1
|
Clevenger AJ, Collier CA, Gorley JPM, Colijn S, McFarlin MK, Solberg SC, Kopetz ES, Stratman AN, Raghavan SA. Oncogenic KRAS Mutations Confer a Unique Mechanotransduction Response to Peristalsis in Colorectal Cancer Cells. Mol Cancer Res 2025; 23:128-142. [PMID: 39485528 PMCID: PMC11802306 DOI: 10.1158/1541-7786.mcr-24-0624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
Colorectal cancer tumors start as polyps on the inner lining of the colorectum, in which they are exposed to the mechanics of peristalsis. Our previous work leveraged a custom-built peristalsis bioreactor to demonstrate that colonic peristalsis led to cancer stem cell enrichment in colorectal cancer cells. However, this malignant mechanotransductive response was confined to select colorectal cancer lines that harbored an oncogenic mutation in the Kirsten rat sarcoma virus (KRAS) gene. In this study, we explored the involvement of activating KRAS mutations on peristalsis-associated mechanotransduction in colorectal cancer. Peristalsis enriched cancer stem cell marker Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) in KRAS mutant lines in a Wnt ligand-independent manner. Conversely, LGR5 enrichment in wild-type KRAS lines exposed to peristalsis were minimal. LGR5 enrichment downstream of peristalsis translated to increased tumorigenicity in vivo. Differences in mechanotransduction were apparent via unbiased gene set enrichment analysis, in which many unique pathways were enriched in wild-type versus mutant lines. Peristalsis also triggered β-catenin nuclear localization independent of Wnt ligands, particularly in KRAS mutant lines. The involvement of KRAS was validated via gain and loss of function strategies. Peristalsis-induced β-catenin activation and LGR5 enrichment depended on the activation of the MEK/ERK cascade. Taken together, our results demonstrated that oncogenic KRAS mutations conferred a unique peristalsis-associated mechanotransduction response to colorectal cancer cells, resulting in cancer stem cell enrichment and increased tumorigenicity. These mechanosensory connections can be leveraged in improving the sensitivity of emerging therapies that target oncogenic KRAS. Implications: Oncogenic KRAS empowers colorectal cancer cells to harness the mechanics of colonic peristalsis for malignant gain independent of other cooperating signals.
Collapse
Affiliation(s)
| | - Claudia A. Collier
- Department of Biomedical Engineering, Texas A&M University, College Station, TX
| | - John Paul M. Gorley
- Department of Biomedical Engineering, Texas A&M University, College Station, TX
| | - Sarah Colijn
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Maygan K. McFarlin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX
| | - Spencer C. Solberg
- Department of Biomedical Engineering, Texas A&M University, College Station, TX
| | - E. Scott Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX
| | - Amber N. Stratman
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Shreya A. Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX
| |
Collapse
|
2
|
Chen P, Chen X, Song X, He A, Zheng Y, Li X, Tian R. Dissecting phospho-motif-dependent Shc1 interactome using long synthetic protein fragments. Chem Sci 2024; 15:d4sc02350a. [PMID: 39184293 PMCID: PMC11342145 DOI: 10.1039/d4sc02350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024] Open
Abstract
Activated receptor tyrosine kinases (RTKs) rely on the assembly of signaling proteins into high-dimensional protein complexes for signal transduction. Shc1, a prototypical scaffold protein, plays a pivotal role in directing phosphotyrosine (pY)-dependent protein complex formation for numerous RTKs typically through its two pY-binding domains. The three conserved pY sites within its CH1 region (Shc1CH1) hold particular significance due to their substantial contribution to its functions. However, how Shc1 differentially utilizes these sites to precisely coordinate protein complex assembly remains unclear. Here, we employed multiple peptide ligation techniques to synthesize an array of long protein fragments (107 amino acids) covering a significant portion of the Shc1CH1 region with varying phosphorylation states at residues Y239, 240, 313, and S335. By combining these phospho-Shc1CH1 fragments with integrated proteomics sample preparation and quantitative proteomic analysis, we were able to comprehensively resolve the site-specific interactomes of Shc1 with single amino acid resolution. By applying this approach to different cancer cell lines, we demonstrated that these phospho-Shc1CH1 fragments can be effectively used as a diagnostic tool to assess cell type-specific RTK signaling networks. Collectively, these biochemical conclusions help to better understand the sophisticated organization of pY-dependent Shc1 adaptor protein complexes and their functional roles in cancer.
Collapse
Affiliation(s)
- Peizhong Chen
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
- Department of Chemistry, State Key Lab of Synthetic Chemistry, University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Xiong Chen
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
- Shenzhen Key Laboratory of Functional Proteomics, Guangming Advanced Research Institute, Southern University of Science and Technology Shenzhen 518055 China
| | - Xiaolei Song
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics Beijing 102206 China
| | - An He
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Yong Zheng
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics Beijing 102206 China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, School of Basic Medicine, School of Rehabilitation Medicine, Gannan Medical University Ganzhou 341000 China
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
- Shenzhen Key Laboratory of Functional Proteomics, Guangming Advanced Research Institute, Southern University of Science and Technology Shenzhen 518055 China
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics Beijing 102206 China
| |
Collapse
|
3
|
Wang D, Liu G, Meng Y, Chen H, Ye Z, Jing J. The Configuration of GRB2 in Protein Interaction and Signal Transduction. Biomolecules 2024; 14:259. [PMID: 38540680 PMCID: PMC10968029 DOI: 10.3390/biom14030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 07/02/2024] Open
Abstract
Growth-factor-receptor-binding protein 2 (GRB2) is a non-enzymatic adaptor protein that plays a pivotal role in precisely regulated signaling cascades from cell surface receptors to cellular responses, including signaling transduction and gene expression. GRB2 binds to numerous target molecules, thereby modulating a complex cell signaling network with diverse functions. The structural characteristics of GRB2 are essential for its functionality, as its multiple domains and interaction mechanisms underpin its role in cellular biology. The typical signaling pathway involving GRB2 is initiated by the ligand stimulation to its receptor tyrosine kinases (RTKs). The activation of RTKs leads to the recruitment of GRB2 through its SH2 domain to the phosphorylated tyrosine residues on the receptor. GRB2, in turn, binds to the Son of Sevenless (SOS) protein through its SH3 domain. This binding facilitates the activation of Ras, a small GTPase, which triggers a cascade of downstream signaling events, ultimately leading to cell proliferation, survival, and differentiation. Further research and exploration into the structure and function of GRB2 hold great potential for providing novel insights and strategies to enhance medical approaches for related diseases. In this review, we provide an outline of the proteins that engage with domains of GRB2, along with the function of different GRB2 domains in governing cellular signaling pathways. This furnishes essential points of current studies for the forthcoming advancement of therapeutic medications aimed at GRB2.
Collapse
Affiliation(s)
- Dingyi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Guoxia Liu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
- School of Life Science, Tianjin University, Tianjin 200072, China
| | - Yuxin Meng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Hongjie Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Zu Ye
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| | - Ji Jing
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| |
Collapse
|
4
|
Wu Z, Liu Q, Cao Z, Li H, Zhou Y, Zhang P. Icariin decreases cell proliferation and inflammation of rheumatoid arthritis-fibroblast like synoviocytes via GAREM1/MAPK signaling pathway. Immunopharmacol Immunotoxicol 2024; 46:86-92. [PMID: 37647355 DOI: 10.1080/08923973.2023.2253990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is an autoimmune disorder characterized by chronic inflammation and joint damage, leading to pain and reduced joint function. Icariin, a flavonoid compound, has been studied for its potential therapeutic role in RA due to its anti-inflammatory and anti-proliferative effects. Here, we aimed to investigate the action mechanism of icariin in regulating RA. MATERIALS AND METHODS Fibroblast-like synoviocytes (FLS) were obtained from RA and trauma patients, generating RA-FLS and normal FLS. The cells were treated with varying concentrations of icariin (0, 10, 20, 40, 80 μM). We assessed the effects of icariin on cell proliferation, apoptosis, and levels of inflammatory factors using the CCK-8 assay, flow cytometry, and enzyme-linked immunosorbent assay, qRT-PCR, and western blotting. RESULTS Icariin treatment had no significant impact on the cell proliferation of normal FLS. However, it dose-dependently repressed cell proliferation, reduced TNF-α, IL-6, and IL-1β levels, and increased apoptosis in RA-FLS. The expression of GAREM1, p-p38, and p-ERK1/2 was upregulated in RA-FLS, which was reversed by icariin treatment. Overexpression of GAREM1 reversed the inhibitory effects of icariin on cell proliferation and inflammatory factor levels in RA-FLS. CONCLUSION Our findings suggest that icariin treatment can alleviate the development of RA by reducing cell proliferation and inflammation in RA-FLS through the regulation of the GAREM1/MAPK signaling pathway. These results support the potential of icariin as a therapeutic agent for RA treatment. As icariin is safe and well-tolerated in previous studies, further research is warranted to explore its efficacy in clinical settings.
