1
|
Silva GD, Milan TM, Chagas PS, Trevisan GL, Ferraz CL, Leopoldino AM. SET protein as an epigenetics target. Epigenomics 2024; 16:249-257. [PMID: 38131159 DOI: 10.2217/epi-2023-0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The SET gene has four transcripts reported in NCBI, coding two isoforms of SET proteins. The most known function of SET protein is inhibiting protein phosphatase 2A, a tumor suppressor, which has been associated with different biological processes. In this review, our focus was on exploring the other SET functions related to epigenetic mechanisms, which impact cellular migration, cell cycle and apoptosis.
Collapse
Affiliation(s)
- Gabriel da Silva
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Thaís Moré Milan
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Pablo Shimaoka Chagas
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Glauce Lunardelli Trevisan
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Camila Lopes Ferraz
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Andréia Machado Leopoldino
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| |
Collapse
|
2
|
Le Sénéchal R, Keruzoré M, Quillévéré A, Loaëc N, Dinh VT, Reznichenko O, Guixens-Gallardo P, Corcos L, Teulade-Fichou MP, Granzhan A, Blondel M. Alternative splicing of BCL-x is controlled by RBM25 binding to a G-quadruplex in BCL-x pre-mRNA. Nucleic Acids Res 2023; 51:11239-11257. [PMID: 37811881 PMCID: PMC10639069 DOI: 10.1093/nar/gkad772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/05/2023] [Accepted: 09/09/2023] [Indexed: 10/10/2023] Open
Abstract
BCL-x is a master regulator of apoptosis whose pre-mRNA is alternatively spliced into either a long (canonical) anti-apoptotic Bcl-xL isoform, or a short (alternative) pro-apoptotic Bcl-xS isoform. The balance between these two antagonistic isoforms is tightly regulated and overexpression of Bcl-xL has been linked to resistance to chemotherapy in several cancers, whereas overexpression of Bcl-xS is associated to some forms of diabetes and cardiac disorders. The splicing factor RBM25 controls alternative splicing of BCL-x: its overexpression favours the production of Bcl-xS, whereas its downregulation has the opposite effect. Here we show that RBM25 directly and specifically binds to GQ-2, an RNA G-quadruplex (rG4) of BCL-x pre-mRNA that forms at the vicinity of the alternative 5' splice site leading to the alternative Bcl-xS isoform. This RBM25/rG4 interaction is crucial for the production of Bcl-xS and depends on the RE (arginine-glutamate-rich) motif of RBM25, thus defining a new type of rG4-interacting domain. PhenDC3, a benchmark G4 ligand, enhances the binding of RBM25 to the GQ-2 rG4 of BCL-x pre-mRNA, thereby promoting the alternative pro-apoptotic Bcl-xS isoform and triggering apoptosis. Furthermore, the screening of a combinatorial library of 90 putative G4 ligands led to the identification of two original compounds, PhenDH8 and PhenDH9, superior to PhenDC3 in promoting the Bcl-xS isoform and apoptosis. Thus, favouring the interaction between RBM25 and the GQ-2 rG4 of BCL-x pre-mRNA represents a relevant intervention point to re-sensitize cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Ronan Le Sénéchal
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Marc Keruzoré
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Alicia Quillévéré
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Nadège Loaëc
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Van-Trang Dinh
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Oksana Reznichenko
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Pedro Guixens-Gallardo
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Laurent Corcos
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Marie-Paule Teulade-Fichou
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Anton Granzhan
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Marc Blondel
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| |
Collapse
|
3
|
Gjerga E, Naarmann-de Vries IS, Dieterich C. Characterizing alternative splicing effects on protein interaction networks with LINDA. Bioinformatics 2023; 39:i458-i464. [PMID: 37387163 DOI: 10.1093/bioinformatics/btad224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION Alternative RNA splicing plays a crucial role in defining protein function. However, despite its relevance, there is a lack of tools that characterize effects of splicing on protein interaction networks in a mechanistic manner (i.e. presence or absence of protein-protein interactions due to RNA splicing). To fill this gap, we present Linear Integer programming for Network reconstruction using transcriptomics and Differential splicing data Analysis (LINDA) as a method that integrates resources of protein-protein and domain-domain interactions, transcription factor targets, and differential splicing/transcript analysis to infer splicing-dependent effects on cellular pathways and regulatory networks. RESULTS We have applied LINDA to a panel of 54 shRNA depletion experiments in HepG2 and K562 cells from the ENCORE initiative. Through computational benchmarking, we could show that the integration of splicing effects with LINDA can identify pathway mechanisms contributing to known bioprocesses better than other state of the art methods, which do not account for splicing. Additionally, we have experimentally validated some of the predicted splicing effects that the depletion of HNRNPK in K562 cells has on signalling.
Collapse
Affiliation(s)
- Enio Gjerga
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, Heidelberg 69120, Germany
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg 69120, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg 69120, Germany
| | - Isabel S Naarmann-de Vries
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, Heidelberg 69120, Germany
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg 69120, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg 69120, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, Heidelberg 69120, Germany
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg 69120, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg 69120, Germany
| |
Collapse
|
4
|
Li D, Guo J, Jia R. Epigenetic Control of Cancer Cell Proliferation and Cell Cycle Progression by HNRNPK via Promoting Exon 4 Inclusion of Histone Code Reader SPIN1. J Mol Biol 2023; 435:167993. [PMID: 36736887 DOI: 10.1016/j.jmb.2023.167993] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein K (HNRNPK, hnRNP K), a multifunctional RNA/DNA binding protein, mainly regulates transcription, translation and RNA splicing, and then plays oncogenic roles in many cancers. However, the related mechanisms remain largely unknown. Here, we found that HNRNPK can partially epigenetically regulate cancer cell proliferation via increasing transcription and exon 4-inclusion of SPIN1, an important oncogenic histone code reader. This exon 4 skipping event of SPIN1 generates a long non-coding RNA, followed by the downregulation of SPIN1 protein. SPIN1 is one of the most significantly co-expressed genes of HNRNPK in thirteen TCGA cancers. Our further studies revealed HNRNPK knockdown significantly inhibited cell growth and cell cycle progression in oral squamous cell carcinoma (OSCC) cells and promoted cell apoptosis. Overexpression of SPIN1 was able to partially rescue the growth inhibition triggered by HNRNPK knockdown. Moreover, CCND1 (Cyclin D1), a key cell cycle regulator and oncogene, epigenetically up-regulated by SPIN1, was also positively regulated by HNRNPK. In addition, we discovered that HNRNPK promoted SPIN1 exon 4 inclusion by interacting with an intronic splicing enhancer in intron 4. Collectively, our study suggests a novel epigenetic regulatory pathway of HNRNPK in OSCC, mediated by controlling the transcription activity and alternative splicing of SPIN1 gene.
Collapse
Affiliation(s)
- Di Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Abstract
Dysregulated RNA splicing is a molecular feature that characterizes almost all tumour types. Cancer-associated splicing alterations arise from both recurrent mutations and altered expression of trans-acting factors governing splicing catalysis and regulation. Cancer-associated splicing dysregulation can promote tumorigenesis via diverse mechanisms, contributing to increased cell proliferation, decreased apoptosis, enhanced migration and metastatic potential, resistance to chemotherapy and evasion of immune surveillance. Recent studies have identified specific cancer-associated isoforms that play critical roles in cancer cell transformation and growth and demonstrated the therapeutic benefits of correcting or otherwise antagonizing such cancer-associated mRNA isoforms. Clinical-grade small molecules that modulate or inhibit RNA splicing have similarly been developed as promising anticancer therapeutics. Here, we review splicing alterations characteristic of cancer cell transcriptomes, dysregulated splicing's contributions to tumour initiation and progression, and existing and emerging approaches for targeting splicing for cancer therapy. Finally, we discuss the outstanding questions and challenges that must be addressed to translate these findings into the clinic.
Collapse
Affiliation(s)
- Robert K Bradley
- Computational Biology Program, Public Health Sciences Division and Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
6
|
Esparza M, Bhat P, Fontoura BMA. Viral-host interactions during splicing and nuclear export of influenza virus mRNAs. Curr Opin Virol 2022; 55:101254. [PMID: 35908311 PMCID: PMC9945342 DOI: 10.1016/j.coviro.2022.101254] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
As influenza-A viruses (IAV) replicate in the host cell nucleus, intranuclear pathways are usurped for viral gene expression. The eight genomic viral ribonucleoproteins (vRNPs) segments of IAV are transcribed and two generate viral mRNAs (M and NS) that undergo alternative splicing followed by export from the nucleus. The focus of this review is on viral RNA splicing and nuclear export. Recent mechanistic advances on M and NS splicing show differential regulation by RNA-binding proteins as well as distinct intranuclear localization. After a review of IAV splicing, we will discuss the nuclear export of viral mRNAs, which occur by interacting with specific constituents of the host mRNA export machinery that translocate viral mRNAs through the nuclear pore complex for translation in the cytoplasm.
Collapse
|
7
|
LCDR regulates the integrity of lysosomal membrane by hnRNP K-stabilized LAPTM5 transcript and promotes cell survival. Proc Natl Acad Sci U S A 2022; 119:2110428119. [PMID: 35091468 PMCID: PMC8812561 DOI: 10.1073/pnas.2110428119] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Here, we report that the long noncoding RNA lysosome cell death regulator (LCDR) mediates the survival of cancer cells, counteracting the effects of apoptosis triggered by lysosomal cell death pathways. Mechanistically, LCDR, as a cofactor for heterogenous nuclear ribonucleoprotein K (hnRNP K) to potentiate the stabilization of lysosomal membrane protein lysosomal-associated protein transmembrane 5 (LAPTM5), prevents lysosomal membrane permeabilization and promotes cancer cell survival. Clinically, LCDR, hnRNP K, and LAPTM5 are significantly up-regulated in lung adenocarcinoma (LUAD) patients. Targeting LCDR via nanoparticles-mediated RNA interference technology increases cell death in vitro and inhibits the growth of patient-derived xenografts of LUAD in vivo. Our study demonstrates that LCDR contributes to cancer pathology by regulating LCDR-mediated apoptosis. Lysosome plays important roles in cellular homeostasis, and its dysregulation contributes to tumor growth and survival. However, the understanding of regulation and the underlying mechanism of lysosome in cancer survival is incomplete. Here, we reveal a role for a histone acetylation–regulated long noncoding RNA termed lysosome cell death regulator (LCDR) in lung cancer cell survival, in which its knockdown promotes apoptosis. Mechanistically, LCDR binds to heterogenous nuclear ribonucleoprotein K (hnRNP K) to regulate the stability of the lysosomal-associated protein transmembrane 5 (LAPTM5) transcript that maintains the integrity of the lysosomal membrane. Knockdown of LCDR, hnRNP K, or LAPTM5 promotes lysosomal membrane permeabilization and lysosomal cell death, thus consequently resulting in apoptosis. LAPTM5 overexpression or cathepsin B inhibitor partially restores the effects of this axis on lysosomal cell death in vitro and in vivo. Similarly, targeting LCDR significantly decreased tumor growth of patient-derived xenografts of lung adenocarcinoma (LUAD) and had significant cell death using nanoparticles (NPs)-mediated systematic short interfering RNA delivery. Moreover, LCDR/hnRNP K/LAPTM5 are up-regulated in LUAD tissues, and coexpression of this axis shows the increased diagnostic value for LUAD. Collectively, we identified a long noncoding RNA that regulates lysosome function at the posttranscriptional level. These findings shed light on LCDR/hnRNP K/LAPTM5 as potential therapeutic targets, and targeting lysosome is a promising strategy in cancer treatment.
