, Gunišová S, Sen ND, Hannan RD, Hinnebusch AG, Shirokikh NE, Preiss T, Valášek LS. Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes. Mol Cell 2020; 79:546-560.e7. [PMID: 32589964 PMCID: PMC7447980 DOI: 10.1016/j.molcel.2020.06.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/10/2020] [Accepted: 05/18/2020] [Indexed: 11/25/2022]
Abstract
Translational control targeting the initiation phase is central to the regulation of gene expression. Understanding all of its aspects requires substantial technological advancements. Here we modified yeast translation complex profile sequencing (TCP-seq), related to ribosome profiling, and adapted it for mammalian cells. Human TCP-seq, capable of capturing footprints of 40S subunits (40Ss) in addition to 80S ribosomes (80Ss), revealed that mammalian and yeast 40Ss distribute similarly across 5'TRs, indicating considerable evolutionary conservation. We further developed yeast and human selective TCP-seq (Sel-TCP-seq), enabling selection of 40Ss and 80Ss associated with immuno-targeted factors. Sel-TCP-seq demonstrated that eIF2 and eIF3 travel along 5' UTRs with scanning 40Ss to successively dissociate upon AUG recognition; notably, a proportion of eIF3 lingers on during the initial elongation cycles. Highlighting Sel-TCP-seq versatility, we also identified four initiating 48S conformational intermediates, provided novel insights into ATF4 and GCN4 mRNA translational control, and demonstrated co-translational assembly of initiation factor complexes.
Collapse
Affiliation(s)
- Susan Wagner
- EMBL-Australia Collaborating Group, Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia; Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Vladislava Hronová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Neelam D Sen
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ross D Hannan
- Australian Cancer Research Foundation Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nikolay E Shirokikh
- EMBL-Australia Collaborating Group, Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Preiss
- EMBL-Australia Collaborating Group, Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia; Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.
| |
Collapse
|
9
|
Lokdarshi A, Morgan PW, Franks M, Emert Z, Emanuel C, von Arnim AG. Light-Dependent Activation of the GCN2 Kinase Under Cold and Salt Stress Is Mediated by the Photosynthetic Status of the Chloroplast. FRONTIERS IN PLANT SCIENCE 2020; 11:431. [PMID: 32411155 PMCID: PMC7201089 DOI: 10.3389/fpls.2020.00431] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/24/2020] [Indexed: 05/12/2023]
Abstract
Regulation of cytosolic mRNA translation is a key node for rapid adaptation to environmental stress conditions. In yeast and animals, phosphorylation of the α-subunit of eukaryotic translation initiation factor eIF2 is the most thoroughly characterized event for regulating global translation under stress. In plants, the GCN2 kinase (General Control Nonderepressible-2) is the only known kinase for eIF2α. GCN2 is activated under a variety of stresses including reactive oxygen species (ROS). Here, we provide new evidence that the GCN2 kinase in Arabidopsis is also activated rapidly and in a light-dependent manner by cold and salt treatments. These treatments alone did not repress global mRNA ribosome loading in a major way. The activation of GCN2 was accompanied by a more oxidative environment and was attenuated by inhibitors of photosynthetic electron transport, suggesting that it is gated by the redox poise or the reactive oxygen status of the chloroplast. In keeping with these results, gcn2 mutant seedlings were more sensitive than wild type to both cold and salt in a root elongation assay. These data suggest that cold and salt stress may both affect the status of the cytosolic translation apparatus via the conserved GCN2-eIF2α module. The potential role of the GCN2 kinase pathway in the global repression of translation under abiotic stress is discussed.
Collapse
Affiliation(s)
- Ansul Lokdarshi
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Philip W. Morgan
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Michelle Franks
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Zoe Emert
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Catherine Emanuel
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Albrecht G. von Arnim
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
10
|
Lokdarshi A, Guan J, Urquidi Camacho RA, Cho SK, Morgan PW, Leonard M, Shimono M, Day B, von Arnim AG. Light Activates the Translational Regulatory Kinase GCN2 via Reactive Oxygen Species Emanating from the Chloroplast. THE PLANT CELL 2020; 32:1161-1178. [PMID: 32079667 PMCID: PMC7145473 DOI: 10.1105/tpc.19.00751] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/03/2020] [Accepted: 02/16/2020] [Indexed: 05/12/2023]
Abstract
Cytosolic mRNA translation is subject to global and mRNA-specific controls. Phosphorylation of the translation initiation factor eIF2α anchors a reversible regulatory switch that represses cytosolic translation globally. The stress-responsive GCN2 kinase is the only known kinase for eIF2α serine 56 in Arabidopsis (Arabidopsis thaliana). Here, we show that conditions that generate reactive oxygen species (ROS) in the chloroplast, including dark-light transitions, high light, and the herbicide methyl viologen, rapidly activated GCN2 kinase, whereas mitochondrial and endoplasmic reticulum stress did not. GCN2 activation was light dependent and mitigated by photosynthesis inhibitors and ROS quenchers. Accordingly, the seedling growth of multiple Arabidopsis gcn2 mutants was retarded under excess light conditions, implicating the GCN2-eIF2α pathway in responses to light and associated ROS. Once activated, GCN2 kinase preferentially suppressed the ribosome loading of mRNAs for functions such as mitochondrial ATP synthesis, the chloroplast thylakoids, vesicle trafficking, and translation. The gcn2 mutant overaccumulated transcripts functionally related to abiotic stress, including oxidative stress, as well as innate immune responses. Accordingly, gcn2 displayed defects in immune priming by the fungal elicitor, chitin. Therefore, we provide evidence that reactive oxygen species produced by the photosynthetic apparatus help activate the highly conserved GCN2 kinase, leading to eIF2α phosphorylation and thus affecting the status of the cytosolic protein synthesis apparatus.
Collapse
Affiliation(s)
- Ansul Lokdarshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Ju Guan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Ricardo A Urquidi Camacho
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996
| | - Sung Ki Cho
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Philip W Morgan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Madison Leonard
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Masaki Shimono
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824
| | - Albrecht G von Arnim
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
11
|
Tcherkez G, Carroll A, Abadie C, Mainguet S, Davanture M, Zivy M. Protein synthesis increases with photosynthesis via the stimulation of translation initiation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110352. [PMID: 31928674 DOI: 10.1016/j.plantsci.2019.110352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 05/09/2023]
Abstract
Leaf protein synthesis is an essential process at the heart of plant nitrogen (N) homeostasis and turnover that preferentially takes place in the light, that is, when N and CO2 fixation occur. The carbon allocation to protein synthesis in illuminated leaves generally accounts for ca. 1 % of net photosynthesis. It is likely that protein synthesis activity varies with photosynthetic conditions (CO2/O2 atmosphere composition) since changes in photorespiration and carbon provision should in principle impact on amino acid supply as well as metabolic regulation via leaf sugar content. However, possible changes in protein synthesis and translation activity when gaseous conditions vary are virtually unknown. Here, we address this question using metabolomics, isotopic techniques, phosphoproteomics and polysome quantitation, under different photosynthetic conditions that were varied with atmospheric CO2 and O2 mole fraction, using illuminated Arabidopsis rosettes under controlled gas exchange conditions. We show that carbon allocation to proteins is within 1-2.5 % of net photosynthesis, increases with photosynthesis rate and is unrelated to total amino acid content. In addition, photosynthesis correlates to polysome abundance and phosphorylation of ribosomal proteins and translation initiation factors. Our results demonstrate that translation activity follows photosynthetic activity, showing the considerable impact of metabolism (carboxylation-oxygenation balance) on protein synthesis.