Collapse
Affiliation(s)
- Zhiming Wu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Qin Liu
- Outpatient Department, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Zhengliu Cao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Hui Li
- Rheumatology and Immunology Department, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Yifen Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Peng Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| |
Collapse
|
5
|
Feng S, Sanford JA, Weber T, Hutchinson-Bunch CM, Dakup PP, Paurus VL, Attah K, Sauro HM, Qian WJ, Wiley HS. A Phosphoproteomics Data Resource for Systems-level Modeling of Kinase Signaling Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551714. [PMID: 37577496 PMCID: PMC10418157 DOI: 10.1101/2023.08.03.551714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Building mechanistic models of kinase-driven signaling pathways requires quantitative measurements of protein phosphorylation across physiologically relevant conditions, but this is rarely done because of the insensitivity of traditional technologies. By using a multiplexed deep phosphoproteome profiling workflow, we were able to generate a deep phosphoproteomics dataset of the EGFR-MAPK pathway in non-transformed MCF10A cells across physiological ligand concentrations with a time resolution of <12 min and in the presence and absence of multiple kinase inhibitors. An improved phosphosite mapping technique allowed us to reliably identify >46,000 phosphorylation sites on >6600 proteins, of which >4500 sites from 2110 proteins displayed a >2-fold increase in phosphorylation in response to EGF. This data was then placed into a cellular context by linking it to 15 previously published protein databases. We found that our results were consistent with much, but not all previously reported data regarding the activation and negative feedback phosphorylation of core EGFR-ERK pathway proteins. We also found that EGFR signaling is biphasic with substrates downstream of RAS/MAPK activation showing a maximum response at <3ng/ml EGF while direct substrates, such as HGS and STAT5B, showing no saturation. We found that RAS activation is mediated by at least 3 parallel pathways, two of which depend on PTPN11. There appears to be an approximately 4-minute delay in pathway activation at the step between RAS and RAF, but subsequent pathway phosphorylation was extremely rapid. Approximately 80 proteins showed a >2-fold increase in phosphorylation across all experiments and these proteins had a significantly higher median number of phosphorylation sites (~18) relative to total cellular phosphoproteins (~4). Over 60% of EGF-stimulated phosphoproteins were downstream of MAPK and included mediators of cellular processes such as gene transcription, transport, signal transduction and cytoskeletal arrangement. Their phosphorylation was either linear with respect to MAPK activation or biphasic, corresponding to the biphasic signaling seen at the level of the EGFR. This deep, integrated phosphoproteomics data resource should be useful in building mechanistic models of EGFR and MAPK signaling and for understanding how downstream responses are regulated.
Collapse
Affiliation(s)
- Song Feng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - James A. Sanford
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Thomas Weber
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | | | - Panshak P. Dakup
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Vanessa L. Paurus
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Kwame Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Herbert M. Sauro
- Department of Bioengineering, University of Washington, Seattle, WA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - H. Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| |
Collapse
|
6
|
Ray S, Hewitt K. Sticky, Adaptable, and Many-sided: SAM protein versatility in normal and pathological hematopoietic states. Bioessays 2023; 45:e2300022. [PMID: 37318311 PMCID: PMC10527593 DOI: 10.1002/bies.202300022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
With decades of research seeking to generalize sterile alpha motif (SAM) biology, many outstanding questions remain regarding this multi-tool protein module. Recent data from structural and molecular/cell biology has begun to reveal new SAM modes of action in cell signaling cascades and biomolecular condensation. SAM-dependent mechanisms underlie blood-related (hematologic) diseases, including myelodysplastic syndromes and leukemias, prompting our focus on hematopoiesis for this review. With the increasing coverage of SAM-dependent interactomes, a hypothesis emerges that SAM interaction partners and binding affinities work to fine tune cell signaling cascades in developmental and disease contexts, including hematopoiesis and hematologic disease. This review discusses what is known and remains unknown about the standard mechanisms and neoplastic properties of SAM domains and what the future might hold for developing SAM-targeted therapies.
Collapse
Affiliation(s)
- Suhita Ray
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Kyle Hewitt
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| |
Collapse
|
7
|
GAREM1 is involved in controlling body mass in mice and humans. Biochem Biophys Res Commun 2022; 628:91-97. [DOI: 10.1016/j.bbrc.2022.08.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/20/2022]
|
8
|
Wu C, Qin C, Fu X, Huang X, Tian K. Integrated analysis of lncRNAs and mRNAs by RNA-Seq in secondary hair follicle development and cycling (anagen, catagen and telogen) of Jiangnan cashmere goat (Capra hircus). BMC Vet Res 2022; 18:167. [PMID: 35524260 PMCID: PMC9074311 DOI: 10.1186/s12917-022-03253-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/18/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Among the world's finest natural fiber composites is derived from the secondary hair follicles (SHFs) of cashmere goats yield one of the world's best natural fibres. Their development and cycling are characterized by photoperiodism with diverse, well-orchestrated stimulatory and inhibitory signals. Long non-coding RNA (lncRNAs) and mRNAs play important roles in hair follicle (HF) development. However, not many studies have explored their specific functions in cashmere development and cycling. This study detected mRNAs and lncRNAs with their candidate genes and related pathways in SHF development and cycling of cashmere goat. We utilized RNA sequencing (RNA-Seq) and bioinformatics analysis on lncRNA and mRNA expressions in goat hair follicles to discover candidate genes and metabolic pathways that could affect development and cycling (anagen, catagen, and telogen). RESULTS We identified 228 differentially expressed (DE) mRNAs and 256 DE lncRNA. For mRNAs, catagen and anagen had 16 upregulated and 35 downregulated DEGs, catagen and telogen had 18 upregulated and 9 downregulated DEGs and telogen and anagen had 52 upregulated and 98 downregulated DEGs. LncRNA witnessed 22 upregulated and 39 downregulated DEGs for catagen and anagen, 36 upregulated and 29 downregulated DEGs for catagen and telogen as well as 66 upregulated and 97 downregulated DEGs for telogen and anagen. Several key genes, including MSTRG.5451.2, MSTRG.45465.3, MSTRG.11609.2, CHST1, SH3BP4, CDKN1A, GAREM1, GSK-3β, DEFB103A KRTAP9-2, YAP1, S100A7A, FA2H, LOC102190037, LOC102179090, LOC102173866, KRT2, KRT39, FAM167A, FAT4 and EGFL6 were shown to be potentially important in hair follicle development and cycling. They were related to, WNT/β-catenin, mTORC1, ERK/MAPK, Hedgehog, TGFβ, NFkB/p38MAPK, caspase-1, and interleukin (IL)-1a signaling pathways. CONCLUSION This work adds to existing understanding of the regulation of HF development and cycling in cashmere goats via lncRNAs and mRNAs. It also serves as theoretical foundation for future SHF research in cashmere goats.
Collapse
Affiliation(s)
- Cuiling Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.,Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.,Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Chongkai Qin
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Aksu, 843000, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China. .,Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China.
| |
Collapse
|
9
|
Mélique S, Yang C, Lesourne R. Negative times negative equals positive, THEMIS sets the rule on thymic selection and peripheral T cell responses. Biomed J 2022; 45:334-346. [PMID: 35346866 PMCID: PMC9250082 DOI: 10.1016/j.bj.2022.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/31/2022] Open
Abstract
The activity of T cells is finely controlled by a set of negative regulators of T-cell antigen receptor (TCR)-mediated signaling. However, how those negative regulators are themselves controlled to prevent ineffective TCR-mediated responses remain poorly understood. Thymocyte-expressed molecule involved in selection (THEMIS) has been characterized over a decade ago as an important player of T cell development. Although the molecular function of THEMIS has long remained puzzling and subject to controversies, latest investigations suggest that THEMIS stimulates TCR-mediated signaling by repressing the tyrosine phosphatases SHP-1 and SHP-2 which exert regulatory function on T cell activation. Recent evidences also point to a role for THEMIS in peripheral T cells beyond its role on thymic selection. Here, we present an overview of the past research on THEMIS in the context of T cell development and peripheral T cell function and discuss the possible implication of THEMIS-based mechanisms on TCR-dependent and independent signaling outcomes.
Collapse
Affiliation(s)
- Suzanne Mélique
- Infinity, University of Toulouse, CNRS5051, INSERM1291, UPS, Toulouse, France
| | - Cui Yang
- Infinity, University of Toulouse, CNRS5051, INSERM1291, UPS, Toulouse, France
| | - Renaud Lesourne
- Infinity, University of Toulouse, CNRS5051, INSERM1291, UPS, Toulouse, France.
| |
Collapse
|
10
|
Nishino T, Oshika T, Kyan M, Konishi H. Effect of the glycine-rich domain in GAREM2 on its unique subcellular localization upon EGF stimulation. Cell Mol Biol Lett 2021; 26:16. [PMID: 33931009 PMCID: PMC8086153 DOI: 10.1186/s11658-021-00260-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND In mammals, there are two subtypes of Grb2-associated regulator of Erk/MAPK (GAREM), an adaptor protein that functions downstream of the cell growth factor receptor. GAREM1 is ubiquitously expressed, whereas GAREM2 is mainly expressed in the brain. However, the precise mechanism of the translocation of each GAREM subtype in growth factor-stimulated cells is still unclear. METHODS In this study, immunofluorescence staining with specific antibodies against each GAREM subtype and time-lapse analysis using GFP fusion proteins were used to analyze the subcellular localization of each GAREM subtype in a cell growth stimulus-dependent manner. We also biochemically analyzed the correlation between its subcellular localization and tyrosine phosphorylation of GAREM2. RESULTS We found that endogenously and exogenously expressed GAREM2 specifically aggregated and formed granules in NGF-stimulated PC-12 cells and in EGF-stimulated COS-7 cells. Based on the observed subcellular localizations of chimeric GAREM1 and GAREM2 proteins, a glycine-rich region, which is present only in GAREM2, is required for the observed granule formation. This region also regulates the degree of EGF-stimulation-dependent tyrosine phosphorylation of GAREM2. CONCLUSIONS Our results, showing that aggregation of GAREM2 in response to EGF stimulation is dependent on a glycine-rich region, suggest that GAREM2 aggregation may be involved in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tasuku Nishino
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima, 727-0023, Japan
| | - Tsuyoshi Oshika
- Division of Bioscience and Biotechnology Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Nagano, 399-4598, Japan
| | - Moriatsu Kyan
- Division of Bioscience and Biotechnology Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Nagano, 399-4598, Japan
| | - Hiroaki Konishi
- Division of Bioscience and Biotechnology Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Nagano, 399-4598, Japan.