Collapse
|
8
|
Shkreta L, Delannoy A, Salvetti A, Chabot B. SRSF10: an atypical splicing regulator with critical roles in stress response, organ development, and viral replication. RNA (NEW YORK, N.Y.) 2021; 27:1302-1317. [PMID: 34315816 PMCID: PMC8522700 DOI: 10.1261/rna.078879.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Serine/arginine splicing factor 10 (SRSF10) is a member of the family of mammalian splicing regulators known as SR proteins. Like several of its SR siblings, the SRSF10 protein is composed of an RNA binding domain (RRM) and of arginine and serine-rich auxiliary domains (RS) that guide interactions with other proteins. The phosphorylation status of SRSF10 is of paramount importance for its activity and is subjected to changes during mitosis, heat-shock, and DNA damage. SRSF10 overexpression has functional consequences in a growing list of cancers. By controlling the alternative splicing of specific transcripts, SRSF10 has also been implicated in glucose, fat, and cholesterol metabolism, in the development of the embryonic heart, and in neurological processes. SRSF10 is also important for the proper expression and processing of HIV-1 and other viral transcripts. We discuss how SRSF10 could become a potentially appealing therapeutic target to combat cancer and viral infections.
Collapse
Affiliation(s)
- Lulzim Shkreta
- RNA group, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| | - Aurélie Delannoy
- RNA group, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| | - Anna Salvetti
- INSERM, U1111, Centre International de Recherche en Infectiologie de Lyon (CIRI), CNRS UMR 5308, Lyon, France
| | - Benoit Chabot
- RNA group, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| |
Collapse
|
9
|
Dou Z, Zhao D, Chen X, Xu C, Jin X, Zhang X, Wang Y, Xie X, Li Q, Di C, Zhang H. Aberrant Bcl-x splicing in cancer: from molecular mechanism to therapeutic modulation. J Exp Clin Cancer Res 2021; 40:194. [PMID: 34118966 PMCID: PMC8196531 DOI: 10.1186/s13046-021-02001-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/30/2021] [Indexed: 12/13/2022] Open
Abstract
Bcl-x pre-mRNA splicing serves as a typical example to study the impact of alternative splicing in the modulation of cell death. Dysregulation of Bcl-x apoptotic isoforms caused by precarious equilibrium splicing is implicated in genesis and development of multiple human diseases, especially cancers. Exploring the mechanism of Bcl-x splicing and regulation has provided insight into the development of drugs that could contribute to sensitivity of cancer cells to death. On this basis, we review the multiple splicing patterns and structural characteristics of Bcl-x. Additionally, we outline the cis-regulatory elements, trans-acting factors as well as epigenetic modifications involved in the splicing regulation of Bcl-x. Furthermore, this review highlights aberrant splicing of Bcl-x involved in apoptosis evade, autophagy, metastasis, and therapy resistance of various cancer cells. Last, emphasis is given to the clinical role of targeting Bcl-x splicing correction in human cancer based on the splice-switching oligonucleotides, small molecular modulators and BH3 mimetics. Thus, it is highlighting significance of aberrant splicing isoforms of Bcl-x as targets for cancer therapy.
Collapse
Affiliation(s)
- Zhihui Dou
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Dapeng Zhao
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaohua Chen
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Caipeng Xu
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaodong Jin
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xuetian Zhang
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yupei Wang
- Medical Genetics Center of Gansu Maternal and Child Health Care Center, Lanzhou, 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qiang Li
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
| | - Cuixia Di
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
| | - Hong Zhang
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
| |
Collapse
|
10
|
Dumoulin B, Ufer C, Kuhn H, Sofi S. Expression Regulation, Protein Chemistry and Functional Biology of the Guanine-Rich Sequence Binding Factor 1 (GRSF1). J Mol Biol 2021; 433:166922. [PMID: 33713675 DOI: 10.1016/j.jmb.2021.166922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/26/2022]
Abstract
In eukaryotic cells RNA-binding proteins have been implicated in virtually all post-transcriptional mechanisms of gene expression regulation. Based on the structural features of their RNA binding domains these proteins have been divided into several subfamilies. The presence of at least two RNA recognition motifs defines the group of heterogenous nuclear ribonucleoproteins H/F and one of its members is the guanine-rich sequence binding factor 1 (GRSF1). GRSF1 was first described 25 years ago and is widely distributed in eukaryotic cells. It is present in the nucleus, the cytoplasm and in mitochondria and has been implicated in a variety of physiological processes (embryogenesis, erythropoiesis, redox homeostasis, RNA metabolism) but also in the pathogenesis of various diseases. This review summarizes our current understanding on GRSF1 biology, critically discusses the literature reports and gives an outlook of future developments in the field.
Collapse
Affiliation(s)
- Bernhard Dumoulin
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Christoph Ufer
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Sajad Sofi
- University of York, Department of Biology, York YO10 5DD, United Kingdom
| |
Collapse
|
11
|
Du JX, Zhu GQ, Cai JL, Wang B, Luo YH, Chen C, Cai CZ, Zhang SJ, Zhou J, Fan J, Zhu W, Dai Z. Splicing factors: Insights into their regulatory network in alternative splicing in cancer. Cancer Lett 2020; 501:83-104. [PMID: 33309781 DOI: 10.1016/j.canlet.2020.11.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022]
Abstract
More than 95% of all human genes are alternatively spliced after transcription, which enriches the diversity of proteins and regulates transcript and/or protein levels. The splicing isoforms produced from the same gene can manifest distinctly, even exerting opposite effects. Mounting evidence indicates that the alternative splicing (AS) mechanism is ubiquitous in various cancers and drives the generation and maintenance of various hallmarks of cancer, such as enhanced proliferation, inhibited apoptosis, invasion and metastasis, and angiogenesis. Splicing factors (SFs) play pivotal roles in the recognition of splice sites and the assembly of spliceosomes during AS. In this review, we mainly discuss the similarities and differences of SF domains, the details of SF function in AS, the effect of SF-driven pathological AS on different hallmarks of cancer, and the main drivers of SF expression level and subcellular localization. In addition, we briefly introduce the application prospects of targeted therapeutic strategies, including small-molecule inhibitors, siRNAs and splice-switching oligonucleotides (SSOs), from three perspectives (drivers, SFs and pathological AS). Finally, we share our insights into the potential direction of research on SF-centric AS-related regulatory networks.
Collapse
Affiliation(s)
- Jun-Xian Du
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Gui-Qi Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Jia-Liang Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Biao Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Yi-Hong Luo
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Cong Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Cheng-Zhe Cai
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Si-Jia Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Wei Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
12
|
Colleti C, Melo-Hanchuk TD, da Silva FRM, Saito Â, Kobarg J. Complex interactomes and post-translational modifications of the regulatory proteins HABP4 and SERBP1 suggest pleiotropic cellular functions. World J Biol Chem 2019; 10:44-64. [PMID: 31768228 PMCID: PMC6872977 DOI: 10.4331/wjbc.v10.i3.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/30/2019] [Accepted: 10/15/2019] [Indexed: 02/05/2023] Open
Abstract
The 57 kDa antigen recognized by the Ki-1 antibody, is also known as intracellular hyaluronic acid binding protein 4 and shares 40.7% identity and 67.4% similarity with serpin mRNA binding protein 1, which is also named CGI-55, or plasminogen activator inhibitor type-1-RNA binding protein-1, indicating that they might be paralog proteins, possibly with similar or redundant functions in human cells. Through the identification of their protein interactomes, both regulatory proteins have been functionally implicated in transcriptional regulation, mRNA metabolism, specifically RNA splicing, the regulation of mRNA stability, especially, in the context of the progesterone hormone response, and the DNA damage response. Both proteins also show a complex pattern of post-translational modifications, involving Ser/Thr phosphorylation, mainly through protein kinase C, arginine methylation and SUMOylation, suggesting that their functions and locations are highly regulated. Furthermore, they show a highly dynamic cellular localization pattern with localizations in both the cytoplasm and nucleus as well as punctuated localizations in both granular cytoplasmic protein bodies, upon stress, and nuclear splicing speckles. Several reports in the literature show altered expressions of both regulatory proteins in a series of cancers as well as mutations in their genes that may contribute to tumorigenesis. This review highlights important aspects of the structure, interactome, post-translational modifications, sub-cellular localization and function of both regulatory proteins and further discusses their possible functions and their potential as tumor markers in different cancer settings.
Collapse
Affiliation(s)
- Carolina Colleti
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Talita Diniz Melo-Hanchuk
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Flávia Regina Moraes da Silva
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Ângela Saito
- Laboratório Nacional de Biociências, CNPEM, Campinas 13083-970, Brazil
| | - Jörg Kobarg
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| |
Collapse
|
13
|
Splicing regulatory factors in breast cancer hallmarks and disease progression. Oncotarget 2019; 10:6021-6037. [PMID: 31666932 PMCID: PMC6800274 DOI: 10.18632/oncotarget.27215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022] Open
Abstract
By regulating transcript isoform expression levels, alternative splicing provides an additional layer of protein control. Recent studies show evidence that cancer cells use different splicing events to fulfill their requirements in order to develop, progress and metastasize. However, there has been less attention for the role of the complex catalyzing the complicated multistep splicing reaction: the spliceosome. The spliceosome consists of multiple sub-complexes in total comprising 244 proteins or splice factors and 5 associated RNA molecules. Here we discuss the role of splice factors in the oncogenic processes tumors cells need to fulfill their oncogenic properties (the so-called the hallmarks of cancer). Despite the fact that splice factors have been investigated only recently, they seem to play a prominent role in already five hallmarks of cancer: angiogenesis, resisting cell death, sustaining proliferation, deregulating cellular energetics and invasion and metastasis formation by affecting major signaling pathways such as epithelial-to-mesenchymal transition, the Warburg effect, DNA damage response and hormone receptor dependent proliferation. Moreover, we could relate expression of representative genes of four other hallmarks (enabling replicative mortality, genomic instability, avoiding immune destruction and evading growth suppression) to splice factor levels in human breast cancer tumors, suggesting that also these hallmarks could be regulated by splice factors. Since many splice factors are involved in multiple hallmarks of cancer, inhibiting splice factors might provide a new layer of oncogenic control and a powerful method to combat breast cancer progression.