Collapse
Affiliation(s)
- Guillaume Tcherkez
- Research School of Biology, ANU Joint College of Sciences, Australian National University, 2601, Canberra, ACT, Australia(1); Institut de Recherche en Horticulture et Semences, INRA, Université d'Angers, 42 rue Georges Morel, 49070, Beaucouzé, France(2).
| | - Adam Carroll
- Joint Mass Spectrometry Facility, Research School of Chemistry, Australian National University, 2601, Canberra, ACT, Australia
| | - Cyril Abadie
- Institut de Recherche en Horticulture et Semences, INRA, Université d'Angers, 42 rue Georges Morel, 49070, Beaucouzé, France(2)
| | - Samuel Mainguet
- Institute of Plant Sciences of Saclay, INRA, University Paris-Sud, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Marlène Davanture
- Plateforme d'Analyse de Protéomique Paris Sud-Ouest (PAPPSO), GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| | - Michel Zivy
- Plateforme d'Analyse de Protéomique Paris Sud-Ouest (PAPPSO), GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| |
Collapse
|
12
|
Raabe K, Honys D, Michailidis C. The role of eukaryotic initiation factor 3 in plant translation regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:75-83. [PMID: 31665669 DOI: 10.1016/j.plaphy.2019.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Regulation of translation represents a critical step in the regulation of gene expression. In plants, the translation regulation plays an important role at all stages of development and, during stress responses, functions as a fast and flexible tool which not only modulates the global translation rate but also controls the production of specific proteins. Regulation of translation is mostly focused on the initiation phase. There, one of essential initiation factors is the large multisubunit protein complex of eukaryotic translation initiation factor 3 (eIF3). In all eukaryotes, the general eIF3 function is to scaffold the formation of the translation initiation complex and to enhance the accuracy of scanning mechanism for start codon selection. Over the past decades, additional eIF3 functions were described as necessary for development in various eukaryotic organisms, including plants. The importance of the eIF3 complex lies not only at the global level of initiation event, but also in the precise translation regulation of specific transcripts. This review gathers the available information on functions of the plant eIF3 complex.
Collapse
Affiliation(s)
- Karel Raabe
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 165 02, Praha 6, Czech Republic
| | - David Honys
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 165 02, Praha 6, Czech Republic
| | - Christos Michailidis
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 165 02, Praha 6, Czech Republic.
| |
Collapse
|
13
|
Khan MA. Phosphorylation of translation initiation factor eIFiso4E promotes translation through enhanced binding to potyvirus VPg. J Biochem 2019; 165:167-176. [PMID: 30371907 DOI: 10.1093/jb/mvy091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/28/2018] [Indexed: 12/13/2022] Open
Abstract
Interactions of phosphorylated eIFiso4E binding to VPg as a function of temperature and ionic strength were assessed employing fluorescence spectroscopic. Phosphorylation increased the binding affinity ∼3.5-fold between VPg and eIFiso4E under equilibrium conditions. Binding affinity of VPg for eIFiso4Ep correlates with the ability to enhance in vitro protein synthesis. Addition of VPg and eIFiso4Ep together to Dep WGE enhances the translation for both uncapped and capped mRNA. However, capped mRNA translation was inhibited with addition of eIFiso4Ep alone in dep WGE, suggesting that phosphorylation prevents the cap binding and favours the VPg binding to promotes translation. Temperature dependence showed that the phosphorylated form of the eIFiso4E is preferred for complex formation. A van't Hoff analysis reveals that eIFiso4Ep binding to VPg was enthalpy driven (ΔH = -43.9 ± 0.3 kJ.mol-1) and entropy-opposed (ΔS = -4.3 ± 0.1 J.mol-1K-1). Phosphorylation increased the enthalpic contributions ∼33% for eIFiso4Ep-VPg complex. The thermodynamic values and ionic strength dependence of binding data suggesting that phosphorylation increased hydrogen-bonding and decreased hydrophobic interactions, which leads to more stable complex formation and favour efficient viral translation. Overall these data correlate well with the observed translational data and provide more detailed information on the translational strategy of potyviruses.
Collapse
Affiliation(s)
- Mateen A Khan
- Department of Chemistry & Biochemistry, Hunter College of the City University of New York, 695 Park Ave, New York, USA.,Department of Life Sciences, College of Science and General Studies, Alfaisal University, Takhasusi Street, P.O. Box-50927, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Merrick WC, Pavitt GD. Protein Synthesis Initiation in Eukaryotic Cells. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a033092. [PMID: 29735639 DOI: 10.1101/cshperspect.a033092] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes our current understanding of the major pathway for the initiation phase of protein synthesis in eukaryotic cells, with a focus on recent advances. We describe the major scanning or messenger RNA (mRNA) m7G cap-dependent mechanism, which is a highly coordinated and stepwise regulated process that requires the combined action of at least 12 distinct translation factors with initiator transfer RNA (tRNA), ribosomes, and mRNAs. We limit our review to studies involving either mammalian or budding yeast cells and factors, as these represent the two best-studied experimental systems, and only include a reference to other organisms where particular insight has been gained. We close with a brief description of what we feel are some of the major unknowns in eukaryotic initiation.
Collapse
Affiliation(s)
- William C Merrick
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
15
|
Karpov PA, Blume YB. Is Casein Kinase 2 Able to Phosphorylate Plant α-Tubulin? CYTOL GENET+ 2018. [DOI: 10.3103/s0095452718020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Khan MA, Goss DJ. Kinetic analyses of phosphorylated and non-phosphorylated eIFiso4E binding to mRNA cap analogues. Int J Biol Macromol 2017; 106:387-395. [PMID: 28797816 DOI: 10.1016/j.ijbiomac.2017.08.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/24/2017] [Accepted: 08/04/2017] [Indexed: 01/23/2023]
Abstract
Phosphorylation of eukaryotic initiation factors was previously shown to interact with m7G cap and play an important role in the regulation of translation initiation of protein synthesis. To gain further insight into the phosphorylation process of plant protein synthesis, the kinetics of phosphorylated wheat eIFiso4E binding to m7G cap analogues were examined. Phosphorylation of wheat eIFiso4E showed similar kinetic effects to human eIF4E binding to m7-G cap. Phosphorylation of eIFiso4E decreased the kinetic rate (2-fold) and increased the dissociation rate (2-fold) as compared to non-phosphorylated eIFiso4E binding to both mono- and di-nucleotide analogues at 22°C. Phosphorylated and non-phosphorylated eIFiso4E-m7G cap binding rates were found to be independent of concentration, suggesting conformational changes were rate limiting. Rate constant for phosphorylated and non-phosphorylated eIFiso4E binding to m7-G cap increased with temperature. Phosphorylation of eIFiso4E decreased (2-fold) the activation energy for both m7-G cap analogues binding as compared to non-phosphorylated eIFiso4E. The reduced energy barrier for the formation of eIFiso4E-m7-G cap complex suggests a more stable platform for further initiation complex formation and possible means of adapting variety of environmental conditions. Furthermore, the formation of phosphorylated eIFiso4E-cap complex may contribute to modulation of the initiation of protein synthesis in plants.
Collapse
Affiliation(s)
- Mateen A Khan
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, NY 10065, USA; Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh 11533, KSA, Saudi Arabia.
| | - Dixie J Goss
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, NY 10065, USA.
| |
Collapse
|
17
|
Merchante C, Stepanova AN, Alonso JM. Translation regulation in plants: an interesting past, an exciting present and a promising future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:628-653. [PMID: 28244193 DOI: 10.1111/tpj.13520] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 05/19/2023]
Abstract
Changes in gene expression are at the core of most biological processes, from cell differentiation to organ development, including the adaptation of the whole organism to the ever-changing environment. Although the central role of transcriptional regulation is solidly established and the general mechanisms involved in this type of regulation are relatively well understood, it is clear that regulation at a translational level also plays an essential role in modulating gene expression. Despite the large number of examples illustrating the critical role played by translational regulation in determining the expression levels of a gene, our understanding of the molecular mechanisms behind such types of regulation has been slow to emerge. With the recent development of high-throughput approaches to map and quantify different critical parameters affecting translation, such as RNA structure, protein-RNA interactions and ribosome occupancy at the genome level, a renewed enthusiasm toward studying translation regulation is warranted. The use of these new powerful technologies in well-established and uncharacterized translation-dependent processes holds the promise to decipher the likely complex and diverse, but also fascinating, mechanisms behind the regulation of translation.