| |
Collapse
|
11
|
Synergy and allostery in ligand binding by HIV-1 Nef. Biochem J 2021; 478:1525-1545. [PMID: 33787846 PMCID: PMC8079166 DOI: 10.1042/bcj20201002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/27/2022]
Abstract
The Nef protein of human and simian immunodeficiency viruses boosts viral pathogenicity through its interactions with host cell proteins. By combining the polyvalency of its large unstructured regions with the binding selectivity and strength of its folded core domain, Nef can associate with many different host cell proteins, thereby disrupting their functions. For example, the combination of a linear proline-rich motif and hydrophobic core domain surface allows Nef to bind tightly and specifically to SH3 domains of Src family kinases. We investigated whether the interplay between Nef's flexible regions and its core domain could allosterically influence ligand selection. We found that the flexible regions can associate with the core domain in different ways, producing distinct conformational states that alter the way in which Nef selects for SH3 domains and exposes some of its binding motifs. The ensuing crosstalk between ligands might promote functionally coherent Nef-bound protein ensembles by synergizing certain subsets of ligands while excluding others. We also combined proteomic and bioinformatics analyses to identify human proteins that select SH3 domains in the same way as Nef. We found that only 3% of clones from a whole-human fetal library displayed Nef-like SH3 selectivity. However, in most cases, this selectivity appears to be achieved by a canonical linear interaction rather than by a Nef-like ‘tertiary' interaction. Our analysis supports the contention that Nef's mode of hijacking SH3 domains is a virus-specific adaptation with no or very few cellular counterparts. Thus, the Nef tertiary binding surface is a promising virus-specific drug target.
Collapse
|
12
|
Yeh SJ, Chen SW, Chen BS. Investigation of the Genome-Wide Genetic and Epigenetic Networks for Drug Discovery Based on Systems Biology Approaches in Colorectal Cancer. Front Genet 2020; 11:117. [PMID: 32211020 PMCID: PMC7068214 DOI: 10.3389/fgene.2020.00117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/31/2020] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed type of cancer worldwide. The mechanisms leading to the progression of CRC are involved in both genetic and epigenetic regulations. In this study, we applied systems biology methods to identify potential biomarkers and conduct drug discovery in a computational approach. Using big database mining, we constructed a candidate protein-protein interaction network and a candidate gene regulatory network, combining them into a genome-wide genetic and epigenetic network (GWGEN). With the assistance of system identification and model selection approaches, we obtain real GWGENs for early-stage, mid-stage, and late-stage CRC. Subsequently, we extracted core GWGENs for each stage of CRC from their real GWGENs through a principal network projection method, and projected them to the Kyoto Encyclopedia of Genes and Genomes pathways for further analysis. Finally, we compared these core pathways resulting in different molecular mechanisms in each stage of CRC and identified carcinogenic biomarkers for the design of multiple-molecule drugs to prevent the progression of CRC. Based on the identified gene expression signatures, we suggested potential compounds combined with known CRC drugs to prevent the progression of CRC with querying Connectivity Map (CMap).
Collapse
Affiliation(s)
- Shan-Ju Yeh
- Laboratory of Automatic Control, Signaling Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan.,Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Shuo-Wei Chen
- Laboratory of Automatic Control, Signaling Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signaling Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
13
|
Nishino T, Tamada K, Maeda A, Abe T, Kiyonari H, Funahashi Y, Kaibuchi K, Takumi T, Konishi H. Behavioral analysis in mice deficient for GAREM2 (Grb2-associated regulator of Erk/MAPK subtype2) that is a subtype of highly expressing in the brain. Mol Brain 2019; 12:94. [PMID: 31718706 PMCID: PMC6852768 DOI: 10.1186/s13041-019-0512-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/13/2019] [Indexed: 01/25/2023] Open
Abstract
Grb2-associated regulator of Erk/MAPK (GAREM), is an adaptor protein related to the several cell growth factor receptor-signaling. The GAREM family has two subtypes, GAREM1 and GAREM2, both encoded in the human and mouse genome. Recent genome-wide research identified GAREM2 as a candidate of neurodegenerative diseases. Here, we use knockout (KO) mice to show the role of GAREM2, that is highly expressed in the brain. According to the comprehensive behavioral battery, they exhibited less anxiety both in elevated plus maze and open field tests, mildly increased social approaching behavior in the reciprocal social interaction test, and longer latency to immobility in the tail suspension test as compared to wild-type (WT). Additionally, the extension of neurites in the primary cultured neurons was suppressed in ones derived from GAREM2 KO mice. Furthermore, we also identified Intersectin, as a binding partner of GAREM2 in this study. Intersectin is also a multi-domain adaptor protein that regulates endocytosis and cell signaling, which can potentially alter the subcellular localization of GAREM2. The important molecules, such as the neurotrophin receptor and Erk family, that are involved in the signaling pathway of the neural cell growth in the mouse brain, have been reported to participate in emotional behavior. As GAREM plays a role in the cellular growth factor receptor signaling pathway, GAREM2 may have a common role related to the transduction of Erk signaling in the higher brain functions.
Collapse
Affiliation(s)
- Tasuku Nishino
- The Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Akane Maeda
- The Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan
| | - Yasuhiro Funahashi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.,Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Chuo, Kobe, 650-0017, Japan
| | - Hiroaki Konishi
- The Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan.
| |
Collapse
|
14
|
Maeda A, Nishino T, Matsunaga R, Yokoyama A, Suga H, Yagi T, Konishi H. Transglutaminase-mediated cross-linking of WDR54 regulates EGF receptor-signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:285-295. [DOI: 10.1016/j.bbamcr.2018.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/06/2018] [Accepted: 11/16/2018] [Indexed: 12/31/2022]
|
15
|
MicroRNA-128 contributes to the progression of gastric carcinoma through GAREM-mediated MAPK signaling activation. Biochem Biophys Res Commun 2018; 504:295-301. [PMID: 30177387 DOI: 10.1016/j.bbrc.2018.08.177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 08/28/2018] [Indexed: 11/23/2022]
Abstract
Gastric carcinoma (GC) represents the most common malignant cancer and the second leading cause of cancer death worldwide. However, the molecular mechanisms and biological progression of GC remain unknown. In this study, we found that miR-128 is a critical tumor suppressor that is downregulated in GC patients and GC cells and that GAREM is a direct downstream target of miR-128. Overexpression of miR-128 in HGC-27 and MKN-45 cells resulted in suppressed cell growth and promoted cell apoptosis through a GAREM-dependent mechanism. Moreover, the precise mechanisms underlying the antitumor effect of miR-128 in GC are at least partially due to suppressing activation of the MAPK signaling pathway, induced by suppressing GAREM expression. This study is the first to demonstrate that the miR-128-GAREM-MAPK signaling pathway forms a critical feedback loop and mediates GC development, and these findings might demonstrate a potential therapeutic strategy for GC.
Collapse
|
16
|
Bossé Y, Amos CI. A Decade of GWAS Results in Lung Cancer. Cancer Epidemiol Biomarkers Prev 2018; 27:363-379. [PMID: 28615365 PMCID: PMC6464125 DOI: 10.1158/1055-9965.epi-16-0794] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/06/2016] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Genome-wide association studies (GWAS) were successful to identify genetic factors robustly associated with lung cancer. This review aims to synthesize the literature in this field and accelerate the translation of GWAS discoveries into results that are closer to clinical applications. A chronologic presentation of published GWAS on lung cancer susceptibility, survival, and response to treatment is presented. The most important results are tabulated to provide a concise overview in one read. GWAS have reported 45 lung cancer susceptibility loci with varying strength of evidence and highlighted suspected causal genes at each locus. Some genetic risk loci have been refined to more homogeneous subgroups of lung cancer patients in terms of histologic subtypes, smoking status, gender, and ethnicity. Overall, these discoveries are an important step for future development of new therapeutic targets and biomarkers to personalize and improve the quality of care for patients. GWAS results are on the edge of offering new tools for targeted screening in high-risk individuals, but more research is needed if GWAS are to pay off the investment. Complementary genomic datasets and functional studies are needed to refine the underlying molecular mechanisms of lung cancer preliminarily revealed by GWAS and reach results that are medically actionable. Cancer Epidemiol Biomarkers Prev; 27(4); 363-79. ©2018 AACRSee all articles in this CEBP Focus section, "Genome-Wide Association Studies in Cancer."
Collapse
Affiliation(s)
- Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada.
- Department of Molecular Medicine, Laval University, Quebec, Canada
| | - Christopher I Amos
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
17
|
GAREM1 regulates the PR interval on electrocardiograms. J Hum Genet 2017; 63:297-307. [PMID: 29273731 DOI: 10.1038/s10038-017-0367-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/22/2017] [Accepted: 09/06/2017] [Indexed: 11/09/2022]
Abstract
PR interval is the period from the onset of P wave to the start of the QRS complex on electrocardiograms. A recent genomewide association study (GWAS) suggested that GAREM1 was linked to the PR interval on electrocardiograms. This study was designed to validate this correlation using additional subjects and examined the function of Garem1 in a mouse model. We analyzed the association of rs17744182, a variant in the GAREM1 locus, with the PR interval in 5646 subjects who were recruited from 2 Korean replication sets, Yangpyeong (n = 2471) and Yonsei (n = 3175), and noted a significant genomewide association by meta-analysis (P = 2.39 × 10-8). To confirm the function of Garem1 in mice, Garem1 siRNA was injected into mouse tail veins to reduce the expression of Garem1. Garem1 transcript levels declined by 53% in the atrium of the heart (P = 0.029), and Garem1-siRNA injected mice experienced a significant decrease in PR interval (43.27 ms vs. 44.89 ms in control, P = 0.007). We analyzed the expression pattern of Garem1 in the heart by immunohistology and observed specific expression of Garem1 in intracardiac ganglia. Garem1 was expressed in most neurons of the ganglion, including cholinergic and adrenergic cells. We have provided evidence that GAREM1 is involved in the PR interval of ECGs. These findings increase our understanding of the regulatory signals of heart rhythm through intracardiac ganglia of the autonomic nervous system and can be used to guide the development of a therapeutic target for heart conditions, such as atrial fibrillation.