Collapse
|
14
|
Stevens M, Oltean S. Modulation of the Apoptosis Gene Bcl-x Function Through Alternative Splicing. Front Genet 2019; 10:804. [PMID: 31552099 PMCID: PMC6743414 DOI: 10.3389/fgene.2019.00804] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/31/2019] [Indexed: 01/09/2023] Open
Abstract
Apoptosis plays a vital role in cell homeostasis during development and disease. Bcl-x, a member of the Bcl-2 family of proteins, is a mitochondrial transmembrane protein that functions to regulate the intrinsic apoptosis pathway. An alternative splicing (AS) event in exon 2 of Bcl-x results in two isoforms of Bcl-x with antagonistic effects on cell survival: Bcl-xL (long isoform), which is anti-apoptotic, and Bcl-xS (short isoform), which is pro-apoptotic. Bcl-xL is the most abundant Bcl-x protein and functions to inhibit apoptosis by a number of different mechanisms including inhibition of Bax. In contrast, Bcl-xS can directly bind to and inhibit the anti-apoptotic Bcl-xL and Bcl-2 proteins, resulting in the release of the pro-apoptotic Bak. There are multiple splice factors and signaling pathways that influence the Bcl-xL/Bcl-xS splicing ratio, including serine/arginine-rich (SR) proteins, heterogeneous nuclear ribonucleoproteins (hnRNPs), transcription factors, and cytokines. Dysregulation of the AS of Bcl-x has been implicated in cancer and diabetes. In cancer, the upregulation of Bcl-xL expression in tumor cells can result in resistance to chemotherapeutic agents. On the other hand, dysregulation of Bcl-x AS to promote Bcl-xS expression has been shown to be detrimental to pancreatic β-cells in diabetes, resulting in β-cell apoptosis. Therefore, manipulation of the splice factor, transcription factor, and signaling pathways that modulate this splicing event is fast emerging as a therapeutic avenue in the treatment of cancer and diabetes.
Collapse
Affiliation(s)
- Megan Stevens
- Institute of Biomedical and Clinical Science, Medical School, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Science, Medical School, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
15
|
Chen Y, Zeng Y, Xiao Z, Chen S, Li Y, Zou J, Zeng X. Role of heterogeneous nuclear ribonucleoprotein K in tumor development. J Cell Biochem 2019; 120:14296-14305. [PMID: 31127648 DOI: 10.1002/jcb.28867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is an RNA/DNA special binding protein that participates in regulating the expression of related genes, transcription, RNA alternative splicing, translation, posttranslational modification, cell signal transduction, cell movement, interacts with ncRNAs, and induces angiogenesis. Moreover, several cellular functions forcefully indicated that hnRNP K participates in tumorigenesis. Numerous studies indicated hnRNP K is aberrantly elevated in multiple tumors. In addition, hnRNP K abnormal accumulation in cytoplasmic is also associated with poor prognosis. This suggests that hnRNP K may play a role in the development and progression of tumors. However, related studies demonstrated that hnRNP K acts as a tumor suppressor to suppress tumor formation. Therefore, this paper aims to explore the role of hnRNPK in tumors.
Collapse
Affiliation(s)
- Yuting Chen
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, China
| | - Ying Zeng
- School of Nursing, University of South China, Hengyang, China
| | - Zheng Xiao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, China
| | - Shi Chen
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, China
| | - Yukun Li
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, China
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, China.,Hunan Province Cooperative innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
16
|
Alsagaby SA. Transcriptomics-based validation of the relatedness of heterogeneous nuclear ribonucleoproteins to chronic lymphocytic leukemia as potential biomarkers of the disease aggressiveness. Saudi Med J 2019; 40:328-338. [PMID: 30957125 PMCID: PMC6506648 DOI: 10.15537/smj.2019.4.23380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/27/2019] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES To use independent transcriptomics data sets of cancer patients with prognostic information from public repositories to validate the relevance of our previously described chronic lymphocytic leukemia (CLL)-related proteins at the level of transcription (mRNA) to the prognosis of CLL. Methods: This is a validation study that was conducted at Majmaah University, Kingdom of Saudi Arabia between January-2017 and July-2018. Two independent data sets of CLL transcriptomics from Gene Expression Omnibus (GEO) with time-to-first treatment (TTFT) data (GSE39671; 130 patients) and information about overall survival (OS) (GSE22762; 107 patients) were used for the validation analyses. To further investigate the relatedness of a transcript of interest to other neoplasms, 6 independent data sets of cancer transcriptomics with prognostic information (1865 patients) from the cancer genomics atlas (TCGA) were used. Pathway-enrichment analyses were conducted using Reactome; and correlation analyses of gene expression were performed using Pearson score. Results: Nine of the CLL-related proteins exhibited transcript expression that predicted TTFT and 7 of the CLL-related proteins showed mRNA levels that predicted OS in CLL patients (p≤0.05). Of these transcripts, 8 were different types of heterogeneous nuclear ribonucleoproteins (HNRNPs); and 2 (HNRNPUL2 and HIST1C1H) retained prognostic significance in the 2 independent data sets. Furthermore, genes that enriched CLL-related pathways (p≤0.05; false discovery rate [FDR] ≤0.05) were found to correlate with the expression of HNRNPUL2 (Pearson score: ≥0.50; p lessthan 0.00001). Finally, increased expression of HNRNPUL2 was indicative of poor prognosis of various types of cancer other than CLL (p less than 0.05). Conclusion: The cognate transcripts of 14 of our CLL-related proteins significantly predicted CLL prognosis.
Collapse
Affiliation(s)
- Suliman A Alsagaby
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Kingdom of Saudi Arabia. E-mail.
| |
Collapse
|
17
|
BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis 2019; 10:177. [PMID: 30792387 PMCID: PMC6384907 DOI: 10.1038/s41419-019-1407-6] [Citation(s) in RCA: 395] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/17/2018] [Accepted: 01/29/2019] [Indexed: 12/17/2022]
Abstract
The BCl-2 family has long been identified for its role in apoptosis. Following the initial discovery of BCL-2 in the context of B-cell lymphoma in the 1980s, a number of homologous proteins have since been identified. The members of the Bcl-2 family are designated as such due to their BCL-2 homology (BH) domains and involvement in apoptosis regulation. The BH domains facilitate the family members’ interactions with each other and can indicate pro- or anti-apoptotic function. Traditionally, these proteins are categorised into one of the three subfamilies; anti-apoptotic, BH3-only (pro-apoptotic), and pore-forming or ‘executioner’ (pro-apoptotic) proteins. Each of the BH3-only or anti-apoptotic proteins has a distinct pattern of activation, localisation and response to cell death or survival stimuli. All of these can vary across cell or stress types, or developmental stage, and this can cause the delineation of the roles of BCL-2 family members. Added to this complexity is the presence of relatively uncharacterised isoforms of many of the BCL-2 family members. There is a gap in our knowledge regarding the function of BCL-2 family isoforms. BH domain status is not always predictive or indicative of protein function, and several other important sequences, which can contribute to apoptotic activity have been identified. While therapeutic strategies targeting the BCL-2 family are constantly under development, it is imperative that we understand the molecules, which we are attempting to target. This review, discusses our current knowledge of anti-apoptotic BCL-2 family isoforms. With significant improvements in the potential for splicing therapies, it is important that we begin to understand the distinctions of the BCL-2 family, not limited to just the mechanisms of apoptosis control, but in their roles outside of apoptosis.
Collapse
|
18
|
Shin CH, Kim HH. Functional roles of heterogeneous nuclear ribonucleoprotein K in post-transcriptional gene regulation. PRECISION AND FUTURE MEDICINE 2018. [DOI: 10.23838/pfm.2018.00107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
19
|
Tyson-Capper A, Gautrey H. Regulation of Mcl-1 alternative splicing by hnRNP F, H1 and K in breast cancer cells. RNA Biol 2018; 15:1448-1457. [PMID: 30468106 PMCID: PMC6333436 DOI: 10.1080/15476286.2018.1551692] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/10/2018] [Accepted: 11/02/2018] [Indexed: 01/27/2023] Open
Abstract
Myeloid cell leukemia-1 (Mcl -1) is one of the most frequently amplified genes in cancer, and its overexpression is associated with poor prognosis and drug resistance. As a member of the Bcl-2 family it is involved in the control of the mitochondrial (intrinsic) cell death pathway. Alternative splicing of the (Mcl-1) gene results in the expression of two functionally distinct proteins, the anti-apoptotic Mcl-1L (exon 2 included) and the pro-apoptotic Mcl-1S (exon 2 skipped). Our data shows that transfecting siRNAs that target hnRNP K and the hnRNP F/H family result in a switch in splicing towards the pro-apoptotic Mcl-1S. Specific binding sites for these and other Mcl-1 splicing factors were investigated and identified by RNA immunoprecipitation and through construction of a Mcl-1 minigene construct. Moreover, this study shows up to a 30 fold change in the levels of Mcl-1S can be achieved through double and triple knockdowns of the most significant RNA binding proteins involved in Mcl-1 splicing, as well as activation of the mitochondrial cell death pathway. Targeting the splicing process of Mcl-1 along with other apoptotic regulators provides an exciting new therapeutic target in cancer cells, and may provide a way to overcome therapy resistance.
