1
|
Uda K, Nishimura R, Li Y, Shimoda E, Miyamoto T, Moe LA. Evolution and Functional Diversification of Serine Racemase Homologs in Bacteria. J Mol Evol 2025:10.1007/s00239-024-10231-7. [PMID: 39821316 DOI: 10.1007/s00239-024-10231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025]
Abstract
Amino acid racemases catalyze the interconversion of L- and D-amino acids, maintaining intracellular levels of both D- and L-amino acids. While alanine and glutamate racemases are widespread in bacteria, serine racemase (SerR) is predominantly found in animals. Recently, homologs of animal SerR were reported in some bacterial genomes, but their evolutionary distribution and functional roles remain poorly understood. In this study, we cloned and expressed 20 SerR homologous genes from 13 bacterial species spanning five phyla and characterized their enzymatic activity. Six homologs exhibited serine dehydratase activity, while the remaining showed racemase activity with serine, aspartate, asparagine, or arginine. Notably, the SerR homologs from Parafannyhessea umbonata (Actinomycetota), Clostridium aceticum, Anaerovirgula multivorans, Alkaliphilus oremlandii (Bacillota), Acetomicrobium mobile, and Thermovirga lienii (Synergistota) demonstrated strong arginine racemase activity, with Km values ranging from 0.167 to 0.885 mM and kcat values ranging from 5.86 to 61.5 s-1 for L-arginine. Phylogenetic analysis revealed that bacterial and eukaryotic SerR homologs share a common ancestral gene, and substrate specificity has independently changed multiple times during evolution. Amino acid sequence alignment and analysis of site-directed mutants revealed that residues at positions 146 to 148 and surrounding regions, located near the substrate-binding site, play a crucial role in substrate specificity and/or catalytic activity. These results highlight the evolutionary processes that drive functional diversification in serine racemase homologs.
Collapse
Affiliation(s)
- Kouji Uda
- Laboratory of Biochemistry, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan.
| | - Rie Nishimura
- Laboratory of Biochemistry, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan
| | - Yuexuan Li
- Laboratory of Biochemistry, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan
| | - Eisaku Shimoda
- Laboratory of Biochemistry, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan
| | - Tetsuya Miyamoto
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Luke A Moe
- Department of Plant and Soil Sciences, 311 Plant Science Building, University of Kentucky, Lexington, KY, 40546-0312, USA
| |
Collapse
|
2
|
Lu LP, Chang WH, Mao YW, Cheng MC, Zhuang XY, Kuo CS, Lai YA, Shih TM, Chou TY, Tsai GE. The Development of a Regulator of Human Serine Racemase for N-Methyl-D-aspartate Function. Biomedicines 2024; 12:853. [PMID: 38672207 PMCID: PMC11048566 DOI: 10.3390/biomedicines12040853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
It is crucial to regulate N-methyl-D-aspartate (NMDA) function bivalently depending on the central nervous system (CNS) conditions. CNS disorders with NMDA hyperfunction are involved in the pathogenesis of neurotoxic and/or neurodegenerative disorders with elevated D-serine, one of the NMDA receptor co-agonists. On the contrary, NMDA-enhancing agents have been demonstrated to improve psychotic symptoms and cognition in CNS disorders with NMDA hypofunction. Serine racemase (SR), the enzyme regulating both D- and L-serine levels through both racemization (catalysis from L-serine to D-serine) and β-elimination (degradation of both D- and L-serine), emerges as a promising target for bidirectional regulation of NMDA function. In this study, we explored using dimethyl malonate (DMM), a pro-drug of the SR inhibitor malonate, to modulate NMDA activity in C57BL/6J male mice via intravenous administration. Unexpectedly, 400 mg/kg DMM significantly elevated, rather than decreased (as a racemization inhibitor), D-serine levels in the cerebral cortex and plasma. This outcome prompted us to investigate the regulatory effects of dodecagalloyl-α-D-xylose (α12G), a synthesized tannic acid analog, on SR activity. Our findings showed that α12G enhanced the racemization activity of human SR by about 8-fold. The simulated and fluorescent assay of binding affinity suggested a noncooperative binding close to the catalytic residues, Lys56 and Ser84. Moreover, α12G treatment can improve behaviors associated with major CNS disorders with NMDA hypofunction including hyperactivity, prepulse inhibition deficit, and memory impairment in animal models of positive symptoms and cognitive impairment of psychosis. In sum, our findings suggested α12G is a potential therapeutic for treating CNS disorders with NMDA hypofunction.
Collapse
Affiliation(s)
- Lu-Ping Lu
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Wei-Hua Chang
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
| | - Yi-Wen Mao
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
| | - Min-Chi Cheng
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
| | - Xiao-Yi Zhuang
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
| | - Chi-Sheng Kuo
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
| | - Yi-An Lai
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
| | - Tsai-Miao Shih
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
| | - Teh-Ying Chou
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pathology and Precision Medicine Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 112304, Taiwan
| | - Guochuan Emil Tsai
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Psychiatry and Biobehavioral Science, UCLA School of Medicine, Los Angeles, CA 90024, USA
| |
Collapse
|
3
|
Abstract
A survey of protein databases indicates that the majority of enzymes exist in oligomeric forms, with about half of those found in the UniProt database being homodimeric. Understanding why many enzymes are in their dimeric form is imperative. Recent developments in experimental and computational techniques have allowed for a deeper comprehension of the cooperative interactions between the subunits of dimeric enzymes. This review aims to succinctly summarize these recent advancements by providing an overview of experimental and theoretical methods, as well as an understanding of cooperativity in substrate binding and the molecular mechanisms of cooperative catalysis within homodimeric enzymes. Focus is set upon the beneficial effects of dimerization and cooperative catalysis. These advancements not only provide essential case studies and theoretical support for comprehending dimeric enzyme catalysis but also serve as a foundation for designing highly efficient catalysts, such as dimeric organic catalysts. Moreover, these developments have significant implications for drug design, as exemplified by Paxlovid, which was designed for the homodimeric main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Wei Chen
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
4
|
Bearne SL. Design and evaluation of substrate-product analog inhibitors for racemases and epimerases utilizing a 1,1-proton transfer mechanism. Methods Enzymol 2023; 690:397-444. [PMID: 37858537 DOI: 10.1016/bs.mie.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Racemases and epimerases catalyze the inversion of stereochemistry at asymmetric carbon atoms to generate stereoisomers that often play important roles in normal and pathological physiology. Consequently, there is interest in developing inhibitors of these enzymes for drug discovery. A strategy for the rational design of substrate-product analog (SPA) inhibitors of racemases and epimerases utilizing a direct 1,1-proton transfer mechanism is elaborated. This strategy assumes that two groups on the asymmetric carbon atom remain fixed at active-site binding determinants, while the hydrogen and third, motile group move during catalysis, with the latter potentially traveling between an R- and S-pocket at the active site. SPAs incorporate structural features of the substrate and product, often with geminal disubstitution on the asymmetric carbon atom to simultaneously present the motile group to both the R- and S-pockets. For racemases operating on substrates bearing three polar groups (glutamate, aspartate, and serine racemases) or with compact, hydrophobic binding pockets (proline racemase), substituent motion is limited and the design strategy furnishes inhibitors with poor or modest binding affinities. The approach is most successful when substrates have a large, motile hydrophobic group that binds at a plastic and/or capacious hydrophobic site. Potent inhibitors were developed for mandelate racemase, isoleucine epimerase, and α-methylacyl-CoA racemase using the SPA inhibitor design strategy, exhibiting binding affinities ranging from substrate-like to exceeding that of the substrate by 100-fold. This rational approach for designing inhibitors of racemases and epimerases having the appropriate active-site architectures is a useful strategy for furnishing compounds for drug development.
Collapse
Affiliation(s)
- Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Department of Chemistry, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
5
|
Beesley S, Kumar SS. The t-N-methyl-d-aspartate receptor: Making the case for d-Serine to be considered its inverse co-agonist. Neuropharmacology 2023:109654. [PMID: 37437688 DOI: 10.1016/j.neuropharm.2023.109654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
The N-methyl-d-aspartate receptor (NMDAR) is an enigmatic macromolecule that has garnered a good deal of attention on account of its involvement in the cellular processes that underlie learning and memory, following its discovery in the mid twentieth century (Baudry and Davis, 1991). Yet, despite advances in knowledge about its function, there remains much more to be uncovered regarding the receptor's biophysical properties, subunit composition, and role in CNS physiology and pathophysiology. The motivation for this review stems from the need for synthesizing new information gathered about these receptors that sheds light on their role in synaptic plasticity and their dichotomous relationship with the amino acid d-serine through which they influence the pathogenesis of neurodegenerative diseases like temporal lobe epilepsy (TLE), the most common type of adult epilepsies (Beesley et al., 2020a). This review will outline pertinent ideas relating structure and function of t-NMDARs (GluN3 subunit-containing triheteromeric NMDARs) for which d-serine might serve as an inverse co-agonist. We will explore how tracing d-serine's origins blends glutamate-receptor biology with glial biology to help provide fresh perspectives on how neurodegeneration might interlink with neuroinflammation to initiate and perpetuate the disease state. Taken together, we envisage the review to deepen our understanding of endogenous d-serine's new role in the brain while also recognizing its therapeutic potential in the treatment of TLE that is oftentimes refractory to medications.