Collapse
|
18
|
Maeda A, Uchida M, Nishikawa S, Nishino T, Konishi H. Role of N-myristoylation in stability and subcellular localization of the CLPABP protein. Biochem Biophys Res Commun 2017; 495:1249-1256. [PMID: 29180010 DOI: 10.1016/j.bbrc.2017.11.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/17/2017] [Indexed: 11/28/2022]
Abstract
Cardiolipin and phosphatidic acid-binding protein (CLPABP) controls the stability of the mRNA harboring an AU-rich element (ARE) in the 3' UTR with the help of the RNA stabilizer, human antigen R (HuR). Although CLPABP is localized on the mitochondrial surface as a large protein-RNA complex, its precise role is not yet known. Recently, CLPABP was identified as an N-myristoylated protein. Here, we demonstrate the effects of N-myristoylation on the functions of CLPABP. In the present study, compared to the wild-type protein that possessed the "MG" motif at the N-terminus for N-myristoylation, the mutant CLPABP protein that lacked N-myristoylation modification site was unstable. Furthermore, the expression of the G/A mutant of CLPABP, which lacked N-myristoylation site, induced morphological alterations in mitochondria. Because pleckstrin homology domain-deleted mutant, which was fused with the N-myristoylation site derived from intact CLPABP, could not colocalize with mitochondria, N-myristoylation of CLPABP was predicted to affect its stability onto the mitochondrial membrane rather than its subcellular localization.
Collapse
Affiliation(s)
- Akane Maeda
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Moe Uchida
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Sumire Nishikawa
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Tasuku Nishino
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Hiroaki Konishi
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan.
| |
Collapse
|
19
|
Choi S, Cornall R, Lesourne R, Love PE. THEMIS: Two Models, Different Thresholds. Trends Immunol 2017; 38:622-632. [PMID: 28697966 DOI: 10.1016/j.it.2017.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 11/17/2022]
Abstract
THEMIS, a recently identified T-lineage-restricted protein, is the founding member of a large metazoan protein family. Gene inactivation studies have revealed a critical requirement for THEMIS during thymocyte positive selection, implicating THEMIS in signaling downstream of the T cell antigen receptor (TCR), but the mechanistic underpinnings of THEMIS function have remained elusive. A previous model posited that THEMIS prevents thymocytes from inappropriately crossing the positive/negative selection threshold by dampening TCR signaling. However, new data suggest an alternative model where THEMIS enhances TCR signaling enabling thymocytes to reach the threshold for positive selection, avoiding death by neglect. We review the data supporting each model and conclude that the preponderance of evidence favors an enhancing function for THEMIS in TCR signaling.
Collapse
Affiliation(s)
- Seeyoung Choi
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Cornall
- MRC Human Immunology Unit, Weatherall Institute for Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Renaud Lesourne
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Institut National de la Santé et de la Recherche Médicale, U1043, Centre National de la Recherche Scientifique, U5282, and Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Paul E Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Huang FK, Zhang G, Lawlor K, Nazarian A, Philip J, Tempst P, Dephoure N, Neubert TA. Deep Coverage of Global Protein Expression and Phosphorylation in Breast Tumor Cell Lines Using TMT 10-plex Isobaric Labeling. J Proteome Res 2017; 16:1121-1132. [PMID: 28102081 DOI: 10.1021/acs.jproteome.6b00374] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Labeling peptides with isobaric tags is a popular strategy in quantitative bottom-up proteomics. In this study, we labeled six breast tumor cell lysates (1.34 mg proteins per channel) using 10-plex tandem mass tag reagents and analyzed the samples on a Q Exactive HF Quadrupole-Orbitrap mass spectrometer. We identified a total of 8,706 proteins and 28,186 phosphopeptides, including 7,394 proteins and 23,739 phosphosites common to all channels. The majority of technical replicates correlated with a R2 ≥ 0.98, indicating minimum variability was introduced after labeling. Unsupervised hierarchical clustering of phosphopeptide data sets successfully classified the breast tumor samples into Her2 (epidermal growth factor receptor 2) positive and Her2 negative groups, whereas mRNA abundance did not. The tyrosine phosphorylation levels of receptor tyrosine kinases, phosphoinositide-3-kinase, protein kinase C delta, and Src homology 2, among others, were significantly higher in the Her2 positive than the Her2 negative group. Despite ratio compression in MS2-based experiments, we demonstrated the ratios calculated using an MS2 method are highly correlated (R2 > 0.65) with ratios obtained using MS3-based quantitation (using a Thermo Orbitrap Fusion mass spectrometer) with reduced ratio suppression. Given the deep coverage of global and phosphoproteomes, our data show that MS2-based quantitation using TMT can be successfully used for large-scale multiplexed quantitative proteomics.
Collapse
Affiliation(s)
- Fang-Ke Huang
- Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine , New York, New York 10016, United States
| | - Guoan Zhang
- Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine , New York, New York 10016, United States
| | - Kevin Lawlor
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Arpi Nazarian
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - John Philip
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Paul Tempst
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Noah Dephoure
- Sandra and Edward Meyer Cancer Center, Department of Biochemistry, Weill Cornell Medical College , New York, New York 10065, United States
| | - Thomas A Neubert
- Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine , New York, New York 10016, United States
| |
Collapse
|
21
|
Osinalde N, Sanchez-Quiles V, Akimov V, Aloria K, Arizmendi JM, Blagoev B, Kratchmarova I. Characterization of Receptor-Associated Protein Complex Assembly in Interleukin (IL)-2- and IL-15-Activated T-Cell Lines. J Proteome Res 2017; 16:106-121. [PMID: 27463037 DOI: 10.1021/acs.jproteome.6b00233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It remains a paradox that IL-2 and IL-15 can differentially modulate the immune response using the same signaling receptors. We have previously dissected the phosphotyrosine-driven signaling cascades triggered by both cytokines in Kit225 T-cells, unveiling subtle differences that may contribute to their functional dichotomy. In this study, we aimed to decipher the receptor complex assembly in IL-2- and IL-15-activated T-lymphocytes that is highly orchestrated by site-specific phosphorylation events. Comparing the cytokine-induced interactome of the interleukin receptor beta and gamma subunits shared by the two cytokines, we defined the components of the early IL-2 and IL-15 receptor-associated complex discovering novel constituents. Additionally, phosphopeptide-directed analysis allowed us to detect several cytokine-dependent and -independent phosphorylation events within the activated receptor complex including novel phosphorylated sites located in the cytoplasmic region of IL-2 receptor β subunit (IL-2Rβ). We proved that the distinct phosphorylations induced by the cytokines serve for recruiting different types of effectors to the initial receptor/ligand complex. Overall, our study sheds new light into the initial molecular events triggered by IL-2 and IL-15 and constitutes a further step toward a better understanding of the early signaling aspects of the two closely related cytokines in T-lymphocytes.
Collapse
Affiliation(s)
- Nerea Osinalde
- Department of Biochemistry and Molecular Biology, University of Southern Denmark , 5230 Odense M, Denmark
| | - Virginia Sanchez-Quiles
- Department of Biochemistry and Molecular Biology, University of Southern Denmark , 5230 Odense M, Denmark
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark , 5230 Odense M, Denmark
| | - Kerman Aloria
- Proteomics Core Facility-SGIKER, University of the Basque Country, UPV/EHU , 48940 Leioa, Spain
| | - Jesus M Arizmendi
- Department of Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU , 48940 Leioa, Spain
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark , 5230 Odense M, Denmark
| | - Irina Kratchmarova
- Department of Biochemistry and Molecular Biology, University of Southern Denmark , 5230 Odense M, Denmark
| |
Collapse
|
22
|
Croucher DR, Iconomou M, Hastings JF, Kennedy SP, Han JZR, Shearer RF, McKenna J, Wan A, Lau J, Aparicio S, Saunders DN. Bimolecular complementation affinity purification (BiCAP) reveals dimer-specific protein interactions for ERBB2 dimers. Sci Signal 2016; 9:ra69. [PMID: 27405979 DOI: 10.1126/scisignal.aaf0793] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The dynamic assembly of multiprotein complexes is a central mechanism of many cell signaling pathways. This process is key to maintaining the spatiotemporal specificity required for an accurate, yet adaptive, response to rapidly changing cellular conditions. We describe a technique for the specific isolation and downstream proteomic characterization of any two interacting proteins, to the exclusion of their individual moieties and competing binding partners. We termed the approach bimolecular complementation affinity purification (BiCAP) because it combines the use of conformation-specific nanobodies with a protein-fragment complementation assay with affinity purification. Using BiCAP, we characterized the specific interactome of the epidermal growth factor receptor (EGFR) family member ERBB2 when in the form of a homodimer or when in the form of a heterodimer with either EGFR or ERBB3. We identified dimer-specific interaction patterns for key adaptor proteins and identified a number of previously unknown interacting partners. Functional analysis for one of these newly identified partners revealed a noncanonical mechanism of extracellular signal-regulated kinase (ERK) activation that is specific to the ERBB2:ERBB3 heterodimer and acts through the adaptor protein FAM59A in breast cancer cells.
