1
|
Hegron A, Peach CJ, Tonello R, Seemann P, Teng S, Latorre R, Huebner H, Weikert D, Rientjes J, Veldhuis NA, Poole DP, Jensen DD, Thomsen ARB, Schmidt BL, Imlach WL, Gmeiner P, Bunnett NW. Therapeutic antagonism of the neurokinin 1 receptor in endosomes provides sustained pain relief. Proc Natl Acad Sci U S A 2023; 120:e2220979120. [PMID: 37216510 PMCID: PMC10235985 DOI: 10.1073/pnas.2220979120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/04/2023] [Indexed: 05/24/2023] Open
Abstract
The hypothesis that sustained G protein-coupled receptor (GPCR) signaling from endosomes mediates pain is based on studies with endocytosis inhibitors and lipid-conjugated or nanoparticle-encapsulated antagonists targeted to endosomes. GPCR antagonists that reverse sustained endosomal signaling and nociception are needed. However, the criteria for rational design of such compounds are ill-defined. Moreover, the role of natural GPCR variants, which exhibit aberrant signaling and endosomal trafficking, in maintaining pain is unknown. Herein, substance P (SP) was found to evoke clathrin-mediated assembly of endosomal signaling complexes comprising neurokinin 1 receptor (NK1R), Gαq/i, and βarrestin-2. Whereas the FDA-approved NK1R antagonist aprepitant induced a transient disruption of endosomal signals, analogs of netupitant designed to penetrate membranes and persist in acidic endosomes through altered lipophilicity and pKa caused sustained inhibition of endosomal signals. When injected intrathecally to target spinal NK1R+ve neurons in knockin mice expressing human NK1R, aprepitant transiently inhibited nociceptive responses to intraplantar injection of capsaicin. Conversely, netupitant analogs had more potent, efficacious, and sustained antinociceptive effects. Mice expressing C-terminally truncated human NK1R, corresponding to a natural variant with aberrant signaling and trafficking, displayed attenuated SP-evoked excitation of spinal neurons and blunted nociceptive responses to SP. Thus, sustained antagonism of the NK1R in endosomes correlates with long-lasting antinociception, and domains within the C-terminus of the NK1R are necessary for the full pronociceptive actions of SP. The results support the hypothesis that endosomal signaling of GPCRs mediates nociception and provides insight into strategies for antagonizing GPCRs in intracellular locations for the treatment of diverse diseases.
Collapse
Affiliation(s)
- Alan Hegron
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
| | - Chloe J. Peach
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
| | - Raquel Tonello
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
| | - Philipp Seemann
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Shavonne Teng
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
| | - Rocco Latorre
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
| | - Harald Huebner
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Dorothee Weikert
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Jeanette Rientjes
- Gene Modification Platform, Monash University, Clayton, VIC3168, Australia
| | - Nicholas A. Veldhuis
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Daniel P. Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Dane D. Jensen
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
- NYU Dentistry Translational Research Center, College of Dentistry, New York University, New York, NY10010
| | - Alex R. B. Thomsen
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
| | - Brian L. Schmidt
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
- NYU Dentistry Translational Research Center, College of Dentistry, New York University, New York, NY10010
| | - Wendy L. Imlach
- Department of Physiology and Monash Biomedicine Discovery Institute, Monash University, VIC3800, Australia
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Nigel W. Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
| |
Collapse
|
2
|
Jiménez-Vargas NN, Yu Y, Jensen DD, Bok DD, Wisdom M, Latorre R, Lopez C, Jaramillo-Polanco JO, Degro C, Guzman-Rodriguez M, Tsang Q, Snow Z, Schmidt BL, Reed DE, Lomax AE, Margolis KG, Stein C, Bunnett NW, Vanner SJ. Agonist that activates the µ-opioid receptor in acidified microenvironments inhibits colitis pain without side effects. Gut 2022; 71:695-704. [PMID: 33785555 PMCID: PMC8608554 DOI: 10.1136/gutjnl-2021-324070] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The effectiveness of µ-opioid receptor (MOPr) agonists for treatment of visceral pain is compromised by constipation, respiratory depression, sedation and addiction. We investigated whether a fentanyl analogue, (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP), which preferentially activates MOPr in acidified diseased tissues, would inhibit pain in a preclinical model of inflammatory bowel disease (IBD) without side effects in healthy tissues. DESIGN Antinociceptive actions of NFEPP and fentanyl were compared in control mice and mice with dextran sodium sulfate colitis by measuring visceromotor responses to colorectal distension. Patch clamp and extracellular recordings were used to assess nociceptor activation. Defecation, respiration and locomotion were assessed. Colonic migrating motor complexes were assessed by spatiotemporal mapping of isolated tissue. NFEPP-induced MOPr signalling and trafficking were studied in human embryonic kidney 293 cells. RESULTS NFEPP inhibited visceromotor responses to colorectal distension in mice with colitis but not in control mice, consistent with acidification of the inflamed colon. Fentanyl inhibited responses in both groups. NFEPP inhibited the excitability of dorsal root ganglion neurons and suppressed mechanical sensitivity of colonic afferent fibres in acidified but not physiological conditions. Whereas fentanyl decreased defecation and caused respiratory depression and hyperactivity in mice with colitis, NFEPP was devoid of these effects. NFEPP did not affect colonic migrating motor complexes at physiological pH. NFEPP preferentially activated MOPr in acidified extracellular conditions to inhibit cAMP formation, recruit β-arrestins and evoke MOPr endocytosis. CONCLUSION In a preclinical IBD model, NFEPP preferentially activates MOPr in acidified microenvironments of inflamed tissues to induce antinociception without causing respiratory depression, constipation and hyperactivity.
Collapse
Affiliation(s)
| | - Yang Yu
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Dane D Jensen
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York, USA
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Diana Daeun Bok
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Matthew Wisdom
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Rocco Latorre
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Cintya Lopez
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Josue O Jaramillo-Polanco
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Claudius Degro
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Mabel Guzman-Rodriguez
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Quentin Tsang
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Zachary Snow
- Department of Pediatrics, Columbia University in the City of New York, New York, New York, USA
| | - Brian L Schmidt
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York, USA
| | - David E Reed
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Alan Edward Lomax
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Kara Gross Margolis
- Department of Pediatrics, Columbia University in the City of New York, New York, New York, USA
| | - Christoph Stein
- Department Experimental Anaesthesiology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
- Department of Neuroscience and Physiology, Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York, USA
| | - Stephen J Vanner
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| |
Collapse
|
3
|
Lan C, Liu Y, Wu X, Wang B, Xin S, He Q, Zhong W, Liu Z. Susceptibility of ECE1 polymorphisms to Hirschsprung's disease in southern Chinese children. Front Pediatr 2022; 10:1056938. [PMID: 36619519 PMCID: PMC9813666 DOI: 10.3389/fped.2022.1056938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hirschsprung's disease (HSCR) is currently considered to be a congenital gastrointestinal malformation caused mainly by genetic factors. Endothelin Converting Enzyme-1 (ECE1) has been reported to be associated with HSCR. However, the relationship between ECE1 single nucleotide polymorphism (SNP) rs169884 and HSCR in the southern Chinese population remains unknown. METHODS 1,470 HSCR patients and 1,473 controls from a southern Chinese population were recruited. The intronic SNP rs169884 in ECE1 was genotyped in all samples. We tested the association between rs169884 and HSCR under various genetic models. We also evaluated the effect of rs169884 on HSCR subtypes, including short-segment HSCR (S-HSCR), long-segment HSCR (L-HSCR) and total colonic aganglionosis (TCA). External epigenetic data were integrated to investigate the potential biological function of rs169884. RESULTS Chromatin states data from derived neuron cells or fetal colon tissue revealed that rs169884 might control ECE1 expression through regulating its enhancer function. We did not find a significant association between rs169884 and HSCR. For HSCR subtypes, although no significant associations were detected between rs169884 and S-HSCR (OR = 1.00, 95% CI: 0.89∼1.12, Padj = 0.77) or TCA (OR = 1.00, 95% CI: 0.72∼1.38, Padj = 0.94), we found that rs169884 could increase the risk of L-HSCR (OR = 1.23, 95% CI 1.02∼1.45, Padj = 0.024). CONCLUSION These results suggested that rs169884 might play a regulatory role for ECE1 expression and increase susceptibility of L-HSCR in southern Chinese children.
Collapse
Affiliation(s)
- Chaoting Lan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanqing Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao Wu
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Bingtong Wang
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | | | - Qiuming He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Zhong
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zipeng Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Shi Y, Wang X, Meng Y, Ma J, Zhang Q, Shao G, Wang L, Cheng X, Hong X, Wang Y, Yan Z, Cao Y, Kang J, Fu C. A Novel Mechanism of Endoplasmic Reticulum Stress- and c-Myc-Degradation-Mediated Therapeutic Benefits of Antineurokinin-1 Receptor Drugs in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101936. [PMID: 34605226 PMCID: PMC8564433 DOI: 10.1002/advs.202101936] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/30/2021] [Indexed: 06/13/2023]
Abstract
The neurokinin-1 receptor (NK-1R) antagonists are approved as treatment for chemotherapy-associated nausea and vomiting in cancer patients. The emerging role of the substance P-NK-1R system in oncogenesis raises the possibility of repurposing well-tolerated NK-1R antagonists for cancer treatment. This study reports that human colorectal cancer (CRC) patients with high NK-1R expression have poor survival, and NK-1R antagonists SR140333 and aprepitant induce apoptotic cell death in CRC cells and inhibit CRC xenograft growth. This cytotoxicity induced by treatment with NK-1R antagonists is mediated by induction of endoplasmic reticulum (ER) stress. ER stress triggers calcium release, resulting in the suppression of prosurvival extracellular signal-regulated kinase (ERK)-c-Myc signaling. Along with ER calcium release, one ER stress pathway mediated by protein kinase RNA-like ER kinase (PERK) is specifically activated, leading to increased expression of proapoptotic C/EBP-homologous protein (CHOP). Moreover, NK-1R antagonists enhance the efficacy of chemotherapy by increasing the sensitivity and overcoming resistance to 5-fluorouracil in CRC cells through the induction of sustained ER stress and the consequent suppression of ERK-c-Myc signaling both in vitro and in vivo. Collectively, the findings provide novel mechanistic insights into the efficacy of NK-1R antagonists either as a single agent or in combination with chemotherapy for cancer treatment.
Collapse
Affiliation(s)
- Yue Shi
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and BiomedicineCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Xi Wang
- Department of OncologyNo. 903 Hospital of PLA Joint Logistic Support ForceXi Hu Affiliated Hospital of Hangzhou Medical CollegeHangzhou310013China
| | - Yueming Meng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and BiomedicineCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Junjie Ma
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and BiomedicineCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Qiyu Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and BiomedicineCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Gang Shao
- Department of OncologyNo. 903 Hospital of PLA Joint Logistic Support ForceXi Hu Affiliated Hospital of Hangzhou Medical CollegeHangzhou310013China
| | - Lingfei Wang
- Department of OncologyNo. 903 Hospital of PLA Joint Logistic Support ForceXi Hu Affiliated Hospital of Hangzhou Medical CollegeHangzhou310013China
| | - Xurui Cheng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and BiomedicineCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Xiangyu Hong
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and BiomedicineCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Yong Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and BiomedicineCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Zhibin Yan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and BiomedicineCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Yihai Cao
- Department of MicrobiologyTumor and Cell BiologyKarolinska InstituteStockholm171 77Sweden
| | - Jian Kang
- Oncogenic Signalling and Growth Control ProgramPeter MacCallum Cancer Centre305 Grattan StreetMelbourneVictoria3000Australia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoria3000Australia
| | - Caiyun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and BiomedicineCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhou310018China
| |
Collapse
|
5
|
Li XC, Wang CH, Leite APO, Zhuo JL. Intratubular, Intracellular, and Mitochondrial Angiotensin II/AT 1 (AT1a) Receptor/NHE3 Signaling Plays a Critical Role in Angiotensin II-Induced Hypertension and Kidney Injury. Front Physiol 2021; 12:702797. [PMID: 34408663 PMCID: PMC8364949 DOI: 10.3389/fphys.2021.702797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Hypertension is well recognized to be the most important risk factor for cardiovascular diseases, stroke, and end-stage kidney failure. A quarter of the world’s adult populations and 46% of the US adults develop hypertension and currently require antihypertensive treatments. Only 50% of hypertensive patients are responsive to current antihypertensive drugs, whereas remaining patients may continue to develop cardiovascular, stroke, and kidney diseases. The mechanisms underlying the poorly controlled hypertension remain incompletely understood. Recently, we have focused our efforts to uncover additional renal mechanisms, pathways, and therapeutic targets of poorly controlled hypertension and target organ injury using novel animal models or innovative experimental approaches. Specifically, we studied and elucidated the important roles of intratubular, intracellular, and mitochondrial angiotensin II (Ang II) system in the development of Ang II-dependent hypertension. The objectives of this invited article are to review and discuss our recent findings that (a) circulating and intratubular Ang II is taken up by the proximal tubules via the (AT1) AT1a receptor-dependent mechanism, (b) intracellular administration of Ang II in proximal tubule cells or adenovirus-mediated overexpression of an intracellular Ang II fusion protein selectively in the mitochonria of the proximal tubules induces blood pressure responses, and (c) genetic deletion of AT1 (AT1a) receptors or the Na+/H+ exchanger 3 selectively in the proximal tubules decreases basal blood pressure and attenuates Ang II-induced hypertension. These studies provide a new perspective into the important roles of the intratubular, intracellular, and mitochondrial angiotensin II/AT1 (AT1a) receptor signaling in Ang II-dependent hypertensive kidney diseases.