Collapse
Affiliation(s)
- Stephen Beesley
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience Florida State University, 1115 W. Call Street, Tallahassee, FL, 32306-4300, USA
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience Florida State University, 1115 W. Call Street, Tallahassee, FL, 32306-4300, USA.
| |
Collapse
|
6
|
Uda K, Moe LA. Distribution and evolution of the serine/aspartate racemase family in invertebrates. II. Frequent and widespread parallel evolution of aspartate racemase. J Biochem 2022; 172:303-311. [PMID: 35997160 DOI: 10.1093/jb/mvac067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/18/2022] [Indexed: 11/12/2022] Open
Abstract
Our previous studies showed that invertebrate animal serine racemase (SerR) and aspartate racemase (AspR) evolved from a common ancestral gene and are widely distributed. However, the overall molecular evolutionary background of these genes has remained unclear. In the present study we have cloned, expressed and characterized five SerR and three AspR genes from six invertebrate species. The coexistence of SerR and AspR paralogs has been observed in some species, and the presence of both SerR and AspR is here confirmed in the flatworm Macrostomum lignano, the feather star Anneissia japonica, the ark shell Anadara broughtonii and the sea hare Aplysia californica. Comparison of the gene structures revealed the evolution of SerR and AspR. The ancestral species of metazoans probably had a single SerR gene, and the first gene duplication in the common ancestor species of the eumetazoans occurred after the divergence of porifera and eumetazoans, yielding two SerR genes. Most eumetazoans lost one of the two SerR genes, while the echinoderm Anneissia japonica retained both genes. Furthermore, it is clear that invertebrate AspR genes arose through parallel evolution by duplication of the SerR gene followed by substitution of amino acid residues necessary for substrate recognition in multiple lineages.
Collapse
Affiliation(s)
- Kouji Uda
- Laboratory of Biochemistry, Faculty of Science and Technology, Kochi University, Kochi 780-8520, Japan
| | - Luke A Moe
- Department of Plant and Soil Sciences, 311 Plant Science Building, University of Kentucky, Lexington, KY 40546-0312, USA
| |
Collapse
|
7
|
Yoshimura T. Molecular basis and functional development of enzymes related to amino acid metabolism. Biosci Biotechnol Biochem 2022; 86:1161-1172. [PMID: 35751623 DOI: 10.1093/bbb/zbac102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 11/12/2022]
Abstract
Enzymology, the study of enzyme structures and reaction mechanisms can be considered a classical discipline. However, enzymes cannot be freely designed to catalyze desired reactions yet, and enzymology is by no means a complete science. I have long studied the reaction mechanisms of enzymes related to amino acid metabolism, such as aminotransferases and racemases, which depend on pyridoxal 5'-phosphate, a coenzyme form of vitamin B6. During these studies, I have often been reminded that enzymatic reactions are extremely sophisticated processes based on chemical principles and enzyme structures, and have often been amazed at the evolutionary mechanisms that bestowed them with such structures. In this review, I described the reaction mechanism of various pyridoxal enzymes especially related to D-amino acids metabolism, whose roles in mammals have recently attracted attention. I hope to convey some of the significance and interest in enzymology through this review.
Collapse
Affiliation(s)
- Tohru Yoshimura
- Graduate School of Bioagricultural Sciences, Nagoya University
| |
Collapse
|
8
|
Pfanzelt M, Maher TE, Absmeier RM, Schwarz M, Sieber SA. Tailored Pyridoxal Probes Unravel Novel Cofactor-Dependent Targets and Antibiotic Hits in Critical Bacterial Pathogens. Angew Chem Int Ed Engl 2022; 61:e202117724. [PMID: 35199904 PMCID: PMC9321722 DOI: 10.1002/anie.202117724] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 01/21/2023]
Abstract
Unprecedented bacterial targets are urgently needed to overcome the resistance crisis. Herein we systematically mine pyridoxal phosphate‐dependent enzymes (PLP‐DEs) in bacteria to focus on a target class which is involved in crucial metabolic processes. For this, we tailored eight pyridoxal (PL) probes bearing modifications at various positions. Overall, the probes exceeded the performance of a previous generation and provided a detailed map of PLP‐DEs in clinically relevant pathogens including challenging Gram‐negative strains. Putative PLP‐DEs with unknown function were exemplarily characterized via in‐depth enzymatic assays. Finally, we screened a panel of PLP binders for antibiotic activity and unravelled the targets of hit molecules. Here, an uncharacterized enzyme, essential for bacterial growth, was assigned as PLP‐dependent cysteine desulfurase and confirmed to be inhibited by the marketed drug phenelzine. Our approach provides a basis for deciphering novel PLP‐DEs as essential antibiotic targets along with corresponding ways to decipher small molecule inhibitors.
Collapse
Affiliation(s)
- Martin Pfanzelt
- Center for Functional Protein Assemblies (CPA), Department of Chemistry, Chair of Organic Chemistry II, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| | - Thomas E Maher
- Center for Functional Protein Assemblies (CPA), Department of Chemistry, Chair of Organic Chemistry II, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany.,Department of Chemistry, Molecular Sciences Research Hub, White City Campus and Institute of Chemical Biology, Molecular Sciences Research Hub, White City Campus, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK
| | - Ramona M Absmeier
- Center for Functional Protein Assemblies (CPA), Department of Chemistry, Chair of Organic Chemistry II, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| | - Markus Schwarz
- Center for Functional Protein Assemblies (CPA), Department of Chemistry, Chair of Organic Chemistry II, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| | - Stephan A Sieber
- Center for Functional Protein Assemblies (CPA), Department of Chemistry, Chair of Organic Chemistry II, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| |
Collapse
|
9
|
Koulouris CR, Gardiner SE, Harris TK, Elvers KT, Mark Roe S, Gillespie JA, Ward SE, Grubisha O, Nicholls RA, Atack JR, Bax BD. Tyrosine 121 moves revealing a ligandable pocket that couples catalysis to ATP-binding in serine racemase. Commun Biol 2022; 5:346. [PMID: 35410329 PMCID: PMC9001717 DOI: 10.1038/s42003-022-03264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
Human serine racemase (hSR) catalyses racemisation of L-serine to D-serine, the latter of which is a co-agonist of the NMDA subtype of glutamate receptors that are important in synaptic plasticity, learning and memory. In a 'closed' hSR structure containing the allosteric activator ATP, the inhibitor malonate is enclosed between the large and small domains while ATP is distal to the active site, residing at the dimer interface with the Tyr121 hydroxyl group contacting the α-phosphate of ATP. In contrast, in 'open' hSR structures, Tyr121 sits in the core of the small domain with its hydroxyl contacting the key catalytic residue Ser84. The ability to regulate SR activity by flipping Tyr121 from the core of the small domain to the dimer interface appears to have evolved in animals with a CNS. Multiple X-ray crystallographic enzyme-fragment structures show Tyr121 flipped out of its pocket in the core of the small domain. Data suggest that this ligandable pocket could be targeted by molecules that inhibit enzyme activity.
Collapse
Affiliation(s)
- Chloe R Koulouris
- Sussex Drug Discovery Centre, University of Sussex, Brighton, BN1 9QG, UK
| | - Sian E Gardiner
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Tessa K Harris
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Karen T Elvers
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - S Mark Roe
- Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QJ, UK
| | - Jason A Gillespie
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Simon E Ward
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Olivera Grubisha
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Robert A Nicholls
- MRC Laboratory of Molecular Biology, Francis Crick Ave, CB2 0QH, Cambridge, UK
| | - John R Atack
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK.
| | - Benjamin D Bax
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
10
|
Tanaka Y, Yoshimura T, Hakamata M, Saito C, Sumitani M, Sezutsu H, Hemmi H, Ito T. Identification and characterization of a serine racemase in the silkworm Bombyx mori. J Biochem 2022; 172:17-28. [PMID: 35325141 DOI: 10.1093/jb/mvac026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/17/2022] [Indexed: 11/12/2022] Open
Abstract
The pupae of lepidopterans contain high concentrations of endogenous d-serine. In the silkworm Bombyx mori, d-serine is negligible during the larval stage but increases markedly during the pupal stage, reaching 50% of the total free serine. However, the physiological function of d-serine and the enzyme responsible for its production are unknown. Herein, we identified a new type of pyridoxal 5'-phosphate (PLP)-dependent serine racemase (SR) that catalyzes the racemization of l-serine to d-serine in B. mori. This silkworm SR (BmSR) has an N-terminal PLP-binding domain that is homologous to mammalian SR and a C-terminal putative ligand-binding regulatory-like domain (ACT-like domain) that is absent in mammalian SR. Similar to mammalian SRs, BmSR catalyzes the racemization and dehydration of both serine isomers. However, BmSR is different from mammalian SRs as evidenced by its insensitivity to Mg2+/Ca2+ and Mg-ATP-which are required for activation of mammalian SRs-and high d-serine dehydration activity. At the pupal stage, the SR activity was predominantly detected in the fat body, which was consistent with the timing and localization of BmSR expression. The results are an important first step in elucidating the physiological significance of d-serine in lepidopterans.
Collapse
Affiliation(s)
- Yui Tanaka
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi, Japan
| | - Tohru Yoshimura
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi, Japan
| | - Maho Hakamata
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi, Japan
| | - Chiaki Saito
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi, Japan
| | - Megumi Sumitani
- Silkworm Research Group, Division of Silk-Producing Insect Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi, Tsukuba 305-8634, Japan
| | - Hideki Sezutsu
- Silkworm Research Group, Division of Silk-Producing Insect Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi, Tsukuba 305-8634, Japan
| | - Hisashi Hemmi
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi, Japan
| | - Tomokazu Ito
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi, Japan
| |
Collapse
|
11
|
Tailored Pyridoxal Probes Unravel Novel Cofactor‐Dependent Targets and Antibiotic Hits in Critical Bacterial Pathogens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Takagi S, Puhl MD, Anderson T, Balu DT, Coyle JT. Serine Racemase Expression by Striatal Neurons. Cell Mol Neurobiol 2022; 42:279-289. [PMID: 32445040 PMCID: PMC7680280 DOI: 10.1007/s10571-020-00880-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/15/2020] [Indexed: 01/03/2023]
Abstract
D-serine is synthesized by serine racemase (SR) and is a co-agonist at forebrain N-methyl-D-aspartate receptors (NMDARs). D-serine and SR are expressed primarily in neurons, but not in quiescent astrocytes. In this study, we examined the localization of D-serine and SR in the mouse striatum and the effects of genetically silencing SR expression in GABAergic interneurons (iSR-/-). iSR-/- mice had substantially reduced SR expression almost exclusively in striatum, but only exhibited marginal D-serine reduction. SR positive cells in the striatum showed strong co-localization with dopamine- and cyclic AMP-regulated neuronal phosphoprotein (DARPP32) in wild type mice. Transgenic fluorescent reporter mice for either the D1 or D2 dopamine receptors exhibited a 65:35 ratio for co-localization with D1and D2 receptor positive cells, respectively. These results indicate that GABAergic medium spiny neurons receiving dopaminergic inputs in striatum robustly and uniformly express SR. In behavioral tests, iSR-/- mice showed a blunted response to the hedonic and stimulant effects of cocaine, without affecting anxiety-related behaviors. Because the cocaine effects have been shown in the constitutive SR-/- mice, the restriction of the blunted response to cocaine to iSR-/- mice reinforces the conclusion that D-serine in striatal GABAergic neurons plays an important role in mediating dopaminergic stimulant effects. Results in this study suggest that SR in striatal GABAergic neurons is synthesizing D-serine, not as a glutamatergic co-transmitter, but rather as an autocrine whereby the GABAergic neurons control the excitability of their NMDARs by determining the availability of the co-agonist, D-serine.