Collapse
Affiliation(s)
- David R Croucher
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia. St. Vincent's Hospital Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia. School of Medicine, University College Dublin, Belfield, Dublin D4, Ireland.
| | - Mary Iconomou
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
| | - Jordan F Hastings
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
| | - Sean P Kennedy
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia. Systems Biology Ireland, University College Dublin, Belfield, Dublin D4, Ireland
| | - Jeremy Z R Han
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
| | - Robert F Shearer
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
| | - Jessie McKenna
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
| | - Adrian Wan
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada
| | - Joseph Lau
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada
| | - Samuel Aparicio
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada. Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Darren N Saunders
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia. School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
23
|
Abstract
Despite extensive study of the EGF receptor (EGFR) signaling network, the immediate posttranslational changes that occur in response to growth factor stimulation remain poorly characterized; as a result, the biological mechanisms underlying signaling initiation remain obscured. To address this deficiency, we have used a mass spectrometry-based approach to measure system-wide phosphorylation changes throughout the network with 10-s resolution in the 80 s after stimulation in response to a range of eight growth factor concentrations. Significant changes were observed on proteins far downstream in the network as early as 10 s after stimulation, indicating a system capable of transmitting information quickly. Meanwhile, canonical members of the EGFR signaling network fall into clusters with distinct activation patterns. Src homology 2 domain containing transforming protein (Shc) and phosphoinositol 3-kinase (PI3K) phosphorylation levels increase rapidly, but equilibrate within 20 s, whereas proteins such as Grb2-associated binder-1 (Gab1) and SH2-containing tyrosine phosphatase (SHP2) show slower, sustained increases. Proximity ligation assays reveal that Shc and Gab1 phosphorylation patterns are representative of separate timescales for physical association with the receptor. Inhibition of phosphatases with vanadate reveals site-specific regulatory mechanisms and also uncovers primed activating components in the network, including Src family kinases, whose inhibition affects only a subset of proteins within the network. The results presented highlight the complexity of signaling initiation and provide a window into exploring mechanistic hypotheses about receptor tyrosine kinase (RTK) biology.
Collapse
|
24
|
Matsunaga R, Nishino T, Yokoyama A, Nakashima A, Kikkawa U, Konishi H. Versatile function of the circadian protein CIPC as a regulator of Erk activation. Biochem Biophys Res Commun 2016; 469:377-83. [PMID: 26657846 DOI: 10.1016/j.bbrc.2015.11.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/25/2015] [Indexed: 11/24/2022]
Abstract
The CLOCK-interacting protein, Circadian (CIPC), has been identified as an additional negative-feedback regulator of the circadian clock. However, recent study on CIPC knockout mice has shown that CIPC is not critically required for basic circadian clock function, suggesting other unknown biological roles for CIPC. In this study, we focused on the cell cycle dependent nuclear-cytoplasmic shuttling function of CIPC and on identifying its binding proteins. Lys186 and 187 were identified as the essential amino acid residues within the nuclear localization signal (NLS) of CIPC. We identified CIPC-binding proteins such as the multifunctional enzyme CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), which is a key enzyme for de novo pyrimidine synthesis. Compared to control cells, HEK293 cells overexpressing wild-type CIPC showed suppressed cell proliferation and retardation of cell cycle. We also found that PMA-induced Erk activation was inhibited with expression of wild-type CIPC. In contrast, the NLS mutant of CIPC, which reduced the ability of CIPC to translocate into the nucleus, did not exhibit these biological effects. Since CAD and Erk have significant roles in cell proliferation and cell cycle, CIPC may work as a cell cycle regulator by interacting with these binding proteins.
Collapse
Affiliation(s)
- Ryota Matsunaga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Tasuku Nishino
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Atsushi Yokoyama
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Akio Nakashima
- Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Ushio Kikkawa
- Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Hiroaki Konishi
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan.
| |
Collapse
|
25
|
Brenner DR, Amos CI, Brhane Y, Timofeeva MN, Caporaso N, Wang Y, Christiani DC, Bickeböller H, Yang P, Albanes D, Stevens VL, Gapstur S, McKay J, Boffetta P, Zaridze D, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Mates D, Bencko V, Foretova L, Janout V, Krokan HE, Skorpen F, Gabrielsen ME, Vatten L, Njølstad I, Chen C, Goodman G, Lathrop M, Vooder T, Välk K, Nelis M, Metspalu A, Broderick P, Eisen T, Wu X, Zhang D, Chen W, Spitz MR, Wei Y, Su L, Xie D, She J, Matsuo K, Matsuda F, Ito H, Risch A, Heinrich J, Rosenberger A, Muley T, Dienemann H, Field JK, Raji O, Chen Y, Gosney J, Liloglou T, Davies MPA, Marcus M, McLaughlin J, Orlow I, Han Y, Li Y, Zong X, Johansson M, Liu G, Tworoger SS, Le Marchand L, Henderson BE, Wilkens LR, Dai J, Shen H, Houlston RS, Landi MT, Brennan P, Hung RJ. Identification of lung cancer histology-specific variants applying Bayesian framework variant prioritization approaches within the TRICL and ILCCO consortia. Carcinogenesis 2015; 36:1314-26. [PMID: 26363033 PMCID: PMC4635669 DOI: 10.1093/carcin/bgv128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/17/2015] [Accepted: 08/24/2015] [Indexed: 01/08/2023] Open
Abstract
Large-scale genome-wide association studies (GWAS) have likely uncovered all common variants at the GWAS significance level. Additional variants within the suggestive range (0.0001> P > 5×10(-8)) are, however, still of interest for identifying causal associations. This analysis aimed to apply novel variant prioritization approaches to identify additional lung cancer variants that may not reach the GWAS level. Effects were combined across studies with a total of 33456 controls and 6756 adenocarcinoma (AC; 13 studies), 5061 squamous cell carcinoma (SCC; 12 studies) and 2216 small cell lung cancer cases (9 studies). Based on prior information such as variant physical properties and functional significance, we applied stratified false discovery rates, hierarchical modeling and Bayesian false discovery probabilities for variant prioritization. We conducted a fine mapping analysis as validation of our methods by examining top-ranking novel variants in six independent populations with a total of 3128 cases and 2966 controls. Three novel loci in the suggestive range were identified based on our Bayesian framework analyses: KCNIP4 at 4p15.2 (rs6448050, P = 4.6×10(-7)) and MTMR2 at 11q21 (rs10501831, P = 3.1×10(-6)) with SCC, as well as GAREM at 18q12.1 (rs11662168, P = 3.4×10(-7)) with AC. Use of our prioritization methods validated two of the top three loci associated with SCC (P = 1.05×10(-4) for KCNIP4, represented by rs9799795) and AC (P = 2.16×10(-4) for GAREM, represented by rs3786309) in the independent fine mapping populations. This study highlights the utility of using prior functional data for sequence variants in prioritization analyses to search for robust signals in the suggestive range.