Collapse
Affiliation(s)
- Alison Tyson-Capper
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hannah Gautrey
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
20
|
Thompson MG, Muñoz-Moreno R, Bhat P, Roytenberg R, Lindberg J, Gazzara MR, Mallory MJ, Zhang K, García-Sastre A, Fontoura BMA, Lynch KW. Co-regulatory activity of hnRNP K and NS1-BP in influenza and human mRNA splicing. Nat Commun 2018; 9:2407. [PMID: 29921878 PMCID: PMC6008300 DOI: 10.1038/s41467-018-04779-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/17/2018] [Indexed: 11/17/2022] Open
Abstract
Three of the eight RNA segments encoded by the influenza A virus (IAV) undergo alternative splicing to generate distinct proteins. Previously, we found that host proteins hnRNP K and NS1-BP regulate IAV M segment splicing, but the mechanistic details were unknown. Here we show NS1-BP and hnRNP K bind M mRNA downstream of the M2 5′ splice site (5′ss). NS1-BP binds most proximal to the 5′ss, partially overlapping the U1 snRNP binding site, while hnRNP K binds further downstream and promotes U1 snRNP recruitment. Mutation of either or both the hnRNP K and NS1-BP-binding sites results in M segment mis-splicing and attenuated IAV replication. Additionally, we show that hnRNP K and NS1-BP regulate host splicing events and that viral infection causes mis-splicing of some of these transcripts. Therefore, our proposed mechanism of hnRNP K/NS1-BP mediated IAV M splicing provides potential targets of antiviral intervention and reveals novel host functions for these proteins. Alternative splicing of influenza A virus (IAV) M transcript is regulated by hnRNP K and NS1-BP, but mechanistic details are unknown. Here, Thompson et al. show how hnRNP K and NS1-BP bind M mRNA and that these proteins regulate splicing of host transcripts in both the absence and presence of IAV infection.
Collapse
Affiliation(s)
- Matthew G Thompson
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Raquel Muñoz-Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., Box 1124, New York, NY, 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., Box 1124, New York, NY, 10029, USA
| | - Prasanna Bhat
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Renat Roytenberg
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - John Lindberg
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Matthew R Gazzara
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Michael J Mallory
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Ke Zhang
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., Box 1124, New York, NY, 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., Box 1124, New York, NY, 10029, USA.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., Box 1124, New York, NY, 10029, USA
| | - Beatriz M A Fontoura
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Kristen W Lynch
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
hnRNP A1/A2 and Sam68 collaborate with SRSF10 to control the alternative splicing response to oxaliplatin-mediated DNA damage. Sci Rep 2018; 8:2206. [PMID: 29396485 PMCID: PMC5797138 DOI: 10.1038/s41598-018-20360-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 01/17/2018] [Indexed: 12/02/2022] Open
Abstract
Little is known about how RNA binding proteins cooperate to control splicing, and how stress pathways reconfigure these assemblies to alter splice site selection. We have shown previously that SRSF10 plays an important role in the Bcl-x splicing response to DNA damage elicited by oxaliplatin in 293 cells. Here, RNA affinity assays using a portion of the Bcl-x transcript required for this response led to the recovery of the SRSF10-interacting protein 14-3-3ε and the Sam68-interacting protein hnRNP A1. Although SRSF10, 14-3-3ε, hnRNP A1/A2 and Sam68 do not make major contributions to the regulation of Bcl-x splicing under normal growth conditions, upon DNA damage they become important to activate the 5′ splice site of pro-apoptotic Bcl-xS. Our results indicate that DNA damage reconfigures the binding and activity of several regulatory RNA binding proteins on the Bcl-x pre-mRNA. Moreover, SRSF10, hnRNP A1/A2 and Sam68 collaborate to drive the DNA damage-induced splicing response of several transcripts that produce components implicated in apoptosis, cell-cycle control and DNA repair. Our study reveals how the circuitry of splicing factors is rewired to produce partnerships that coordinate alternative splicing across processes crucial for cell fate.
Collapse
|
22
|
Post-Transcriptional Regulation of Anti-Apoptotic BCL2 Family Members. Int J Mol Sci 2018; 19:ijms19010308. [PMID: 29361709 PMCID: PMC5796252 DOI: 10.3390/ijms19010308] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/05/2018] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Anti-apoptotic B cell lymphoma 2 (BCL2) family members (BCL2, MCL1, BCLxL, BCLW, and BFL1) are key players in the regulation of intrinsic apoptosis. Dysregulation of these proteins not only impairs normal development, but also contributes to tumor progression and resistance to various anti-cancer therapies. Therefore, cells maintain strict control over the expression of anti-apoptotic BCL2 family members using multiple mechanisms. Over the past two decades, the importance of post-transcriptional regulation of mRNA in controlling gene expression and its impact on normal homeostasis and disease have begun to be appreciated. In this review, we discuss the RNA binding proteins (RBPs) and microRNAs (miRNAs) that mediate post-transcriptional regulation of the anti-apoptotic BCL2 family members. We describe their roles and impact on alternative splicing, mRNA turnover, and mRNA subcellular localization. We also point out the importance of future studies in characterizing the crosstalk between RBPs and miRNAs in regulating anti-apoptotic BCL2 family member expression and ultimately apoptosis.
Collapse
|
23
|
Li D, Wang X, Mei H, Fang E, Ye L, Song H, Yang F, Li H, Huang K, Zheng L, Tong Q. Long Noncoding RNA pancEts-1 Promotes Neuroblastoma Progression through hnRNPK-Mediated β-Catenin Stabilization. Cancer Res 2018; 78:1169-1183. [PMID: 29311158 DOI: 10.1158/0008-5472.can-17-2295] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/02/2017] [Accepted: 01/02/2018] [Indexed: 11/16/2022]
Abstract
Long noncoding RNAs (lncRNA) play essential roles in tumor progression. However, the functions of lncRNAs in the tumorigenesis and aggressiveness of neuroblastoma still remain to be determined. Here, we report the identification of lncRNA pancEts-1 as a novel driver of neuroblastoma progression by using a public microarray dataset. LncRNA pancEts-1 promoted the growth, invasion, and metastasis of neuroblastoma cells in vitro and in vivo Mechanistically, pancEts-1 bound to hnRNPK to facilitate its physical interaction with β-catenin, whereas hnRNPK stabilized the β-catenin by inhibiting proteasome-mediated degradation, resulting in transcriptional alteration of target genes associated with neuroblastoma progression. Both pancEts-1 and hnRNPK were upregulated in clinical neuroblastoma tissues, and were associated with unfavorable outcome of patients. Overall, our results define an oncogenic role of pancEts-1 in neuroblastoma progression through hnRNPK-mediated β-catenin stabilization, with potential implications for the clinical therapeutics of neuroblastoma.Significance: These findings reveal the oncogenic functions of a long noncoding RNA in neuroblastoma progression, offering a potential target for clinical therapeutics. Cancer Res; 78(5); 1169-83. ©2018 AACR.
Collapse
Affiliation(s)
- Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Lin Ye
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Huanhuan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Liduan Zheng
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China.
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China.
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| |
Collapse
|
24
|
Shkreta L, Toutant J, Durand M, Manley JL, Chabot B. SRSF10 Connects DNA Damage to the Alternative Splicing of Transcripts Encoding Apoptosis, Cell-Cycle Control, and DNA Repair Factors. Cell Rep 2017; 17:1990-2003. [PMID: 27851963 PMCID: PMC5483951 DOI: 10.1016/j.celrep.2016.10.071] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/19/2016] [Accepted: 10/20/2016] [Indexed: 11/12/2022] Open
Abstract
RNA binding proteins and signaling components control the production of pro-death and pro-survival splice variants of Bcl-x. DNA damage promoted by oxaliplatin increases the level of pro-apoptotic Bcl-xS in an ATM/CHK2-dependent manner, but how this shift is enforced is not known. Here, we show that in normally growing cells, when the 5′ splice site of Bcl-xS is largely repressed, SRSF10 partially relieves repression and interacts with repressor hnRNP K and stimulatory hnRNP F/H proteins. Oxaliplatin abrogates the interaction of SRSF10 with hnRNP F/H and decreases the association of SRSF10 and hnRNP K with the Bcl-x pre-mRNA. Dephosphorylation of SRSF10 is linked with these changes. A broader analysis reveals that DNA damage co-opts SRSF10 to control splicing decisions in transcripts encoding components involved in DNA repair, cell-cycle control, and apoptosis. DNA damage therefore alters the interactions between splicing regulators to elicit a splicing response that determines cell fate.
Collapse
Affiliation(s)
- Lulzim Shkreta
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Johanne Toutant
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Mathieu Durand
- Laboratory of Functional Genomics, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Benoit Chabot
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
25
|
Valdés A, García-Cañas V, Pérez-Sánchez A, Barrajón-Catalán E, Ruiz-Torres V, Artemenko KA, Micol V, Bergquist J, Cifuentes A. Shotgun proteomic analysis to study the decrease of xenograft tumor growth after rosemary extract treatment. J Chromatogr A 2017; 1499:90-100. [PMID: 28389096 DOI: 10.1016/j.chroma.2017.03.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/23/2017] [Accepted: 03/25/2017] [Indexed: 12/18/2022]
Abstract
The antiproliferative activity of Rosemary (Rosmarinus officinalis) has been widely studied in different in vitro and in vivo models, which demonstrate that rosemary extracts inhibit the cellular proliferation due to its ability to interact with a wide spectrum of molecular targets. However, a comprehensive proteomics study in vivo has not been carried out yet. In the present work, the effects of rosemary extract on xenograft tumor growth has been studied and, for the first time, a shotgun proteomic analysis based on nano-LC-MS/MS together with stable isotope dimethyl labeling (DML) has been applied to investigate the global protein changes in vivo. Our results show that the daily administration of a polyphenol-enriched rosemary extract reduces the progression of colorectal cancer in vivo with the subsequent deregulation of 74 proteins. The bioinformatic analysis of these proteins indicates that the rosemary extract mainly alters the RNA Post-Transcriptional Modification, the Protein Synthesis and the Amino Acid Metabolism functions and suggests the inactivation of the oncogene MYC. These results demonstrate the high utility of the proposed analytical methodology to determine, simultaneously, the expression levels of a large number of protein biomarkers and to generate new hypothesis about the molecular mechanisms of this extract in vivo.