Collapse
Affiliation(s)
- Shunsuke Takagi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan,Department of Psychiatry, Tokyo Medical and Dental University Hospital, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan,Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan,Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Matthew D. Puhl
- Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Thea Anderson
- Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Darrick T. Balu
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA,Translational Psychiatry Laboratory, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Joseph T. Coyle
- Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA,Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
13
|
Promiscuous enzymes generating d-amino acids in mammals: Why they may still surprise us? Biochem J 2021; 478:1175-1178. [PMID: 33710333 DOI: 10.1042/bcj20200988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/17/2022]
Abstract
Promiscuous catalysis is a common property of enzymes, particularly those using pyridoxal 5'-phosphate as a cofactor. In a recent issue of this journal, Katane et al. Biochem. J. 477, 4221-4241 demonstrate the synthesis and accumulation of d-glutamate in mammalian cells by promiscuous catalysis mediated by a pyridoxal 5'-phosphate enzyme, the serine/threonine dehydratase-like (SDHL). The mechanism of SDHL resembles that of serine racemase, which synthesizes d-serine, a well-established signaling molecule in the mammalian brain. d-Glutamate is present in body fluids and is degraded by the d-glutamate cyclase at the mitochondria. This study demonstrates a biochemical pathway for d-glutamate synthesis in mammalian cells and advances our knowledge on this little-studied d-amino acid in mammals. d-Amino acids may still surprise us by their unique roles in biochemistry, intercellular signaling, and as potential biomarkers of disease.
Collapse
|
14
|
Dyakin VV, Wisniewski TM, Lajtha A. Racemization in Post-Translational Modifications Relevance to Protein Aging, Aggregation and Neurodegeneration: Tip of the Iceberg. Symmetry (Basel) 2021; 13:455. [PMID: 34350031 PMCID: PMC8330555 DOI: 10.3390/sym13030455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homochirality of DNA and prevalent chirality of free and protein-bound amino acids in a living organism represents the challenge for modern biochemistry and neuroscience. The idea of an association between age-related disease, neurodegeneration, and racemization originated from the studies of fossils and cataract disease. Under the pressure of new results, this concept has a broader significance linking protein folding, aggregation, and disfunction to an organism's cognitive and behavioral functions. The integrity of cognitive function is provided by a delicate balance between the evolutionarily imposed molecular homo-chirality and the epigenetic/developmental impact of spontaneous and enzymatic racemization. The chirality of amino acids is the crucial player in the modulation the structure and function of proteins, lipids, and DNA. The collapse of homochirality by racemization is the result of the conformational phase transition. The racemization of protein-bound amino acids (spontaneous and enzymatic) occurs through thermal activation over the energy barrier or by the tunnel transfer effect under the energy barrier. The phase transition is achieved through the intermediate state, where the chirality of alpha carbon vanished. From a thermodynamic consideration, the system in the homo-chiral (single enantiomeric) state is characterized by a decreased level of entropy. The oscillating protein chirality is suggesting its distinct significance in the neurotransmission and flow of perceptual information, adaptive associative learning, and cognitive laterality. The common pathological hallmarks of neurodegenerative disorders include protein misfolding, aging, and the deposition of protease-resistant protein aggregates. Each of the landmarks is influenced by racemization. The brain region, cell type, and age-dependent racemization critically influence the functions of many intracellular, membrane-bound, and extracellular proteins including amyloid precursor protein (APP), TAU, PrP, Huntingtin, α-synuclein, myelin basic protein (MBP), and collagen. The amyloid cascade hypothesis in Alzheimer's disease (AD) coexists with the failure of amyloid beta (Aβ) targeting drug therapy. According to our view, racemization should be considered as a critical factor of protein conformation with the potential for inducing order, disorder, misfolding, aggregation, toxicity, and malfunctions.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Virtual Reality Perception Lab (VRPL), The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| | - Thomas M. Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Abel Lajtha
- Center for Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| |
Collapse
|
15
|
Marchesani F, Gianquinto E, Autiero I, Michielon A, Campanini B, Faggiano S, Bettati S, Mozzarelli A, Spyrakis F, Bruno S. The allosteric interplay between S-nitrosylation and glycine binding controls the activity of human serine racemase. FEBS J 2020; 288:3034-3054. [PMID: 33249721 DOI: 10.1111/febs.15645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
Human serine racemase (hSR) catalyzes the biosynthesis of D-serine, an obligatory co-agonist of the NMDA receptors. It was previously found that the reversible S-nitrosylation of Cys113 reduces hSR activity. Here, we show by site-directed mutagenesis, fluorescence spectroscopy, mass spectrometry, and molecular dynamics that S-nitrosylation stabilizes an open, less-active conformation of the enzyme. The reaction of hSR with either NO or nitroso donors is conformation-dependent and occurs only in the conformation stabilized by the allosteric effector ATP, in which the ε-amino group of Lys114 acts as a base toward the thiol group of Cys113. In the closed conformation stabilized by glycine-an active-site ligand of hSR-the side chain of Lys114 moves away from that of Cys113, while the carboxyl side-chain group of Asp318 moves significantly closer, increasing the thiol pKa and preventing the reaction. We conclude that ATP binding, glycine binding, and S-nitrosylation constitute a three-way regulation mechanism for the tight control of hSR activity. We also show that Cys113 undergoes H2 O2 -mediated oxidation, with loss of enzyme activity, a reaction also dependent on hSR conformation.
Collapse
Affiliation(s)
- Francesco Marchesani
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy
| | - Eleonora Gianquinto
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Italy
| | - Ida Autiero
- Molecular Horizon Srl, Bettona, PG, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini, Napoli, Italy
| | - Annalisa Michielon
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy
| | - Barbara Campanini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy
| | - Serena Faggiano
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Pisa, Italy
| | - Stefano Bettati
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Pisa, Italy.,Dipartimento di Medicina e Chirurgia, Parma, Italy
| | - Andrea Mozzarelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Pisa, Italy
| | - Francesca Spyrakis
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy
| |
Collapse
|
16
|
Osire T, Yang T, Xu M, Zhang X, Long M, Ngon NKA, Rao Z. Integrated gene engineering synergistically improved substrate-product transport, cofactor generation and gene translation for cadaverine biosynthesis in E. coli. Int J Biol Macromol 2020; 169:8-17. [PMID: 33301846 DOI: 10.1016/j.ijbiomac.2020.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
Several approaches for efficient production of cadaverine, a bio-based diamine with broad industrial applications have been explored. Here, Serratia marcescens lysine decarboxylase (SmcadA) was expressed in E. coli; mild surfactants added in biotransformation reactions; the E. coli native lysine/cadaverine antiporter cadB, E. coli pyridoxal kinases pdxK and pdxY overexpressed and synthetic RBS libraries screened. Addition of mild surfactants and overexpression of antiporter cadB increased cadaverine biosynthesis of SmcadA. Moreover, expression of pdxY gene yielded 19.82 g/L in a reaction mixture containing added cofactor precursor pyridoxal (PL), without adding exogenous PLP. The screened synthetic RBS1, applied to fully exploit pdxY gene expression, ultimately resulted in PLP self-sufficiency, producing 27.02 g/L cadaverine using strain T7R1_PL. To boost SmcadA catalytic activity, the designed mutants Arg595Lys and Ser512Ala had significantly improved cumulative cadaverine production of 219.54 and 201.79 g/L respectively compared to the wild-type WT (181.62 g/L), after 20 h reaction. Finally, molecular dynamics simulations for WT and variants indicated that increased flexibility at the binding sites of the protein enhanced residue-ligand interactions, contributing to high cadaverine synthesis. This work demonstrates potential of harnessing different pull factors through integrated gene engineering of efficient biocatalysts and gaining insight into the mechanisms involved through MD simulations.
Collapse
Affiliation(s)
- Tolbert Osire
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Mengfei Long
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Noelle Kewang A Ngon
- National Engineering Laboratory for Cereal Fermentation Technology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
17
|
Takagi S, Balu DT, Coyle JT. Factors regulating serine racemase and d-amino acid oxidase expression in the mouse striatum. Brain Res 2020; 1751:147202. [PMID: 33171153 DOI: 10.1016/j.brainres.2020.147202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
d-Serine plays an important role in modulating N-methyl-d-aspartate receptor (NMDAR) neurotransmission in the mammalian brain by binding to the receptor's glycine modulatory site (GMS). The cytosolic enzyme serine racemase (SR) converts L-serine to d-serine, while the peroxisomal enzyme d-amino acid oxidase (DAAO) catalyzes the breakdown of d-serine. Although it is important to understand how the activities of SR and DAAO regulate d-serine levels, very little is known about the mechanisms that regulate the expression of SR and DAAO. In this study, we investigated whether the different centrally active drugs affect the expression of SR and DAAO in adult mouse brain. We found that the NMDAR antagonist, MK801, and cocaine, psychotropic drugs that both augment glutamate release, reduce the expression of SR and DAAO. This regulation is brain region selective, and in the case of cocaine, is reversed in part byα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX). However, d-serine and antipsychotics do not regulate SR and DAAO protein levels. In a genetic model of SR disruption, we found that DAAO expression was unaltered in SR conditional knockout mice, in which tissue d-serine content remains fairly stable despite marked reduction in SR expression. This study reveals a new mechanism by which AMPAR activity could regulate NMDAR function via d-serine availability.