Collapse
Affiliation(s)
- Darren R Brenner
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario M5T 3L9, Canada, Section of Genetics, International Agency for Research on Cancer, 69372 Lyon, France, Department of Cancer Epidemiology and Prevention Research, Cancer Control Alberta, Alberta Health Services, Calgary, Alberta T2T 5C7, Canada
| | - Christopher I Amos
- Department of Community and Family Medicine, Center for Genomic Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03766, USA
| | - Yonathan Brhane
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario M5T 3L9, Canada
| | - Maria N Timofeeva
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Neil Caporaso
- Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yufei Wang
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - David C Christiani
- Departments of Environmental Health and Epidemiology, Harvard University School of Public Health, Boston, MA 02115, USA
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Ping Yang
- Division of Health Sciences, Cancer Center and College of Medicine, Mayo Clinic, Rochester, NY 55905, USA
| | - Demetrius Albanes
- Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Victoria L Stevens
- Epidemiology Research Program, American Cancer Society, Epidemiology and Surveillance Research, Atlanta, GA 30301, USA
| | - Susan Gapstur
- Epidemiology Research Program, American Cancer Society, Epidemiology and Surveillance Research, Atlanta, GA 30301, USA
| | - James McKay
- Section of Genetics, International Agency for Research on Cancer, 69372 Lyon, France
| | - Paolo Boffetta
- Population Sciences, Tisch Cancer Center and Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David Zaridze
- Institute of Carcinogenesis, Russian N.N.Blokhin Cancer Research Centre, 115478 Moscow, Russia
| | | | - Jolanta Lissowska
- Department of Epidemiology and Cancer Prevention, The M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02781, Poland
| | - Peter Rudnai
- National Institute of Environmental Health, Budapest 1097, Hungary
| | - Eleonora Fabianova
- Department of Health Risk Assessment, Regional Authority of Public Health, Banská Bystrica 97556, Slovak Republic
| | - Dana Mates
- National Institute of Public Health, Bucharest 050463, Romania
| | - Vladimir Bencko
- Institute of Hygiene and Epidemiology, 1st Faculty of Medicine, Charles University in Prague, 128 00 Prague 2, Czech Republic
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno 65653, Czech Republic
| | - Vladimir Janout
- Department of Preventive Medicine, Palacky University, Olomouc 77515, Czech Republic
| | - Hans E Krokan
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine
| | - Frank Skorpen
- Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine and
| | - Maiken E Gabrielsen
- Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine and
| | - Lars Vatten
- Department of Public Health and General Practice, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim 7489, Norway
| | - Inger Njølstad
- Department of Community Medicine, University of Tromso, Tromso N-9037, Norway
| | - Chu Chen
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Gary Goodman
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mark Lathrop
- McGill University and Genome Québec Innovation Centre, Montréal, Quebec, Canada
| | - Tõnu Vooder
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Kristjan Välk
- Department of Biomedicine, University of Bergen, Bergen 5009, Norway
| | - Mari Nelis
- Institute of Molecular and Cell Biology, Estonian Biocentre, Genotyping Core Facility, Tartu 51010, Estonia
| | - Andres Metspalu
- Institute of Molecular and Cell Biology, Estonian Biocentre, Genotyping Core Facility, Tartu 51010, Estonia
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Timothy Eisen
- Department of Oncology, Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Xifeng Wu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Di Zhang
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Chen
- Department of Genetics, U.T. M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Margaret R Spitz
- Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongyue Wei
- Departments of Environmental Health and Epidemiology, Harvard University School of Public Health, Boston, MA 02115, USA
| | - Li Su
- Departments of Environmental Health and Epidemiology, Harvard University School of Public Health, Boston, MA 02115, USA
| | - Dong Xie
- Division of Health Sciences, Cancer Center and College of Medicine, Mayo Clinic, Rochester, NY 55905, USA
| | - Jun She
- Division of Health Sciences, Cancer Center and College of Medicine, Mayo Clinic, Rochester, NY 55905, USA
| | - Keitaro Matsuo
- Department of Preventive Medicine, Kyushu University Graduate School of Medicine, Fukuoka City 819-0395, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hidemi Ito
- Department of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Chikusa-ku Nagoya 464-0021, Japan
| | - Angela Risch
- Division of Epigenomics and Cancer Risk Factors, DKFZ, 69121 Heidelberg, Germany, Division of Epigenomics and Cancer Risk Factors, Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), 69121 Heidelberg, Germany
| | - Joachim Heinrich
- Unit of Environmental Epidemiology, Helmholtz Zentrum Munchen, 85764 Neuherberg, Germany
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Thomas Muley
- Division of Epigenomics and Cancer Risk Factors, Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), 69121 Heidelberg, Germany, Translational Research Unit and
| | - Hendrik Dienemann
- Division of Epigenomics and Cancer Risk Factors, Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), 69121 Heidelberg, Germany, Department of Thoracic Surgery, Thoraxklinik am Universitätsklinikum Heidelberg, 69117 Heidelberg, Germany
| | - John K Field
- Roy Castle Lung Cancer Research Programme, The University of Liverpool Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK
| | - Olaide Raji
- Roy Castle Lung Cancer Research Programme, The University of Liverpool Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK
| | - Ying Chen
- Roy Castle Lung Cancer Research Programme, The University of Liverpool Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK
| | - John Gosney
- Roy Castle Lung Cancer Research Programme, The University of Liverpool Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK
| | - Triantafillos Liloglou
- Roy Castle Lung Cancer Research Programme, The University of Liverpool Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK
| | - Michael P A Davies
- Roy Castle Lung Cancer Research Programme, The University of Liverpool Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK
| | - Michael Marcus
- Roy Castle Lung Cancer Research Programme, The University of Liverpool Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK
| | - John McLaughlin
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario M5T 3L9, Canada
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Younghun Han
- Department of Community and Family Medicine, Center for Genomic Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03766, USA
| | - Yafang Li
- Department of Community and Family Medicine, Center for Genomic Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03766, USA
| | - Xuchen Zong
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario M5T 3L9, Canada
| | - Mattias Johansson
- Section of Genetics, International Agency for Research on Cancer, 69372 Lyon, France
| | - Geoffrey Liu
- Medical Oncology and Haematology, Department of Medicine, Princess Margaret Hospital, Toronto, Ontario M5G 2M9, Canada
| | - Shelley S Tworoger
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Loic Le Marchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Brian E Henderson
- Keck School of Medicine, University of South California, Los Angeles, CA 90089-0911, USA and
| | - Lynne R Wilkens
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Maria T Landi
- Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Brennan
- Section of Genetics, International Agency for Research on Cancer, 69372 Lyon, France
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario M5T 3L9, Canada,
| |
Collapse
|
26
|
Nishino T, Matsunaga R, Konishi H. Functional relationship between CABIT, SAM and 14-3-3 binding domains of GAREM1 that play a role in its subcellular localization. Biochem Biophys Res Commun 2015; 464:616-21. [PMID: 26164232 DOI: 10.1016/j.bbrc.2015.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/04/2015] [Indexed: 11/29/2022]
Abstract
GAREM1 (Grb2-associated regulator of Erk/MAPK1) is an adaptor protein that is involved in the epidermal growth factor (EGF) pathway. The nuclear localization of GAREM1 depends on the nuclear localization sequence (NLS), which is located at the N-terminal CABIT (cysteine-containing, all in Themis) domain. Here, we identified 14-3-3ε as a GAREM-binding protein, and its binding site is closely located to the NLS. This 14-3-3 binding site was of the atypical type and independent of GAREM phosphorylation. Moreover, the binding of 14-3-3 had an effect on the nuclear localization of GAREM1. Unexpectedly, we observed that the CABIT domain had intramolecular association with the C-terminal SAM (sterile alpha motif) domain. This association might be inhibited by binding of 14-3-3 at the CABIT domain. Our results demonstrate that the mechanism underlying the nuclear localization of GAREM1 depends on its NLS in the CABIT domain, which is controlled by the binding of 14-3-3 and the C-terminal SAM domain. We suggest that the interplay between 14-3-3, SAM domain and CABIT domain might be responsible for the distribution of GAREM1 in mammalian cells.
Collapse
Affiliation(s)
- Tasuku Nishino
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Ryota Matsunaga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Hiroaki Konishi
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan.
| |
Collapse
|
27
|
Emdal KB, Pedersen AK, Bekker-Jensen DB, Tsafou KP, Horn H, Lindner S, Schulte JH, Eggert A, Jensen LJ, Francavilla C, Olsen JV. Temporal proteomics of NGF-TrkA signaling identifies an inhibitory role for the E3 ligase Cbl-b in neuroblastoma cell differentiation. Sci Signal 2015; 8:ra40. [PMID: 25921289 DOI: 10.1126/scisignal.2005769] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SH-SY5Y neuroblastoma cells respond to nerve growth factor (NGF)-mediated activation of the tropomyosin-related kinase A (TrkA) with neurite outgrowth, thereby providing a model to study neuronal differentiation. We performed a time-resolved analysis of NGF-TrkA signaling in neuroblastoma cells using mass spectrometry-based quantitative proteomics. The combination of interactome, phosphoproteome, and proteome data provided temporal insights into the molecular events downstream of NGF binding to TrkA. We showed that upon NGF stimulation, TrkA recruits the E3 ubiquitin ligase Cbl-b, which then becomes phosphorylated and ubiquitylated and decreases in abundance. We also found that recruitment of Cbl-b promotes TrkA ubiquitylation and degradation. Furthermore, the amount of phosphorylation of the kinase ERK and neurite outgrowth increased upon Cbl-b depletion in several neuroblastoma cell lines. Our findings suggest that Cbl-b limits NGF-TrkA signaling to control the length of neurites.
Collapse
Affiliation(s)
- Kristina B Emdal
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Anna-Kathrine Pedersen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Dorte B Bekker-Jensen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Kalliopi P Tsafou
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Heiko Horn
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Sven Lindner
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany. Department of Pediatric Oncology and Hematology, Charité Berlin, Charitéplatz 1, 10117 Berlin, Germany. German Cancer Consortium (DKTK), 13353 Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany. Department of Pediatric Oncology and Hematology, Charité Berlin, Charitéplatz 1, 10117 Berlin, Germany. German Cancer Consortium (DKTK), 13353 Berlin, Germany
| | - Lars J Jensen
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Chiara Francavilla
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.
| | - Jesper V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
28
|
Hartweger H, Schweighoffer E, Davidson S, Peirce MJ, Wack A, Tybulewicz VLJ. Themis2 is not required for B cell development, activation, and antibody responses. THE JOURNAL OF IMMUNOLOGY 2014; 193:700-7. [PMID: 24907343 PMCID: PMC4082722 DOI: 10.4049/jimmunol.1400943] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Themis1 is a protein implicated in transducing signals from the TCR. Mice deficient in Themis1 show a strong impairment in T cell selection in the thymus and defective T cell activation. The related Themis2 protein is expressed in B cells where it associates with signaling proteins Grb2 and Vav1, and is tyrosine phosphorylated after BCR stimulation. Thus, it has been proposed that Themis2 may transduce BCR signals, and hence play important roles in B cell development and activation. In this article, we show that Themis2 is expressed in all developing subsets of B cells, in mature follicular and marginal zone B cells, and in activated B cells, including germinal center B cells and plasma cells. In contrast, B lineage cells express no other Themis-family genes. Activation of B cells leads to reduced Themis2 expression, although it remains the only Themis-family protein expressed. To analyze the physiological function of Themis2, we generated a Themis2-deficient mouse strain. Surprisingly, we found that Themis2 is not required for B cell development, for activation, or for Ab responses either to model Ags or to influenza viral infection.