Collapse
Affiliation(s)
- Alberto Valdés
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Nicolas Cabrera 9, 28049, Madrid, Spain
| | - Virginia García-Cañas
- Molecular Nutrition and Metabolism, Institute of Food Science Research (CIAL, CSIC), Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Almudena Pérez-Sánchez
- Institute of Molecular and Cellular Biology, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain
| | - Enrique Barrajón-Catalán
- Institute of Molecular and Cellular Biology, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain
| | - Verónica Ruiz-Torres
- Institute of Molecular and Cellular Biology, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain
| | - Konstantin A Artemenko
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden
| | - Vicente Micol
- Institute of Molecular and Cellular Biology, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain; CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), Spain
| | - Jonas Bergquist
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Nicolas Cabrera 9, 28049, Madrid, Spain.
| |
Collapse
|
26
|
Kędzierska H, Piekiełko-Witkowska A. Splicing factors of SR and hnRNP families as regulators of apoptosis in cancer. Cancer Lett 2017; 396:53-65. [PMID: 28315432 DOI: 10.1016/j.canlet.2017.03.013] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 12/19/2022]
Abstract
SR and hnRNP proteins were initially discovered as regulators of alternative splicing: the process of controlled removal of introns and selective joining of exons through which multiple transcripts and, subsequently, proteins can be expressed from a single gene. Alternative splicing affects genes involved in all crucial cellular processes, including apoptosis. During cancerogenesis impaired apoptotic control facilitates survival of cells bearing molecular aberrations, contributing to their unrestricted proliferation and chemoresistance. Apparently, SR and hnRNP proteins regulate all levels of expression of apoptotic genes, including transcription initiation and elongation, alternative splicing, mRNA stability, translation, and protein degradation. The frequently disturbed expressions of SR/hnRNP proteins in cancers lead to impaired functioning of target apoptotic genes, including regulators of the extrinsic (Fas, caspase-8, caspase-2, c-FLIP) and the intrinsic pathway (Apaf-1, caspase-9, ICAD), genes encoding Bcl-2 proteins, IAPs, and p53 tumor suppressor. Prototypical members of SR/hnRNP families, SRSF1 and hnRNP A1, promote synthesis of anti-apoptotic splice variants of Bcl-x and Mcl-1, which results in attenuation of programmed cell death in breast cancer and chronic myeloid leukemia. SR/hnRNP proteins significantly affect responses to chemotherapy, acting as mediators or modulators of drug-induced apoptosis. Aberrant expression of SRSF1 and hnRNP K can interfere with tumor responses to chemotherapy in pancreatic and liver cancers. Currently, a number of splicing factor inhibitors is being tested in pre-clinical and clinical trials. In this review we discuss recent findings on the role of SR and hnRNP proteins in apoptotic control in cancer cells as well as their significance in anticancer treatments.
Collapse
Affiliation(s)
- Hanna Kędzierska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Agnieszka Piekiełko-Witkowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
27
|
Liang X, Shi H, Yang L, Qiu C, Lin S, Qi Y, Li J, Zhao A, Liu J. Inhibition of polypyrimidine tract-binding protein 3 induces apoptosis and cell cycle arrest, and enhances the cytotoxicity of 5- fluorouracil in gastric cancer cells. Br J Cancer 2017; 116:903-911. [PMID: 28222070 PMCID: PMC5379144 DOI: 10.1038/bjc.2017.32] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 02/06/2023] Open
Abstract
Background: Human polypyrimidine tract binding protein 3 (PTBP3) was first discovered in 1999 and has been well characterised as a differentiation regulator. However, its role in human cancer has rarely been reported. Our previous study revealed increased PTBP3 protein level in gastric cancer tissues. Downregulation of PTBP3 suppressed the proliferation and differentiation of gastric cancer cells in vivo. Methods: PTBP3 mRNA levels in human gastric cancer and adjuvant non-tumour tissues were detected. Apoptosis and 5-FU effect were determined in PTBP3-silenced gastric cancer cells. Underlying molecular mechanisms were investigated. Results: MRNA expression of PTBP3 was upregulated in gastric cancer tissues, especially in those at an advanced stage. PTBP3 silencing led to apoptosis, under which modulation of PTB and thereby switch of Bcl-x pre-mRNA splicing pattern might be an important mechanism. Further research found that inhibition of PTBP3 expression enhanced the chemosensitivity of gastric cancer cells towards 5-FU treatment. This was mediated by reduced expression of histone deacetylase 6 (HDAC6), which further inhibited the phosphorylation of Akt and the expression of thymidylate synthase (TYMS), the critical determinant of 5-FU cytotoxicity. Conclusions: PTBP3 might serve as a biomarker of gastric cancer or potential target for anti-cancer therapy.
Collapse
Affiliation(s)
- Xin Liang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Haiyang Shi
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Liyan Yang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Cen Qiu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Shengchao Lin
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Yingxue Qi
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Jiyu Li
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai 200072, China
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
28
|
Lin JC, Tsao MF, Lin YJ. Differential Impacts of Alternative Splicing Networks on Apoptosis. Int J Mol Sci 2016; 17:ijms17122097. [PMID: 27983653 PMCID: PMC5187897 DOI: 10.3390/ijms17122097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/26/2016] [Accepted: 12/02/2016] [Indexed: 12/16/2022] Open
Abstract
Apoptosis functions as a common mechanism to eliminate unnecessary or damaged cells during cell renewal and tissue development in multicellular organisms. More than 200 proteins constitute complex networks involved in apoptotic regulation. Imbalanced expressions of apoptosis-related factors frequently lead to malignant diseases. The biological functions of several apoptotic factors are manipulated through alternative splicing mechanisms which expand gene diversity by generating discrete variants from one messenger RNA precursor. It is widely observed that alternatively-spliced variants encoded from apoptosis-related genes exhibit differential effects on apoptotic regulation. Alternative splicing events are meticulously regulated by the interplay between trans-splicing factors and cis-responsive elements surrounding the regulated exons. The major focus of this review is to highlight recent studies that illustrate the influences of alternative splicing networks on apoptotic regulation which participates in diverse cellular processes and diseases.
Collapse
Affiliation(s)
- Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Mei-Fen Tsao
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
29
|
Alternative splicing and cell survival: from tissue homeostasis to disease. Cell Death Differ 2016; 23:1919-1929. [PMID: 27689872 DOI: 10.1038/cdd.2016.91] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/26/2016] [Accepted: 07/15/2016] [Indexed: 12/17/2022] Open
Abstract
Most human genes encode multiple mRNA variants and protein products through alternative splicing of exons and introns during pre-mRNA processing. In this way, alternative splicing amplifies enormously the coding potential of the human genome and represents a powerful evolutionary resource. Nonetheless, the plasticity of its regulation is prone to errors and defective splicing underlies a large number of inherited and sporadic diseases, including cancer. One key cellular process affected by alternative splicing is the programmed cell death or apoptosis. Many apoptotic genes encode for splice variants having opposite roles in cell survival. This regulation modulates cell and tissue homeostasis and is implicated in both developmental and pathological processes. Furthermore, recent evidence has also unveiled splicing-mediated regulation of genes involved in autophagy, another essential process for tissue homeostasis. In this review, we highlight some of the best-known examples of alternative splicing events involved in cell survival. Emphasis is given to the role of this regulation in human cancer and in the response to chemotherapy, providing examples of how alternative splicing of apoptotic genes can be exploited therapeutically.
Collapse
|
30
|
Shapiro BA, Vu NT, Shultz MD, Shultz JC, Mietla JA, Gouda MM, Yacoub A, Dent P, Fisher PB, Park MA, Chalfant CE. Melanoma Differentiation-associated Gene 7/IL-24 Exerts Cytotoxic Effects by Altering the Alternative Splicing of Bcl-x Pre-mRNA via the SRC/PKCδ Signaling Axis. J Biol Chem 2016; 291:21669-21681. [PMID: 27519412 DOI: 10.1074/jbc.m116.737569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/02/2016] [Indexed: 11/06/2022] Open
Abstract
Melanoma differentiation-associated gene 7 (MDA-7/IL-24) exhibits cytotoxic effects on tumor cells while sparing untransformed cells, and Bcl-x(L) is reported to efficiently block the induction of cell death by MDA-7/IL-24. The expression of Bcl-x(L) is regulated at the level of RNA splicing via alternative 5' splice site selection within exon 2 to produce either the pro-apoptotic Bcl-x(s) or the anti-apoptotic Bcl-x(L). Our laboratory previously reported that Bcl-x RNA splicing is dysregulated in a large percentage of human non-small cell lung cancer (NSCLC) tumors. Therefore, we investigated whether the alternative RNA splicing of Bcl-x pre-mRNA was modulated by MDA-7/IL-24, which would suggest that specific NSCLC tumors are valid targets for this cytokine therapy. Adenovirus-delivered MDA-7/IL-24 (Ad.mda-7) reduced the viability of NSCLC cells of varying oncogenotypes, which was preceded by a decrease in the ratio of Bcl-x(L)/Bcl-x(s) mRNA and Bcl-x(L) protein expression. Importantly, both the expression of Bcl-x(L) and the loss of cell viability were "rescued" in Ad.mda-7-treated cells incubated with Bcl-x(s) siRNA. In addition, NSCLC cells ectopically expressing Bcl-x(s) exhibited significantly reduced Bcl-x(L) expression, which was again restored by Bcl-x(s) siRNA, suggesting the existence of a novel mechanism by which Bcl-x(s) mRNA restrains the expression of Bcl-x(L). In additional mechanistic studies, inhibition of SRC and PKCδ completely ablated the ability of MDA-7/IL-24 to reduce the Bcl-x(L)/(s) mRNA ratio and cell viability. These findings show that Bcl-x(s) expression is an important mediator of MDA-7/IL-24-induced cytotoxicity requiring the SRC/PKCδ signaling axis in NSCLC cells.