Collapse
Affiliation(s)
- Catharina Merchante
- Departamento de Biologia Molecular y Bioquimica, Universidad de Malaga-Instituto de Hortofruticultura Subtropical y Mediterranea, IHSM-UMA-CSIC, Malaga, Andalucía, Spain
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, Genetics Graduate Program, North Carolina State University, Raleigh, NC, 27607, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, Genetics Graduate Program, North Carolina State University, Raleigh, NC, 27607, USA
| |
Collapse
|
18
|
Obayashi E, Luna RE, Nagata T, Martin-Marcos P, Hiraishi H, Singh CR, Erzberger JP, Zhang F, Arthanari H, Morris J, Pellarin R, Moore C, Harmon I, Papadopoulos E, Yoshida H, Nasr ML, Unzai S, Thompson B, Aube E, Hustak S, Stengel F, Dagraca E, Ananbandam A, Gao P, Urano T, Hinnebusch AG, Wagner G, Asano K. Molecular Landscape of the Ribosome Pre-initiation Complex during mRNA Scanning: Structural Role for eIF3c and Its Control by eIF5. Cell Rep 2017; 18:2651-2663. [PMID: 28297669 PMCID: PMC5382721 DOI: 10.1016/j.celrep.2017.02.052] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/07/2016] [Accepted: 02/16/2017] [Indexed: 10/20/2022] Open
Abstract
During eukaryotic translation initiation, eIF3 binds the solvent-accessible side of the 40S ribosome and recruits the gate-keeper protein eIF1 and eIF5 to the decoding center. This is largely mediated by the N-terminal domain (NTD) of eIF3c, which can be divided into three parts: 3c0, 3c1, and 3c2. The N-terminal part, 3c0, binds eIF5 strongly but only weakly to the ribosome-binding surface of eIF1, whereas 3c1 and 3c2 form a stoichiometric complex with eIF1. 3c1 contacts eIF1 through Arg-53 and Leu-96, while 3c2 faces 40S protein uS15/S13, to anchor eIF1 to the scanning pre-initiation complex (PIC). We propose that the 3c0:eIF1 interaction diminishes eIF1 binding to the 40S, whereas 3c0:eIF5 interaction stabilizes the scanning PIC by precluding this inhibitory interaction. Upon start codon recognition, interactions involving eIF5, and ultimately 3c0:eIF1 association, facilitate eIF1 release. Our results reveal intricate molecular interactions within the PIC, programmed for rapid scanning-arrest at the start codon.
Collapse
Affiliation(s)
- Eiji Obayashi
- Shimane University School of Medicine, Izumo, Shimane 690-8504, Japan
| | - Rafael E Luna
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Pilar Martin-Marcos
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hiroyuki Hiraishi
- Molecular Cellular Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Chingakham Ranjit Singh
- Molecular Cellular Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Jan Peter Erzberger
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Fan Zhang
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jacob Morris
- Molecular Cellular Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Riccardo Pellarin
- California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chelsea Moore
- Molecular Cellular Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Ian Harmon
- Molecular Cellular Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Evangelos Papadopoulos
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hisashi Yoshida
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama 230-0045, Japan; Drug Design Group, Kanagawa Academy of Science and Technology, Takatsu-ku, Kawasaki 213-0012, Japan
| | - Mahmoud L Nasr
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Satoru Unzai
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Brytteny Thompson
- Molecular Cellular Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Eric Aube
- Molecular Cellular Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Samantha Hustak
- Molecular Cellular Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Florian Stengel
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Eddie Dagraca
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Philip Gao
- COBRE-PSF, University of Kansas, Lawrence, KS 66047, USA
| | - Takeshi Urano
- Shimane University School of Medicine, Izumo, Shimane 690-8504, Japan
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Katsura Asano
- Molecular Cellular Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
19
|
Terenin IM, Akulich KA, Andreev DE, Polyanskaya SA, Shatsky IN, Dmitriev SE. Sliding of a 43S ribosomal complex from the recognized AUG codon triggered by a delay in eIF2-bound GTP hydrolysis. Nucleic Acids Res 2016; 44:1882-93. [PMID: 26717981 PMCID: PMC4770231 DOI: 10.1093/nar/gkv1514] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 02/05/2023] Open
Abstract
During eukaryotic translation initiation, 43S ribosomal complex scans mRNA leader unless an AUG codon in an appropriate context is found. Establishing the stable codon-anticodon base-pairing traps the ribosome on the initiator codon and triggers structural rearrangements, which lead to Pi release from the eIF2-bound GTP. It is generally accepted that AUG recognition by the scanning 43S complex sets the final point in the process of start codon selection, while latter stages do not contribute to this process. Here we use translation reconstitution approach and kinetic toe-printing assay to show that after the 48S complex is formed on an AUG codon, in case GTP hydrolysis is impaired, the ribosomal subunit is capable to resume scanning and slides downstream to the next AUG. In contrast to leaky scanning, this sliding is not limited to AUGs in poor nucleotide contexts and occurs after a relatively long pause at the recognized AUG. Thus, recognition of an AUG per se does not inevitably lead to this codon being selected for initiation of protein synthesis. Instead, it is eIF5-induced GTP hydrolysis and Pi release that irreversibly trap the 48S complex, and this complex is further stabilized by eIF5B and 60S joining.
Collapse
Affiliation(s)
- Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Kseniya A Akulich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Dmitry E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Sofya A Polyanskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia Department of Molecular Biology, Biological Faculty, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
20
|
Meleppattu S, Kamus-Elimeleh D, Zinoviev A, Cohen-Mor S, Orr I, Shapira M. The eIF3 complex of Leishmania-subunit composition and mode of recruitment to different cap-binding complexes. Nucleic Acids Res 2015; 43:6222-35. [PMID: 26092695 PMCID: PMC4513851 DOI: 10.1093/nar/gkv564] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 05/13/2015] [Accepted: 05/16/2015] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic initiation factor 3 (eIF3) is a multi-protein complex and a key participant in the assembly of the translation initiation machinery. In mammals, eIF3 comprises 13 subunits, most of which are characterized by conserved structural domains. The trypanosomatid eIF3 subunits are poorly conserved. Here, we identify 12 subunits that comprise the Leishmania eIF3 complex (LeishIF3a-l) by combining bioinformatics with affinity purification and mass spectrometry analyses. These results highlight the strong association of LeishIF3 with LeishIF1, LeishIF2 and LeishIF5, suggesting the existence of a multi-factor complex. In trypanosomatids, the translation machinery is tightly regulated in the different life stages of these organisms as part of their adaptation and survival in changing environments. We, therefore, addressed the mechanism by which LeishIF3 is recruited to different mRNA cap-binding complexes. A direct interaction was observed in vitro between the fully assembled LeishIF3 complex and recombinant LeishIF4G3, the canonical scaffolding protein of the cap-binding complex in Leishmania promastigotes. We further highlight a novel interaction between the C-terminus of LeishIF3a and LeishIF4E1, the only cap-binding protein that efficiently binds the cap structure under heat shock conditions, anchoring a complex that is deficient of any MIF4G-based scaffolding subunit.
Collapse
Affiliation(s)
- Shimi Meleppattu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dikla Kamus-Elimeleh
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Alexandra Zinoviev
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shahar Cohen-Mor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Irit Orr
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michal Shapira
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
21
|
Mulekar JJ, Huq E. Arabidopsis casein kinase 2 α4 subunit regulates various developmental pathways in a functionally overlapping manner. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:295-303. [PMID: 26025542 DOI: 10.1016/j.plantsci.2015.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/11/2015] [Accepted: 04/19/2015] [Indexed: 05/08/2023]
Abstract
Casein kinase 2 (CK2) is an essential and well-conserved Ser/Thr kinase that regulates proteins in a posttranslational manner. CK2 has been shown to affect a large number of developmental processes across eukaryotes. It is a tetrameric protein composed of a dimer of alpha (catalytic) and beta (regulatory) subunit each. In our previous study we showed that three of the four CK2 α subunits in Arabidopsis act in a functionally redundant manner to regulate various developmental pathways. In this study we constructed two independent CK2 α4 RNAi lines in the CK2 alpha triple mutant background. Through functional characterization of these RNAi lines we show that the fourth α subunit in Arabidopsis also functions redundantly in regulating ABA response, lateral root formation and flowering time. CK2 α4-GFP localizes to the chloroplast in transgenic Arabidopsis seedlings, consistent with the presence of a chloroplast localization signal at the amino-terminus of CK2 α4 subunit. Taken together, our results suggest a functionally overlapping role for the CK2 α4 subunit in regulating various developmental processes in plants.