Collapse
Affiliation(s)
- Harald Hartweger
- Medical Research Council, National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| | - Edina Schweighoffer
- Medical Research Council, National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| | - Sophia Davidson
- Medical Research Council, National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| | - Matthew J Peirce
- Kennedy Institute of Rheumatology, Imperial College, London W6 8LH, United Kingdom
| | - Andreas Wack
- Medical Research Council, National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| | - Victor L J Tybulewicz
- Medical Research Council, National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| |
Collapse
|
29
|
Taniguchi T, Tanaka S, Ishii A, Watanabe M, Fujitani N, Sugeo A, Gotoh S, Ohta T, Hiyoshi M, Matsuzaki H, Sakai N, Konishi H. A brain-specific Grb2-associated regulator of extracellular signal-regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) (GAREM) subtype, GAREM2, contributes to neurite outgrowth of neuroblastoma cells by regulating Erk signaling. J Biol Chem 2013; 288:29934-42. [PMID: 24003223 DOI: 10.1074/jbc.m113.492520] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Grb2-associated regulator of Erk/MAPK1 (GAREM) is an adaptor molecule in the EGF-mediated signaling pathway. GAREM is expressed ubiquitously in human organs and cultured cells. Two GAREM homologues are encoded by the human genome. Therefore, previously identified GAREM is named GAREM1. Here we characterized a new subtype of GAREM, GAREM2, that is specifically expressed in the mouse, rat, and human brain. Three GAREM2 tyrosines (Tyr-102, Tyr-429, and Tyr-551) are phosphorylated upon EGF stimulation and are necessary for binding to Grb2. Furthermore, GAREM2 and Shp2 regulate Erk activity in EGF-stimulated cells. These characteristics are similar to those of GAREM1. GAREM2 is expressed in some neuroblastoma cell lines and is also tyrosine-phosphorylated and bound to Grb2 after treatment with EGF. Eventually, GAREM2 regulates Erk activation in the presence of EGF or insulin like growth factor 1. GAREM2 also regulates insulin-like growth factor 1-induced neuronal differentiation of the SH-SY5Y neuroblastoma cell line. Although the structure and function of both GAREM subtypes are similar, GAREM1 is recruited into the nucleus and GAREM2 is not. Nuclear localization of GAREM1 might be controlled by a GAREM1-specific nuclear localization sequence and 14-3-3ε binding. The N-terminal 20 amino acids of GAREM1 make up its nuclear localization sequence that is also a 14-3-3ε binding site. The GAREM family is a new class of adaptor molecules with subtype-specific biological functions.
Collapse
Affiliation(s)
- Tomonori Taniguchi
- From the Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Temporal regulation of EGF signalling networks by the scaffold protein Shc1. Nature 2013; 499:166-71. [PMID: 23846654 PMCID: PMC4931914 DOI: 10.1038/nature12308] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 05/16/2013] [Indexed: 11/14/2022]
Abstract
Cell-surface receptors frequently employ scaffold proteins to recruit cytoplasmic targets, but the rationale for this is uncertain. Activated receptor tyrosine kinases, for example, engage scaffolds such as Shc1 that contain phosphotyrosine (pTyr) binding (PTB) domains. Using quantitative mass spectrometry, we find that Shc1 responds to epidermal growth factor (EGF) stimulation through multiple waves of distinct phosphorylation events and protein interactions. Following stimulation, Shc1 rapidly binds a group of proteins that activate pro-mitogenic/survival pathways dependent on recruitment of the Grb2 adaptor to Shc1 pTyr sites. Akt-mediated feedback phosphorylation of Shc1 Ser29 then recruits the Ptpn12 tyrosine phosphatase. This is followed by a sub-network of proteins involved in cytoskeletal reorganization, trafficking and signal termination that binds Shc1 with delayed kinetics, largely through the SgK269 pseudokinase/adaptor protein. Ptpn12 acts as a switch to convert Shc1 from pTyr/Grb2-based signaling to SgK269-mediated pathways that regulate cell invasion and morphogenesis. The Shc1 scaffold therefore directs the temporal flow of signaling information following EGF stimulation.
Collapse
|
31
|
Tzouros M, Golling S, Avila D, Lamerz J, Berrera M, Ebeling M, Langen H, Augustin A. Development of a 5-plex SILAC method tuned for the quantitation of tyrosine phosphorylation dynamics. Mol Cell Proteomics 2013; 12:3339-49. [PMID: 23882028 DOI: 10.1074/mcp.o113.027342] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The propagation of phosphorylation downstream of receptor tyrosine kinases is a key dynamic cellular event involved in signal transduction, which is often deregulated in disease states such as cancer. Probing phosphorylation dynamics is therefore crucial for understanding receptor tyrosine kinases' function and finding ways to inhibit their effects. MS methods combined with metabolic labeling such as stable isotope labeling with amino acids in cell culture (SILAC) have already proven successful in deciphering temporal phosphotyrosine perturbations. However, they are limited in terms of multiplexing, and they also are time consuming, because several experiments need to be performed separately. Here, we introduce an innovative approach based on 5-plex SILAC that allows monitoring of phosphotyrosine signaling perturbations induced by a drug treatment in one single experiment. Using this new labeling strategy specifically tailored for phosphotyrosines, it was possible to generate the time profiles for 318 unique phosphopeptides belonging to 215 proteins from an erlotinib-treated breast cancer cell line model. Hierarchical clustering of the time profiles followed by pathway enrichment analysis highlighted epidermal growth factor receptor (EGFR or ErbB1) and ErbB2 signaling as the major pathways affected by erlotinib, thereby validating the method. Moreover, based on the similarity of its time profile to those of other proteins in the ErbB pathways, the phosphorylation at Tyr453 of protein FAM59A, a recently described adaptor of EGFR, was confirmed as tightly involved in the signaling cascade. The present investigation also demonstrates the remote effect of EGFR inhibition on ErbB3 phosphorylation sites such as Tyr1289 and Tyr1328, as well as a potential feedback effect on Tyr877 of ErbB2. Overall, the 5-plex SILAC is a straightforward approach that extends sample multiplexing and builds up the arsenal of methods for tyrosine phosphorylation dynamics.
Collapse
Affiliation(s)
- Manuel Tzouros
- Translational Technologies and Bioinformatics, Non-Clinical Safety, Pharmaceuticals Division, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
32
|
D'Antonio M, Ciccarelli FD. Integrated analysis of recurrent properties of cancer genes to identify novel drivers. Genome Biol 2013; 14:R52. [PMID: 23718799 PMCID: PMC4054099 DOI: 10.1186/gb-2013-14-5-r52] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 05/29/2013] [Indexed: 11/10/2022] Open
Abstract
The heterogeneity of cancer genomes in terms of acquired mutations complicates the identification of genes whose modification may exert a driver role in tumorigenesis. In this study, we present a novel method that integrates expression profiles, mutation effects, and systemic properties of mutated genes to identify novel cancer drivers. We applied our method to ovarian cancer samples and were able to identify putative drivers in the majority of carcinomas without mutations in known cancer genes, thus suggesting that it can be used as a complementary approach to find rare driver mutations that cannot be detected using frequency-based approaches.
Collapse
|
33
|
Paster W, Brockmeyer C, Fu G, Simister PC, de Wet B, Martinez-Riaño A, Hoerter JAH, Feller SM, Wülfing C, Gascoigne NRJ, Acuto O. GRB2-mediated recruitment of THEMIS to LAT is essential for thymocyte development. THE JOURNAL OF IMMUNOLOGY 2013; 190:3749-56. [PMID: 23460737 DOI: 10.4049/jimmunol.1203389] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thymocyte-expressed molecule involved in selection (THEMIS) is a recently identified regulator of thymocyte positive selection. THEMIS's mechanism of action is unknown, and whether it has a role in TCR-proximal signaling is controversial. In this article, we show that THEMIS and the adapter molecule growth factor receptor-bound protein 2 (GRB2) associate constitutively through binding of a conserved PxRPxK motif within the proline-rich region 1 of THEMIS to the C-terminal SH3-domain of GRB2. This association is indispensable for THEMIS recruitment to the immunological synapse via the transmembrane adapter linker for activation of T cells (LAT) and for THEMIS phosphorylation by Lck and ZAP-70. Two major sites of tyrosine phosphorylation were mapped to a YY-motif close to proline-rich region 1. The YY-motif was crucial for GRB2 binding, suggesting that this region of THEMIS might control local phosphorylation-dependent conformational changes important for THEMIS function. Finally, THEMIS binding to GRB2 was required for thymocyte development. Our data firmly assign THEMIS to the TCR-proximal signaling cascade as a participant in the LAT signalosome and suggest that the THEMIS-GRB2 complex might be involved in shaping the nature of Ras signaling, thereby governing thymic selection.
Collapse
Affiliation(s)
- Wolfgang Paster
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ishii A, Kamimori K, Hiyoshi M, Kido H, Ohta T, Konishi H. Inhibitory effect of SPE-39 due to tyrosine phosphorylation and ubiquitination on the function of Vps33B in the EGF-stimulated cells. FEBS Lett 2012; 586:2245-50. [PMID: 22677173 DOI: 10.1016/j.febslet.2012.05.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 11/18/2022]
Abstract
Although SPE-39 is a binding protein to Vps33B that is one of the subunit in the mammalian HOPS complex, the elements of SPE-39 function remain unknown. Here, we show that tyrosine phosphorylation of SPE-39 following EGF stimulation plays a role in the stability of SPE-39 itself. Ubiquitination of the C-terminal region of SPE-39 was also elevated in response to EGF stimulation, and this process was regulated by the phosphorylation of Tyr-11 in SPE-39. However, association of Vps33B with SPE-39 inhibited the elevation of ubiquitination of SPE-39 following EGF stimulation, which might be responsible for the stabilization of SPE-39. Furthermore, an opposing functional relationship between SPE-39 and Vps33B on the downregulation of the EGF receptor was observed in EGF-stimulated COS-7 cells.