Collapse
Affiliation(s)
- Brian A Shapiro
- From the Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia 23249.,the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond, Virginia 23298-0614
| | - Ngoc T Vu
- the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond, Virginia 23298-0614
| | - Michael D Shultz
- From the Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia 23249
| | - Jacqueline C Shultz
- the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond, Virginia 23298-0614
| | - Jennifer A Mietla
- the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond, Virginia 23298-0614
| | - Mazen M Gouda
- the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond, Virginia 23298-0614
| | - Adly Yacoub
- the Department of Neurosurgery, Virginia Commonwealth University-School of Medicine, Richmond, Virginia 23298-0614
| | - Paul Dent
- the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond, Virginia 23298-0614.,the Virginia Commonwealth University Institute of Molecular Medicine, Richmond, Virginia 23298.,the Virginia Commonwealth University Massey Cancer Center, Richmond, Virginia 23298, and
| | - Paul B Fisher
- the Virginia Commonwealth University Institute of Molecular Medicine, Richmond, Virginia 23298, .,the Virginia Commonwealth University Massey Cancer Center, Richmond, Virginia 23298, and.,the Department of Human and Molecular Genetics, Virginia Commonwealth University-School of Medicine, Richmond, Virginia 23298
| | - Margaret A Park
- the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond, Virginia 23298-0614, .,the Virginia Commonwealth University Massey Cancer Center, Richmond, Virginia 23298, and
| | - Charles E Chalfant
- From the Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia 23249, .,the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond, Virginia 23298-0614.,the Virginia Commonwealth University Institute of Molecular Medicine, Richmond, Virginia 23298.,the Virginia Commonwealth University Massey Cancer Center, Richmond, Virginia 23298, and.,the Virginia Commonwealth University Johnson Center for Critical Care and Pulmonary Research, Richmond, Virginia 23298
| |
Collapse
|
31
|
Singh R, Gupta SC, Peng WX, Zhou N, Pochampally R, Atfi A, Watabe K, Lu Z, Mo YY. Regulation of alternative splicing of Bcl-x by BC200 contributes to breast cancer pathogenesis. Cell Death Dis 2016; 7:e2262. [PMID: 27277684 PMCID: PMC5143396 DOI: 10.1038/cddis.2016.168] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 05/29/2016] [Accepted: 05/12/2016] [Indexed: 01/06/2023]
Abstract
BC200 is a long non-coding RNA (lncRNA) that has been implicated in the regulation of protein synthesis, yet whether dysregulation of BC200 contributes to the pathogenesis of human diseases remains elusive. In this study, we show that BC200 is upregulated in breast cancer; among breast tumor specimens there is a higher level of BC200 in estrogen receptor (ER) positive than in ER-negative tumors. Further experiments show that activation of estrogen signaling induces expression of BC200. To determine the significance of ER-regulated BC200 expression, we knockout (KO) BC200 by CRISPR/Cas9. BC200 KO suppresses tumor cell growth in vitro and in vivo by expression of the pro-apoptotic Bcl-xS isoform. Mechanistically, BC200 contains a 17-nucleotide sequence complementary to Bcl-x pre-mRNA, which may facilitate its binding to Bcl-x pre-mRNA and recruitment of heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1, a known splicing factor. Consequently, hnRNP A2/B1 interferes with association of Bcl-x pre-mRNA with the Bcl-xS-promoting factor Sam68, leading to a blockade of Bcl-xS expression. Together, these results suggest that BC200 plays an oncogenic role in breast cancer. Thus, BC200 may serve as a prognostic marker and possible target for attenuating deregulated cell proliferation in estrogen-dependent breast cancer.
Collapse
Affiliation(s)
- R Singh
- Department of Biochemistry, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - S C Gupta
- Department of Biochemistry, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - W-X Peng
- Department of Biochemistry, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - N Zhou
- System Biosciences, Mountain View, CA, USA
| | - R Pochampally
- Department of Biochemistry, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - A Atfi
- Department of Biochemistry, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - K Watabe
- Cancer Biology, Wake Forest School of Medicine, Bermuda Run, NC, USA
| | - Z Lu
- Department of Endocrinology, PLA General Hospital, Beijing, China
| | - Y-Y Mo
- Department of Pharmacology/Toxicology and Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
32
|
Lu J, Gao FH. Role and molecular mechanism of heterogeneous nuclear ribonucleoprotein K in tumor development and progression. Biomed Rep 2016; 4:657-663. [PMID: 27284403 DOI: 10.3892/br.2016.642] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/01/2016] [Indexed: 12/20/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a member of the hnRNP family, which exists in the nucleus and the cytoplasm simultaneously. It is a multifunctional protein that can participate in a variety of regulatory progressions of gene expression and signal transduction, such as chromatin remodeling, transcription, RNA alternative splicing and translation. hnRNP K not only directly binds to the kinases, but also recruits the associated factors regarding transcription, splicing and translation to control gene expression, and therefore, it serves as a docking platform for integrating transduction pathways to nucleic acid-directed processes. Numerous studies also show that abnormal expression of hnRNP K is closely associated with the tumor formation. This protein is overexpressed in numerous types of cancer and its aberrant cytoplasmic localization is also associated with a worse prognosis for patients. These results consistently indicate that hnRNP K has a key role in cancer progression. To understand the hnRNP K pathophysiological process in tumor disease, the previous research results regarding the association between hnRNP K and tumors were reviewed.
Collapse
Affiliation(s)
- Jing Lu
- Institute of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Feng-Hou Gao
- Institute of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
33
|
Shkreta L, Chabot B. The RNA Splicing Response to DNA Damage. Biomolecules 2015; 5:2935-77. [PMID: 26529031 PMCID: PMC4693264 DOI: 10.3390/biom5042935] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/20/2015] [Accepted: 10/16/2015] [Indexed: 12/29/2022] Open
Abstract
The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.
Collapse
Affiliation(s)
- Lulzim Shkreta
- Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| | - Benoit Chabot
- Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
34
|
Splicing Regulators and Their Roles in Cancer Biology and Therapy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:150514. [PMID: 26273588 PMCID: PMC4529883 DOI: 10.1155/2015/150514] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/10/2015] [Accepted: 04/01/2015] [Indexed: 12/17/2022]
Abstract
Alternative splicing allows cells to expand the encoding potential of their genomes. In this elegant mechanism, a single gene can yield protein isoforms with even antagonistic functions depending on the cellular physiological context. Alterations in splicing regulatory factors activity in cancer cells, however, can generate an abnormal protein expression pattern that promotes growth, survival, and other processes, which are relevant to tumor biology. In this review, we discuss dysregulated alternative splicing events and regulatory factors that impact pathways related to cancer. The SR proteins and their regulatory kinases SRPKs and CLKs have been frequently found altered in tumors and are examined in more detail. Finally, perspectives that support splicing machinery as target for the development of novel anticancer therapies are discussed.
Collapse
|
35
|
Splicing Regulation: A Molecular Device to Enhance Cancer Cell Adaptation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:543067. [PMID: 26273627 PMCID: PMC4529921 DOI: 10.1155/2015/543067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/23/2015] [Indexed: 01/23/2023]
Abstract
Alternative splicing (AS) represents a major resource for eukaryotic cells to expand the coding potential of their genomes and to finely regulate gene expression in response to both intra- and extracellular cues. Cancer cells exploit the flexible nature of the mechanisms controlling AS in order to increase the functional diversity of their proteome. By altering the balance of splice isoforms encoded by human genes or by promoting the expression of aberrant oncogenic splice variants, cancer cells enhance their ability to adapt to the adverse growth conditions of the tumoral microenvironment. Herein, we will review the most relevant cancer-related splicing events and the underlying regulatory mechanisms allowing tumour cells to rapidly adapt to the harsh conditions they may face during the occurrence and development of cancer.
Collapse
|
36
|
SAM68: Signal Transduction and RNA Metabolism in Human Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:528954. [PMID: 26273626 PMCID: PMC4529925 DOI: 10.1155/2015/528954] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/24/2015] [Indexed: 12/21/2022]
Abstract
Alterations in expression and/or activity of splicing factors as well as mutations in cis-acting
splicing regulatory sequences contribute to cancer phenotypes. Genome-wide
studies have revealed more than 15,000 tumor-associated splice variants derived from
genes involved in almost every aspect of cancer cell biology, including proliferation,
differentiation, cell cycle control, metabolism, apoptosis, motility, invasion, and
angiogenesis. In the past decades, several RNA binding proteins (RBPs) have been
implicated in tumorigenesis. SAM68 (SRC associated in mitosis of 68 kDa) belongs to
the STAR (signal transduction and activation of RNA metabolism) family of RBPs.
SAM68 is involved in several steps of mRNA metabolism, from transcription to
alternative splicing and then to nuclear export. Moreover, SAM68 participates in signaling
pathways associated with cell response to stimuli, cell cycle transitions, and viral
infections. Recent evidence has linked this RBP to the onset and progression of
different tumors, highlighting misregulation of SAM68-regulated splicing events as a
key step in neoplastic transformation and tumor progression. Here we review recent
studies on the role of SAM68 in splicing regulation and we discuss its contribution to
aberrant pre-mRNA processing in cancer.
Collapse
|
37
|
Khansarizadeh M, Mokhtarzadeh A, Rashedinia M, Taghdisi SM, Lari P, Abnous KH, Ramezani M. Identification of possible cytotoxicity mechanism of polyethylenimine by proteomics analysis. Hum Exp Toxicol 2015; 35:377-87. [PMID: 26134983 DOI: 10.1177/0960327115591371] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Polyethylenimine (PEI) is a polycation widely used for successful gene delivery both in vitro and in vivo experiments. However, different studies showed that PEI could be cytotoxic to transfected cells, and the mechanism of toxicity is poorly understood. Identification of PEI-interacting proteins may help in understanding the toxicity pathways. In this study, we investigated proteins that could interact with PEI in human colorectal adenocarcinoma cells (HT29). In order to identify the proteins interacting with PEI, PEI was immobilized to sepharose beads as solid matrix. The HT29 cell lysate were passed through the matrix. PEI-bound proteins were isolated, and further separation was performed by two-dimensional gel electrophoresis. After gel digestion, proteins were identified by matrix-assisted laser desorption/ionization-time-of-flight (TOF)/TOF mass spectrometry. Our data indicated that most of the identified PEI-interacting proteins such as shock proteins, glutathione-S-transferases, and protein disulfide isomerase are involved in apoptosis process in cells. Thus, although this is a preliminary experiment implicating the involvement of some proteins in PEI cytotoxicity, it could partly explain the mechanism of PEI cytotoxicity in cells.
Collapse
Affiliation(s)
- M Khansarizadeh
- Nanotechnology Research Center, Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Mokhtarzadeh
- School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Rashedinia
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S M Taghdisi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - P Lari
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - K H Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Ramezani
- Nanotechnology Research Center, Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Chabot B. My road to alternative splicing control: from simple paths to loops and interconnections. Biochem Cell Biol 2015; 93:171-9. [PMID: 25759250 DOI: 10.1139/bcb-2014-0161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
With the functional importance of alternative splicing being validated in nearly every mammalian biological system and implicated in many human diseases, it is now crucial to identify the molecular programs that control the production of splice variants. In this article, I will survey how our knowledge of the basic principles of alternative splicing control evolved over the last 25 years. I will also describe how investigation of the splicing control of an apoptotic regulator led us to identify novel effectors and revealed the existence of converging pathways linking splicing decisions to DNA damage. Finally, I will review how our efforts at developing tools designed to monitor and redirect splicing helped assess the impact of misregulated splicing in cancer.