Collapse
Affiliation(s)
- Jidnyasa Jayant Mulekar
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Enamul Huq
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
22
|
Vélez-Bermúdez IC, Carretero-Paulet L, Legnaioli T, Ludevid D, Pagès M, Riera M. Novel CK2α and CK2β subunits in maize reveal functional diversification in subcellular localization and interaction capacity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 235:58-69. [PMID: 25900566 DOI: 10.1016/j.plantsci.2015.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/06/2015] [Accepted: 03/07/2015] [Indexed: 05/17/2023]
Abstract
In plants, CK2α/β subunits are encoded by multigenic families. They assemble as heterotetrameric holoenzymes or remain as individual subunits and are usually located in distinct cell compartments. Here we revise the number of maize CK2α/β genes, bringing them up to a total of eight (four CK2α catalytic and four CK2β regulatory subunits). We characterize CK2β4, which presents nuclear localization and interacts with CK2α1, CK2α3, CK2β1, and CK2β3. We also describe two CK2α isoforms (CK2α2 and CK2α4) containing N-terminal extensions that correspond to putative cTPs (chloroplast transit peptides). These cTPs are functional and responsible for the subcellular localization of CK2α2 and CK2α4 in chloroplasts. Phylogenetic analysis of the CK2α gene family, further supported by the gene structure and architecture of conserved protein domains, reveals the evolutionary expansion and diversification of this family. The subcellular localization of all four CK2α isoforms was found to be altered when were co-expressed with CK2β, thereby pointing to the latter as regulators of CK2α localization.
Collapse
Affiliation(s)
- I C Vélez-Bermúdez
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Campus UAB - Edifici CRAG, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - L Carretero-Paulet
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Campus UAB - Edifici CRAG, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - T Legnaioli
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Campus UAB - Edifici CRAG, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - D Ludevid
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Campus UAB - Edifici CRAG, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - M Pagès
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Campus UAB - Edifici CRAG, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - M Riera
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Campus UAB - Edifici CRAG, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain.
| |
Collapse
|
23
|
Browning KS, Bailey-Serres J. Mechanism of cytoplasmic mRNA translation. THE ARABIDOPSIS BOOK 2015; 13:e0176. [PMID: 26019692 PMCID: PMC4441251 DOI: 10.1199/tab.0176] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings.
Collapse
Affiliation(s)
- Karen S. Browning
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin TX 78712-0165
- Both authors contributed equally to this work
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, CA, 92521 USA
- Both authors contributed equally to this work
| |
Collapse
|
24
|
Borgo C, Franchin C, Salizzato V, Cesaro L, Arrigoni G, Matricardi L, Pinna LA, Donella-Deana A. Protein kinase CK2 potentiates translation efficiency by phosphorylating eIF3j at Ser127. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1693-701. [PMID: 25887626 DOI: 10.1016/j.bbamcr.2015.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/17/2015] [Accepted: 04/07/2015] [Indexed: 11/18/2022]
Abstract
In eukaryotic protein synthesis the translation initiation factor 3 (eIF3) is a key player in the recruitment and assembly of the translation initiation machinery. Mammalian eIF3 consists of 13 subunits, including the loosely associated eIF3j subunit that plays a stabilizing role in the eIF3 complex formation and interaction with the 40S ribosomal subunit. By means of both co-immunoprecipitation and mass spectrometry analyses we demonstrate that the protein kinase CK2 interacts with and phosphorylates eIF3j at Ser127. Inhibition of CK2 activity by CX-4945 or down-regulation of the expression of CK2 catalytic subunit by siRNA cause the dissociation of j-subunit from the eIF3 complex as judged from glycerol gradient sedimentation. This finding proves that CK2-phosphorylation of eIF3j is a prerequisite for its association with the eIF3 complex. Expression of Ser127Ala-eIF3j mutant impairs both the interaction of mutated j-subunit with the other eIF3 subunits and the overall protein synthesis. Taken together our data demonstrate that CK2-phosphorylation of eIF3j at Ser127 promotes the assembly of the eIF3 complex, a crucial step in the activation of the translation initiation machinery.
Collapse
Affiliation(s)
- Christian Borgo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58B, 35131 Padova, Italy; CNR Institute of NeuroSciences, University of Padova, Via U. Bassi 58B, 35131 Padova, Italy
| | - Cinzia Franchin
- Proteomic Center of Padova University, Via G. Orus B2, 35129 Padova, Italy
| | - Valentina Salizzato
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58B, 35131 Padova, Italy; CNR Institute of NeuroSciences, University of Padova, Via U. Bassi 58B, 35131 Padova, Italy
| | - Luca Cesaro
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58B, 35131 Padova, Italy; CNR Institute of NeuroSciences, University of Padova, Via U. Bassi 58B, 35131 Padova, Italy
| | - Giorgio Arrigoni
- Proteomic Center of Padova University, Via G. Orus B2, 35129 Padova, Italy
| | - Laura Matricardi
- Venitian Institute of Oncology (IOV-IRCCS), Via Gattamelata 64, 35128 Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58B, 35131 Padova, Italy; CNR Institute of NeuroSciences, University of Padova, Via U. Bassi 58B, 35131 Padova, Italy
| | - Arianna Donella-Deana
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58B, 35131 Padova, Italy; CNR Institute of NeuroSciences, University of Padova, Via U. Bassi 58B, 35131 Padova, Italy.
| |
Collapse
|
25
|
Bavli-Kertselli I, Melamed D, Bar-Ziv L, Volf H, Arava Y. Overexpression of eukaryotic initiation factor 5 rescues the translational defect of tpk1w in a manner that necessitates a novel phosphorylation site. FEBS J 2014; 282:504-20. [PMID: 25417541 DOI: 10.1111/febs.13158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/11/2014] [Accepted: 11/20/2014] [Indexed: 02/04/2023]
Abstract
Cells respond to changes in their environment through mechanisms that often necessitate reprogramming of the translation machinery. The fastest and strongest of all tested responses is the translation inhibition observed following abrupt depletion of glucose from the media of yeast cells. The speed of the response suggests a post-translational modification of a key component of the translation machinery. This translation factor is as yet unknown. A cAMP-dependent protein kinase mutant yeast strain (tpk1(w)) that does not respond properly to glucose depletion and maintains translation was described previously. We hypothesized that the inability of tpk1(w) to arrest translation results from abnormal expression of key translation mediators. Genome-wide analysis of steady-state mRNA levels in tpk1(w) revealed underexpression of several candidates. Elevating the cellular levels of eukaryotic initiation factor (eIF) 5 by overexpression rescued the translational defect of tpk1(w). Restoring ribosomal dissociation by eIF5 necessitated an active GAP domain and multiple regions throughout this protein. Phosphoproteomics analysis of wild-type cells overexpressing eIF5 revealed increased phosphorylation in a novel site (Thr191) upon glucose depletion. Mutating this residue and introducing it into tpk1(w) abolished the ability of eIF5 to rescue the translational defect. Intriguingly, introducing this mutation into the wild-type strain did not hamper its translational response. We further show that Thr191 is phosphorylated in vitro by Casein Kinase II (CKII), and yeast cells with a mutated CKII have a reduced response to glucose depletion. These results implicate phosphorylation of eIF5 at Thr191 by CKII as one of the pathways for regulating translation upon glucose depletion.
Collapse
Affiliation(s)
- Ira Bavli-Kertselli
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
26
|
Sokabe M, Fraser CS. Human eukaryotic initiation factor 2 (eIF2)-GTP-Met-tRNAi ternary complex and eIF3 stabilize the 43 S preinitiation complex. J Biol Chem 2014; 289:31827-31836. [PMID: 25246524 DOI: 10.1074/jbc.m114.602870] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of a stable 43 S preinitiation complex (PIC) must occur to enable successful mRNA recruitment. However, the contributions of eIF1, eIF1A, eIF3, and the eIF2-GTP-Met-tRNAi ternary complex (TC) in stabilizing the 43 S PIC are poorly defined. We have reconstituted the human 43 S PIC and used fluorescence anisotropy to systematically measure the affinity of eIF1, eIF1A, and eIF3j in the presence of different combinations of 43 S PIC components. Our data reveal a complicated network of interactions that result in high affinity binding of all 43 S PIC components with the 40 S subunit. Human eIF1 and eIF1A bind cooperatively to the 40 S subunit, revealing an evolutionarily conserved interaction. Negative cooperativity is observed between the binding of eIF3j and the binding of eIF1, eIF1A, and TC with the 40 S subunit. To overcome this, eIF3 dramatically increases the affinity of eIF1 and eIF3j for the 40 S subunit. Recruitment of TC also increases the affinity of eIF1 for the 40 S subunit, but this interaction has an important indirect role in increasing the affinity of eIF1A for the 40 S subunit. Together, our data provide a more complete thermodynamic framework of the human 43 S PIC and reveal important interactions between its components to maintain its stability.