Collapse
Affiliation(s)
- Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Chih-Hong Wang
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Ana Paula Oliveira Leite
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| |
Collapse
|
6
|
Soday L, Potts M, Hunter LM, Ravenhill BJ, Houghton JW, Williamson JC, Antrobus R, Wills MR, Matheson NJ, Weekes MP. Comparative Cell Surface Proteomic Analysis of the Primary Human T Cell and Monocyte Responses to Type I Interferon. Front Immunol 2021; 12:600056. [PMID: 33628210 PMCID: PMC7897682 DOI: 10.3389/fimmu.2021.600056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/13/2021] [Indexed: 12/28/2022] Open
Abstract
The cellular response to interferon (IFN) is essential for antiviral immunity, IFN-based therapy and IFN-related disease. The plasma membrane (PM) provides a critical interface between the cell and its environment, and is the initial portal of entry for viruses. Nonetheless, the effect of IFN on PM proteins is surprisingly poorly understood, and has not been systematically investigated in primary immune cells. Here, we use multiplexed proteomics to quantify IFNα2a-stimulated PM protein changes in primary human CD14+ monocytes and CD4+ T cells from five donors, quantifying 606 and 482 PM proteins respectively. Comparison of cell surface proteomes revealed a remarkable invariance between donors in the overall composition of the cell surface from each cell type, but a marked donor-to-donor variability in the effects of IFNα2a. Furthermore, whereas only 2.7% of quantified proteins were consistently upregulated by IFNα2a at the surface of CD4+ T cells, 6.8% of proteins were consistently upregulated in primary monocytes, suggesting that the magnitude of the IFNα2a response varies according to cell type. Among these differentially regulated proteins, we found the viral target Endothelin-converting enzyme 1 (ECE1) to be an IFNα2a-stimulated protein exclusively upregulated at the surface of CD4+ T cells. We therefore provide a comprehensive map of the cell surface of IFNα2a-stimulated primary human immune cells, including previously uncharacterized interferon stimulated genes (ISGs) and candidate antiviral factors.
Collapse
Affiliation(s)
- Lior Soday
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Martin Potts
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Leah M. Hunter
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin J. Ravenhill
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Jack W. Houghton
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - James C. Williamson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Mark R. Wills
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Nicholas J. Matheson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Mai QN, Shenoy P, Quach T, Retamal JS, Gondin AB, Yeatman HR, Aurelio L, Conner JW, Poole DP, Canals M, Nowell CJ, Graham B, Davis TP, Briddon SJ, Hill SJ, Porter CJH, Bunnett NW, Halls ML, Veldhuis NA. A lipid-anchored neurokinin 1 receptor antagonist prolongs pain relief by a three-pronged mechanism of action targeting the receptor at the plasma membrane and in endosomes. J Biol Chem 2021; 296:100345. [PMID: 33515548 PMCID: PMC7949131 DOI: 10.1016/j.jbc.2021.100345] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are traditionally known for signaling at the plasma membrane, but they can also signal from endosomes after internalization to control important pathophysiological processes. In spinal neurons, sustained endosomal signaling of the neurokinin 1 receptor (NK1R) mediates nociception, as demonstrated in models of acute and neuropathic pain. An NK1R antagonist, Spantide I (Span), conjugated to cholestanol (Span-Chol), accumulates in endosomes, inhibits endosomal NK1R signaling, and causes prolonged antinociception. However, the extent to which the Chol-anchor influences long-term location and activity is poorly understood. Herein, we used fluorescent correlation spectroscopy and targeted biosensors to characterize Span-Chol over time. The Chol-anchor increased local concentration of probe at the plasma membrane. Over time we observed an increase in NK1R-binding affinity and more potent inhibition of NK1R-mediated calcium signaling. Span-Chol, but not Span, caused a persistent decrease in NK1R recruitment of β-arrestin and receptor internalization to early endosomes. Using targeted biosensors, we mapped the relative inhibition of NK1R signaling as the receptor moved into the cell. Span selectively inhibited cell surface signaling, whereas Span-Chol partitioned into endosomal membranes and blocked endosomal signaling. In a preclinical model of pain, Span-Chol caused prolonged antinociception (>9 h), which is attributable to a three-pronged mechanism of action: increased local concentration at membranes, a prolonged decrease in NK1R endocytosis, and persistent inhibition of signaling from endosomes. Identifying the mechanisms that contribute to the increased preclinical efficacy of lipid-anchored NK1R antagonists is an important step toward understanding how we can effectively target intracellular GPCRs in disease.
Collapse
Affiliation(s)
- Quynh N Mai
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Priyank Shenoy
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Tim Quach
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jeffri S Retamal
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Arisbel B Gondin
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Holly R Yeatman
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Luigi Aurelio
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Joshua W Conner
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Daniel P Poole
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, The University of Nottingham Medical School, Nottingham, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, the Midlands, UK
| | - Cameron J Nowell
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Bim Graham
- Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Thomas P Davis
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Stephen J Briddon
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, The University of Nottingham Medical School, Nottingham, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, the Midlands, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, The University of Nottingham Medical School, Nottingham, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, the Midlands, UK
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Nigel W Bunnett
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia; Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA.
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| | - Nicholas A Veldhuis
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
8
|
Lazar AM, Irannejad R, Baldwin TA, Sundaram AB, Gutkind JS, Inoue A, Dessauer CW, Von Zastrow M. G protein-regulated endocytic trafficking of adenylyl cyclase type 9. eLife 2020; 9:e58039. [PMID: 32515353 PMCID: PMC7332294 DOI: 10.7554/elife.58039] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
GPCRs are increasingly recognized to initiate signaling via heterotrimeric G proteins as they move through the endocytic network, but little is known about how relevant G protein effectors are localized. Here we report selective trafficking of adenylyl cyclase type 9 (AC9) from the plasma membrane to endosomes while adenylyl cyclase type 1 (AC1) remains in the plasma membrane, and stimulation of AC9 trafficking by ligand-induced activation of Gs-coupled GPCRs. AC9 transits a similar, dynamin-dependent early endocytic pathway as ligand-activated GPCRs. However, unlike GPCR traffic control which requires β-arrestin but not Gs, AC9 traffic control requires Gs but not β-arrestin. We also show that AC9, but not AC1, mediates cAMP production stimulated by endogenous receptor activation in endosomes. These results reveal dynamic and isoform-specific trafficking of adenylyl cyclase in the endocytic network, and a discrete role of a heterotrimeric G protein in regulating the subcellular distribution of a relevant effector.
Collapse
Affiliation(s)
- André M Lazar
- Program in Biochemistry and Cell Biology, University of California San FranciscoSan FranciscoUnited States
| | - Roshanak Irannejad
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
| | - Tanya A Baldwin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science CenterHoustonUnited States
| | - Aparna B Sundaram
- Lung Biology Center, Department of Medicine, University of California San FranciscoSan FranciscoUnited States
| | - J Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California San DiegoSan DiegoUnited States
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-kuSendaiJapan
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, University of Texas Health Science CenterHoustonUnited States
| | - Mark Von Zastrow
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
- Department of Psychiatry and Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|
9
|
DiCello JJ, Rajasekhar P, Eriksson EM, Saito A, Gondin AB, Veldhuis NA, Canals M, Carbone SE, Poole DP. Clathrin and GRK2/3 inhibitors block δ-opioid receptor internalization in myenteric neurons and inhibit neuromuscular transmission in the mouse colon. Am J Physiol Gastrointest Liver Physiol 2019; 317:G79-G89. [PMID: 31091149 DOI: 10.1152/ajpgi.00085.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endocytosis is a major mechanism through which cellular signaling by G protein-coupled receptors (GPCRs) is terminated. However, recent studies demonstrate that GPCRs are internalized in an active state and continue to signal from within endosomes, resulting in effects on cellular function that are distinct to those arising at the cell surface. Endocytosis inhibitors are commonly used to define the importance of GPCR internalization for physiological and pathophysiological processes. Here, we provide the first detailed examination of the effects of these inhibitors on neurogenic contractions of gastrointestinal smooth muscle, a key preliminary step to evaluate the importance of GPCR endocytosis for gut function. Inhibitors of clathrin-mediated endocytosis (Pitstop2, PS2) or G protein-coupled receptor kinase-2/3-dependent phosphorylation (Takeda compound 101, Cmpd101), significantly reduced GPCR internalization. However, they also attenuated cholinergic contractions through different mechanisms. PS2 abolished contractile responses by colonic muscle to SNC80 and morphine, which strongly and weakly internalize δ-opioid and μ-opioid receptors, respectively. PS2 did not affect the increased myogenic contractile activity following removal of an inhibitory neural influence (tetrodotoxin) but suppressed electrically evoked neurogenic contractions. Ca2+ signaling by myenteric neurons in response to exogenous ATP was unaffected by PS2, suggesting inhibitory actions on neurotransmitter release rather than neurotransmission. In contrast, Cmpd101 attenuated contractions to the cholinergic agonist carbachol, indicating direct effects on smooth muscle. We conclude that, although PS2 and Cmpd101 are effective blockers of GPCR endocytosis in enteric neurons, these inhibitors are unsuitable for the study of neurally mediated gut function due to their inhibitory effects on neuromuscular transmission and smooth muscle contractility.NEW & NOTEWORTHY Internalization of activated G protein-coupled receptors is a major determinant of the type and duration of subsequent downstream signaling events. Inhibitors of endocytosis effectively block opioid receptor internalization in enteric neurons. The clathrin-dependent endocytosis inhibitor Pitstop2 blocks effects of opioids on neurogenic contractions of the colon in an internalization-independent manner. These inhibitors also significantly impact cholinergic neuromuscular transmission. We conclude that these tools are unsuitable for examination of the contribution of neuronal G protein-coupled receptor endocytosis to gastrointestinal motility.
Collapse
Affiliation(s)
- Jesse J DiCello
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Victoria, Australia
| | - Pradeep Rajasekhar
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Emily M Eriksson
- Divisions of Population Health & Immunity and Infection and Immunity, The Walter and Eliza Hall Institute, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ayame Saito
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Victoria, Australia
| | - Arisbel B Gondin
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Victoria, Australia
| | - Nicholas A Veldhuis
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Victoria, Australia
| | - Meritxell Canals
- Centre for Membrane Proteins and Receptors, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Simona E Carbone
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Victoria, Australia
| | - Daniel P Poole
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Victoria, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Carbone SE, Veldhuis NA, Gondin AB, Poole DP. G protein-coupled receptor trafficking and signaling: new insights into the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 2019; 316:G446-G452. [PMID: 30702900 DOI: 10.1152/ajpgi.00406.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
G protein-coupled receptors (GPCRs) are essential for the neurogenic control of gastrointestinal (GI) function and are important and emerging therapeutic targets in the gut. Detailed knowledge of both the distribution and functional expression of GPCRs in the enteric nervous system (ENS) is critical toward advancing our understanding of how these receptors contribute to GI function during physiological and pathophysiological states. Equally important, but less well defined, is the complex relationship between receptor expression, ligand binding, signaling, and trafficking within enteric neurons. Neuronal GPCRs are internalized following exposure to agonists and under pathological conditions, such as intestinal inflammation. However, the relationship between the intracellular distribution of GPCRs and their signaling outputs in this setting remains a "black box". This review will briefly summarize current knowledge of agonist-evoked GPCR trafficking and location-specific signaling in the ENS and identifies key areas where future research could be focused. Greater understanding of the cellular and molecular mechanisms involved in regulating GPCR signaling in the ENS will provide new insights into GI function and may open novel avenues for therapeutic targeting of GPCRs for the treatment of digestive disorders.