Collapse
Affiliation(s)
- Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
39
|
Koumbadinga GA, Mahmood N, Lei L, Kan Y, Cao W, Lobo VG, Yao X, Zhang S, Xie J. Increased stability of heterogeneous ribonucleoproteins by a deacetylase inhibitor. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1095-103. [PMID: 25959059 DOI: 10.1016/j.bbagrm.2015.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 11/15/2022]
Abstract
Splicing factors are often influenced by various signaling pathways, contributing to the dynamic changes of protein isoforms in cells. Heterogeneous ribonucleoproteins (hnRNPs) regulate many steps of RNA metabolism including pre-mRNA splicing but their control by cell signaling particularly through acetylation and ubiquitination pathways remains largely unknown. Here we show that TSA, a deacetylase inhibitor, reduced the ratio of Bcl-x splice variants Bcl-xL/xS in MDA-MB-231 breast cancer cells. This TSA effect was independent of TGFβ1; however, only in the presence of TGFβ1 was TSA able to change the splicing regulators hnRNP F/H by slightly reducing their mRNA transcripts but strongly preventing protein degradation. The latter was also efficiently prevented by lactacystin, a proteasome inhibitor, suggesting their protein stability control by both acetylation and ubiquitination pathways. Three lysines K87, K98 and K224 of hnRNP F are potential targets of the mutually exclusive acetylation or ubiquitination (K(Ac/Ub)) in the protein modification database PhosphoSitePlus. Mutating each of them but not a control non-K(Ac/Ub) (K68) specifically abolished the TSA enhancement of protein stability. Moreover, mutating K98 (K98R) and K224 (K224R) also abolished the TSA regulation of alternative splicing of a Bcl-x mini-gene. Furthermore, about 86% (30 of 35) of the multi-functional hnRNP proteins in the database contain lysines that are potential sites for acetylation/ubiquitination. We demonstrate that the degradation of three of them (A1, I and L) are also prevented by TSA. Thus, the deacetylase inhibitor TSA enhances hnRNP F stability through the K(Ac/Ub) lysines, with some of them essential for its regulation of alternative splicing. Such a regulation of protein stability is perhaps common for a group of hnRNPs and RNA metabolism.
Collapse
Affiliation(s)
- Geremy A Koumbadinga
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Niaz Mahmood
- Biochemistry & Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Lei Lei
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Yunchao Kan
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Nanyang Normal University, Nanyang, Henan, PR China
| | - Wenguang Cao
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Vincent G Lobo
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Xiaojian Yao
- Department of Medical Microbiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queens University, Kingston, ON, Canada
| | - Jiuyong Xie
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Biochemistry & Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
40
|
Lento S, Brioschi M, Barcella S, Nasim MT, Ghilardi S, Barbieri SS, Tremoli E, Banfi C. Proteomics of tissue factor silencing in cardiomyocytic cells reveals a new role for this coagulation factor in splicing machinery control. J Proteomics 2015; 119:75-89. [DOI: 10.1016/j.jprot.2015.01.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 01/08/2015] [Accepted: 01/25/2015] [Indexed: 12/12/2022]
|
41
|
Barbour SE, Nguyen PT, Park M, Emani B, Lei X, Kambalapalli M, Shultz JC, Wijesinghe D, Chalfant CE, Ramanadham S. Group VIA Phospholipase A2 (iPLA2β) Modulates Bcl-x 5'-Splice Site Selection and Suppresses Anti-apoptotic Bcl-x(L) in β-Cells. J Biol Chem 2015; 290:11021-31. [PMID: 25762722 DOI: 10.1074/jbc.m115.648956] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Indexed: 01/09/2023] Open
Abstract
Diabetes is a consequence of reduced β-cell function and mass, due to β-cell apoptosis. Endoplasmic reticulum (ER) stress is induced during β-cell apoptosis due to various stimuli, and our work indicates that group VIA phospholipase A2β (iPLA2β) participates in this process. Delineation of underlying mechanism(s) reveals that ER stress reduces the anti-apoptotic Bcl-x(L) protein in INS-1 cells. The Bcl-x pre-mRNA undergoes alternative pre-mRNA splicing to generate Bcl-x(L) or Bcl-x(S) mature mRNA. We show that both thapsigargin-induced and spontaneous ER stress are associated with reductions in the ratio of Bcl-x(L)/Bcl-x(S) mRNA in INS-1 and islet β-cells. However, chemical inactivation or knockdown of iPLA2β augments the Bcl-x(L)/Bcl-x(S) ratio. Furthermore, the ratio is lower in islets from islet-specific RIP-iPLA2β transgenic mice, whereas islets from global iPLA2β(-/-) mice exhibit the opposite phenotype. In view of our earlier reports that iPLA2β induces ceramide accumulation through neutral sphingomyelinase 2 and that ceramides shift the Bcl-x 5'-splice site (5'SS) selection in favor of Bcl-x(S), we investigated the potential link between Bcl-x splicing and the iPLA2β/ceramide axis. Exogenous C6-ceramide did not alter Bcl-x 5'SS selection in INS-1 cells, and neutral sphingomyelinase 2 inactivation only partially prevented the ER stress-induced shift in Bcl-x splicing. In contrast, 5(S)-hydroxytetraenoic acid augmented the ratio of Bcl-x(L)/Bcl-x(S) by 15.5-fold. Taken together, these data indicate that β-cell apoptosis is, in part, attributable to the modulation of 5'SS selection in the Bcl-x pre-mRNA by bioactive lipids modulated by iPLA2β.
Collapse
Affiliation(s)
- Suzanne E Barbour
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Phuong T Nguyen
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Margaret Park
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Bhargavi Emani
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Xiaoyong Lei
- the Department of Cell, Developmental, and Integrative Biology and Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Mamatha Kambalapalli
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Jacqueline C Shultz
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Dayanjan Wijesinghe
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614, the Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249
| | - Charles E Chalfant
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614, the Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249, the Massey Cancer Center, Richmond, Virginia 23298, and the Virginia Commonwealth University Reanimation Engineering Science Center, Richmond, Virginia 23298
| | - Sasanka Ramanadham
- the Department of Cell, Developmental, and Integrative Biology and Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama 35294,
| |
Collapse
|
42
|
Bielli P, Bordi M, Di Biasio V, Sette C. Regulation of BCL-X splicing reveals a role for the polypyrimidine tract binding protein (PTBP1/hnRNP I) in alternative 5' splice site selection. Nucleic Acids Res 2014; 42:12070-81. [PMID: 25294838 PMCID: PMC4231771 DOI: 10.1093/nar/gku922] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/18/2014] [Accepted: 09/22/2014] [Indexed: 02/06/2023] Open
Abstract
Alternative splicing (AS) modulates many physiological and pathological processes. For instance, AS of the BCL-X gene balances cell survival and apoptosis in development and cancer. Herein, we identified the polypyrimidine tract binding protein (PTBP1) as a direct regulator of BCL-X AS. Overexpression of PTBP1 promotes selection of the distal 5' splice site in BCL-X exon 2, generating the pro-apoptotic BCL-Xs splice variant. Conversely, depletion of PTBP1 enhanced splicing of the anti-apoptotic BCL-XL variant. In vivo cross-linking experiments and site-directed mutagenesis restricted the PTBP1 binding site to a polypyrimidine tract located between the two alternative 5' splice sites. Binding of PTBP1 to this site was required for its effect on splicing. Notably, a similar function of PTBP1 in the selection of alternative 5' splice sites was confirmed using the USP5 gene as additional model. Mechanistically, PTBP1 displaces SRSF1 binding from the proximal 5' splice site, thus repressing its selection. Our study provides a novel mechanism of alternative 5' splice site selection by PTBP1 and indicates that the presence of a PTBP1 binding site between two alternative 5' splice sites promotes selection of the distal one, while repressing the proximal site by competing for binding of a positive regulator.
Collapse
Affiliation(s)
- Pamela Bielli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Matteo Bordi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Valentina Di Biasio
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Claudio Sette
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
43
|
Barboro P, Ferrari N, Balbi C. Emerging roles of heterogeneous nuclear ribonucleoprotein K (hnRNP K) in cancer progression. Cancer Lett 2014; 352:152-9. [DOI: 10.1016/j.canlet.2014.06.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/26/2014] [Accepted: 06/29/2014] [Indexed: 12/18/2022]
|
44
|
DeOcesano-Pereira C, Amaral MS, Parreira KS, Ayupe AC, Jacysyn JF, Amarante-Mendes GP, Reis EM, Verjovski-Almeida S. Long non-coding RNA INXS is a critical mediator of BCL-XS induced apoptosis. Nucleic Acids Res 2014; 42:8343-55. [PMID: 24992962 PMCID: PMC4117780 DOI: 10.1093/nar/gku561] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BCL-X mRNA alternative splicing generates pro-apoptotic BCL-XS or anti-apoptotic BCL-XL gene products and the mechanism that regulates splice shifting is incompletely understood. We identified and characterized a long non-coding RNA (lncRNA) named INXS, transcribed from the opposite genomic strand of BCL-X, that was 5- to 9-fold less abundant in tumor cell lines from kidney, liver, breast and prostate and in kidney tumor tissues compared with non-tumors. INXS is an unspliced 1903 nt-long RNA, is transcribed by RNA polymerase II, 5′-capped, nuclear enriched and binds Sam68 splicing-modulator. Three apoptosis-inducing agents increased INXS lncRNA endogenous expression in the 786-O kidney tumor cell line, increased BCL-XS/BCL-XL mRNA ratio and activated caspases 3, 7 and 9. These effects were abrogated in the presence of INXS knockdown. Similarly, ectopic INXS overexpression caused a shift in splicing toward BCL-XS and activation of caspases, thus leading to apoptosis. BCL-XS protein accumulation was detected upon INXS overexpression. In a mouse xenograft model, intra-tumor injections of an INXS-expressing plasmid caused a marked reduction in tumor weight, and an increase in BCL-XS isoform, as determined in the excised tumors. We revealed an endogenous lncRNA that induces apoptosis, suggesting that INXS is a possible target to be explored in cancer therapies.