Collapse
Affiliation(s)
- Masaaki Sokabe
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Christopher S Fraser
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California 95616.
| |
Collapse
|
27
|
Mulekar JJ, Huq E. Expanding roles of protein kinase CK2 in regulating plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2883-93. [PMID: 24307718 DOI: 10.1093/jxb/ert401] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Protein kinase CK2 (formerly known as casein kinase II) is a ubiquitious Ser/Thr kinase present in all eukaryotes. The α (catalytic) and β (regulatory) subunits of CK2 exist both as a tetrameric holoenzyme and as monomers in eukaryotic cells. CK2 has been implicated in multiple developmental and stress-responsive pathways including light signalling and circadian clock in plants. Recent studies using CK2 knockout and dominant negative mutants in Arabidopsis have uncovered new roles for this enzyme. CK2 substrates that have been identified so far are primarily transcription factors or regulatory proteins. CK2-mediated phosphorylation of these factors often results in alteration of the protein function including changes in the DNA-binding affinity, dimerization, stability, protein-protein interactions, and subcellular localization. CK2 has evolved as an essential housekeeping kinase in plants that modifies protein function in a dynamic way. This review summarizes the current knowledge of the role of CK2 in plant development.
Collapse
Affiliation(s)
- Jidnyasa Jayant Mulekar
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Enamul Huq
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
28
|
Asano K. Why is start codon selection so precise in eukaryotes? ACTA ACUST UNITED AC 2014; 2:e28387. [PMID: 26779403 PMCID: PMC4705826 DOI: 10.4161/trla.28387] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/14/2014] [Accepted: 02/27/2014] [Indexed: 12/22/2022]
Abstract
Translation generally initiates with the AUG codon. While initiation at GUG and UUG is permitted in prokaryotes (Archaea and Bacteria), cases of CUG initiation were recently reported in human cells. The varying stringency in translation initiation between eukaryotic and prokaryotic domains largely stems from a fundamental problem for the ribosome in recognizing a codon at the peptidyl-tRNA binding site. Initiation factors specific to each domain of life evolved to confer stringent initiation by the ribosome. The mechanistic basis for high accuracy in eukaryotic initiation is described based on recent findings concerning the role of the multifactor complex (MFC) in this process. Also discussed are whether non-AUG initiation plays any role in translational control and whether start codon accuracy is regulated in eukaryotes.
Collapse
Affiliation(s)
- Katsura Asano
- Molecular Cellular and Developmental Biology Program; Division of Biology; Kansas State University; Manhattan, KS USA
| |
Collapse
|
29
|
Quintas-Granados LI, López-Camarillo C, Fandiño Armas J, Mendoza Hernandez G, Alvarez-Sánchez ME. Identification of the phosphorylated residues in TveIF5A by mass spectrometry. GENOMICS, PROTEOMICS & BIOINFORMATICS 2013; 11:378-84. [PMID: 24308916 PMCID: PMC4357829 DOI: 10.1016/j.gpb.2013.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/27/2013] [Accepted: 07/08/2013] [Indexed: 11/16/2022]
Abstract
The initiation factor eIF5A in Trichomonas vaginalis (TveIF5A) is previously shown to undergo hypusination, phosphorylation and glycosylation. Three different pI isoforms of TveIF5A have been reported. The most acidic isoform (pI 5.2) corresponds to the precursor TveIF5A, whereas the mature TveIF5A appears to be the most basic isoform (pI 5.5). In addition, the intermediary isoform (pI 5.3) is found only under polyamine-depleted conditions and restored with exogenous putrescine. We propose that differences in PI are due to phosphorylation of the TveIF5A isoforms. Here, we have identified phosphorylation sites using mass spectrometry. The mature TveIF5A contains four phosphorylated residues (S3, T55, T78 and T82). Phosphorylation at S3 and T82 is also identified in the intermediary TveIF5A, while no phosphorylated residues are found in the precursor TveIF5A. It has been demonstrated that eIF5A proteins from plants and yeast are phosphorylated by a casein kinase 2 (CK2). Interestingly, a gene encoding a protein highly similar to CK2 (TvCK2) is found in T. vaginalis, which might be involved in the phosphorylation of TveIF5A in T. vaginalis.
Collapse
Affiliation(s)
| | - César López-Camarillo
- Genomic Sciences Postgraduate, Autonomous University of Mexico City (UACM), CP 03100 Mexico City, Mexico
| | - Jesús Fandiño Armas
- Genomic Sciences Postgraduate, Autonomous University of Mexico City (UACM), CP 03100 Mexico City, Mexico
| | - Guillermo Mendoza Hernandez
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, CP 04510 Mexico City, Mexico
| | | |
Collapse
|
30
|
Boex-Fontvieille E, Daventure M, Jossier M, Zivy M, Hodges M, Tcherkez G. Photosynthetic control of Arabidopsis leaf cytoplasmic translation initiation by protein phosphorylation. PLoS One 2013; 8:e70692. [PMID: 23894680 PMCID: PMC3722150 DOI: 10.1371/journal.pone.0070692] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/20/2013] [Indexed: 01/26/2023] Open
Abstract
Photosynthetic CO2 assimilation is the carbon source for plant anabolism, including amino acid production and protein synthesis. The biosynthesis of leaf proteins is known for decades to correlate with photosynthetic activity but the mechanisms controlling this effect are not documented. The cornerstone of the regulation of protein synthesis is believed to be translation initiation, which involves multiple phosphorylation events in Eukaryotes. We took advantage of phosphoproteomic methods applied to Arabidopsis thaliana rosettes harvested under controlled photosynthetic gas-exchange conditions to characterize the phosphorylation pattern of ribosomal proteins (RPs) and eukaryotic initiation factors (eIFs). The analyses detected 14 and 11 new RP and eIF phosphorylation sites, respectively, revealed significant CO2-dependent and/or light/dark phosphorylation patterns and showed concerted changes in 13 eIF phosphorylation sites and 9 ribosomal phosphorylation sites. In addition to the well-recognized role of the ribosomal small subunit protein RPS6, our data indicate the involvement of eIF3, eIF4A, eIF4B, eIF4G and eIF5 phosphorylation in controlling translation initiation when photosynthesis varies. The response of protein biosynthesis to the photosynthetic input thus appears to be the result of a complex regulation network involving both stimulating (e.g. RPS6, eIF4B phosphorylation) and inhibiting (e.g. eIF4G phosphorylation) molecular events.
Collapse
Affiliation(s)
- Edouard Boex-Fontvieille
- Institut de Biologie des Plantes, CNRS UMR 8618, Saclay Plant Sciences, Université Paris-Sud, Orsay, France
| | - Marlène Daventure
- Plateforme PAPPSO, UMR de Génétique Végétale, Ferme du Moulon, Gif sur Yvette, France
| | - Mathieu Jossier
- Institut de Biologie des Plantes, CNRS UMR 8618, Saclay Plant Sciences, Université Paris-Sud, Orsay, France
| | - Michel Zivy
- Plateforme PAPPSO, UMR de Génétique Végétale, Ferme du Moulon, Gif sur Yvette, France
| | - Michael Hodges
- Institut de Biologie des Plantes, CNRS UMR 8618, Saclay Plant Sciences, Université Paris-Sud, Orsay, France
| | - Guillaume Tcherkez
- Institut de Biologie des Plantes, CNRS UMR 8618, Saclay Plant Sciences, Université Paris-Sud, Orsay, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
31
|
Roy B, von Arnim AG. Translational Regulation of Cytoplasmic mRNAs. THE ARABIDOPSIS BOOK 2013; 11:e0165. [PMID: 23908601 PMCID: PMC3727577 DOI: 10.1199/tab.0165] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Translation of the coding potential of a messenger RNA into a protein molecule is a fundamental process in all living cells and consumes a large fraction of metabolites and energy resources in growing cells. Moreover, translation has emerged as an important control point in the regulation of gene expression. At the level of gene regulation, translational control is utilized to support the specific life histories of plants, in particular their responses to the abiotic environment and to metabolites. This review summarizes the diversity of translational control mechanisms in the plant cytoplasm, focusing on specific cases where mechanisms of translational control have evolved to complement or eclipse other levels of gene regulation. We begin by introducing essential features of the translation apparatus. We summarize early evidence for translational control from the pre-Arabidopsis era. Next, we review evidence for translation control in response to stress, to metabolites, and in development. The following section emphasizes RNA sequence elements and biochemical processes that regulate translation. We close with a chapter on the role of signaling pathways that impinge on translation.