Collapse
Affiliation(s)
- Shunsuke Takagi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, MA 02478, USA.
| | - Darrick T Balu
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA; Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, MA 02478, USA
| | - Joseph T Coyle
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA; Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, MA 02478, USA
| |
Collapse
|
18
|
Michielon A, Marchesani F, Faggiano S, Giaccari R, Campanini B, Bettati S, Mozzarelli A, Bruno S. Human serine racemase is inhibited by glyceraldehyde 3-phosphate, but not by glyceraldehyde 3-phosphate dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140544. [PMID: 32971286 DOI: 10.1016/j.bbapap.2020.140544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 11/28/2022]
Abstract
Murine serine racemase (SR), the enzyme responsible for the biosynthesis of the neuromodulator d-serine, was reported to form a complex with glyceraldehyde 3-phosphate dehydrogenase (GAPDH), resulting in SR inhibition. In this work, we investigated the interaction between the two human orthologues. We were not able to observe neither the inhibition nor the formation of the SR-GAPDH complex. Rather, hSR is inhibited by the hGAPDH substrate glyceraldehyde 3-phosphate (G3P) in a time- and concentration-dependent fashion, likely through a covalent reaction of the aldehyde functional group. The inhibition was similar for the two G3P enantiomers but it was not observed for structurally similar aldehydes. We ruled out a mechanism of inhibition based on the competition with either pyridoxal phosphate (PLP) - described for other PLP-dependent enzymes when incubated with small aldehydes - or ATP. Nevertheless, the inhibition time course was affected by the presence of hSR allosteric and orthosteric ligands, suggesting a conformation-dependence of the reaction.
Collapse
Affiliation(s)
- Annalisa Michielon
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Francesco Marchesani
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Serena Faggiano
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; Istituto di Biofisica, CNR, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Roberta Giaccari
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Barbara Campanini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Stefano Bettati
- Dipartimento di Medicina e Chirurgia, Via Volturno 39, 43125 Parma, Italy
| | - Andrea Mozzarelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; Istituto di Biofisica, CNR, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
19
|
Bearne SL. Through the Looking Glass: Chiral Recognition of Substrates and Products at the Active Sites of Racemases and Epimerases. Chemistry 2020; 26:10367-10390. [DOI: 10.1002/chem.201905826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/09/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Stephen L. Bearne
- Department of Biochemistry & Molecular BiologyDepartment of ChemistryDalhousie University Halifax, Nova Scotia B3H 4R2 Canada
| |
Collapse
|
20
|
Bacterial production of maize and human serine racemases as partially active inclusion bodies for d-serine synthesis. Enzyme Microb Technol 2020; 137:109547. [DOI: 10.1016/j.enzmictec.2020.109547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 01/31/2023]
|
21
|
Ito T, Matsuoka M, Goto M, Watanabe S, Mizobuchi T, Matsushita K, Nasu R, Hemmi H, Yoshimura T. Mechanism of eukaryotic serine racemase-catalyzed serine dehydration. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140460. [PMID: 32474107 DOI: 10.1016/j.bbapap.2020.140460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
Eukaryotic serine racemase (SR) is a pyridoxal 5'-phosphate enzyme belonging to the Fold-type II group, which catalyzes serine racemization and is responsible for the synthesis of D-Ser, a co-agonist of the N-methyl-d-aspartate receptor. In addition to racemization, SR catalyzes the dehydration of D- and L-Ser to pyruvate and ammonia. The bifuctionality of SR is thought to be important for D-Ser homeostasis. SR catalyzes the racemization of D- and L-Ser with almost the same efficiency. In contrast, the rate of L-Ser dehydration catalyzed by SR is much higher than that of D-Ser dehydration. This has caused the argument that SR does not catalyze the direct D-Ser dehydration and that D-Ser is first converted to L-Ser, then dehydrated. In this study, we investigated the substrate and solvent isotope effect of dehydration of D- and L-Ser catalyzed by SR from Dictyostelium discoideum (DdSR) and demonstrated that the enzyme catalyzes direct D-Ser dehydration. Kinetic studies of dehydration of four Thr isomers catalyzed by D. discoideum and mouse SRs suggest that SR discriminates the substrate configuration at C3 but not at C2. This is probably the reason for the difference in efficiency between L- and D-Ser dehydration catalyzed by SR.
Collapse
Affiliation(s)
- Tomokazu Ito
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Mai Matsuoka
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Masaru Goto
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan.
| | - Soichiro Watanabe
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Taichi Mizobuchi
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Kazuma Matsushita
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Ryoma Nasu
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Hisashi Hemmi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Tohru Yoshimura
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi 464-8601, Japan.
| |
Collapse
|
22
|
Accelerated identification of serine racemase inhibitor from Centella asiatica. Sci Rep 2020; 10:4640. [PMID: 32170206 PMCID: PMC7070078 DOI: 10.1038/s41598-020-61494-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/25/2020] [Indexed: 01/12/2023] Open
Abstract
Serine racemase (SR) converts the free form of L-serine into D-serine (DS) in the mammalian brain. The DS functions as a co-agonist of N-methyl D-aspartate (NMDA) receptor. The over- activation of NMDA receptor leads to many neurological disorders like stroke, amyotrophic lateral sclerosis, Alzheimer’s disease and an effective inhibitor of SR could be a corrective method for the receptor over-activation. We report for the first time here a rapid way of purifying and identifying an inhibitor from medicinal plants known to have the neuro-protective effect. We have purified SR inhibitor from the methanolic extract of Centella asiatica by affinity method. High resolution mass spectrometry and infrared spectroscopy were used to identify the ligand to be madecassoside. We have shown the madecassoside binding in silico and its inhibition of recombinant human serine racemase in vitro and ex vivo.
Collapse
|
23
|
Koulouris CR, Bax BD, Atack JR, Roe SM. Conformational flexibility within the small domain of human serine racemase. Acta Crystallogr F Struct Biol Commun 2020; 76:65-73. [PMID: 32039887 PMCID: PMC7010357 DOI: 10.1107/s2053230x20001193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/28/2020] [Indexed: 01/28/2023] Open
Abstract
Serine racemase (SR) is a pyridoxal 5'-phosphate (PLP)-containing enzyme that converts L-serine to D-serine, an endogenous co-agonist for the N-methyl-D-aspartate receptor (NMDAR) subtype of glutamate ion channels. SR regulates D-serine levels by the reversible racemization of L-serine to D-serine, as well as the catabolism of serine by α,β-elimination to produce pyruvate. The modulation of SR activity is therefore an attractive therapeutic approach to disorders associated with abnormal glutamatergic signalling since it allows an indirect modulation of NMDAR function. In the present study, a 1.89 Å resolution crystal structure of the human SR holoenzyme (including the PLP cofactor) with four subunits in the asymmetric unit is described. Comparison of this new structure with the crystal structure of human SR with malonate (PDB entry 3l6b) shows an interdomain cleft that is open in the holo structure but which disappears when the inhibitor malonate binds and is enclosed. This is owing to a shift of the small domain (residues 78-155) in human SR similar to that previously described for the rat enzyme. This domain movement is accompanied by changes within the twist of the central four-stranded β-sheet of the small domain, including changes in the φ-ψ angles of all three residues in the C-terminal β-strand (residues 149-151). In the malonate-bound structure, Ser84 (a catalytic residue) points its side chain at the malonate and is preceded by a six-residue β-strand (residues 78-83), but in the holoenzyme the β-strand is only four residues (78-81) and His82 has φ-ψ values in the α-helical region of the Ramachandran plot. These data therefore represent a crystallographic platform that enables the structure-guided design of small-molecule modulators for this important but to date undrugged target.
Collapse
Affiliation(s)
- Chloe R. Koulouris
- Sussex Drug Discovery Centre, University of Sussex, Falmer, Brighton BN1 9QG, England
| | - Benjamin D. Bax
- Medicines Discovery Institute, School of Biosciences, University of Cardiff, Park Place, Cardiff CF10 3AT, Wales
| | - John R. Atack
- Medicines Discovery Institute, School of Biosciences, University of Cardiff, Park Place, Cardiff CF10 3AT, Wales
| | - S. Mark Roe
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, England
| |
Collapse
|
24
|
Uda K, Edashige Y, Nishimura R, Shikano Y, Matsui T, Radkov AD, Moe LA. Distribution and evolution of the serine/aspartate racemase family in plants. PHYTOCHEMISTRY 2020; 169:112164. [PMID: 31622858 DOI: 10.1016/j.phytochem.2019.112164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Previous studies have shown that several d-amino acids are widely present in plants, and serine racemase (SerR), which synthesizes d-serine in vivo, has already been identified from three plant species. However, the full picture of the d-amino acid synthesis pathway in plants is not well understood. To clarify the distribution of amino acid racemases in plants, we have cloned, expressed and characterized eight SerR homologous genes from five plant species, including green alga. These SerR homologs exhibited racemase activity towards serine or aspartate and were identified on the basis of their maximum activity as SerR or aspartate racemase (AspR). The plant AspR gene is identified for the first time from Medicago truncatula, Manihot esculenta, Solanum lycopersicum, Sphagnum girgensohnii and Spirogyra pratensis. In addition to the AspR gene, three SerR genes are identified in the former three species. Phylogenetic tree analysis showed that SerR and AspR are widely distributed in plants and form a serine/aspartate racemase family cluster. The catalytic efficiency (kcat/Km) of plant AspRs was more than 100 times higher than that of plant SerRs, suggesting that d-aspartate, as well as d-serine, can be synthesized in vivo by AspR. The amino acid sequence alignment and comparison of the chromosomal gene arrangement have revealed that plant AspR genes independently evolved from SerR in each ancestral lineage of plant species by gene duplication and acquisition of two serine residues at position 150 to 152.