Collapse
Affiliation(s)
- Simona E Carbone
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University , Parkville, Victoria , Australia
| | - Nicholas A Veldhuis
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University , Parkville, Victoria , Australia
| | - Arisbel B Gondin
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University , Parkville, Victoria , Australia
| | - Daniel P Poole
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University , Parkville, Victoria , Australia.,Anatomy and Neuroscience, The University of Melbourne , Parkville, Victoria , Australia
| |
Collapse
|
11
|
Endothelin-converting enzyme-1 regulates glucagon-like peptide-1 receptor signalling and resensitisation. Biochem J 2019; 476:513-533. [PMID: 30626614 DOI: 10.1042/bcj20180853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 02/08/2023]
Abstract
Following nutrient ingestion, glucagon-like peptide 1 (GLP-1) is secreted from intestinal L-cells and mediates anti-diabetic effects, most notably stimulating glucose-dependent insulin release from pancreatic β-cells but also inhibiting glucagon release, promoting satiety and weight reduction and potentially enhancing or preserving β-cell mass. These effects are mediated by the GLP-1 receptor (GLP-1R), which is a therapeutic target in type 2 diabetes. Although agonism at the GLP-1R has been well studied, desensitisation and resensitisation are perhaps less well explored. An understanding of these events is important, particularly in the design and use of novel receptor ligands. Here, using either HEK293 cells expressing the recombinant human GLP-1R or the pancreatic β-cell line, INS-1E with endogenous expressesion of the GLP-1R, we demonstrate GLP-1R desensitisation and subsequent resensitisation following removal of extracellular GLP-1 7-36 amide. Resensitisation is dependent on receptor internalisation, endosomal acidification and receptor recycling. Resensitisation is also regulated by endothelin-converting enzyme-1 (ECE-1) activity, most likely through proteolysis of GLP-1 in endosomes and the facilitation of GLP-1R dephosphorylation and recycling. Inhibition of ECE-1 activity also increases GLP-1-induced activation of extracellular signal-regulated kinase and generation of cAMP, suggesting processes dependent upon the lifetime of the internalised ligand-receptor complex.
Collapse
|
12
|
Abstract
Calcitonin gene-related peptide (CGRP) is a promiscuous peptide, similar to many other members of the calcitonin family of peptides. The potential of CGRP to act on many different receptors with differing affinities and efficacies makes deciphering the signalling from the CGRP receptor a challenging task for researchers.Although it is not a typical G protein-coupled receptor (GPCR), in that it is composed not just of a GPCR, the CGRP receptor activates many of the same signalling pathways common for other GPCRs. This includes the family of G proteins and a variety of protein kinases and transcription factors. It is now also clear that in addition to the initiation of cell-surface signalling, GPCRs, including the CGRP receptor, also activate distinct signalling pathways as the receptor is trafficking along the endocytic conduit.Given CGRP's characteristic of activating multiple GPCRs, we will first consider the complex of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1) as the CGRP receptor. We will discuss the discovery of the CGRP receptor components, the molecular mechanisms controlling its internalization and post-endocytic trafficking (recycling and degradation) and the diverse signalling cascades that are elicited by this receptor in model cell lines. We will then discuss CGRP-mediated signalling pathways in primary cells pertinent to migraine including neurons, glial cells and vascular smooth muscle cells.Investigation of all the CGRP- and CGRP receptor-mediated signalling cascades is vital if we are to fully understand CGRP's role in migraine and will no doubt unearth new targets for the treatment of migraine and other CGRP-driven diseases.
Collapse
|
13
|
Thomsen ARB, Jensen DD, Hicks GA, Bunnett NW. Therapeutic Targeting of Endosomal G-Protein-Coupled Receptors. Trends Pharmacol Sci 2018; 39:879-891. [PMID: 30180973 DOI: 10.1016/j.tips.2018.08.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 02/08/2023]
Abstract
G-protein-coupled receptors (GPCRs) are conventionally considered to function at the plasma membrane, where they detect extracellular ligands and activate heterotrimeric G proteins that transmit intracellular signals. Consequently, drug discovery efforts have focused on identification of agonists and antagonists of cell surface GPCRs. However, β-arrestin (ARR)-dependent desensitization and endocytosis rapidly terminate G protein signaling at the plasma membrane. Emerging evidence indicates that GPCRs can continue to signal from endosomes by G-protein- and βARR-dependent processes. By regulating the duration and location of intracellular signaling events, GPCRs in endosomes control critically important processes, including gene transcription and ion channel activity. Thus, GPCRs in endosomes, in addition to at the cell surface, have emerged as important therapeutic targets.
Collapse
Affiliation(s)
- Alex R B Thomsen
- Departments of Surgery and Pharmacology, Columbia University College of Physicians and Surgeons, Columbia University in the City of New York, 21 Audubon Avenue, Room 209, New York City, NY 10032, USA
| | - Dane D Jensen
- Departments of Surgery and Pharmacology, Columbia University College of Physicians and Surgeons, Columbia University in the City of New York, 21 Audubon Avenue, Room 209, New York City, NY 10032, USA
| | - Gareth A Hicks
- Gastroenterology Drug Discovery Unit (GI DDU), Takeda Pharmaceuticals U.S.A. Inc., 35 Landsdowne Street, Cambridge, MA 02139, USA
| | - Nigel W Bunnett
- Departments of Surgery and Pharmacology, Columbia University College of Physicians and Surgeons, Columbia University in the City of New York, 21 Audubon Avenue, Room 209, New York City, NY 10032, USA.
| |
Collapse
|
14
|
Alhosaini K, Bahattab O, Qassam H, Challiss RAJ, Willars GB. Ligand-Specific Signaling Profiles and Resensitization Mechanisms of the Neuromedin U2 Receptor. Mol Pharmacol 2018; 94:674-688. [PMID: 29724789 DOI: 10.1124/mol.117.111070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/24/2018] [Indexed: 11/22/2022] Open
Abstract
The structurally related, but distinct neuropeptides, neuromedin U (NmU) and neuromedin S (NmS) are ligands of two G protein-coupled NmU receptors (NMU1 and NMU2). Hypothalamic NMU2 regulates feeding behavior and energy expenditure and has therapeutic potential as an anti-obesity target, making an understanding of its signaling and regulation of particular interest. NMU2 binds both NmU and NmS with high affinity, resulting in receptor-ligand co-internalization. We have investigated whether receptor trafficking events post-internalization are biased by the ligand bound and can therefore influence signaling function. Using recombinant cell lines expressing human NMU2, we demonstrate that acute Ca2+ signaling responses to NmU or NmS are indistinguishable and that restoration of responsiveness (resensitization) requires receptor internalization and endosomal acidification. The rate of NMU2 resensitization is faster following NmU compared with NmS exposure, but is similar if endothelin-converting enzyme-1 activity is inhibited or knocked down. Although acute activation of extracellular signal-regulated kinase (ERK) is also similar, activation by NMU2 is longer lasting if NmS is the ligand. Furthermore, when cells are briefly challenged before removal of free, but not receptor-bound ligand, activation of ERK and p38 mitogen-activated protein kinase by NmS is more sustained. However, only NmU responses are potentiated and extended by endothelin-converting enzyme-1 inhibition. These data indicate that differential intracellular ligand processing produces different signaling and receptor resensitization profiles and add to the findings of other studies demonstrating that intracellular ligand processing can shape receptor behavior and signal transduction.
Collapse
Affiliation(s)
- Khaled Alhosaini
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Omar Bahattab
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Heider Qassam
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - R A John Challiss
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Gary B Willars
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
15
|
Jensen DD, Lieu T, Halls ML, Veldhuis NA, Imlach WL, Mai QN, Poole DP, Quach T, Aurelio L, Conner J, Herenbrink CK, Barlow N, Simpson JS, Scanlon MJ, Graham B, McCluskey A, Robinson PJ, Escriou V, Nassini R, Materazzi S, Geppetti P, Hicks GA, Christie MJ, Porter CJH, Canals M, Bunnett NW. Neurokinin 1 receptor signaling in endosomes mediates sustained nociception and is a viable therapeutic target for prolonged pain relief. Sci Transl Med 2018; 9:9/392/eaal3447. [PMID: 28566424 DOI: 10.1126/scitranslmed.aal3447] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/17/2017] [Indexed: 12/25/2022]
Abstract
Typically considered to be cell surface sensors of extracellular signals, heterotrimeric GTP-binding protein (G protein)-coupled receptors (GPCRs) control many pathophysiological processes and are the target of 30% of therapeutic drugs. Activated receptors redistribute to endosomes, but researchers have yet to explore whether endosomal receptors generate signals that control complex processes in vivo and are viable therapeutic targets. We report that the substance P (SP) neurokinin 1 receptor (NK1R) signals from endosomes to induce sustained excitation of spinal neurons and pain transmission and that specific antagonism of the NK1R in endosomes with membrane-anchored drug conjugates provides more effective and sustained pain relief than conventional plasma membrane-targeted antagonists. Pharmacological and genetic disruption of clathrin, dynamin, and β-arrestin blocked SP-induced NK1R endocytosis and prevented SP-stimulated activation of cytosolic protein kinase C and nuclear extracellular signal-regulated kinase, as well as transcription. Endocytosis inhibitors prevented sustained SP-induced excitation of neurons in spinal cord slices in vitro and attenuated nociception in vivo. When conjugated to cholestanol to promote endosomal targeting, NK1R antagonists selectively inhibited endosomal signaling and sustained neuronal excitation. Cholestanol conjugation amplified and prolonged the antinociceptive actions of NK1R antagonists. These results reveal a critical role for endosomal signaling of the NK1R in the complex pathophysiology of pain and demonstrate the use of endosomally targeted GPCR antagonists.
Collapse
Affiliation(s)
- Dane D Jensen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - TinaMarie Lieu
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Michelle L Halls
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Nicholas A Veldhuis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Wendy L Imlach
- Discipline of Pharmacology, University of Sydney, New South Wales 2006, Australia
| | - Quynh N Mai
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Daniel P Poole
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Tim Quach
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Luigi Aurelio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Joshua Conner
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Carmen Klein Herenbrink
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Nicholas Barlow
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jamie S Simpson
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Martin J Scanlon
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bimbil Graham
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Adam McCluskey
- School of Environmental and Life Sciences, University of Newcastle, New South Wales 2308, Australia
| | - Phillip J Robinson
- Children's Medical Research Institute, University of Sydney, New South Wales 2145, Australia
| | - Virginie Escriou
- Unité de Technologies Chimiques et Biologiques pour la Sante, CNRS UMR8258, INSERM U1022, Université Paris Descartes, Chimie ParisTech, 75006 Paris, France
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, 6-50139 Florence, Italy
| | - Serena Materazzi
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, 6-50139 Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, 6-50139 Florence, Italy
| | | | - Macdonald J Christie
- Discipline of Pharmacology, University of Sydney, New South Wales 2006, Australia
| | - Christopher J H Porter
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. .,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Meritxell Canals
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. .,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. .,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.,Departments of Surgery and Pharmacology, Columbia University College of Physicians and Surgeons, Columbia University, 21 Audubon Avenue, Room 209, New York City, NY 10032, USA
| |
Collapse
|
16
|
Miners JS, Love S. Endothelin-converting enzymes degrade α-synuclein and are reduced in dementia with Lewy bodies. J Neurochem 2017; 141:275-286. [PMID: 28171705 DOI: 10.1111/jnc.13974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 01/17/2017] [Accepted: 01/26/2017] [Indexed: 01/12/2023]
Abstract
We have examined the roles of the endothelin-converting enzyme-1 and -2 (ECE-1 and ECE-2) in the homeostasis of α-synuclein (α-syn) and pathogenesis of Lewy body disease. The ECEs are named for their ability to convert inactive big endothelin to the vasoactive peptide endothelin-1 (EDN1). We have found that ECE-1 and ECE-2 cleave and degrade α-syn in vitro and siRNA-mediated knockdown of ECE-1 and ECE-2 in SH-SY5Y neuroblastoma cells significantly increased α-syn both intracellularly (within the cell lysate) (p < 0.05 for both ECE-1 and -2) and extracellularly (in the surrounding medium) (p < 0.05 for ECE-1 and p = 0.07 for ECE-2). Double immunofluorescent labelling showed co-localization of ECE-1 and ECE-2 with α-syn within the endolysosomal system (confirmed by a proximity ligation assay). To assess the possible relevance of these findings to human Lewy body disease, we measured ECE-1 and ECE-2 levels by sandwich ELISA in post-mortem samples of cingulate cortex (a region with a predilection for Lewy body pathology) in dementia with Lewy bodies (DLB) and age-matched controls. ECE-1 (p < 0.001) and ECE-2 (p < 0.01) levels were significantly reduced in DLB and both enzymes correlated inversely with the severity of Lewy body pathology as indicated by the level of α-syn phosphorylated at Ser129 (r = -0.54, p < 0.01 for ECE-1 and r = -0.49, p < 0.05 for ECE-2). Our novel findings suggest a role for ECEs in the metabolism of α-syn that could contribute to the development and progression of DLB.