Collapse
Affiliation(s)
- Bijoyita Roy
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840
- Current address: University of Massachussetts Medical School, Worcester, MA 01655-0122, USA
| | - Albrecht G. von Arnim
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996-0840
| |
Collapse
|
32
|
Valásek LS. 'Ribozoomin'--translation initiation from the perspective of the ribosome-bound eukaryotic initiation factors (eIFs). Curr Protein Pept Sci 2013; 13:305-30. [PMID: 22708493 PMCID: PMC3434475 DOI: 10.2174/138920312801619385] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 01/16/2012] [Accepted: 02/16/2012] [Indexed: 02/05/2023]
Abstract
Protein synthesis is a fundamental biological mechanism bringing the DNA-encoded genetic information into
life by its translation into molecular effectors - proteins. The initiation phase of translation is one of the key points of gene
regulation in eukaryotes, playing a role in processes from neuronal function to development. Indeed, the importance of the
study of protein synthesis is increasing with the growing list of genetic diseases caused by mutations that affect mRNA
translation. To grasp how this regulation is achieved or altered in the latter case, we must first understand the molecular
details of all underlying processes of the translational cycle with the main focus put on its initiation. In this review I discuss
recent advances in our comprehension of the molecular basis of particular initiation reactions set into the context of
how and where individual eIFs bind to the small ribosomal subunit in the pre-initiation complex. I also summarize our
current knowledge on how eukaryotic initiation factor eIF3 controls gene expression in the gene-specific manner via reinitiation.
Collapse
Affiliation(s)
- Leos Shivaya Valásek
- Laboratory of Eukaryotic Gene Regulation, Institute of Microbiology AS CR, Prague, Czech Republic.
| |
Collapse
|
33
|
Khoshnevis S, Hauer F, Milón P, Stark H, Ficner R. Novel insights into the architecture and protein interaction network of yeast eIF3. RNA (NEW YORK, N.Y.) 2012; 18:2306-19. [PMID: 23105002 PMCID: PMC3504681 DOI: 10.1261/rna.032532.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 09/17/2012] [Indexed: 05/20/2023]
Abstract
Translation initiation in eukaryotes is a multistep process requiring the orchestrated interaction of several eukaryotic initiation factors (eIFs). The largest of these factors, eIF3, forms the scaffold for other initiation factors, promoting their binding to the 40S ribosomal subunit. Biochemical and structural studies on eIF3 need highly pure eIF3. However, natively purified eIF3 comprise complexes containing other proteins such as eIF5. Therefore we have established in vitro reconstitution protocols for Saccharomyces cerevisiae eIF3 using its five recombinantly expressed and purified subunits. This reconstituted eIF3 complex (eIF3(rec)) exhibits the same size and activity as the natively purified eIF3 (eIF3(nat)). The homogeneity and stoichiometry of eIF3(rec) and eIF3(nat) were confirmed by analytical size exclusion chromatography, mass spectrometry, and multi-angle light scattering, demonstrating the presence of one copy of each subunit in the eIF3 complex. The reconstituted and native eIF3 complexes were compared by single-particle electron microscopy showing a high degree of structural conservation. The interaction network between eIF3 proteins was studied by means of limited proteolysis, analytical size exclusion chromatography, in vitro binding assays, and isothermal titration calorimetry, unveiling distinct protein domains and subcomplexes that are critical for the integrity of the protein network in yeast eIF3. Taken together, the data presented here provide a novel procedure to obtain highly pure yeast eIF3, suitable for biochemical and structural analysis, in addition to a detailed picture of the network of protein interactions within this complex.
Collapse
Affiliation(s)
- Sohail Khoshnevis
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg-August University Göttingen, 37077 Göttingen, Germany
| | | | - Pohl Milón
- Department of Physical Biochemistry, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Holger Stark
- Research Group 3D Electron Cryo-Microscopy
- Department of Molecular Cryo-Electron Microscopy, Institute of Microbiology and Genetics, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg-August University Göttingen, 37077 Göttingen, Germany
- Corresponding authorE-mail
| |
Collapse
|
34
|
Hinnebusch AG, Lorsch JR. The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a011544. [PMID: 22815232 DOI: 10.1101/cshperspect.a011544] [Citation(s) in RCA: 340] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Translation initiation in eukaryotes is a highly regulated and complex stage of gene expression. It requires the action of at least 12 initiation factors, many of which are known to be the targets of regulatory pathways. Here we review our current understanding of the molecular mechanics of eukaryotic translation initiation, focusing on recent breakthroughs from in vitro and in vivo studies. We also identify important unanswered questions that will require new ideas and techniques to solve.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
35
|
Rose CM, Venkateshwaran M, Volkening JD, Grimsrud PA, Maeda J, Bailey DJ, Park K, Howes-Podoll M, den Os D, Yeun LH, Westphall MS, Sussman MR, Ané JM, Coon JJ. Rapid phosphoproteomic and transcriptomic changes in the rhizobia-legume symbiosis. Mol Cell Proteomics 2012; 11:724-44. [PMID: 22683509 PMCID: PMC3434772 DOI: 10.1074/mcp.m112.019208] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/07/2012] [Indexed: 11/06/2022] Open
Abstract
Symbiotic associations between legumes and rhizobia usually commence with the perception of bacterial lipochitooligosaccharides, known as Nod factors (NF), which triggers rapid cellular and molecular responses in host plants. We report here deep untargeted tandem mass spectrometry-based measurements of rapid NF-induced changes in the phosphorylation status of 13,506 phosphosites in 7739 proteins from the model legume Medicago truncatula. To place these phosphorylation changes within a biological context, quantitative phosphoproteomic and RNA measurements in wild-type plants were compared with those observed in mutants, one defective in NF perception (nfp) and one defective in downstream signal transduction events (dmi3). Our study quantified the early phosphorylation and transcription dynamics that are specifically associated with NF-signaling, confirmed a dmi3-mediated feedback loop in the pathway, and suggested "cryptic" NF-signaling pathways, some of them being also involved in the response to symbiotic arbuscular mycorrhizal fungi.
Collapse
Affiliation(s)
- Christopher M. Rose
- From the ‡Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
- ‖Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Jeremy D. Volkening
- ¶Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Paul A. Grimsrud
- ¶Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Junko Maeda
- §Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Derek J. Bailey
- From the ‡Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
- ‖Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
| | - Kwanghyun Park
- ‖Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
- **Department of Computer Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Désirée den Os
- §Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
- §§Present address: Penn State Biology Department, University Park, Pennsylvania 16802
| | - Li Huey Yeun
- §Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Michael S. Westphall
- From the ‡Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
- ‖Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
| | - Michael R. Sussman
- ¶Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
- ‖Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
| | - Jean-Michel Ané
- §Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Joshua J. Coon
- From the ‡Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
- ‖Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
- ‡‡Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
36
|
Kouba T, Dányi I, Gunišová S, Munzarová V, Vlčková V, Cuchalová L, Neueder A, Milkereit P, Valášek LS. Small ribosomal protein RPS0 stimulates translation initiation by mediating 40S-binding of eIF3 via its direct contact with the eIF3a/TIF32 subunit. PLoS One 2012; 7:e40464. [PMID: 22792338 PMCID: PMC3390373 DOI: 10.1371/journal.pone.0040464] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/07/2012] [Indexed: 01/02/2023] Open
Abstract
The ribosome translates information encoded by mRNAs into proteins in all living cells. In eukaryotes, its small subunit together with a number of eukaryotic initiation factors (eIFs) is responsible for locating the mRNA's translational start to properly decode the genetic message that it carries. This multistep process requires timely and spatially coordinated placement of eIFs on the ribosomal surface. In our long-standing pursuit to map the 40S-binding site of one of the functionally most complex eIFs, yeast multisubunit eIF3, we identified several interactions that placed its major body to the head, beak and shoulder regions of the solvent-exposed side of the 40S subunit. Among them is the interaction between the N-terminal domain (NTD) of the a/TIF32 subunit of eIF3 and the small ribosomal protein RPS0A, residing near the mRNA exit channel. Previously, we demonstrated that the N-terminal truncation of 200 residues in tif32-Δ8 significantly reduced association of eIF3 and other eIFs with 40S ribosomes in vivo and severely impaired translation reinitiation that eIF3 ensures. Here we show that not the first but the next 200 residues of a/TIF32 specifically interact with RPS0A via its extreme C-terminal tail (CTT). Detailed analysis of the RPS0A conditional depletion mutant revealed a marked drop in the polysome to monosome ratio suggesting that the initiation rates of cells grown under non-permissive conditions were significantly impaired. Indeed, amounts of eIF3 and other eIFs associated with 40S subunits in the pre-initiation complexes in the RPS0A-depleted cells were found reduced; consistently, to the similar extent as in the tif32-Δ8 cells. Similar but less pronounced effects were also observed with the viable CTT-less mutant of RPS0A. Together we conclude that the interaction between the flexible RPS0A-CTT and the residues 200–400 of the a/TIF32-NTD significantly stimulates attachment of eIF3 and its associated eIFs to small ribosomal subunits in vivo.