Collapse
Affiliation(s)
- Ayumi Ishii
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Toward an understanding of the protein interaction network of the human liver. Mol Syst Biol 2011; 7:536. [PMID: 21988832 PMCID: PMC3261708 DOI: 10.1038/msb.2011.67] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 08/05/2011] [Indexed: 12/19/2022] Open
Abstract
An extensive interaction network of human liver-expressed proteins is described, composed of 3484 interactions among 2582 proteins. Proteins associated with liver disease tend to be central and highly connected in the network. Proteome-scale protein interaction maps are available for many organisms, ranging from bacteria, yeast, worms and flies to humans. These maps provide substantial new insights into systems biology, disease research and drug discovery. However, only a small fraction of the total number of human protein–protein interactions has been identified. In this study, we map the interactions of an unbiased selection of 5026 human liver expression proteins by yeast two-hybrid technology and establish a human liver protein interaction network (HLPN) composed of 3484 interactions among 2582 proteins. The data set has a validation rate of over 72% as determined by three independent biochemical or cellular assays. The network includes metabolic enzymes and liver-specific, liver-phenotype and liver-disease proteins that are individually critical for the maintenance of liver functions. The liver enriched proteins had significantly different topological properties and increased our understanding of the functional relationships among proteins in a liver-specific manner. Our data represent the first comprehensive description of a HLPN, which could be a valuable tool for understanding the functioning of the protein interaction network of the human liver.
Collapse
|
36
|
Kim JJ, Park YM, Baik KH, Choi HY, Yang GS, Koh I, Hwang JA, Lee J, Lee YS, Rhee H, Kwon TS, Han BG, Heath KE, Inoue H, Yoo HW, Park K, Lee JK. Exome sequencing and subsequent association studies identify five amino acid-altering variants influencing human height. Hum Genet 2011; 131:471-8. [PMID: 21959382 DOI: 10.1007/s00439-011-1096-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/19/2011] [Indexed: 11/30/2022]
Abstract
Height is a highly heritable trait that involves multiple genetic loci. To identify causal variants that influence stature, we sequenced whole exomes of four children with idiopathic short stature. Ninety-five nonsynonymous single-nucleotide polymorphisms (nsSNPs) were selected as potential candidate variants. We performed association analysis in 740 cohort individuals and identified 11 nsSNPs in 10 loci (DIS3L2, ZBTB38, FAM154A, PTCH1, TSSC4, KIF18A, GPR133, ACAN, FAM59A, and NINL) associated with adult height (P < 0.05), including five novel loci. Of these, two nsSNPs (TSSC4 and KIF18A loci) were significant at P < 0.05 in the replication study (n = 1,000) and five (ZBTB38, FAM154A, TSSC4, KIF18A, and FAM59A loci) were significant at P < 0.01 in the combined analysis (n = 1,740). Together, the five nsSNPs accounted for approximately 2.5% of the height variation. This study demonstrated the utility of next-generation sequencing in identifying genetic variants and loci associated with complex traits.
Collapse
Affiliation(s)
- Jae-Jung Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, 388-1 Pungnap-2-Dong, Songpa-Gu, Seoul, 138-736, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Naegle KM, Welsch RE, Yaffe MB, White FM, Lauffenburger DA. MCAM: multiple clustering analysis methodology for deriving hypotheses and insights from high-throughput proteomic datasets. PLoS Comput Biol 2011; 7:e1002119. [PMID: 21799663 PMCID: PMC3140961 DOI: 10.1371/journal.pcbi.1002119] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/25/2011] [Indexed: 01/22/2023] Open
Abstract
Advances in proteomic technologies continue to substantially accelerate capability for generating experimental data on protein levels, states, and activities in biological samples. For example, studies on receptor tyrosine kinase signaling networks can now capture the phosphorylation state of hundreds to thousands of proteins across multiple conditions. However, little is known about the function of many of these protein modifications, or the enzymes responsible for modifying them. To address this challenge, we have developed an approach that enhances the power of clustering techniques to infer functional and regulatory meaning of protein states in cell signaling networks. We have created a new computational framework for applying clustering to biological data in order to overcome the typical dependence on specific a priori assumptions and expert knowledge concerning the technical aspects of clustering. Multiple clustering analysis methodology (‘MCAM’) employs an array of diverse data transformations, distance metrics, set sizes, and clustering algorithms, in a combinatorial fashion, to create a suite of clustering sets. These sets are then evaluated based on their ability to produce biological insights through statistical enrichment of metadata relating to knowledge concerning protein functions, kinase substrates, and sequence motifs. We applied MCAM to a set of dynamic phosphorylation measurements of the ERRB network to explore the relationships between algorithmic parameters and the biological meaning that could be inferred and report on interesting biological predictions. Further, we applied MCAM to multiple phosphoproteomic datasets for the ERBB network, which allowed us to compare independent and incomplete overlapping measurements of phosphorylation sites in the network. We report specific and global differences of the ERBB network stimulated with different ligands and with changes in HER2 expression. Overall, we offer MCAM as a broadly-applicable approach for analysis of proteomic data which may help increase the current understanding of molecular networks in a variety of biological problems. Proteomic measurements, especially modification measurements, are greatly expanding the current knowledge of the state of proteins under various conditions. Harnessing these measurements to understand how these modifications are enzymatically regulated and their subsequent function in cellular signaling and physiology is a challenging new problem. Clustering has been very useful in reducing the dimensionality of many types of high-throughput biological data, as well inferring function of poorly understood molecular species. However, its implementation requires a great deal of technical expertise since there are a large number of parameters one must decide on in clustering, including data transforms, distance metrics, and algorithms. Previous knowledge of useful parameters does not exist for measurements of a new type. In this work we address two issues. First, we develop a framework that incorporates any number of possible parameters of clustering to produce a suite of clustering solutions. These solutions are then judged on their ability to infer biological information through statistical enrichment of existing biological annotations. Second, we apply this framework to dynamic phosphorylation measurements of the ERBB network, constructing the first extensive analysis of clustering of phosphoproteomic data and generating insight into novel components and novel functions of known components of the ERBB network.
Collapse
Affiliation(s)
- Kristen M Naegle
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
38
|
Takeda S, Fujimoto A, Yamauchi E, Hiyoshi M, Kido H, Watanabe T, Kaibuchi K, Ohta T, Konishi H. Role of a tyrosine phosphorylation of SMG-9 in binding of SMG-9 to IQGAP and the NMD complex. Biochem Biophys Res Commun 2011; 410:29-33. [PMID: 21640080 DOI: 10.1016/j.bbrc.2011.05.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 05/17/2011] [Indexed: 12/11/2022]
Abstract
SMG-9 is a component of the NMD complex, a heterotetramer that also includes SMG-1 and SMG-8 in the complex. SMG-9 was also originally identified as a tyrosine-phosphorylated protein but the role of the phosphorylation is not yet known. In this study, we determined that IQGAP protein, an actin cytoskeleton modifier acts as a binding partner with SMG-9 and this binding is regulated by phosphorylation of SMG-9 at Tyr-41. SMG-9 is co-localized with IQGAP1 as a part of the process of actin enrichment in non-stimulated cells, but not in the EGF-stimulated cells. Furthermore, an increase in the ability of SMG-9 to bind to SMG-8 occurs in response to EGF stimulation. These results suggest that tyrosine phosphorylation of SMG-9 may play a role in the formation of the NMD complex in the cells stimulated by the growth factor.
Collapse
Affiliation(s)
- Saori Takeda
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Csepeggi C, Jiang M, Kojima F, Crofford LJ, Frolov A. Somatic cell plasticity and Niemann-Pick type C2 protein: fibroblast activation. J Biol Chem 2010; 286:2078-87. [PMID: 21084287 DOI: 10.1074/jbc.m110.135897] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A growing body of evidence points toward activated fibroblasts, also known as myofibroblasts, as one of the leading mediators in several major human pathologies including proliferative fibrotic disorders, invasive tumor growth, rheumatoid arthritis, and atherosclerosis. Niemann-Pick Type C2 (NPC2) protein has been recently identified as a product of the second gene in NPC disease. It encodes ubiquitous, highly conserved, secretory protein with the poorly defined function. Here we show that NPC2 deficiency in human fibroblasts confers their activation. The activation phenomenon was not limited to fibroblasts as it was also observed in aortic smooth muscle cells upon silencing NPC2 gene by siRNA. More importantly, activated synovial fibroblasts isolated from patients with rheumatoid arthritis were also identified as NPC2-deficient at both the NPC2 mRNA and protein levels. The molecular mechanism responsible for activation of NPC2-null cells was shown to be a sustained phosphorylation of ERK 1/2 mitogen-activated protein kinase (MAPK), which fulfills both the sufficient and necessary fibroblast activation criteria. All of these findings highlight a novel mechanism where NPC2 by negatively regulating ERK 1/2 MAPK phosphorylation may efficiently suppress development of maladaptive tissue remodeling and inflammation.
Collapse
Affiliation(s)
- Chad Csepeggi
- Division of Cardiovascular Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
40
|
Tashiro K, Konishi H, Nabeshi H, Yamauchi E, Taniguchi H. [New functional proteins identified by proteomic analysis in the epidermal growth factor receptor-mediated signaling pathway and application for practical use]. YAKUGAKU ZASSHI 2010; 130:471-7. [PMID: 20371988 DOI: 10.1248/yakushi.130.471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To clarify the whole picture of epidermal growth factor (EGF) signaling pathway, we identified proteins from the EGF-stimulated A431 cells by anti-phospho-tyrosine antibody column chromatography. Over 150 proteins were detected including previously unidentified proteins as well as well-studied proteins. Among these proteins, we picked up four proteins that had not been known in EGF signaling pathway and analyzed their functions. We report the functions of these proteins in this article. 1) CFBP interacts with CD2AP family proteins and functions as a key component in downregulation of EGF receptor protein level following EGF stimulation. 2) Ymer is found to be phosphorylated and ubiquitinated upon EGF stimulation, and functions as a regulator for the downregulation and endocytosis of EGF receptor. 3) CLPABP binds to mitochondria-specific phospholipids, cardiolipin, through its PH domain, and its complex includes various proteins related to mRNA metabolism. 4) GAREM is associated with Grb2 and Shp2. Each association affects the ERK activity. Finally, we discuss the possibilities that these proteins can be used as a novel biomarker protein for cancer and other diseases.
Collapse
|