Collapse
Affiliation(s)
| | - Seth Love
- Dementia Research Group, University of Bristol, Bristol, UK
| |
Collapse
|
17
|
Poole DP, Bunnett NW. G Protein-Coupled Receptor Trafficking and Signalling in the Enteric Nervous System: The Past, Present and Future. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 891:145-52. [PMID: 27379642 PMCID: PMC11450630 DOI: 10.1007/978-3-319-27592-5_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
G protein-coupled receptors (GPCRs) enable cells to detect and respond to changes in their extracellular environment. With over 800 members, the GPCR family includes receptors for a diverse range of agonists including olfactants, neurotransmitters and hormones. Importantly, GPCRs represent a major therapeutic target, with approximately 50 % of all current drugs acting at some aspect of GPCR signalling (Audet and Bouvier 2008). GPCRs are widely expressed by all cell types in the gastrointestinal (GI) tract and are major regulators of every aspect of gut function. Many GPCRs are internalised upon activation, and this represents one of the mechanisms through which G protein-signalling is terminated. The latency between the endocytosis of GPCRs and their recycling and resensitization is a major determinant of the cell's ability to respond to subsequent exposure to agonists.
Collapse
Affiliation(s)
- Daniel P Poole
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
18
|
Geppetti P, Veldhuis N, Lieu T, Bunnett N. G Protein-Coupled Receptors: Dynamic Machines for Signaling Pain and Itch. Neuron 2015; 88:635-49. [DOI: 10.1016/j.neuron.2015.11.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Halls ML, Bathgate RAD, Sutton SW, Dschietzig TB, Summers RJ. International Union of Basic and Clinical Pharmacology. XCV. Recent advances in the understanding of the pharmacology and biological roles of relaxin family peptide receptors 1-4, the receptors for relaxin family peptides. Pharmacol Rev 2015; 67:389-440. [PMID: 25761609 DOI: 10.1124/pr.114.009472] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Relaxin, insulin-like peptide 3 (INSL3), relaxin-3, and INSL5 are the cognate ligands for the relaxin family peptide (RXFP) receptors 1-4, respectively. RXFP1 activates pleiotropic signaling pathways including the signalosome protein complex that facilitates high-sensitivity signaling; coupling to Gα(s), Gα(i), and Gα(o) proteins; interaction with glucocorticoid receptors; and the formation of hetero-oligomers with distinctive pharmacological properties. In addition to relaxin-related ligands, RXFP1 is activated by Clq-tumor necrosis factor-related protein 8 and by small-molecular-weight agonists, such as ML290 [2-isopropoxy-N-(2-(3-(trifluoromethylsulfonyl)phenylcarbamoyl)phenyl)benzamide], that act allosterically. RXFP2 activates only the Gα(s)- and Gα(o)-coupled pathways. Relaxin-3 is primarily a neuropeptide, and its cognate receptor RXFP3 is a target for the treatment of depression, anxiety, and autism. A variety of peptide agonists, antagonists, biased agonists, and an allosteric modulator target RXFP3. Both RXFP3 and the related RXFP4 couple to Gα(i)/Gα(o) proteins. INSL5 has the properties of an incretin; it is secreted from the gut and is orexigenic. The expression of RXFP4 in gut, adipose tissue, and β-islets together with compromised glucose tolerance in INSL5 or RXFP4 knockout mice suggests a metabolic role. This review focuses on the many advances in our understanding of RXFP receptors in the last 5 years, their signal transduction mechanisms, the development of novel compounds that target RXFP1-4, the challenges facing the field, and current prospects for new therapeutics.
Collapse
Affiliation(s)
- Michelle L Halls
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Ross A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Steve W Sutton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Thomas B Dschietzig
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| |
Collapse
|
20
|
Kocan M, Ang SY, Summers RJ. Orthosteric, Allosteric and Biased Signalling at the Relaxin-3 Receptor RXFP3. Neurochem Res 2015; 41:610-9. [PMID: 26294284 DOI: 10.1007/s11064-015-1701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 11/29/2022]
Abstract
Relaxin-3 is a neuropeptide that has roles in stress, memory and appetite regulation. The peptide acts on its cognate receptor RXFP3 to induce coupling to inhibitory G proteins to inhibit adenylyl cyclase and activate MAP-kinases such as ERK1/2, p38MAPK and JNK. Other relaxin family peptides can activate the receptor to produce alternative patterns of signalling and there is an allosteric modulator 135PAM1 that displays probe-selectivity. There are now a variety of selective peptide agonists and antagonists that will assist in the determination of the physiological roles of the relaxin-RXFP3 system and its potential as a drug target.
Collapse
Affiliation(s)
- Martina Kocan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Sheng Yu Ang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
21
|
Poole DP, Lieu T, Pelayo JC, Eriksson EM, Veldhuis NA, Bunnett NW. Inflammation-induced abnormalities in the subcellular localization and trafficking of the neurokinin 1 receptor in the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 2015; 309:G248-59. [PMID: 26138465 PMCID: PMC4537929 DOI: 10.1152/ajpgi.00118.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/24/2015] [Indexed: 01/31/2023]
Abstract
Activated G protein-coupled receptors traffic to endosomes and are sorted to recycling or degradative pathways. Endosomes are also a site of receptor signaling of sustained and pathophysiologically important processes, including inflammation. However, the mechanisms of endosomal sorting of receptors and the impact of disease on trafficking have not been fully defined. We examined the effects of inflammation on the subcellular distribution and trafficking of the substance P (SP) neurokinin 1 receptor (NK1R) in enteric neurons. We studied NK1R trafficking in enteric neurons of the mouse colon using immunofluorescence and confocal microscopy. The impact of inflammation was studied in IL10(-/-)-piroxicam and trinitrobenzenesulfonic acid colitis models. NK1R was localized to the plasma membrane of myenteric and submucosal neurons of the uninflamed colon. SP evoked NK1R endocytosis and recycling. Deletion of β-arrestin2, which associates with the activated NK1R, accelerated recycling. Inhibition of endothelin-converting enzyme-1 (ECE-1), which degrades endosomal SP, prevented recycling. Inflammation was associated with NK1R endocytosis in myenteric but not submucosal neurons. Whereas the NK1R in uninflamed neurons recycled within 60 min, NK1R recycling in inflamed neurons was delayed for >120 min, suggesting defective recycling machinery. Inflammation was associated with β-arrestin2 upregulation and ECE-1 downregulation, which may contribute to the defective NK1R recycling. We conclude that inflammation evokes redistribution of NK1R from the plasma membrane to endosomes of myenteric neurons through enhanced SP release and defective NK1R recycling. Defective recycling may be secondary to upregulation of β-arrestin2 and downregulation of ECE-1. Internalized NK1R may generate sustained proinflammatory signals that disrupt normal neuronal functions.
Collapse
Affiliation(s)
- Daniel P Poole
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Victoria, Australia;
| | - TinaMarie Lieu
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Juan Carlos Pelayo
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Emily M Eriksson
- Population Health & Immunity, Walter and Eliza Hall Institute, Parkville, Victoria, Australia; and Department of Laboratory Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas A Veldhuis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Victoria, Australia; Department of Genetics, The University of Melbourne, Parkville, Victoria, Australia
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Victoria, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia; Department of Anaesthesia and Peri-operative Medicine, Monash University, Victoria, Australia
| |
Collapse
|
22
|
Hothersall JD, Brown AJ, Dale I, Rawlins P. Can residence time offer a useful strategy to target agonist drugs for sustained GPCR responses? Drug Discov Today 2015; 21:90-96. [PMID: 26226643 DOI: 10.1016/j.drudis.2015.07.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/24/2015] [Accepted: 07/21/2015] [Indexed: 01/28/2023]
Abstract
Residence time describes the how long a ligand is bound to its target, and is attracting interest in drug discovery as a potential means of improving clinical efficacy by increasing target coverage. This concept, as originally applied to antagonists, is more complicated for G-protein-coupled receptor (GPCR) agonists because of the transiency of receptor responses (via desensitization and internalization). However, in some cases sustained GPCR agonist responses have been observed, with evidence consistent with a role for slow binding kinetics. We propose a model to explain our understanding of how residence time and rebinding might influence sustained signaling by internalized receptors. We also highlight the anticipated benefit for drug discovery of fully understanding and exploiting these phenomena to target desirable receptor response profiles selectively.
Collapse
Affiliation(s)
| | | | - Ian Dale
- AstraZeneca, Discovery Sciences, Cambridge Science Park, Cambridge CB4 0WG, UK
| | - Philip Rawlins
- AstraZeneca, Discovery Sciences, Cambridge Science Park, Cambridge CB4 0WG, UK.
| |
Collapse
|
23
|
Kocan M, Sarwar M, Hossain MA, Wade JD, Summers RJ. Signalling profiles of H3 relaxin, H2 relaxin and R3(BΔ23-27)R/I5 acting at the relaxin family peptide receptor 3 (RXFP3). Br J Pharmacol 2014; 171:2827-41. [PMID: 24641548 DOI: 10.1111/bph.12623] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/03/2013] [Accepted: 01/20/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Relaxin family peptide receptor 3 (RXFP3) is expressed in brain areas important for processing sensory information and feeding, suggesting that it may be a target for anti-anxiety and anti-obesity drugs. We examined the effects of H3 relaxin, the biased agonist H2 relaxin and the antagonist, R3(BΔ23-27)R/I5, on RXFP3 signalling to establish their suitability as tools to assess the physiological roles of RXFP3. EXPERIMENTAL APPROACH The signalling profile of the RXFP3 ligands was determined using reporter gene assays, multiplexed signalling assays and direct examination of receptor-G protein and receptor-β-arrestin interactions using BRET. KEY RESULTS H2 relaxin activated p38MAPK and ERK1/2 with lower efficacy than H3 relaxin, but had similar efficacy for JNK1/2 phosphorylation. H2 or H3 relaxin activation of p38MAPK, JNK1/2 or ERK1/2 involved Pertussis toxin-sensitive G-proteins. R3(BΔ23-27)R/I5 blocked H3 relaxin AP-1 reporter gene activation, but not H2 relaxin AP-1 activation or H3 relaxin NF-κB activation. R3(BΔ23-27)R/I5 activated the SRE reporter, but did not inhibit either H2 or H3 relaxin SRE activation. R3(BΔ23-27)R/I5 blocked H3 relaxin-stimulated p38MAPK and ERK1/2 phosphorylation, but was a weak partial agonist for p38MAPK and ERK1/2 signalling. p38MAPK activation by R3(BΔ23-27)R/I5 was G protein-independent. H3 relaxin-activated RXFP3 interacts with Gαi2 , Gαi3 , Gαo A and Gαo B whereas H2 relaxin or R3(BΔ23-27)R/I5 induce interactions only with Gαi2 or Gαo B . Only H3 relaxin promoted RXFP3/β-arrestin interactions that were blocked by R3(BΔ23-27)R/I5. CONCLUSION AND IMPLICATIONS Understanding signalling profile of drugs acting at RXFP3 is essential for development of therapies targeting this receptor.
Collapse
Affiliation(s)
- M Kocan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia
| | | | | | | | | |
Collapse
|
24
|
Nalivaeva NN, Belyaev ND, Kerridge C, Turner AJ. Amyloid-clearing proteins and their epigenetic regulation as a therapeutic target in Alzheimer's disease. Front Aging Neurosci 2014; 6:235. [PMID: 25278875 PMCID: PMC4166351 DOI: 10.3389/fnagi.2014.00235] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/18/2014] [Indexed: 12/21/2022] Open
Abstract
Abnormal elevation of amyloid β-peptide (Aβ) levels in the brain is the primary trigger for neuronal cell death specific to Alzheimer’s disease (AD). It is now evident that Aβ levels in the brain are manipulable due to a dynamic equilibrium between its production from the amyloid precursor protein (APP) and removal by amyloid clearance proteins. Clearance can be either enzymic or non-enzymic (binding/transport proteins). Intriguingly several of the main amyloid-degrading enzymes (ADEs) are members of the M13 peptidase family (neprilysin (NEP), NEP2 and the endothelin converting enzymes (ECE-1 and -2)). A distinct metallopeptidase, insulin-degrading enzyme (IDE), also contributes to Aβ degradation in the brain. The ADE family currently embraces more than 20 members, both membrane-bound and soluble, and of differing cellular locations. NEP plays an important role in brain function terminating neuropeptide signals. Its decrease in specific brain areas with age or after hypoxia, ischaemia or stroke contribute significantly to the development of AD pathology. The recently discovered mechanism of epigenetic regulation of NEP (and other genes) by the APP intracellular domain (AICD) and its dependence on the cell type and APP isoform expression suggest possibilities for selective manipulation of NEP gene expression in neuronal cells. We have also observed that another amyloid-clearing protein, namely transthyretin (TTR), is also regulated in the neuronal cell by a mechanism similar to NEP. Dependence of amyloid clearance proteins on histone deacetylases and the ability of HDAC inhibitors to up-regulate their expression in the brain opens new avenues for developing preventive strategies in AD.