Collapse
Affiliation(s)
- Kouji Uda
- Laboratory of Biochemistry, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan.
| | - Yumika Edashige
- Laboratory of Biochemistry, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan
| | - Rie Nishimura
- Laboratory of Biochemistry, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan
| | - Yuuna Shikano
- Laboratory of Biochemistry, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan
| | - Tohru Matsui
- Laboratory of Plant Taxonomy, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan
| | - Atanas D Radkov
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Luke A Moe
- Department of Plant and Soil Sciences, 311 Plant Science Building, University of Kentucky, Lexington, KY, 40546-0312, USA
| |
Collapse
|
25
|
Graham DL, Beio ML, Nelson DL, Berkowitz DB. Human Serine Racemase: Key Residues/Active Site Motifs and Their Relation to Enzyme Function. Front Mol Biosci 2019; 6:8. [PMID: 30918891 PMCID: PMC6424897 DOI: 10.3389/fmolb.2019.00008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/12/2019] [Indexed: 01/06/2023] Open
Abstract
Serine racemase (SR) is the first racemase enzyme to be identified in human biology and converts L-serine to D-serine, an important neuronal signaling molecule that serves as a co-agonist of the NMDA (N-methyl-D-aspartate) receptor. This overview describes key molecular features of the enzyme, focusing on the side chains and binding motifs that control PLP (pyridoxal phosphate) cofactor binding as well as activity modulation through the binding of both divalent cations and ATP, the latter showing allosteric modulation. Discussed are catalytically important residues in the active site including K56 and S84—the si- and re-face bases, respectively,—and R135, a residue that appears to play a critical role in the binding of both negatively charged alternative substrates and inhibitors. The interesting bifurcated mechanism followed by this enzyme whereby substrate L-serine can be channeled either into D-serine (racemization pathway) or into pyruvate (β-elimination pathway) is discussed extensively, as are studies that focus on a key loop region (the so-called “triple serine loop”), the modification of which can be used to invert the normal in vitro preference of this enzyme for the latter pathway over the former. The possible cross-talk between the PLP enzymes hSR and hCBS (human cystathionine β-synthase) is discussed, as the former produces D-serine and the latter produces H2S, both of which stimulate the NMDAR and both of which have been implicated in neuronal infarction pursuant to ischemic stroke. Efforts to gain a more complete mechanistic understanding of these PLP enzymes are expected to provide valuable insights for the development of specific small molecule modulators of these enzymes as tools to study their roles in neuronal signaling and in modulation of NMDAR function.
Collapse
Affiliation(s)
- Danielle L Graham
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Matthew L Beio
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - David L Nelson
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
26
|
Liang J, Han Q, Tan Y, Ding H, Li J. Current Advances on Structure-Function Relationships of Pyridoxal 5'-Phosphate-Dependent Enzymes. Front Mol Biosci 2019; 6:4. [PMID: 30891451 PMCID: PMC6411801 DOI: 10.3389/fmolb.2019.00004] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 01/25/2019] [Indexed: 12/23/2022] Open
Abstract
Pyridoxal 5′-phosphate (PLP) functions as a coenzyme in many enzymatic processes, including decarboxylation, deamination, transamination, racemization, and others. Enzymes, requiring PLP, are commonly termed PLP-dependent enzymes, and they are widely involved in crucial cellular metabolic pathways in most of (if not all) living organisms. The chemical mechanisms for PLP-mediated reactions have been well elaborated and accepted with an emphasis on the pure chemical steps, but how the chemical steps are processed by enzymes, especially by functions of active site residues, are not fully elucidated. Furthermore, the specific mechanism of an enzyme in relation to the one for a similar class of enzymes seems scarcely described or discussed. This discussion aims to link the specific mechanism described for the individual enzyme to the same types of enzymes from different species with aminotransferases, decarboxylases, racemase, aldolase, cystathionine β-synthase, aromatic phenylacetaldehyde synthase, et al. as models. The structural factors that contribute to the reaction mechanisms, particularly active site residues critical for dictating the reaction specificity, are summarized in this review.
Collapse
Affiliation(s)
- Jing Liang
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Institute of Agriculture and Forestry, Hainan University, Haikou, China
| | - Yang Tan
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haizhen Ding
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jianyong Li
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
27
|
Raboni S, Marchetti M, Faggiano S, Campanini B, Bruno S, Marchesani F, Margiotta M, Mozzarelli A. The Energy Landscape of Human Serine Racemase. Front Mol Biosci 2019; 5:112. [PMID: 30687716 PMCID: PMC6333871 DOI: 10.3389/fmolb.2018.00112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
Human serine racemase is a pyridoxal 5′-phosphate (PLP)-dependent dimeric enzyme that catalyzes the reversible racemization of L-serine and D-serine and their dehydration to pyruvate and ammonia. As D-serine is the co-agonist of the N-methyl-D-aspartate receptors for glutamate, the most abundant excitatory neurotransmitter in the brain, the structure, dynamics, function, regulation and cellular localization of serine racemase have been investigated in detail. Serine racemase belongs to the fold-type II of the PLP-dependent enzyme family and structural models from several orthologs are available. The comparison of structures of serine racemase co-crystallized with or without ligands indicates the presence of at least one open and one closed conformation, suggesting that conformational flexibility plays a relevant role in enzyme regulation. ATP, Mg2+, Ca2+, anions, NADH and protein interactors, as well as the post-translational modifications nitrosylation and phosphorylation, finely tune the racemase and dehydratase activities and their relative reaction rates. Further information on serine racemase structure and dynamics resulted from the search for inhibitors with potential therapeutic applications. The cumulative knowledge on human serine racemase allowed obtaining insights into its conformational landscape and into the mechanisms of cross-talk between the effector binding sites and the active site.
Collapse
Affiliation(s)
- Samanta Raboni
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parma, Italy.,Institute of Biophysics, National Research Council, Pisa, Italy
| | | | - Stefano Bruno
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Parma, Italy.,Institute of Biophysics, National Research Council, Pisa, Italy.,National Institute of Biostructures and Biosystems, Rome, Italy
| |
Collapse
|
28
|
Deka G, Bharath SR, Savithri HS, Murthy MRN. Structural and biochemical studies on the role of active site Thr166 and Asp236 in the catalytic function of D-Serine deaminase from Salmonella typhimurium. Biochem Biophys Res Commun 2018; 504:40-45. [PMID: 30173889 DOI: 10.1016/j.bbrc.2018.08.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/17/2018] [Indexed: 11/18/2022]
Abstract
D-Serine deaminase (DSD) degrades D-Ser to pyruvate and ammonia. Uropathogenic bacteria survive in the toxic D-Ser containing mammalian urine because of DSD activity. The crystal structure of the apo form of Salmonella typhimurium DSD (StDSD) has been reported earlier. In the present work, we have investigated the role of two active site residues, Thr166 and Asp236 by site directed mutagenesis (T166A and D236L). The enzyme activity is lost upon mutation of these residues. The 2.7 Å resolution crystal structure of T166A DSD with bound PLP reported here represents the first structure of the holo form of StDSD. PLP binding induces small changes in the relative dispositions of the minor and major domains of the protein and this inter-domain movement becomes substantial upon interaction with the substrate. The conformational changes bring Thr166 to a position at the active site favorable for the degradation of D-Ser. Examination of the different forms of the enzyme and comparison with structures of homologous enzymes suggests that Thr166 is the most probable base abstracting proton from the Cα atom of the substrate and Asp236 is crucial for binding of the cofactor.
Collapse
Affiliation(s)
- Geeta Deka
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | | | | | | |
Collapse
|
29
|
Glutamine 89 is a key residue in the allosteric modulation of human serine racemase activity by ATP. Sci Rep 2018; 8:9016. [PMID: 29899358 PMCID: PMC5998037 DOI: 10.1038/s41598-018-27227-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/25/2018] [Indexed: 11/17/2022] Open
Abstract
Serine racemase (SR) catalyses two reactions: the reversible racemisation of L-serine and the irreversible dehydration of L- and D-serine to pyruvate and ammonia. SRs are evolutionarily related to serine dehydratases (SDH) and degradative threonine deaminases (TdcB). Most SRs and TdcBs – but not SDHs – are regulated by nucleotides. SR binds ATP cooperatively and the nucleotide allosterically stimulates the serine dehydratase activity of the enzyme. A H-bond network comprising five residues (T52, N86, Q89, E283 and N316) and water molecules connects the active site with the ATP-binding site. Conservation analysis points to Q89 as a key residue for the allosteric communication, since its mutation to either Met or Ala is linked to the loss of control of activity by nucleotides. We verified this hypothesis by introducing the Q89M and Q89A point mutations in the human SR sequence. The allosteric communication between the active site and the allosteric site in both mutants is almost completely abolished. Indeed, the stimulation of the dehydratase activity by ATP is severely diminished and the binding of the nucleotide is no more cooperative. Ancestral state reconstruction suggests that the allosteric control by nucleotides established early in SR evolution and has been maintained in most eukaryotic lineages.