Collapse
Affiliation(s)
- Tomáš Kouba
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, v.v.i., Prague, The Czech Republic
| | - István Dányi
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, v.v.i., Prague, The Czech Republic
| | - Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, v.v.i., Prague, The Czech Republic
| | - Vanda Munzarová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, v.v.i., Prague, The Czech Republic
| | - Vladislava Vlčková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, v.v.i., Prague, The Czech Republic
| | - Lucie Cuchalová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, v.v.i., Prague, The Czech Republic
| | - Andreas Neueder
- Institut für Biochemie, Genetik und Mikrobiologie, University of Regensburg, Regensburg, Germany
| | - Philipp Milkereit
- Institut für Biochemie, Genetik und Mikrobiologie, University of Regensburg, Regensburg, Germany
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, v.v.i., Prague, The Czech Republic
- * E-mail:
| |
Collapse
|
37
|
Di-wu L, Li LL, Wang WJ, Xie HZ, Yang J, Zhang CH, Huang Q, Zhong L, Feng S, Yang SY. Identification of CK2 inhibitors with new scaffolds by a hybrid virtual screening approach based on Bayesian model; pharmacophore hypothesis and molecular docking. J Mol Graph Model 2012; 36:42-7. [DOI: 10.1016/j.jmgm.2012.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 03/08/2012] [Accepted: 03/17/2012] [Indexed: 10/28/2022]
|
38
|
Mulekar JJ, Huq E. Does CK2 affect flowering time by modulating the autonomous pathway in Arabidopsis? PLANT SIGNALING & BEHAVIOR 2012; 7:292-4. [PMID: 22353866 PMCID: PMC3405693 DOI: 10.4161/psb.18883] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
CK2 (Casein Kinase II), a ubiquitous Ser/Thr kinase, affects multiple developmental and stress response pathways in Arabidopsis, including flowering time under both long- and short-day conditions through the photoperiod and autonomous pathways. CK2 phosphorylates central clock components, CCA1 and LHY, to modulate circadian clock that regulates flowering time through the photoperiod pathway. However, how CK2 regulates flowering time through the autonomous pathway is still unknown. Analyses of phosphorylation sites using several prediction softwares show that most of the autonomous pathway components have multiple CK2 phosphorylation sites. CK2 might phosphorylate any or all of these components to modulate their activity/stability resulting in altered expression of FLC that drives flowering time through the autonomous pathway.
Collapse
|
39
|
Muench DG, Zhang C, Dahodwala M. Control of cytoplasmic translation in plants. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:178-94. [DOI: 10.1002/wrna.1104] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Mulekar JJ, Bu Q, Chen F, Huq E. Casein kinase II α subunits affect multiple developmental and stress-responsive pathways in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:343-54. [PMID: 21950772 DOI: 10.1111/j.1365-313x.2011.04794.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Casein kinase II (formerly known as CK2), a ubiquitous Ser/Thr kinase, plays critical roles in all higher organisms including plants. The CK2 holoenzyme consists of two catalytic α subunits and two regulatory β subunits. The Arabidopsis genome has four α subunit and four β subunit genes, and members of both the α and β subunit families have been shown to be localized in the cytoplasm, nucleus and also in chloroplasts. However, the biological roles of CK2 subunits have not been fully characterized yet. Here we identified T-DNA insertion mutants in three α subunit genes (α1, α2 and α3) and made double and triple mutants. The CK2 α1α2α3 triple mutants displayed reduced CK2 activity compared with wild-type seedlings. Phenotypic characterization showed that CK2 α1α2α3 triple mutants are late flowering under both long- and short-day conditions. Genes encoding floral integrators are differentially regulated in the triple mutant compared with the wild-type plants. CK2 α1α2α3 triple mutants also displayed reduced hypocotyl growth, smaller cotyledon size and a reduced number of lateral roots compared with wild-type seedlings under light. Abscisic acid-induced blockage of seed germination and cotyledon greening is reduced in CK2 α subunit mutants in an additive manner. Moreover, CK2 α subunit mutants are also hyposensitive to a NaCl-induced blockage of seed germination. Taken together, these data suggest that CK2 α subunits affect diverse developmental and stress responsive pathways in Arabidopsis.
Collapse
Affiliation(s)
- Jidnyasa Jayant Mulekar
- Section of Molecular Cell and Developmental Biology and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
41
|
Sokabe M, Fraser CS, Hershey JWB. The human translation initiation multi-factor complex promotes methionyl-tRNAi binding to the 40S ribosomal subunit. Nucleic Acids Res 2011; 40:905-13. [PMID: 21940399 PMCID: PMC3258154 DOI: 10.1093/nar/gkr772] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The delivery of Met-tRNAi to the 40S ribosomal subunit is thought to occur by way of a ternary complex (TC) comprising eIF2, GTP and Met-tRNAi. We have generated from purified human proteins a stable multifactor complex (MFC) comprising eIF1, eIF2, eIF3 and eIF5, similar to the MFC reported in yeast and plants. A human MFC free of the ribosome also is detected in HeLa cells and rabbit reticulocytes, indicating that it exists in vivo. In vitro, the MFC-GTP binds Met-tRNAi and delivers the tRNA to the ribosome at the same rate as the TC. However, MFC-GDP shows a greatly reduced affinity to Met-tRNAi compared to that for eIF2-GDP, suggesting that MFC components may play a role in the release of eIF2-GDP from the ribosome following AUG recognition. Since an MFC–Met-tRNAi complex is detected in cell lysates, it may be responsible for Met-tRNAi–40S ribosome binding in vivo, possibly together with the TC. However, the MFC protein components also bind individually to 40S ribosomes, creating the possibility that Met-tRNAi might bind directly to such 40S-factor complexes. Thus, three distinct pathways for Met-tRNAi delivery to the 40S ribosomal subunit are identified, but which one predominates in vivo remains to be elucidated.
Collapse
Affiliation(s)
- Masaaki Sokabe
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
42
|
Andaya A, Jia W, Sokabe M, Fraser CS, Hershey JWB, Leary JA. Phosphorylation of human eukaryotic initiation factor 2γ: novel site identification and targeted PKC involvement. J Proteome Res 2011; 10:4613-23. [PMID: 21854064 DOI: 10.1021/pr200429y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Eukaryotic translation requires a suite of proteins known as eukaryotic initiation factors (eIFs). These molecular effectors oversee the highly regulated initiation phase of translation. Essential to eukaryotic translation initiation is the protein eIF2, a heterotrimeric protein composed of the individually distinct subunits eIF2α, eIF2β, and eIF2γ. The ternary complex, formed when eIF2 binds to GTP and Met-tRNA(i), is responsible for shuttling Met-tRNA(i) onto the awaiting 40S ribosome. As a necessary component for translation initiation, much attention has been given to the phosphorylation of eIF2α. Despite several previous investigations into eIF2 phosphorylation, most have centered on α- or β-subunit phosphorylation and little is known regarding γ-subunit phosphorylation. Herein, we report eight sites of phosphorylation on the largest eIF2 subunit with seven novel phosphosite identifications via high resolution mass spectrometry. Of the eight sites identified, three are located in either the switch regions or nucleotide binding pocket domain. In addition, we have identified a possible kinase of eIF2, protein kinase C (PKC), which is capable of phosphorylating threonine 66 (thr-66) on the intact heterotrimer. These findings may shed new light on the regulation of ternary complex formation and alternate molecular effectors involved in this process prior to 80S ribosome formation and subsequent translation elongation and termination.