Collapse
Affiliation(s)
- Natalia N Nalivaeva
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leed, UK ; I.M.Sechenov Institute of Evolutionary Physiology and Biochemistry St. Petersburg, Russia
| | - Nikolai D Belyaev
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leed, UK
| | - Caroline Kerridge
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leed, UK ; Neurodegeneration DHT, Lilly, Erl Wood Manor Windlesham, Surrey, UK
| | - Anthony J Turner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leed, UK
| |
Collapse
|
25
|
Gupta A, Fujita W, Gomes I, Bobeck E, Devi LA. Endothelin-converting enzyme 2 differentially regulates opioid receptor activity. Br J Pharmacol 2014; 172:704-19. [PMID: 24990314 DOI: 10.1111/bph.12833] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 06/17/2014] [Accepted: 06/24/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Opioid receptor function is modulated by post-activation events such as receptor endocytosis, recycling and/or degradation. While it is generally understood that the peptide ligand gets co-endocytosed with the receptor, relatively few studies have investigated the role of the endocytosed peptide and peptide processing enzymes in regulating receptor function. In this study, we focused on endothelin-converting enzyme 2 (ECE2), a member of the neprilysin family of metallopeptidases that exhibits an acidic pH optimum, localizes to an intracellular compartment and selectively processes neuropeptides including opioid peptides in vitro, and examined its role in modulating μ receptor recycling and resensitization. EXPERIMENTAL APPROACH The effect of ECE2 inhibition on hydrolysis of the endocytosed peptide was examined using thin-layer chromatography and on μ opioid receptor trafficking using either elisa or microscopy. The effect of ECE2 inhibition on receptor signalling was measured using a cAMP assay and, in vivo, on antinociception induced by intrathecally administered opioids by the tail-flick assay. KEY RESULTS The highly selective ECE2 inhibitor, S136492, significantly impaired μ receptor recycling and signalling by only those ligands that are ECE2 substrates and this was seen both in heterologous cells and in cells endogenously co-expressing μ receptors with ECE2. We also found that ECE2 inhibition attenuated antinociception mediated only by opioid peptides that are ECE2 substrates. CONCLUSIONS AND IMPLICATIONS These results suggest that ECE2, by selectively processing endogenous opioid peptides in the endocytic compartment, plays a role in modulating opioid receptor activity. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- A Gupta
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | |
Collapse
|
26
|
Jensen DD, Halls ML, Murphy JE, Canals M, Cattaruzza F, Poole DP, Lieu T, Koon HW, Pothoulakis C, Bunnett NW. Endothelin-converting enzyme 1 and β-arrestins exert spatiotemporal control of substance P-induced inflammatory signals. J Biol Chem 2014; 289:20283-94. [PMID: 24898255 DOI: 10.1074/jbc.m114.578179] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the intracellular trafficking of G protein-coupled receptors controls specific signaling events, it is unclear how the spatiotemporal control of signaling contributes to complex pathophysiological processes such as inflammation. By using bioluminescence resonance energy transfer and superresolution microscopy, we found that substance P (SP) induces the association of the neurokinin 1 receptor (NK1R) with two classes of proteins that regulate SP signaling from plasma and endosomal membranes: the scaffolding proteins β-arrestin (βARRs) 1 and 2 and the transmembrane metallopeptidases ECE-1c and ECE-1d. In HEK293 cells and non-transformed human colonocytes, we observed that G protein-coupled receptor kinase 2 and βARR1/2 terminate plasma membrane Ca(2+) signaling and initiate receptor trafficking to endosomes that is necessary for sustained activation of ERKs in the nucleus. βARRs deliver the SP-NK1R endosomes, where ECE-1 associates with the complex, degrades SP, and allows the NK1R, freed from βARRs, to recycle. Thus, both ECE-1 and βARRs mediate the resensitization of NK1R Ca(2+) signaling at the plasma membrane. Sustained exposure of colonocytes to SP activates NF-κB and stimulates IL-8 secretion. This proinflammatory signaling is unaffected by inhibition of the endosomal ERK pathway but is suppressed by ECE-1 inhibition or βARR2 knockdown. Inhibition of protein phosphatase 2A, which also contributes to sustained NK1R signaling at the plasma membrane, similarly attenuates IL-8 secretion. Thus, the primary function of βARRs and ECE-1 in SP-dependent inflammatory signaling is to promote resensitization, which allows the sustained NK1R signaling from the plasma membrane that drives inflammation.
Collapse
Affiliation(s)
- Dane D Jensen
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Michelle L Halls
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jane E Murphy
- the Department of Surgery, University of California, San Francisco, California 94143
| | - Meritxell Canals
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Fiore Cattaruzza
- the Department of Surgery, University of California, San Francisco, California 94143
| | - Daniel P Poole
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia, the Departments of Anatomy and Neuroscience and
| | - TinaMarie Lieu
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Hon-Wai Koon
- the Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Charalabos Pothoulakis
- the Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Nigel W Bunnett
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia, Pharmacology, University of Melbourne, Melbourne 3010, Australia, and
| |
Collapse
|
27
|
Gupta A, Gomes I, Wardman J, Devi LA. Opioid receptor function is regulated by post-endocytic peptide processing. J Biol Chem 2014; 289:19613-26. [PMID: 24847082 DOI: 10.1074/jbc.m113.537704] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most neuroendocrine peptides are generated in the secretory compartment by proteolysis of the precursors at classical cleavage sites consisting of basic residues by well studied endopeptidases belonging to the subtilisin superfamily. In contrast, a subset of bioactive peptides is generated by processing at non-classical cleavage sites that do not contain basic residues. Neither the peptidases responsible for non-classical cleavages nor the compartment involved in such processing has been well established. Members of the endothelin-converting enzyme (ECE) family are considered good candidate enzymes because they exhibit functional properties that are consistent with such a role. In this study we have explored a role for ECE2 in endocytic processing of δ opioid peptides and its effect on modulating δ opioid receptor function by using selective inhibitors of ECE2 that we had identified previously by homology modeling and virtual screening of a library of small molecules. We found that agonist treatment led to intracellular co-localization of ECE2 with δ opioid receptors. Furthermore, selective inhibitors of ECE2 and reagents that increase the pH of the acidic compartment impaired receptor recycling by protecting the endocytosed peptide from degradation. This, in turn, led to a substantial decrease in surface receptor signaling. Finally, we showed that treatment of primary neurons with the ECE2 inhibitor during recycling led to increased intracellular co-localization of the receptors and ECE2, which in turn led to decreased receptor recycling and signaling by the surface receptors. Together, these results support a role for differential modulation of opioid receptor signaling by post-endocytic processing of peptide agonists by ECE2.
Collapse
Affiliation(s)
- Achla Gupta
- From the Department of Pharmacology and Systems Therapeutics and
| | - Ivone Gomes
- From the Department of Pharmacology and Systems Therapeutics and
| | - Jonathan Wardman
- From the Department of Pharmacology and Systems Therapeutics and
| | - Lakshmi A Devi
- From the Department of Pharmacology and Systems Therapeutics and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
28
|
Kido-Nakahara M, Buddenkotte J, Kempkes C, Ikoma A, Cevikbas F, Akiyama T, Nunes F, Seeliger S, Hasdemir B, Mess C, Buhl T, Sulk M, Müller FU, Metze D, Bunnett NW, Bhargava A, Carstens E, Furue M, Steinhoff M. Neural peptidase endothelin-converting enzyme 1 regulates endothelin 1-induced pruritus. J Clin Invest 2014; 124:2683-95. [PMID: 24812665 DOI: 10.1172/jci67323] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In humans, pruritus (itch) is a common but poorly understood symptom in numerous skin and systemic diseases. Endothelin 1 (ET-1) evokes histamine-independent pruritus in mammals through activation of its cognate G protein-coupled receptor endothelin A receptor (ETAR). Here, we have identified neural endothelin-converting enzyme 1 (ECE-1) as a key regulator of ET-1-induced pruritus and neural signaling of itch. We show here that ETAR, ET-1, and ECE-1 are expressed and colocalize in murine dorsal root ganglia (DRG) neurons and human skin nerves. In murine DRG neurons, ET-1 induced internalization of ETAR within ECE-1-containing endosomes. ECE-1 inhibition slowed ETAR recycling yet prolonged ET-1-induced activation of ERK1/2, but not p38. In a murine itch model, ET-1-induced scratching behavior was substantially augmented by pharmacological ECE-1 inhibition and abrogated by treatment with an ERK1/2 inhibitor. Using iontophoresis, we demonstrated that ET-1 is a potent, partially histamine-independent pruritogen in humans. Immunohistochemical evaluation of skin from prurigo nodularis patients confirmed an upregulation of the ET-1/ETAR/ECE-1/ERK1/2 axis in patients with chronic itch. Together, our data identify the neural peptidase ECE-1 as a negative regulator of itch on sensory nerves by directly regulating ET-1-induced pruritus in humans and mice. Furthermore, these results implicate the ET-1/ECE-1/ERK1/2 pathway as a therapeutic target to treat pruritus in humans.
Collapse
|
29
|
Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 2014; 94:265-301. [PMID: 24382888 DOI: 10.1152/physrev.00031.2013] [Citation(s) in RCA: 413] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The tachykinins, exemplified by substance P, are one of the most intensively studied neuropeptide families. They comprise a series of structurally related peptides that derive from alternate processing of three Tac genes and are expressed throughout the nervous and immune systems. Tachykinins interact with three neurokinin G protein-coupled receptors. The signaling, trafficking, and regulation of neurokinin receptors have also been topics of intense study. Tachykinins participate in important physiological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems, including inflammation, nociception, smooth muscle contractility, epithelial secretion, and proliferation. They contribute to multiple diseases processes, including acute and chronic inflammation and pain, fibrosis, affective and addictive disorders, functional disorders of the intestine and urinary bladder, infection, and cancer. Neurokinin receptor antagonists are selective, potent, and show efficacy in models of disease. In clinical trials there is a singular success: neurokinin 1 receptor antagonists to treat nausea and vomiting. New information about the involvement of tachykinins in infection, fibrosis, and pruritus justifies further trials. A deeper understanding of disease mechanisms is required for the development of more predictive experimental models, and for the design and interpretation of clinical trials. Knowledge of neurokinin receptor structure, and the development of targeting strategies to disrupt disease-relevant subcellular signaling of neurokinin receptors, may refine the next generation of neurokinin receptor antagonists.
Collapse
|
30
|
Sridharan V, Tripathi P, Sharma S, Moros EG, Zheng J, Hauer-Jensen M, Boerma M. Roles of sensory nerves in the regulation of radiation-induced structural and functional changes in the heart. Int J Radiat Oncol Biol Phys 2014; 88:167-74. [PMID: 24331664 PMCID: PMC3868013 DOI: 10.1016/j.ijrobp.2013.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/13/2013] [Accepted: 10/07/2013] [Indexed: 10/25/2022]
Abstract
PURPOSE Radiation-induced heart disease (RIHD) is a chronic severe side effect of radiation therapy of intrathoracic and chest wall tumors. The heart contains a dense network of sensory neurons that not only are involved in monitoring of cardiac events such as ischemia and reperfusion but also play a role in cardiac tissue homeostasis, preconditioning, and repair. The purpose of this study was to examine the role of sensory nerves in RIHD. METHODS AND MATERIALS Male Sprague-Dawley rats were administered capsaicin to permanently ablate sensory nerves, 2 weeks before local image-guided heart x-ray irradiation with a single dose of 21 Gy. During the 6 months of follow-up, heart function was assessed with high-resolution echocardiography. At 6 months after irradiation, cardiac structural and molecular changes were examined with histology, immunohistochemistry, and Western blot analysis. RESULTS Capsaicin pretreatment blunted the effects of radiation on myocardial fibrosis and mast cell infiltration and activity. By contrast, capsaicin pretreatment caused a small but significant reduction in cardiac output 6 months after irradiation. Capsaicin did not alter the effects of radiation on cardiac macrophage number or indicators of autophagy and apoptosis. CONCLUSIONS These results suggest that sensory nerves, although they play a predominantly protective role in radiation-induced cardiac function changes, may eventually enhance radiation-induced myocardial fibrosis and mast cell activity.