Collapse
|
30
|
Ito T, Hamauchi N, Hagi T, Morohashi N, Hemmi H, Sato YG, Saito T, Yoshimura T. D-Serine Metabolism and Its Importance in Development of Dictyostelium discoideum. Front Microbiol 2018; 9:784. [PMID: 29740415 PMCID: PMC5928759 DOI: 10.3389/fmicb.2018.00784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/06/2018] [Indexed: 11/13/2022] Open
Abstract
In mammals, D-Ser is synthesized by serine racemase (SR) and degraded by D-amino acid oxidase (DAO). D-Ser acts as an endogenous ligand for N-methyl-D-aspartate (NMDA)- and δ2 glutamate receptors, and is involved in brain functions such as learning and memory. Although SR homologs are highly conserved in eukaryotes, little is known about the significance of D-Ser in non-mammals. In contrast to mammals, the slime mold Dictyostelium discoideum genome encodes SR, DAO, and additionally D-Ser specific degradation enzyme D-Ser dehydratase (DSD), but not NMDA- and δ2 glutamate receptors. Here, we studied the significances of D-Ser and DSD in D. discoideum. Enzymatic assays demonstrated that DSD is 460- and 1,700-fold more active than DAO and SR, respectively, in degrading D-Ser. Moreover, in dsd-null cells D-Ser degradation activity is completely abolished. In fact, while in wild-type D. discoideum intracellular D-Ser levels were considerably low, dsd-null cells accumulated D-Ser. These results indicated that DSD but not DAO is the primary enzyme responsible for D-Ser decomposition in D. discoideum. We found that dsd-null cells exhibit delay in development and arrest at the early culmination stage. The efficiency of spore formation was considerably reduced in the mutant cells. These phenotypes were further pronounced by exogenous D-Ser but rescued by plasmid-borne expression of dsd. qRT-PCR analysis demonstrated that mRNA expression of key genes in the cAMP signaling relay is perturbed in the dsd knockout. Our data indicate novel roles for D-Ser and/or DSD in the regulation of cAMP signaling in the development processes of D. discoideum.
Collapse
Affiliation(s)
- Tomokazu Ito
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Natsuki Hamauchi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Taisuke Hagi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Naoya Morohashi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hisashi Hemmi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yukie G Sato
- Department of Materials and Life Sciences, Sophia University, Tokyo, Japan
| | - Tamao Saito
- Department of Materials and Life Sciences, Sophia University, Tokyo, Japan
| | - Tohru Yoshimura
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
31
|
Marchesani F, Bruno S, Paredi G, Raboni S, Campanini B, Mozzarelli A. Human serine racemase is nitrosylated at multiple sites. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:813-821. [PMID: 29410194 DOI: 10.1016/j.bbapap.2018.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 11/26/2022]
Abstract
Serine racemase is a pyridoxal 5'‑phosphate dependent enzyme responsible for the synthesis of d‑serine, a neuromodulator of the NMDA receptors. Its activity is modulated by several ligands, including ATP, divalent cations and protein interactors. The murine orthologue is inhibited by S-nitrosylation at Cys113, a residue adjacent to the ATP binding site. We found that the time course of inhibition of human serine racemase by S-nitrosylation is markedly biphasic, with a fast phase associated with the reaction of Cys113. Unlike the murine enzyme, two additional cysteine residues, Cys269, unique to the human orthologue, and Cys128 were also recognized as S-nitrosylation sites through mass spectrometry and site-directed mutagenesis. The effect of S-nitrosylation on the fluorescence of tryptophan residues and on that of the pyridoxal phosphate cofactor indicated that S-nitrosylation produces a partial interruption of the cross-talk between the ATP binding site and the active site. Overall, it appears that the inhibition results from a conformational change rather than the direct displacement of ATP.
Collapse
Affiliation(s)
- Francesco Marchesani
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy.
| | - Gianluca Paredi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Samanta Raboni
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Barbara Campanini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Andrea Mozzarelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy; Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| |
Collapse
|
32
|
|
33
|
Mizobuchi T, Nonaka R, Yoshimura M, Abe K, Takahashi S, Kera Y, Goto M. Crystal structure of a pyridoxal 5'-phosphate-dependent aspartate racemase derived from the bivalve mollusc Scapharca broughtonii. Acta Crystallogr F Struct Biol Commun 2017; 73:651-656. [PMID: 29199985 PMCID: PMC5713669 DOI: 10.1107/s2053230x17015813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/30/2017] [Indexed: 11/10/2022] Open
Abstract
Aspartate racemase (AspR) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that is responsible for D-aspartate biosynthesis in vivo. To the best of our knowledge, this is the first study to report an X-ray crystal structure of a PLP-dependent AspR, which was resolved at 1.90 Å resolution. The AspR derived from the bivalve mollusc Scapharca broughtonii (SbAspR) is a type II PLP-dependent enzyme that is similar to serine racemase (SR) in that SbAspR catalyzes both racemization and dehydration. Structural comparison of SbAspR and SR shows a similar arrangement of the active-site residues and nucleotide-binding site, but a different orientation of the metal-binding site. Superposition of the structures of SbAspR and of rat SR bound to the inhibitor malonate reveals that Arg140 recognizes the β-carboxyl group of the substrate aspartate in SbAspR. It is hypothesized that the aromatic proline interaction between the domains, which favours the closed form of SbAspR, influences the arrangement of Arg140 at the active site.
Collapse
Affiliation(s)
- Taichi Mizobuchi
- Department of Biomolecular Science, Graduate School of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Risako Nonaka
- Department of Biomolecular Science, Graduate School of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Motoki Yoshimura
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Katsumasa Abe
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Shouji Takahashi
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Yoshio Kera
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Masaru Goto
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
34
|
Murakami M, Saito M, Yokobori H, Nishimura K, Tanigawa M, Nagata Y. Involvement of C-terminal amino acids of a hyperthermophilic serine racemase in its thermostability. Extremophiles 2017; 22:99-107. [PMID: 29124361 DOI: 10.1007/s00792-017-0980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/03/2017] [Indexed: 11/27/2022]
Abstract
Pyrobaculum islandicum is a hyperthermophilic archaeon that grows optimally at 95-100 °C. In the previous study, we extensively purified a serine racemase from this organism and cloned the gene for overexpression in Escherichia coli (Ohnishi et al. 2008). This enzyme also exhibits highly thermostable L-serine/L-threonine dehydratase activity. In the present study, we aimed to elucidate the molecular mechanisms underlying the high thermostability of this enzyme. A recombinant variant of this enzyme, PiSRvt, constructed by truncating the C-terminal 72 amino acids, was compared with the native enzyme, PiSR. The dehydratase activity of PiSR and PiSRvt was found to owe to a homotrimer and a monomer, respectively, that demonstrated high and moderate thermostability, respectively. These observations reveal that the C-terminal region contributes to monomer trimerization that provides the extreme thermostability.
Collapse
Affiliation(s)
- Masahito Murakami
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-Ward, Tokyo, 101-8308, Japan
| | - Makoto Saito
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-Ward, Tokyo, 101-8308, Japan
| | - Hirokazu Yokobori
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-Ward, Tokyo, 101-8308, Japan
| | - Katsushi Nishimura
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-Ward, Tokyo, 101-8308, Japan
| | - Minoru Tanigawa
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-Ward, Tokyo, 101-8308, Japan
| | - Yoko Nagata
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-Ward, Tokyo, 101-8308, Japan.
| |
Collapse
|
35
|
Triple serine loop region regulates the aspartate racemase activity of the serine/aspartate racemase family. Amino Acids 2017; 49:1743-1754. [PMID: 28744579 DOI: 10.1007/s00726-017-2472-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/20/2017] [Indexed: 02/02/2023]
Abstract
Recently, we cloned and characterized eleven serine and aspartate racemases (SerR and AspR, respectively) from animals. These SerRs and AspRs are not separated by their racemase functions and form a serine/aspartate racemase family cluster based on phylogenetic analysis. Moreover, we have proposed that the AspR-specific triple serine loop region at amino acid positions 150-152 may be responsible for the large AspR activity. In the present study, to test this hypothesis, we prepared and characterized fourteen mutants in this region of animal SerRs and AspRs. The large AspR activity in Acropora and Crassostrea AspR was reduced to <0.04% of wild-type after substitution of the triple serine loop region. Conversely, introducing the triple serine loop region into Acropora, Crassostrea, and Penaeus SerR drastically increased the AspR activity. Those mutants showed similar or higher substrate affinity for aspartate than serine and showed 11-683-fold higher k cat and 28-351-fold higher k cat/K m values for aspartate than serine racemization. Furthermore, we introduced serine residues in all combinations at position 150-152 in mouse SerR. These mutants revealed that a change in the enzyme function from SerR to AspR can be caused by introduction of Ser151 and Ser152, and addition of the third serine residue at position 150 further enhances the enzyme specificity for aspartate due to a decrease in the serine racemase and serine dehydratase activity. Here, we provide convincing evidence that the AspR gene has evolved from the SerR gene by acquisition of the triple serine loop region.
Collapse
|
36
|
Nelson DL, Applegate GA, Beio ML, Graham DL, Berkowitz DB. Human serine racemase structure/activity relationship studies provide mechanistic insight and point to position 84 as a hot spot for β-elimination function. J Biol Chem 2017; 292:13986-14002. [PMID: 28696262 DOI: 10.1074/jbc.m117.777904] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/26/2017] [Indexed: 11/06/2022] Open
Abstract
There is currently great interest in human serine racemase, the enzyme responsible for producing the NMDA co-agonist d-serine. Reported correlation of d-serine levels with disorders including Alzheimer's disease, ALS, and ischemic brain damage (elevated d-serine) and schizophrenia (reduced d-serine) has further piqued this interest. Reported here is a structure/activity relationship study of position Ser84, the putative re-face base. In the most extreme case of functional reprogramming, the S84D mutant displays a dramatic reversal of β-elimination substrate specificity in favor of l-serine over the normally preferred l-serine-O-sulfate (∼1200-fold change in kcat/Km ratios) and l (l-THA; ∼5000-fold change in kcat/Km ratios) alternative substrates. On the other hand, the S84T (which performs l-Ser racemization activity), S84A (good kcat but high Km for l-THA elimination), and S84N mutants (nearly WT efficiency for l-Ser elimination) displayed intermediate activity, all showing a preference for the anionic substrates, but generally attenuated compared with the native enzyme. Inhibition studies with l-erythro-β-hydroxyaspartate follow this trend, with both WT serine racemase and the S84N mutant being competitively inhibited, with Ki = 31 ± 1.5 μm and 1.5 ± 0.1 mm, respectively, and the S84D being inert to inhibition. Computational modeling pointed to a key role for residue Arg-135 in binding and properly positioning the l-THA and l-serine-O-sulfate substrates and the l-erythro-β-hydroxyaspartate inhibitor. Examination of available sequence data suggests that Arg-135 may have originated for l-THA-like β-elimination function in earlier evolutionary variants, and examination of available structural data suggests that a Ser84-H2O-Lys114 hydrogen-bonding network in human serine racemase lowers the pKa of the Ser84re-face base.