Collapse
Affiliation(s)
- Armann Andaya
- Department of Molecular and Cellular Biology and ‡Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis , Davis, California 95616, United States
| | | | | | | | | | | |
Collapse
|
43
|
The p23 co-chaperone protein is a novel substrate of CK2 in Arabidopsis. Mol Cell Biochem 2011; 356:245-54. [DOI: 10.1007/s11010-011-0969-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 11/26/2022]
|
44
|
Crawford AC, Stefanova K, Lambe W, McLean R, Wilson R, Barclay I, Francki MG. Functional relationships of phytoene synthase 1 alleles on chromosome 7A controlling flour colour variation in selected Australian wheat genotypes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:95-108. [PMID: 21442411 DOI: 10.1007/s00122-011-1569-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 03/11/2011] [Indexed: 05/30/2023]
Abstract
Flour colour measured as a Commission Internationale de l'Eclairage (CIE) b* value is an important wheat quality attribute for a range of end-products, with genes and enzymes of the xanthophyll biosynthesis pathway providing potential sources of trait variation. In particular, the phytoene synthase 1 (Psy1) gene has been associated with quantitative trait loci (QTL) for flour b* colour variation. Several Psy1 alleles on chromosome 7A (Psy-A1) have been described, along with proposed mechanisms for influencing flour b* colour. This study sought to identify evolutionary relationships among known Psy-A1 alleles, to establish which Psy-A1 alleles are present in selected Australian wheat genotypes and establish their role in controlling variation for flour b* colour via QTL analysis. Phylogenetic analyses showed seven of eight known Psy-A1 alleles clustered with sequences from T. urartu, indicating the majority of alleles in Australian germplasm share a common evolutionary lineage. In this regard, Psy-A1a, Psy-A1c, Psy-A1e and Psy-A1p were common in Australian genotypes with flour b* colour ranging from white to yellow. In contrast Psy-A1s was found to be related to A. speltoides, indicating a possible A-B genome translocation during wheat polyploidisation. A new allele Psy-A1t (similar to Psy-A1s) was discovered in genotypes with yellow flour, with QTL analyses indicating Psy-A1t strongly influences flour b* colour in Australian germplasm. QTL LOD value maxima did not coincide with Psy-A1 gene locus in two of three populations and, therefore, Psy-A1a and Psy-A1p may not be involved in flour colour. Instead two other QTL were identified, one proximal and one distal to Psy-A1 in Australian wheat lines. Comparison of Psy-A1t and Psy-A1p predicted protein sequences suggests differences in putative sites for post-translational modification may influence enzyme activity and subsequent xanthophyll accumulation in the wheat endosperm. Psy-A1a and Psy-A1p were not involved in flour b* colour variation, indicating other genes control variation on chromosome 7A in some wheat genotypes.
Collapse
Affiliation(s)
- A C Crawford
- Department of Agriculture and Food Western Australia, 3 Baron Hay Ct, South Perth, WA, 6151, Australia
| | | | | | | | | | | | | |
Collapse
|
45
|
Bu Q, Zhu L, Dennis MD, Yu L, Lu SX, Person MD, Tobin EM, Browning KS, Huq E. Phosphorylation by CK2 enhances the rapid light-induced degradation of phytochrome interacting factor 1 in Arabidopsis. J Biol Chem 2011; 286:12066-74. [PMID: 21330376 DOI: 10.1074/jbc.m110.186882] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The phytochrome family of sensory photoreceptors interacts with phytochrome interacting factors (PIFs), repressors of photomorphogenesis, in response to environmental light signals and induces rapid phosphorylation and degradation of PIFs to promote photomorphogenesis. However, the kinase that phosphorylates PIFs is still unknown. Here we show that CK2 directly phosphorylates PIF1 at multiple sites. α1 and α2 subunits individually phosphorylated PIF1 weakly in vitro. However, each of four β subunits strongly stimulated phosphorylation of PIF1 by α1 or α2. Mapping of the phosphorylation sites identified seven Ser/Thr residues scattered throughout PIF1. Ser/Thr to Ala scanning mutations at all seven sites eliminated CK2-mediated phosphorylation of PIF1 in vitro. Moreover, the rate of degradation of the Ser/Thr to Ala mutant PIF1 was significantly reduced compared with wild-type PIF1 in transgenic plants. In addition, hypocotyl lengths of the mutant PIF1 transgenic plants were much longer than the wild-type PIF1 transgenic plants under light, suggesting that the mutant PIF1 is suppressing photomorphogenesis. Taken together, these data suggest that CK2-mediated phosphorylation enhances the light-induced degradation of PIF1 to promote photomorphogenesis.
Collapse
Affiliation(s)
- Qingyun Bu
- Section of Molecular Cell and Developmental Biology, Department of Chemistry and Biochemistry, The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gorini G, Ponomareva O, Shores KS, Person MD, Harris RA, Mayfield RD. Dynamin-1 co-associates with native mouse brain BKCa channels: proteomics analysis of synaptic protein complexes. FEBS Lett 2010; 584:845-51. [PMID: 20114047 DOI: 10.1016/j.febslet.2009.12.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/15/2009] [Accepted: 12/26/2009] [Indexed: 12/28/2022]
Abstract
In every synapse, a large number of proteins interact with other proteins in order to carry out signaling and transmission in the central nervous system. In this study, we used interaction proteomics to identify novel synaptic protein interactions in mouse cortical membranes under native conditions. Using immunoprecipitation, immunoblotting, and mass spectrometry, we identified a number of novel synaptic protein interactions involving soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), calcium-activated potassium channel (BKCa) alpha subunits, and dynamin-1. These novel interactions offer valuable insight into the protein-protein interaction network in intact synapses that could advance understanding of vesicle trafficking, release, and recycling.
Collapse
Affiliation(s)
- Giorgio Gorini
- Waggoner Center for Alcohol and Addiction Research, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Fraser CS. The molecular basis of translational control. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:1-51. [PMID: 20374738 DOI: 10.1016/s1877-1173(09)90001-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Our current understanding of eukaryotic protein synthesis has emerged from many years of biochemical, genetic and biophysical approaches. Significant insight into the molecular details of the mechanism has been obtained, although there are clearly many aspects of the process that remain to be resolved. Importantly, our understanding of the mechanism has identified a number of key stages in the pathway that contribute to the regulation of general and gene-specific translation. Not surprisingly, translational control is now widely accepted to play a role in aspects of cell stress, growth, development, synaptic function, aging, and disease. This chapter reviews the mechanism of eukaryotic protein synthesis and its relevance to translational control.
Collapse
Affiliation(s)
- Christopher S Fraser
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, California 95616, USA
| |
Collapse
|
48
|
Dennis MD, Browning KS. Differential phosphorylation of plant translation initiation factors by Arabidopsis thaliana CK2 holoenzymes. J Biol Chem 2009; 284:20602-14. [PMID: 19509278 DOI: 10.1074/jbc.m109.006692] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A previously described wheat germ protein kinase (Yan, T. F., and Tao, M. (1982) J. Biol. Chem. 257, 7037-7043) was identified unambiguously as CK2 using mass spectrometry. CK2 is a ubiquitous eukaryotic protein kinase that phosphorylates a wide range of substrates. In previous studies, this wheat germ kinase was shown to phosphorylate eIF2alpha, eIF3c, and three large subunit (60 S) ribosomal proteins (Browning, K. S., Yan, T. F., Lauer, S. J., Aquino, L. A., Tao, M., and Ravel, J. M. (1985) Plant Physiol. 77, 370-373). To further characterize the role of CK2 in the regulation of translation initiation, Arabidopsis thaliana catalytic (alpha1 and alpha2) and regulatory (beta1, beta2, beta3, and beta4) subunits of CK2 were cloned and expressed in Escherichia coli. Recombinant A. thaliana CK2beta subunits spontaneously dimerize and assemble into holoenzymes in the presence of either CK2alpha1 or CK2alpha2 and exhibit autophosphorylation. The purified CK2 subunits were used to characterize the properties of the individual subunits and their ability to phosphorylate various plant protein substrates. CK2 was shown to phosphorylate eIF2alpha, eIF2beta, eIF3c, eIF4B, eIF5, and histone deacetylase 2B but did not phosphorylate eIF1, eIF1A, eIF4A, eIF4E, eIF4G, eIFiso4E, or eIFiso4G. Differential phosphorylation was exhibited by CK2 in the presence of various regulatory beta-subunits. Analysis of A. thaliana mutants either lacking or overexpressing CK2 subunits showed that the amount of eIF2beta protein present in extracts was affected, which suggests that CK2 phosphorylation may play a role in eIF2beta stability. These results provide evidence for a potential mechanism through which the expression and/or subcellular distribution of CK2 beta-subunits could participate in the regulation of the initiation of translation and other physiological processes in plants.
Collapse
Affiliation(s)
- Michael D Dennis
- Department of Chemistry and Biochemistry and the Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| | | |
Collapse
|