Collapse
MESH Headings
- Animals
- Capsaicin/pharmacology
- Cardiac Output/drug effects
- Cardiac Output/physiology
- Cardiac Output/radiation effects
- Denervation/methods
- Echocardiography/methods
- Fibrosis
- Heart/innervation
- Heart/physiopathology
- Heart/radiation effects
- Macrophages/drug effects
- Macrophages/radiation effects
- Male
- Mast Cells/drug effects
- Mast Cells/physiology
- Mast Cells/radiation effects
- Myocardium/pathology
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Neurons, Afferent/radiation effects
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/radiation effects
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/radiation effects
- Organ Size/radiation effects
- Radiation Injuries, Experimental/physiopathology
- Rats
- Rats, Sprague-Dawley
- Sensory Receptor Cells/drug effects
- Sensory Receptor Cells/physiology
- Sensory Receptor Cells/radiation effects
Collapse
Affiliation(s)
- Vijayalakshmi Sridharan
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Preeti Tripathi
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sunil Sharma
- Department of Radiation Oncology, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Eduardo G Moros
- Department of Radiation Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Junying Zheng
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Martin Hauer-Jensen
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Marjan Boerma
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| |
Collapse
|
31
|
Zhao P, Canals M, Murphy JE, Klingler D, Eriksson EM, Pelayo JC, Hardt M, Bunnett NW, Poole DP. Agonist-biased trafficking of somatostatin receptor 2A in enteric neurons. J Biol Chem 2013; 288:25689-25700. [PMID: 23913690 DOI: 10.1074/jbc.m113.496414] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Somatostatin (SST) 14 and SST 28 activate somatostatin 2A receptors (SSTR2A) on enteric neurons to control gut functions. SST analogs are treatments of neuroendocrine and bleeding disorders, cancer, and diarrhea, with gastrointestinal side effects of constipation, abdominal pain, and nausea. How endogenous agonists and drugs differentially regulate neuronal SSTR2A is unexplored. We evaluated SSTR2A trafficking in murine myenteric neurons and neuroendocrine AtT-20 cells by microscopy and determined whether agonist degradation by endosomal endothelin-converting enzyme 1 (ECE-1) controls SSTR2A trafficking and association with β-arrestins, key regulators of receptors. SST-14, SST-28, and peptide analogs (octreotide, lanreotide, and vapreotide) stimulated clathrin- and dynamin-mediated internalization of SSTR2A, which colocalized with ECE-1 in endosomes and the Golgi. After incubation with SST-14, SSTR2A recycled to the plasma membrane, which required active ECE-1 and an intact Golgi. SSTR2A activated by SST-28, octreotide, lanreotide, or vapreotide was retained within the Golgi and did not recycle. Although ECE-1 rapidly degraded SST-14, SST-28 was resistant to degradation, and ECE-1 did not degrade SST analogs. SST-14 and SST-28 induced transient interactions between SSTR2A and β-arrestins that were stabilized by an ECE-1 inhibitor. Octreotide induced sustained SSTR2A/β-arrestin interactions that were not regulated by ECE-1. Thus, when activated by SST-14, SSTR2A internalizes and recycles via the Golgi, which requires ECE-1 degradation of SST-14 and receptor dissociation from β-arrestins. After activation by ECE-1-resistant SST-28 and analogs, SSTR2A remains in endosomes because of sustained β-arrestin interactions. Therapeutic SST analogs are ECE-1-resistant and retain SSTR2A in endosomes, which may explain their long-lasting actions.
Collapse
Affiliation(s)
- Peishen Zhao
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Meritxell Canals
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jane E Murphy
- the Department of Surgery, University of California, San Francisco, San Francisco, California 94143
| | - Diana Klingler
- the Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts 02142, and
| | - Emily M Eriksson
- the Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California 94110
| | - Juan-Carlos Pelayo
- the Department of Surgery, University of California, San Francisco, San Francisco, California 94143
| | - Markus Hardt
- the Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts 02142, and
| | - Nigel W Bunnett
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia,.
| | - Daniel P Poole
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia,.
| |
Collapse
|
32
|
Arresting inflammation: contributions of plasma membrane and endosomal signalling to neuropeptide-driven inflammatory disease. Biochem Soc Trans 2013; 41:137-43. [PMID: 23356273 DOI: 10.1042/bst20120343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
GPCR (G-protein-coupled receptor) signalling at the plasma membrane is under tight control. In the case of neuropeptides such as SP (substance P), plasma membrane signalling is regulated by cell-surface endopeptidases (e.g. neprilysin) that degrade extracellular neuropeptides, and receptor interaction with β-arrestins, which uncouple receptors from heterotrimeric G-proteins and mediate receptor endocytosis. By recruiting GPCRs, kinases and phosphatases to endocytosed GPCRs, β-arrestins assemble signalosomes that can mediate a second wave of signalling by internalized receptors. Endosomal peptidases, such as ECE-1 (endothelin-converting enzyme-1), can degrade SP in acidified endosomes, which destabilizes signalosomes and allows receptors, freed from β-arrestins, to recycle and resensitize. By disassembling signalosomes, ECE-1 terminates β-arrestin-mediated endosomal signalling. These mechanisms have been studied in model cell systems, and the relative importance of plasma membrane and endosomal signalling to complex pathophysiological processes, such as inflammation, pain and proliferation, is unclear. However, deletion or inhibition of metalloendopeptidases that control neuropeptide signalling at the plasma membrane and in endosomes has marked effects on inflammation. Neprilysin deletion exacerbates inflammation because of diminished degradation of pro-inflammatory SP. Conversely, inhibition of ECE-1 attenuates inflammation by preventing receptor recycling/resensitization, which is required for sustained pro-inflammatory signals from the plasma membrane. β-Arrestin deletion also affects inflammation because of the involvement of β-arrestins in pro-inflammatory signalling and migration of inflammatory cells. Knowledge of GPCR signalling in specific subcellular locations provides insights into pathophysiological processes, and can provide new opportunities for therapy. Selective targeting of β-arrestin-mediated endosomal signalling or of mechanisms of receptor recycling/resensitization may offer more effective and selective treatments than global targeting of cell-surface signalling.
Collapse
|
33
|
Sakhrani NM, Padh H. Organelle targeting: third level of drug targeting. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:585-99. [PMID: 23898223 PMCID: PMC3718765 DOI: 10.2147/dddt.s45614] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Drug discovery and drug delivery are two main aspects for treatment of a variety of disorders. However, the real bottleneck associated with systemic drug administration is the lack of target-specific affinity toward a pathological site, resulting in systemic toxicity and innumerable other side effects as well as higher dosage requirement for efficacy. An attractive strategy to increase the therapeutic index of a drug is to specifically deliver the therapeutic molecule in its active form, not only into target tissue, nor even to target cells, but more importantly, into the targeted organelle, ie, to its intracellular therapeutic active site. This would ensure improved efficacy and minimize toxicity. Cancer chemotherapy today faces the major challenge of delivering chemotherapeutic drugs exclusively to tumor cells, while sparing normal proliferating cells. Nanoparticles play a crucial role by acting as a vehicle for delivery of drugs to target sites inside tumor cells. In this review, we spotlight active and passive targeting, followed by discussion of the importance of targeting to specific cell organelles and the potential role of cell-penetrating peptides. Finally, the discussion will address the strategies for drug/DNA targeting to lysosomes, mitochondria, nuclei and Golgi/endoplasmic reticulum.
Collapse
Affiliation(s)
- Niraj M Sakhrani
- Department of Cell and Molecular Biology, BV Patel Pharmaceutical Education and Research Development (PERD) Centre, Gujarat, India
| | | |
Collapse
|
34
|
Cottrell GS. Roles of proteolysis in regulation of GPCR function. Br J Pharmacol 2013; 168:576-90. [PMID: 23043558 DOI: 10.1111/j.1476-5381.2012.02234.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/03/2012] [Accepted: 09/24/2012] [Indexed: 12/18/2022] Open
Abstract
The enzymatic activity of peptidases must be tightly regulated to prevent uncontrolled hydrolysis of peptide bonds, which could have devastating effects on biological systems. Peptidases are often generated as inactive propeptidases, secreted with endogenous inhibitors, or they are compartmentalized. Propeptidases become active after proteolytic removal of N-terminal activation peptides by other peptidases. Some peptidases only become active towards substrates only at certain pHs, thus confining activity to specific compartments or conditions. This review discusses the different roles proteolysis plays in regulating GPCRs. At the cell-surface, certain GPCRs are regulated by the hydrolytic inactivation of bioactive peptides by membrane-anchored peptidases, which prevent signalling. Conversely, cell-surface peptidases can also generate bioactive peptides, which directly activate GPCRs. Alternatively, cell-surface peptidases activated by GPCRs, can generate bioactive peptides to cause transactivation of receptor tyrosine kinases, thereby promoting signalling. Certain peptidases can signal directly to cells, by cleaving GPCR to initiate intracellular signalling cascades. Intracellular peptidases also regulate GPCRs; lysosomal peptidases destroy GPCRs in lysosomes to permanently terminate signalling and mediate down-regulation; endosomal peptidases cleave internalized peptide agonists to regulate GPCR recycling, resensitization and signalling; and soluble intracellular peptidases also participate in GPCR function by regulating the ubiquitination state of GPCRs, thereby altering GPCR signalling and fate. Although the use of peptidase inhibitors has already brought success in the treatment of diseases such as hypertension, the discovery of new regulatory mechanisms involving proteolysis that control GPCRs may provide additional targets to modulate dysregulated GPCR signalling in disease.
Collapse
Affiliation(s)
- G S Cottrell
- Reading School of Pharmacy, University of Reading, Reading, UK.
| |
Collapse
|
35
|
Pacheco-Quinto J, Herdt A, Eckman CB, Eckman EA. Endothelin-converting enzymes and related metalloproteases in Alzheimer's disease. J Alzheimers Dis 2013; 33 Suppl 1:S101-10. [PMID: 22903130 DOI: 10.3233/jad-2012-129043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The efficient clearance of amyloid-β (Aβ) is essential to modulate levels of the peptide in the brain and to prevent it from accumulating in senile plaques, a hallmark of Alzheimer's disease (AD) pathology.We and others have shown that failure in Aβ catabolism can produce elevations in Aβ concentration similar to those observed in familial forms of AD. Based on the available evidence, it remains plausible that in late-onset AD, disturbances in the activity of Aβ degrading enzymes could induce Aβ accumulation, and that this increase could result in AD pathology. The following review presents a historical perspective of the parallel discovery of three vasopeptidases (neprilysin and endothelin-converting enzymes-1 and -2) as important Aβ degrading enzymes. The recognition of the role of these vasopeptidases in Aβ degradation, beyond bringing to light a possible explanation of how cardiovascular risk factors may influence AD risk, highlights a possible risk of the use of inhibitors of these enzymes for other clinical indications such as hypertension. We will discuss in detail the experiments conducted to assess the impact of vasopeptidase deficiency (through pharmacological inhibition or genetic mutation) on Aβ accumulation, as well as the cooperative effect of multiple Aβ degrading enzymes to regulate the concentration of the peptide at multiple sites, both intracellular and extracellular, throughout the brain.
Collapse
Affiliation(s)
- Javier Pacheco-Quinto
- Biomedical Research Institute of New Jersey, MidAtlantic Neonatology Associates, and Atlantic Health System, Morristown, NJ, USA
| | | | | | | |
Collapse
|
36
|
McNeish AJ, Roux BT, Aylett SB, Van Den Brink AM, Cottrell GS. Endosomal proteolysis regulates calcitonin gene-related peptide responses in mesenteric arteries. Br J Pharmacol 2013; 167:1679-90. [PMID: 22881710 DOI: 10.1111/j.1476-5381.2012.02129.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/11/2012] [Accepted: 06/17/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Calcitonin gene-related peptide (CGRP) is a potent vasodilator, implicated in the pathogenesis of migraine. CGRP activates a receptor complex comprising, calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). In vitro studies indicate recycling of CLR●RAMP1 is regulated by degradation of CGRP in early endosomes by endothelin-converting enzyme-1 (ECE-1). However, it is not known if ECE-1 regulates the resensitization of CGRP-induced responses in functional arterial tissue. EXPERIMENTAL APPROACH CLR, ECE-1a-d and RAMP1 expression in rat mesenteric artery smooth muscle cells (RMA-SMCs) and mesenteric arteries was analysed by RT-PCR and by immunofluorescence and confocal microscopy. CGRP-induced signalling in cells was examined by measuring cAMP production and ERK activation. CGRP-induced relaxation of arteries was measured by isometric wire myography. ECE-1 was inhibited using the specific inhibitor, SM-19712. KEY RESULTS RMA-SMCs and arteries contained mRNA for CLR, ECE-1a-d and RAMP1. ECE-1 was present in early endosomes of RMA-SMCs and in the smooth muscle layer of arteries. CGRP induced endothelium-independent relaxation of arteries. ECE-1 inhibition had no effect on initial CGRP-induced responses but reduced cAMP generation in RMA-SMCs and vasodilation in mesenteric arteries responses to subsequent CGRP challenges. CONCLUSIONS AND IMPLICATIONS ECE-1 regulated the resensitization of responses to CGRP in RMA-SMCs and mesenteric arteries. CGRP-induced relaxation did not involve endothelium-derived pathways. This is the first report of ECE-1 regulating CGRP responses in SMCs and arteries. ECE-1 inhibitors may attenuate an important vasodilatory pathway, implicated in primary headaches and may represent a new therapeutic approach for the treatment of migraine.