Collapse
Affiliation(s)
- Carlos DeOcesano-Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900 São Paulo, SP, Brasil
| | - Murilo S Amaral
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900 São Paulo, SP, Brasil
| | - Kleber S Parreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900 São Paulo, SP, Brasil
| | - Ana C Ayupe
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900 São Paulo, SP, Brasil
| | - Jacqueline F Jacysyn
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900 São Paulo, SP, Brasil
| | - Gustavo P Amarante-Mendes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900 São Paulo, SP, Brasil Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia, Universidade de São Paulo, 05508-900 São Paulo, SP, Brasil
| | - Eduardo M Reis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900 São Paulo, SP, Brasil Instituto Nacional de Ciência e Tecnologia em Oncogenômica, Universidade de São Paulo, 05508-900 São Paulo, SP, Brasil
| | - Sergio Verjovski-Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900 São Paulo, SP, Brasil Instituto Nacional de Ciência e Tecnologia em Oncogenômica, Universidade de São Paulo, 05508-900 São Paulo, SP, Brasil
| |
Collapse
|
45
|
Almeida LO, Garcia CB, Matos-Silva FA, Curti C, Leopoldino AM. Accumulated SET protein up-regulates and interacts with hnRNPK, increasing its binding to nucleic acids, the Bcl-xS repression, and cellular proliferation. Biochem Biophys Res Commun 2014; 445:196-202. [PMID: 24508256 DOI: 10.1016/j.bbrc.2014.01.175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 01/28/2014] [Indexed: 12/11/2022]
Abstract
SET and hnRNPK are proteins involved in gene expression and regulation of cellular signaling. We previously demonstrated that SET accumulates in head and neck squamous cell carcinoma (HNSCC); hnRNPK is a prognostic marker in cancer. Here, we postulate that SET and hnRNPK proteins interact to promote tumorigenesis. We performed studies in HEK293 and HNSCC (HN6, HN12, and HN13) cell lines with SET/hnRNPK overexpression and knockdown, respectively. We found that SET and/or hnRNPK protein accumulation increased cellular proliferation. SET accumulation up-regulated hnRNPK mRNA and total/phosphorylated protein, promoted hnRNPK nuclear location, and reduced Bcl-x mRNA levels. SET protein directly interacted with hnRNPK, increasing both its binding to nucleic acids and Bcl-xS repression. We propose that hnRNPK should be a new target of SET and that SET-hnRNPK interaction, in turn, has potential implications in cell survival and malignant transformation.
Collapse
Affiliation(s)
- Luciana O Almeida
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cristiana B Garcia
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Flavia A Matos-Silva
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos Curti
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andréia M Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
46
|
Dinh PX, Das A, Franco R, Pattnaik AK. Heterogeneous nuclear ribonucleoprotein K supports vesicular stomatitis virus replication by regulating cell survival and cellular gene expression. J Virol 2013; 87:10059-69. [PMID: 23843646 PMCID: PMC3754001 DOI: 10.1128/jvi.01257-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/30/2013] [Indexed: 11/20/2022] Open
Abstract
The heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a member of the family of hnRNPs and was recently shown in a genome-wide small interfering RNA (siRNA) screen to support vesicular stomatitis virus (VSV) growth. To decipher the role of hnRNP K in VSV infection, we conducted studies which suggest that the protein is required for VSV spreading. Virus binding to cells, entry, and nucleocapsid uncoating steps were not adversely affected in the absence of hnRNP K, whereas viral genome transcription and replication were reduced slightly. These results indicate that hnRNP K is likely involved in virus assembly and/or release from infected cells. Further studies showed that hnRNP K suppresses apoptosis of virus-infected cells, resulting in increased cell survival during VSV infection. The increased survival of the infected cells was found to be due to the suppression of proapoptotic proteins such as Bcl-XS and Bik in a cell-type-dependent manner. Additionally, depletion of hnRNP K resulted in not only significantly increased levels of T-cell-restricted intracellular antigen 1 (TIA1) but also switching of the expression of the two isoforms of the protein (TIA1a and TIA1b), both of which inhibited VSV replication. hnRNP K was also found to support expression of several cellular proteins known to be required for VSV infection. Overall, our studies demonstrate hnRNP K to be a multifunctional protein that supports VSV infection via its role(s) in suppressing apoptosis of infected cells, inhibiting the expression of antiviral proteins, and maintaining the expression of proteins required for the virus.
Collapse
Affiliation(s)
- Phat X. Dinh
- School of Veterinary Medicine and Biomedical Sciences
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Anshuman Das
- School of Veterinary Medicine and Biomedical Sciences
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | | | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
47
|
Sette C. Alternative splicing programs in prostate cancer. Int J Cell Biol 2013; 2013:458727. [PMID: 23983695 PMCID: PMC3747374 DOI: 10.1155/2013/458727] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/11/2013] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) remains one of the most frequent causes of death for cancer in the male population. Although the initial antiandrogenic therapies are efficacious, PCa often evolves into a hormone-resistant, incurable disease. The genetic and phenotypic heterogeneity of this type of cancer renders its diagnosis and cure particularly challenging. Mounting evidence indicates that alternative splicing, the process that allows production of multiple mRNA variants from each gene, contributes to the heterogeneity of the disease. Key genes for the biology of normal and neoplastic prostate cells, such as those encoding for the androgen receptor and cyclin D1, are alternatively spliced to yield protein isoforms with different or even opposing functions. This review illustrates some examples of genes whose alternative splicing regulation is relevant to PCa biology and discusses the possibility to exploit alternative splicing regulation as a novel tool for prognosis, diagnosis, and therapeutic approaches to PCa.
Collapse
Affiliation(s)
- Claudio Sette
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata,” 00133 Rome, Italy
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy
| |
Collapse
|
48
|
Abdo S, Lo CS, Chenier I, Shamsuyarova A, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Heterogeneous nuclear ribonucleoproteins F and K mediate insulin inhibition of renal angiotensinogen gene expression and prevention of hypertension and kidney injury in diabetic mice. Diabetologia 2013; 56:1649-60. [PMID: 23609310 DOI: 10.1007/s00125-013-2910-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/12/2013] [Indexed: 01/19/2023]
Abstract
AIMS/HYPOTHESIS We investigated whether heterogeneous nuclear ribonucleoproteins F and K (hnRNP F, hnRNP K) mediate insulin inhibition of renal Agt expression and prevention of hypertension and kidney injury in an Akita mouse model of type 1 diabetes. METHODS Adult male Akita mice (12 weeks old) were treated with insulin implants and killed at week 16. Untreated non-Akita littermates served as controls. The effects of insulin on blood glucose, systolic BP (SBP), renal proximal tubular cell (RPTC) gene expression and interstitial fibrosis were studied. We also examined immortalised rat RPTCs stably transfected with control plasmid or with plasmid containing rat Agt promoter in vitro. RESULTS Insulin treatment normalised blood glucose levels and SBP, inhibited renal AGT expression but enhanced hnRNP F, hnRNP K and angiotensin-converting enzyme-2 expression, attenuated renal hypertrophy and glomerular hyperfiltration and decreased urinary albumin/creatinine ratio, as well as AGT and angiotensin II levels, in Akita mice. In vitro, insulin inhibited Agt but stimulated Hnrnpf and Hnrnpk expression in high-glucose media via p44/42 mitogen-activated protein kinase signalling in RPTCs. Transfection with Hnrnpf or Hnrnpk small interfering RNAs prevented insulin inhibition of Agt expression in RPTCs. CONCLUSIONS/INTERPRETATION These data indicate that insulin prevents hypertension and attenuates kidney injury, at least in part, through suppressing renal Agt transcription via upregulation of hnRNP F and hnRNP K expression in diabetic Akita mice. HnRNP F and hnRNP K may be potential targets in the treatment of hypertension and kidney injury in diabetes.
Collapse
Affiliation(s)
- S Abdo
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CHUM)-Hôtel-Dieu Hospital, Université de Montréal, Pavillon Masson, 3850 Saint Urbain Street, Montreal, Canada, QC, H2W 1T8
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Cyphert TJ, Suchanek AL, Griffith BN, Salati LM. Starvation actively inhibits splicing of glucose-6-phosphate dehydrogenase mRNA via a bifunctional ESE/ESS element bound by hnRNP K. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:905-15. [PMID: 23631859 DOI: 10.1016/j.bbagrm.2013.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/17/2013] [Accepted: 04/22/2013] [Indexed: 12/26/2022]
Abstract
Regulated expression of glucose-6-phosphate dehydrogenase (G6PD) is due to changes in the rate of pre-mRNA splicing and not changes in its transcription. Starvation alters pre-mRNA splicing by decreasing the rate of intron removal, leading to intron retention and a decrease in the accumulation of mature mRNA. A regulatory element within exon 12 of G6PD pre-mRNA controls splicing efficiency. Starvation caused an increase in the expression of heterogeneous nuclear ribonucleoprotein (hnRNP) K protein and this increase coincided with the increase in the binding of hnRNP K to the regulatory element and a decrease in the expression of G6PD mRNA. HnRNP K bound to two C-rich motifs forming an ESS within exon 12. Overexpression of hnRNP K decreased the splicing and expression of G6PD mRNA, while siRNA-mediated depletion of hnRNP K caused an increase in the splicing and expression of G6PD mRNA. Binding of hnRNP K to the regulatory element was enhanced in vivo by starvation coinciding with a decrease in G6PD mRNA. HnRNP K binding to the C-rich motifs blocked binding of serine-arginine rich, splicing factor 3 (SRSF3), a splicing enhancer. Thus hnRNP K is a nutrient regulated splicing factor responsible for the inhibition of the splicing of G6PD during starvation.
Collapse
Affiliation(s)
- T J Cyphert
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
50
|
Aschoff M, Hotz-Wagenblatt A, Glatting KH, Fischer M, Eils R, König R. SplicingCompass: differential splicing detection using RNA-seq data. ACTA ACUST UNITED AC 2013; 29:1141-8. [PMID: 23449093 DOI: 10.1093/bioinformatics/btt101] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION Alternative splicing is central for cellular processes and substantially increases transcriptome and proteome diversity. Aberrant splicing events often have pathological consequences and are associated with various diseases and cancer types. The emergence of next-generation RNA sequencing (RNA-seq) provides an exciting new technology to analyse alternative splicing on a large scale. However, algorithms that enable the analysis of alternative splicing from short-read sequencing are not fully established yet and there are still no standard solutions available for a variety of data analysis tasks. RESULTS We present a new method and software to predict genes that are differentially spliced between two different conditions using RNA-seq data. Our method uses geometric angles between the high dimensional vectors of exon read counts. With this, differential splicing can be detected even if the splicing events are composed of higher complexity and involve previously unknown splicing patterns. We applied our approach to two case studies including neuroblastoma tumour data with favourable and unfavourable clinical courses. We show the validity of our predictions as well as the applicability of our method in the context of patient clustering. We verified our predictions by several methods including simulated experiments and complementary in silico analyses. We found a significant number of exons with specific regulatory splicing factor motifs for predicted genes and a substantial number of publications linking those genes to alternative splicing. Furthermore, we could successfully exploit splicing information to cluster tissues and patients. Finally, we found additional evidence of splicing diversity for many predicted genes in normalized read coverage plots and in reads that span exon-exon junctions. AVAILABILITY SplicingCompass is licensed under the GNU GPL and freely available as a package in the statistical language R at http://www.ichip.de/software/SplicingCompass.html
Collapse
Affiliation(s)
- Moritz Aschoff
- Bioinformatics HUSAR, Genomics Proteomics Core Facility, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|