Collapse
Affiliation(s)
- David L Nelson
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Greg A Applegate
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Matthew L Beio
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Danielle L Graham
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - David B Berkowitz
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588.
| |
Collapse
|
37
|
Nagano H, Shibano K, Matsumoto Y, Yokota A, Wada M. Isolation and amino acid sequence of a dehydratase acting on d-erythro-3-hydroxyaspartate from Pseudomonas sp. N99, and its application in the production of optically active 3-hydroxyaspartate. Biosci Biotechnol Biochem 2017; 81:1156-1164. [PMID: 28290777 DOI: 10.1080/09168451.2017.1295804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
An enzyme catalyzing the ammonia-lyase reaction for the conversion of d-erythro-3-hydroxyaspartate to oxaloacetate was purified from the cell-free extract of a soil-isolated bacterium Pseudomonas sp. N99. The enzyme exhibited ammonia-lyase activity toward l-threo-3-hydroxyaspartate and d-erythro-3-hydroxyaspartate, but not toward other 3-hydroxyaspartate isomers. The deduced amino acid sequence of the enzyme, which belongs to the serine/threonine dehydratase family, shows similarity to the sequence of l-threo-3-hydroxyaspartate ammonia-lyase (EC 4.3.1.16) from Pseudomonas sp. T62 (74%) and Saccharomyces cerevisiae (64%) and serine racemase from Schizosaccharomyces pombe (65%). These results suggest that the enzyme is similar to l-threo-3-hydroxyaspartate ammonia-lyase from Pseudomonas sp. T62, which does not act on d-erythro-3-hydroxyaspartate. We also then used the recombinant enzyme expressed in Escherichia coli to produce optically pure l-erythro-3-hydroxyaspartate and d-threo-3-hydroxyaspartate from the corresponding dl-racemic mixtures. The enzymatic resolution reported here is one of the simplest and the first enzymatic method that can be used for obtaining optically pure l-erythro-3-hydroxyaspartate.
Collapse
Affiliation(s)
- Hiroyuki Nagano
- a Laboratory of Microbial Physiology, Research Faculty of Agriculture , Hokkaido University , Sapporo , Japan
| | - Kana Shibano
- a Laboratory of Microbial Physiology, Research Faculty of Agriculture , Hokkaido University , Sapporo , Japan
| | - Yu Matsumoto
- a Laboratory of Microbial Physiology, Research Faculty of Agriculture , Hokkaido University , Sapporo , Japan
| | - Atsushi Yokota
- a Laboratory of Microbial Physiology, Research Faculty of Agriculture , Hokkaido University , Sapporo , Japan
| | - Masaru Wada
- a Laboratory of Microbial Physiology, Research Faculty of Agriculture , Hokkaido University , Sapporo , Japan
| |
Collapse
|
38
|
Bruno S, Margiotta M, Marchesani F, Paredi G, Orlandi V, Faggiano S, Ronda L, Campanini B, Mozzarelli A. Magnesium and calcium ions differentially affect human serine racemase activity and modulate its quaternary equilibrium toward a tetrameric form. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:381-387. [PMID: 28089597 DOI: 10.1016/j.bbapap.2017.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/21/2016] [Accepted: 01/05/2017] [Indexed: 11/18/2022]
Abstract
Serine racemase is the pyridoxal 5'-phosphate dependent enzyme that catalyzes both production and catabolism of d-serine, a co-agonist of the NMDA glutamate receptors. Mg2+, or, alternatively, Ca2+, activate human serine racemase by binding both at a specific site and - as ATP-metal complexes - at a distinct ATP binding site. We show that Mg2+ and Ca2+ bind at the metal binding site with a 4.5-fold difference in affinity, producing a similar thermal stabilization and partially shifting the dimer-tetramer equilibrium in favour of the latter. The ATP-Ca2+ complex produces a 2-fold lower maximal activation in comparison to the ATP-Mg2+ complex and exhibits a 3-fold higher EC50. The co-presence of ATP and metals further stabilizes the tetramer. In consideration of the cellular concentrations of Mg2+ and Ca2+, even taking into account the fluctuations of the latter, these results point to Mg2+ as the sole physiologically relevant ligand both at the metal binding site and at the ATP binding site. The stabilization of the tetramer by both metals and ATP-metal complexes suggests a quaternary activation mechanism mediated by 5'-phosphonucleotides similar to that observed in the distantly related prokaryotic threonine deaminases. This allosteric mechanism has never been observed before in mammalian fold type II pyridoxal 5'-phosphate dependent enzymes.
Collapse
Affiliation(s)
| | | | | | - Gianluca Paredi
- Interdepartment Center SITEIA.PARMA, University of Parma, Italy
| | | | | | - Luca Ronda
- Department of Neurosciences, University of Parma, Italy
| | | | - Andrea Mozzarelli
- Department of Pharmacy, University of Parma, Italy; Institute of Biophysics, CNR, Pisa, Italy; National Institute of Biostructures and Biomolecules, Rome, Italy
| |
Collapse
|
39
|
Annunziato G, Pieroni M, Benoni R, Campanini B, Pertinhez TA, Pecchini C, Bruno A, Magalhães J, Bettati S, Franko N, Mozzarelli A, Costantino G. Cyclopropane-1,2-dicarboxylic acids as new tools for the biophysical investigation of O-acetylserine sulfhydrylases by fluorimetric methods and saturation transfer difference (STD) NMR. J Enzyme Inhib Med Chem 2016; 31:78-87. [DOI: 10.1080/14756366.2016.1218486] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
| | | | - Roberto Benoni
- Department of Neurosciences, University of Parma, Parma, Italy,
| | | | - Thelma A. Pertinhez
- Department of Biochemical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy,
- Transfusion Medicine Unit, ASMN-IRCCS, Reggio, Emilia, Italy,
| | | | | | | | - Stefano Bettati
- National Institute of Biostructures and Biosystems, Rome, Italy, and
| | | | - Andrea Mozzarelli
- Department of Pharmacy, and
- National Institute of Biostructures and Biosystems, Rome, Italy, and
- Institute of Biophysics, CNR, Pisa, Italy
| | | |
Collapse
|
40
|
Human serine racemase is allosterically modulated by NADH and reduced nicotinamide derivatives. Biochem J 2016; 473:3505-3516. [PMID: 27493223 DOI: 10.1042/bcj20160566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/04/2016] [Indexed: 11/17/2022]
Abstract
Serine racemase catalyzes both the synthesis and the degradation of d-serine, an obligatory co-agonist of the glutamatergic NMDA receptors. It is allosterically controlled by adenosine triphosphate (ATP), which increases its activity around 7-fold through a co-operative binding mechanism. Serine racemase has been proposed as a drug target for the treatment of several neuropathologies but, so far, the search has been directed only toward the active site, with the identification of a few, low-affinity inhibitors. Following the recent observation that nicotinamide adenine dinucleotide (reduced form) (NADH) inhibits serine racemase, here we show that the inhibition is partial, with an IC50 of 246 ± 63 μM, several-fold higher than NADH intracellular concentrations. At saturating concentrations of NADH, ATP binds with a 2-fold lower affinity and without co-operativity, suggesting ligand competition. NADH also reduces the weak activity of human serine racemase in the absence of ATP, indicating an additional ATP-independent inhibition mechanism. By dissecting the NADH molecule, we discovered that the inhibitory determinant is the N-substituted 1,4-dihydronicotinamide ring. Particularly, the NADH precursor 1,4-dihydronicotinamide mononucleotide exhibited a partial mixed-type inhibition, with a KI of 18 ± 7 μM. Docking simulations suggested that all 1,4-dihydronicotinamide derivatives bind at the interdimeric interface, with the ring positioned in an unoccupied site next to the ATP-binding site. This newly recognized allosteric site might be exploited for the design of high-affinity serine racemase effectors to finely modulate d-serine homeostasis.
Collapse
|
41
|
Femmer C, Bechtold M, Roberts TM, Panke S. Exploiting racemases. Appl Microbiol Biotechnol 2016; 100:7423-36. [DOI: 10.1007/s00253-016-7729-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/03/2016] [Accepted: 07/04/2016] [Indexed: 01/11/2023]
|
42
|
Ito T, Hayashida M, Kobayashi S, Muto N, Hayashi A, Yoshimura T, Mori H. Serine racemase is involved in d-aspartate biosynthesis. J Biochem 2016; 160:345-353. [DOI: 10.1093/jb/mvw043] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 06/08/2016] [Indexed: 02/02/2023] Open
|
43
|
The NMDA Receptor and Schizophrenia: From Pathophysiology to Treatment. ADVANCES IN PHARMACOLOGY 2016; 76:351-82. [PMID: 27288082 DOI: 10.1016/bs.apha.2016.01.006] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a severe mental illness that affects almost 1% of the population worldwide. Even though the etiology of schizophrenia is uncertain, it is believed to be a neurodevelopmental disorder that results from a combination of environmental insults and genetic vulnerabilities. Over the past 20 years, there has been a confluence of evidence from many research disciplines pointing to alterations in excitatory signaling, particularly involving hypofunction of the N-methyl-d-aspartate receptor (NMDAR), as a key contributor to the schizophrenia disease process. This review describes the structure-function relationship of the NMDAR channel and how the glycine modulatory site acts as an important regulator of its activity. In addition, this review highlights the genetic, pharmacologic, and biochemical evidence supporting the hypothesis that NMDAR hypofunction contributes to the pathophysiology of schizophrenia. Finally, this chapter highlights some of the most recent and promising pharmacological strategies that are designed to either, directly or indirectly, augment NMDAR function in an effort to treat the cognitive and negative symptoms of schizophrenia that are not helped by currently available medications.