Collapse
Affiliation(s)
- A J McNeish
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, UK
| | | | | | | | | |
Collapse
|
37
|
Law IKM, Murphy JE, Bakirtzi K, Bunnett NW, Pothoulakis C. Neurotensin-induced proinflammatory signaling in human colonocytes is regulated by β-arrestins and endothelin-converting enzyme-1-dependent endocytosis and resensitization of neurotensin receptor 1. J Biol Chem 2012; 287:15066-75. [PMID: 22416137 DOI: 10.1074/jbc.m111.327262] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The neuropeptide/hormone neurotensin (NT) mediates intestinal inflammation and cell proliferation by binding of its high affinity receptor, neurotensin receptor-1 (NTR1). NT stimulates IL-8 expression in NCM460 human colonic epithelial cells by both MAP kinase- and NF-κB-dependent pathways. Although the mechanism of NTR1 endocytosis has been studied, the relationship between NTR1 intracellular trafficking and inflammatory signaling remains to be elucidated. In the present study, we show that in NCM460 cells exposed to NT, β-arrestin-1 (βARR1), and β-arrestin-2 (βARR2) translocate to early endosomes together with NTR1. Endothelin-converting enzyme-1 (ECE-1) degrades NT in acidic conditions, and its activity is crucial for NTR1 recycling. Pretreatment of NCM460 cells with the ECE-1 inhibitor SM19712 or gene silencing of βARR1 or βARR2 inhibits NT-stimulated ERK1/2 and JNK phosphorylation, NF-κB p65 nuclear translocation and phosphorylation, and IL-8 secretion. Furthermore, NT-induced cell proliferation, but not IL-8 transcription, is attenuated by the JNK inhibitor, JNK(AII). Thus, NTR1 internalization and recycling in human colonic epithelial cells involves βARRs and ECE-1, respectively. Our results also indicate that βARRs and ECE-1-dependent recycling regulate MAP kinase and NF-κB signaling as well as cell proliferation in human colonocytes in response to NT.
Collapse
Affiliation(s)
- Ivy Ka Man Law
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095-7019, USA
| | | | | | | | | |
Collapse
|
38
|
Hasdemir B, Mahajan S, Bunnett NW, Liao M, Bhargava A. Endothelin-converting enzyme-1 actions determine differential trafficking and signaling of corticotropin-releasing factor receptor 1 at high agonist concentrations. Mol Endocrinol 2012; 26:681-95. [PMID: 22322595 DOI: 10.1210/me.2011-1361] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CRF receptor 1 (CRF(1)), a key neuroendocrine mediator of the stress response, has two known agonists corticotropin-releasing factor (CRF) and urocortin 1 (Ucn1). Here we report that endothelin-converting enzyme-1 (ECE-1) differentially degrades CRF and Ucn1; ECE-1 cleaves Ucn1, but not CRF, at critical residue Arginine-34/35', which is essential for ligand-receptor binding. At near K(D) agonist concentration (30 nm), both Ucn1- and CRF-mediated Ca(2+) mobilization are ECE-1 dependent. Interestingly, at high agonist concentration (100 nm), Ucn1-mediated Ca(2+) mobilization remains ECE-1 dependent, whereas CRF-mediated mobilization becomes independent of ECE-1 activity. At high agonist concentration, ECE-1 inhibition disrupted Ucn1-, but not CRF-induced CRF(1) recycling and resensitization, but did not prolong the association of CRF(1) with β-arrestins. RNA interference-mediated knockdown of Rab suggests that both Ucn1- and CRF-induced CRF(1) resensitization is dependent on activity of Rab11, but not of Rab4. CRF(1) behaves like a class A G protein-coupled receptor with respect to transient β-arrestins interaction. We propose that differential degradation by ECE-1 is a novel mechanism by which CRF(1) receptor is protected from overactivation by physiologically relevant high concentrations of higher affinity ligand to mediate distinct resensitization and downstream signaling.
Collapse
Affiliation(s)
- Burcu Hasdemir
- Department of Surgery, Center for Neurobiology of Digestive Diseases, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
39
|
Prolonged signalling and trafficking of the bradykinin B2 receptor stimulated with the amphibian peptide maximakinin: Insight into the endosomal inactivation of kinins. Pharmacol Res 2012; 65:247-53. [DOI: 10.1016/j.phrs.2011.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/06/2011] [Accepted: 11/07/2011] [Indexed: 11/23/2022]
|
40
|
Nalivaeva NN, Beckett C, Belyaev ND, Turner AJ. Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer's disease? J Neurochem 2011; 120 Suppl 1:167-185. [PMID: 22122230 DOI: 10.1111/j.1471-4159.2011.07510.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
: The amyloid cascade hypothesis of Alzheimer's disease envisages that the initial elevation of amyloid β-peptide (Aβ) levels, especially of Aβ(1-42) , is the primary trigger for the neuronal cell death specific to onset of Alzheimer's disease. There is now substantial evidence that brain amyloid levels are manipulable because of a dynamic equilibrium between their synthesis from the amyloid precursor protein and their removal by amyloid-degrading enzymes (ADEs) providing a potential therapeutic strategy. Since the initial reports over a decade ago that two zinc metallopeptidases, insulin-degrading enzyme and neprilysin (NEP), contributed to amyloid degradation in the brain, there is now an embarras de richesses in relation to this category of enzymes, which currently number almost 20. These now include serine and cysteine proteinases, as well as numerous zinc peptidases. The experimental validation for each of these enzymes, and which to target, varies enormously but up-regulation of several of them individually in mouse models of Alzheimer's disease has proved effective in amyloid and plaque clearance, as well as cognitive enhancement. The relative status of each of these enzymes will be critically evaluated. NEP and its homologues, as well as insulin-degrading enzyme, remain as principal ADEs and recently discovered mechanisms of epigenetic regulation of NEP expression potentially open new avenues in manipulation of AD-related genes, including ADEs.
Collapse
Affiliation(s)
- Natalia N Nalivaeva
- Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, St. Petersburg, Russia
| | - Caroline Beckett
- Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Nikolai D Belyaev
- Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Anthony J Turner
- Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
41
|
Pelayo JC, Poole DP, Steinhoff M, Cottrell GS, Bunnett NW. Endothelin-converting enzyme-1 regulates trafficking and signalling of the neurokinin 1 receptor in endosomes of myenteric neurones. J Physiol 2011; 589:5213-30. [PMID: 21878523 DOI: 10.1113/jphysiol.2011.214452] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neuropeptide signalling at the plasma membrane is terminated by neuropeptide degradation by cell-surface peptidases, and by β-arrestin-dependent receptor desensitization and endocytosis. However, receptors continue to signal from endosomes by β-arrestin-dependent processes, and endosomal sorting mediates recycling and resensitization of plasma membrane signalling. The mechanisms that control signalling and trafficking of receptors in endosomes are poorly defined. We report a major role for endothelin-converting enzyme-1 (ECE-1) in controlling substance P (SP) and the neurokinin 1 receptor (NK(1)R) in endosomes of myenteric neurones. ECE-1 mRNA and protein were expressed by myenteric neurones of rat and mouse intestine. SP (10 nM, 10 min) induced interaction of NK(1)R and β-arrestin at the plasma membrane, and the SP-NK(1)R-β-arrestin signalosome complex trafficked by a dynamin-mediated mechanism to ECE-1-containing early endosomes, where ECE-1 can degrade SP. After 120 min, NK(1)R recycled from endosomes to the plasma membrane. ECE-1 inhibitors (SM-19712, PD-069185) and the vacuolar H(+)ATPase inhibitor bafilomycin A(1), which prevent endosomal SP degradation, suppressed NK(1)R recycling by >50%. Preincubation of neurones with SP (10 nM, 5 min) desensitized Ca(2+) transients to a second SP challenge after 10 min, and SP signals resensitized after 60 min. SM-19712 inhibited NK(1)R resensitization by >90%. ECE-1 inhibitors also caused sustained SP-induced activation of extracellular signal-regulated kinases, consistent with stabilization of the SP-NK(1)R-β-arrestin signalosome. By degrading SP and destabilizing endosomal signalosomes, ECE-1 has a dual role in controlling endocytic signalling and trafficking of the NK(1)R: promoting resensitization of G protein-mediated plasma membrane signalling, and terminating β-arrestin-mediated endosomal signalling.
Collapse
Affiliation(s)
- Juan-Carlos Pelayo
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143-0660, USA
| | | | | | | | | |
Collapse
|
42
|
Murphy JE, Roosterman D, Cottrell GS, Padilla BE, Feld M, Brand E, Cedron WJ, Bunnett NW, Steinhoff M. Protein phosphatase 2A mediates resensitization of the neurokinin 1 receptor. Am J Physiol Cell Physiol 2011; 301:C780-91. [PMID: 21795521 DOI: 10.1152/ajpcell.00096.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Activated G protein-coupled receptors (GPCRs) are phosphorylated and interact with β-arrestins, which mediate desensitization and endocytosis. Endothelin-converting enzyme-1 (ECE-1) degrades neuropeptides in endosomes and can promote recycling. Although endocytosis, dephosphorylation, and recycling are accepted mechanisms of receptor resensitization, a large proportion of desensitized receptors can remain at the cell surface. We investigated whether reactivation of noninternalized, desensitized (phosphorylated) receptors mediates resensitization of the substance P (SP) neurokinin 1 receptor (NK(1)R). Herein, we report a novel mechanism of resensitization by which protein phosphatase 2A (PP2A) is recruited to dephosphorylate noninternalized NK(1)R. A desensitizing concentration of SP reduced cell-surface SP binding sites by only 25%, and SP-induced Ca(2+) signals were fully resensitized before cell-surface binding sites started to recover, suggesting resensitization of cell-surface-retained NK(1)R. SP induced association of β-arrestin1 and PP2A with noninternalized NK(1)R. β-Arrestin1 small interfering RNA knockdown prevented SP-induced association of cell-surface NK(1)R with PP2A, indicating that β-arrestin1 mediates this interaction. ECE-1 inhibition, by trapping β-arrestin1 in endosomes, also impeded SP-induced association of cell-surface NK(1)R with PP2A. Resensitization of NK(1)R signaling required both PP2A and ECE-1 activity. Thus, after stimulation with SP, PP2A interacts with noninternalized NK(1)R and mediates resensitization. PP2A interaction with NK(1)R requires β-arrestin1. ECE-1 promotes this process by releasing β-arrestin1 from NK(1)R in endosomes. These findings represent a novel mechanism of PP2A- and ECE-1-dependent resensitization of GPCRs.
Collapse
Affiliation(s)
- Jane E Murphy
- Department of Surgery, University of California, San Francisco, 94143-0660, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhuo JL, Li XC. New insights and perspectives on intrarenal renin-angiotensin system: focus on intracrine/intracellular angiotensin II. Peptides 2011; 32:1551-65. [PMID: 21699940 PMCID: PMC3137727 DOI: 10.1016/j.peptides.2011.05.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 02/06/2023]
Abstract
Although renin, the rate-limiting enzyme of the renin-angiotensin system (RAS), was first discovered by Robert Tigerstedt and Bergman more than a century ago, the research on the RAS still remains stronger than ever. The RAS, once considered to be an endocrine system, is now widely recognized as dual (circulating and local/tissue) or multiple hormonal systems (endocrine, paracrine and intracrine). In addition to the classical renin/angiotensin I-converting enzyme (ACE)/angiotensin II (Ang II)/Ang II receptor (AT₁/AT₂) axis, the prorenin/(Pro)renin receptor (PRR)/MAP kinase axis, the ACE2/Ang (1-7)/Mas receptor axis, and the Ang IV/AT₄/insulin-regulated aminopeptidase (IRAP) axis have recently been discovered. Furthermore, the roles of the evolving RAS have been extended far beyond blood pressure control, aldosterone synthesis, and body fluid and electrolyte homeostasis. Indeed, novel actions and underlying signaling mechanisms for each member of the RAS in physiology and diseases are continuously uncovered. However, many challenges still remain in the RAS research field despite of more than one century's research effort. It is expected that the research on the expanded RAS will continue to play a prominent role in cardiovascular, renal and hypertension research. The purpose of this article is to review the progress recently being made in the RAS research, with special emphasis on the local RAS in the kidney and the newly discovered prorenin/PRR/MAP kinase axis, the ACE2/Ang (1-7)/Mas receptor axis, the Ang IV/AT₄/IRAP axis, and intracrine/intracellular Ang II. The improved knowledge of the expanded RAS will help us better understand how the classical renin/ACE/Ang II/AT₁ receptor axis, extracellular and/or intracellular origin, interacts with other novel RAS axes to regulate blood pressure and cardiovascular and kidney function in both physiological and diseased states.
Collapse
Affiliation(s)
- Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, the University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | |
Collapse
|
44
|
Temkin P, Lauffer B, Jäger S, Cimermancic P, Krogan NJ, von Zastrow M. SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat Cell Biol 2011; 13:715-21. [PMID: 21602791 PMCID: PMC3113693 DOI: 10.1038/ncb2252] [Citation(s) in RCA: 367] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 04/05/2011] [Indexed: 01/02/2023]
Abstract
Endocytic sorting of signalling receptors between recycling and degradative pathways is a key cellular process controlling the surface complement of receptors and, accordingly, the cell's ability to respond to specific extracellular stimuli. The β2 adrenergic receptor (β2AR) is a prototypical seven-transmembrane signalling receptor that recycles rapidly and efficiently to the plasma membrane after ligand-induced endocytosis. β2AR recycling is dependent on the receptor's carboxy-terminal PDZ ligand and Rab4. This active sorting process is required for functional resensitization of β2AR-mediated signalling. Here we show that sequence-directed sorting occurs at the level of entry into retromer tubules and that retromer tubules are associated with Rab4. Furthermore, we show that sorting nexin 27 (SNX27) serves as an essential adaptor protein linking β2ARs to the retromer tubule. SNX27 does not seem to directly interact with the retromer core complex, but does interact with the retromer-associated Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complex. The present results identify a role for retromer in endocytic trafficking of signalling receptors, in regulating a receptor-linked signalling pathway, and in mediating direct endosome-to-plasma membrane traffic.
Collapse
Affiliation(s)
- Paul Temkin
- Department of Psychiatry, University of California at San Francisco, San Francisco, California 94158, USA
| | | | | | | | | | | |
Collapse
|
45
|
CXCR4 and CXCR7 have distinct functions in regulating interneuron migration. Neuron 2011; 69:61-76. [PMID: 21220099 DOI: 10.1016/j.neuron.2010.12.005] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2010] [Indexed: 11/24/2022]
Abstract
CXCL12/CXCR4 signaling is critical for cortical interneuron migration and their final laminar distribution. No information is yet available on CXCR7, a newly defined CXCL12 receptor. Here we demonstrated that CXCR7 regulated interneuron migration autonomously, as well as nonautonomously through its expression in immature projection neurons. Migrating cortical interneurons coexpressed Cxcr4 and Cxcr7, and Cxcr7(-/-) and Cxcr4(-/-) mutants had similar defects in interneuron positioning. Ectopic CXCL12 expression and pharmacological blockade of CXCR4 in Cxcr7(-/-) mutants showed that both receptors were essential for responding to CXCL12 during interneuron migration. Furthermore, live imaging revealed that Cxcr4(-/-) and Cxcr7(-/-) mutants had opposite defects in interneuron motility and leading process morphology. In vivo inhibition of Gα(i/o) signaling in migrating interneurons phenocopied the interneuron lamination defects of Cxcr4(-/-) mutants. On the other hand, CXCL12 stimulation of CXCR7, but not CXCR4, promoted MAP kinase signaling. Thus, we suggest that CXCR4 and CXCR7 have distinct roles and signal transduction in regulating interneuron movement and laminar positioning.
Collapse
|
46
|
Wang R, Dashwood RH. Endothelins and their receptors in cancer: identification of therapeutic targets. Pharmacol Res 2011; 63:519-24. [PMID: 21251982 DOI: 10.1016/j.phrs.2011.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 12/21/2010] [Accepted: 01/04/2011] [Indexed: 11/15/2022]
Abstract
Endothelins and their receptors are important in normal physiology, but have been implicated in various pathophysiological conditions. Members of the so-called "endothelin axis" are dysregulated in a wide range of human cancers, opening the door for novel anticancer therapies. Established cancer chemotherapeutic agents and drugs that target specific components of the endothelin axis have been combined with promising results, but more work is needed in this area. The endothelin axis affects numerous signaling pathways, including Ras, mitogen activated protein kinases, β-catenin/T-cell factor/lymphoid enhancer factor, nuclear factor-κB (NFκB), SNAIL, and mammalian target of rapamycin (mTOR). There is much still to learn about optimizing drug specificity in this area, while minimizing off-target effects. Selective agonists and antagonists of endothelins, their receptors, and upstream processing enzymes, as well as knockdown strategies in vitro, are providing valuable leads for testing in the clinical setting. The endothelin axis continues to be an attractive avenue of scientific endeavor, both in the cancer arena and in other important health-related disciplines.
Collapse
Affiliation(s)
- Rong Wang
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331-6512, USA
| | | |
Collapse
|
47
|
Yang H, Nie Y, Li Y, Wan YJY. ERK1/2 deactivation enhances cytoplasmic Nur77 expression level and improves the apoptotic effect of fenretinide in human liver cancer cells. Biochem Pharmacol 2011; 81:910-6. [PMID: 21241664 DOI: 10.1016/j.bcp.2011.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/06/2011] [Accepted: 01/06/2011] [Indexed: 01/06/2023]
Abstract
Fenretinide, a synthetic retinoid, is a promising anticancer agent based on many in vitro, animal, and chemoprevention clinical trial studies. However, cells such as HepG2 human liver cancer cells are resistant to the apoptotic effect of fenretinide. Previously, we have shown that fenretinide-induced apoptosis is Nur77 dependent, and the sensitivity of the cancer cells to fenretinide-induced apoptosis is positively associated with cytoplasmic enrichment of Nur77. The goal of current study was to identify means to modulate nuclear export of Nur77 in order to improve the efficacy of fenretinide. Fenretinide treatment deactivated ERK1/2 in Huh7 cells, but activated ERK1/2 in HepG2 cells, which was positively associated with the sensitivity of cells to the apoptotic effect of fenretinide. Neither fenretinide nor ERK1/2 inhibitor PD98059 alone could affect the survival of HepG2 cells, but the combination of both induced cell death and increased caspase 3/7 activity. In fenretinide sensitive Huh7 cells, activation of ERK1/2 by epidermal growth factor (EGF) prevented fenretinide-induced cell death and caspase 3/7 induction. In addition, modulation of ERK1/2 changed the intracellular localization of Nur77. Fenretinide/PD98059-induced cell death of HepG2 cell was positively associated with induction and cytoplasmic location as well as mitochondria enrichment of Nur77. The effect was specific for ERK1/2 because other mitogen activated protein kinases such as P38, Akt, and JNK did not have correlated changes in their phosphorylation levels. Taken together, the current study demonstrates that ERK1/2-modulated Nur77 intracellular location dictates the efficacy of fenretinide-induced apoptosis.
Collapse
Affiliation(s)
- Hui Yang
- Department of Gastroenterology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | | | | | | |
Collapse
|
48
|
Magnan R, Masri B, Escrieut C, Foucaud M, Cordelier P, Fourmy D. Regulation of membrane cholecystokinin-2 receptor by agonists enables classification of partial agonists as biased agonists. J Biol Chem 2010; 286:6707-19. [PMID: 21156802 DOI: 10.1074/jbc.m110.196048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Given the importance of G-protein-coupled receptors as pharmacological targets in medicine, efforts directed at understanding the molecular mechanism by which pharmacological compounds regulate their presence at the cell surface is of paramount importance. In this context, using confocal microscopy and bioluminescence resonance energy transfer, we have investigated internalization and intracellular trafficking of the cholecystokinin-2 receptor (CCK2R) in response to both natural and synthetic ligands with different pharmacological features. We found that CCK and gastrin, which are full agonists on CCK2R-induced inositol phosphate production, rapidly and abundantly stimulate internalization. Internalized CCK2R did not rapidly recycle to plasma membrane but instead was directed to late endosomes/lysosomes. CCK2R endocytosis involves clathrin-coated pits and dynamin and high affinity and prolonged binding of β-arrestin1 or -2. Partial agonists and antagonists on CCK2R-induced inositol phosphate formation and ERK1/2 phosphorylation did not stimulate CCK2R internalization or β-arrestin recruitment to the CCK2R but blocked full agonist-induced internalization and β-arrestin recruitment. The extreme C-terminal region of the CCK2R (and more precisely phosphorylatable residues Ser(437)-Xaa(438)-Thr(439)-Thr(440)-Xaa(441)-Ser(442)-Thr(443)) were critical for β-arrestin recruitment. However, this region and β-arrestins were dispensable for CCK2R internalization. In conclusion, this study allowed us to classify the human CCK2R as a member of class B G-protein-coupled receptors with regard to its endocytosis features and identified biased agonists of the CCK2R. These new important insights will allow us to investigate the role of internalized CCK2R·β-arrestin complexes in cancers expressing this receptor and to develop new diagnosis and therapeutic strategies targeting this receptor.
Collapse
Affiliation(s)
- Rémi Magnan
- INSERM, Unit 858, 12 MR, 1 Avenue Jean Poulhés, 31432 Toulouse Cedex 4, France
| | | | | | | | | | | |
Collapse
|
49
|
Vinet-Oliphant H, Alvarez X, Buza E, Borda JT, Mohan M, Aye PP, Tuluc F, Douglas SD, Lackner AA. Neurokinin-1 receptor (NK1-R) expression in the brains of SIV-infected rhesus macaques: implications for substance P in NK1-R immune cell trafficking into the CNS. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1286-97. [PMID: 20671267 DOI: 10.2353/ajpath.2010.091109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies suggest a link between neuropsychiatric disorders and HIV/SIV infection. Most evidence indicates that monocytes/macrophages are the primary cell type infected within the CNS and that they contribute to CNS inflammation and neurological disease. Substance P (SP), a pleotropic neuropeptide implicated in inflammation, depression, and immune modulation via interaction with its cognate receptor, the neurokinin 1 receptor (NK1-R), is produced by monocyte/macrophages. While the presence of NK1-R on neurons is well known, its role on cells of the immune system such as monocyte/macrophages is just beginning to emerge. Therefore, we have examined the expression of SP and NK1-R and their relationship to SIV/HIV encephalitis (SIVE/HIVE) lesions and SIV-infected cells. These studies demonstrated intense expression of SP and NK1-R in SIVE lesions, with macrophages being the principal cell expressing NK1-R. Interestingly, all of the SIV-infected macrophages expressed NK1-R. Additionally, we examined the functional role of SP as a proinflammatory mediator of monocyte activation and chemotaxis. These studies demonstrated that treatment of monocytes with SP elicited changes in cell-surface expression for CCR5 and NK1-R in a dose-dependent manner. Moreover, pretreatment with SP enhanced both SP- and CCL5-mediated chemotaxis. All of these findings suggest that SP and NK1-R are important in SIV infection of macrophages and the development of SIVE lesions.
Collapse
Affiliation(s)
- Heather Vinet-Oliphant
- Tulane National Primate Research Center, Division of Comparative Pathology, Covington, LA 70433, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Although long regarded as a conduit for the degradation or recycling of cell surface receptors, the endosomal system is also an essential site of signal transduction. Activated receptors accumulate in endosomes, and certain signaling components are exclusively localized to endosomes. Receptors can continue to transmit signals from endosomes that are different from those that arise from the plasma membrane, resulting in distinct physiological responses. Endosomal signaling is widespread in metazoans and plants, where it transmits signals for diverse receptor families that regulate essential processes including growth, differentiation and survival. Receptor signaling at endosomal membranes is tightly regulated by mechanisms that control agonist availability, receptor coupling to signaling machinery, and the subcellular localization of signaling components. Drugs that target mechanisms that initiate and terminate receptor signaling at the plasma membrane are widespread and effective treatments for disease. Selective disruption of receptor signaling in endosomes, which can be accomplished by targeting endosomal-specific signaling pathways or by selective delivery of drugs to the endosomal network, may provide novel therapies for disease.
Collapse
|