Collapse
|
44
|
Zou L, Song Y, Wang C, Sun J, Wang L, Cheng B, Fan J. Crystal structure of maize serine racemase with pyridoxal 5'-phosphate. Acta Crystallogr F Struct Biol Commun 2016; 72:165-71. [PMID: 26919519 PMCID: PMC4774874 DOI: 10.1107/s2053230x16000960] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 01/16/2016] [Indexed: 11/10/2022] Open
Abstract
Serine racemase (SR) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that is responsible for D-serine biosynthesis in vivo. The first X-ray crystal structure of maize SR was determined to 2.1 Å resolution and PLP binding was confirmed in solution by UV-Vis absorption spectrometry. Maize SR belongs to the type II PLP-dependent enzymes and differs from the SR of a vancomycin-resistant bacterium. The PLP is bound to each monomer by forming a Schiff base with Lys67. Structural comparison with rat and fission yeast SRs reveals a similar arrangement of active-site residues but a different orientation of the C-terminal helix.
Collapse
Affiliation(s)
- Lingling Zou
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, People’s Republic of China
| | - Yang Song
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| | - Chengliang Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| | - Jiaqi Sun
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, People’s Republic of China
| | - Leilei Wang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, People’s Republic of China
| | - Beijiu Cheng
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, People’s Republic of China
| | - Jun Fan
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, People’s Republic of China
| |
Collapse
|
45
|
Qin Z, Yan Q, Ma Q, Jiang Z. Crystal structure and characterization of a novel L-serine ammonia-lyase from Rhizomucor miehei. Biochem Biophys Res Commun 2015; 466:431-7. [PMID: 26367174 DOI: 10.1016/j.bbrc.2015.09.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 09/08/2015] [Indexed: 11/16/2022]
Abstract
L-serine ammonia-lyase, as a member of the β-family of pyridoxal-5'-phosphate (PLP) dependent enzymes, catalyzes the conversion of L-serine (L-threonine) to pyruvate (α-ketobutyrate) and ammonia. The crystal structure of L-serine ammonia-lyase from Rhizomucor miehei (RmSDH) was solved at 1.76 Å resolution by X-ray diffraction method. The overall structure of RmSDH had the characteristic β-family PLP dependent enzyme fold. It consisted of two distinct domains, both of which show the typical open twisted α/β structure. A PLP cofactor was located in the crevice between the two domains, which was attached to Lys52 by a Schiff-base linkage. Unique residue substitutions (Gly78, Pro79, Ser146, Ser147 and Thr312) were discovered at the catalytic site of RmSDH by comparison of structures of RmSDH and other reported eukaryotic L-serine ammonia-lyases. Optimal pH and temperature of the purified RmSDH were 7.5 and 40 °C, respectively. It was stable in the pH range of 7.0-9.0 and at temperatures below 40 °C. This is the first crystal structure of a fungal L-serine ammonia-lyase. It will be useful to study the catalytic mechanism of β-elimination enzymes and will provide a basis for further enzyme engineering.
Collapse
Affiliation(s)
- Zhen Qin
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center of Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Qingjun Ma
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center of Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
46
|
Kubota T, Shimamura S, Kobayashi T, Nunoura T, Deguchi S. Distribution of eukaryotic serine racemases in the bacterial domain and characterization of a representative protein in Roseobacter litoralis Och 149. MICROBIOLOGY-SGM 2015; 162:53-61. [PMID: 26475231 DOI: 10.1099/mic.0.000200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two distinct bacterial and eukaryotic serine racemases (SRs) have been identified based on phylogenetic and biochemical characteristics. Although some reports have suggested that marine heterotrophic bacteria have the potential to produce d-serine, the gene encoding bacterial SRs is not found in those bacterial genomes. In this study, using in-depth genomic analysis, we found that eukaryotic SR homologues were distributed widely in various bacterial genomes. Additionally, we selected a eukaryotic SR homologue from a marine heterotrophic bacterium, Roseobacter litoralis Och 149 (RiSR), and constructed an RiSR gene expression system in Escherichia coli for studying the properties of the enzyme. Among the tested amino acids, the recombinant RiSR exhibited both racemization and dehydration activities only towards serine, similar to many eukaryotic SRs. Mg2+ and MgATP enhanced both activities of RiSR, whereas EDTA abolished these enzymatic activities. The enzymatic properties and domain structure of RiSR were similar to those of eukaryotic SRs, particularly mammalian SRs. However, RiSR showed lower catalytic efficiency for L-serine dehydration (kcat/Km=0.094 min(-1) mM(-1)) than those of eukaryotic SRs reported to date (kcat/Km=0.6-21 min(-1) mM(-1)). In contrast, the catalytic efficiency for L-serine racemization of RiSR (kcat/Km=3.14 min(-1) mM(-1)) was 34-fold higher than that of l-serine dehydration. These data suggested that RiSR primarily catalysed serine racemization rather than dehydration.
Collapse
Affiliation(s)
- Takaaki Kubota
- Research and Development Center for Marine Biosciences, Marine Functional Biology Group, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Shigeru Shimamura
- Research and Development Center for Marine Biosciences, Marine Functional Biology Group, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Tohru Kobayashi
- Research and Development Center for Marine Biosciences, Marine Functional Biology Group, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Takuro Nunoura
- Research and Development Center for Marine Biosciences, Marine Functional Biology Group, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Shigeru Deguchi
- Research and Development Center for Marine Biosciences, Marine Functional Biology Group, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| |
Collapse
|
47
|
Distribution and evolution of the serine/aspartate racemase family in invertebrates. Amino Acids 2015; 48:387-402. [DOI: 10.1007/s00726-015-2092-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/28/2015] [Indexed: 02/02/2023]
|
48
|
Beato C, Pecchini C, Cocconcelli C, Campanini B, Marchetti M, Pieroni M, Mozzarelli A, Costantino G. Cyclopropane derivatives as potential human serine racemase inhibitors: unveiling novel insights into a difficult target. J Enzyme Inhib Med Chem 2015; 31:645-52. [PMID: 26133542 DOI: 10.3109/14756366.2015.1057720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
d-Serine is the co-agonist of NMDA receptors and binds to the so-called glycine site. d-Serine is synthesized by human serine racemase (SR). Over activation of NMDA receptors is involved in many neurodegenerative diseases and, therefore, the inhibition of SR might represent a novel strategy for the treatment of these pathologies. SR is a very difficult target, with only few compounds so far identified exhibiting weak inhibitory activity. This study was aimed at the identification of novel SR inhibitor by mimicking malonic acid, the best-known SR inhibitor, with a cyclopropane scaffold. We developed, synthesized, and tested a series of cyclopropane dicarboxylic acid derivatives, complementing the synthetic effort with molecular docking. We identified few compounds that bind SR in high micromolar range with a lack of significant correlation between experimental and predicted binding affinities. The thorough analysis of the results can be exploited for the development of more potent SR inhibitors.
Collapse
Affiliation(s)
- Claudia Beato
- a Dipartimento di Farmacia , Università degli studi di Parma , Parma , Italy
| | - Chiara Pecchini
- a Dipartimento di Farmacia , Università degli studi di Parma , Parma , Italy
| | - Chiara Cocconcelli
- a Dipartimento di Farmacia , Università degli studi di Parma , Parma , Italy
| | - Barbara Campanini
- a Dipartimento di Farmacia , Università degli studi di Parma , Parma , Italy
| | | | - Marco Pieroni
- a Dipartimento di Farmacia , Università degli studi di Parma , Parma , Italy
| | - Andrea Mozzarelli
- a Dipartimento di Farmacia , Università degli studi di Parma , Parma , Italy .,b Istituto Nazionale Biostrutture e Biosistemi -- Consorzio Interuniversitario , Roma , Italy , and.,c Istituto di Biofisica, CNR , Pisa , Italy
| | - Gabriele Costantino
- a Dipartimento di Farmacia , Università degli studi di Parma , Parma , Italy
| |
Collapse
|
49
|
Glycolytic flux controls D-serine synthesis through glyceraldehyde-3-phosphate dehydrogenase in astrocytes. Proc Natl Acad Sci U S A 2015; 112:E2217-24. [PMID: 25870284 DOI: 10.1073/pnas.1416117112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
D-Serine is an essential coagonist with glutamate for stimulation of N-methyl-D-aspartate (NMDA) glutamate receptors. Although astrocytic metabolic processes are known to regulate synaptic glutamate levels, mechanisms that control D-serine levels are not well defined. Here we show that d-serine production in astrocytes is modulated by the interaction between the D-serine synthetic enzyme serine racemase (SRR) and a glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (GAPDH). In primary cultured astrocytes, glycolysis activity was negatively correlated with D-serine level. We show that SRR interacts directly with GAPDH, and that activation of glycolysis augments this interaction. Biochemical assays using mutant forms of GAPDH with either reduced activity or reduced affinity to SRR revealed that GAPDH suppresses SRR activity by direct binding to GAPDH and through NADH, a product of GAPDH. NADH allosterically inhibits the activity of SRR by promoting the disassociation of ATP from SRR. Thus, astrocytic production of D-serine is modulated by glycolytic activity via interactions between GAPDH and SRR. We found that SRR is expressed in astrocytes in the subiculum of the human hippocampus, where neurons are known to be particularly vulnerable to loss of energy. Collectively, our findings suggest that astrocytic energy metabolism controls D-serine production, thereby influencing glutamatergic neurotransmission in the hippocampus.
Collapse
|
50
|
Nitoker N, Major DT. Understanding the Reaction Mechanism and Intermediate Stabilization in Mammalian Serine Racemase Using Multiscale Quantum-Classical Simulations. Biochemistry 2014; 54:516-27. [DOI: 10.1021/bi500984m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Neta Nitoker
- Department
of Chemistry and
the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department
of Chemistry and
the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|