1
|
Ruiz-Navarro J, Fernández-Hermira S, Sanz-Fernández I, Barbeito P, Navarro-Zapata A, Pérez-Martínez A, Garcia-Gonzalo FR, Calvo V, Izquierdo Pastor M. Formin-like 1β phosphorylation at S1086 is necessary for secretory polarized traffic of exosomes at the immune synapse in Jurkat T lymphocytes. eLife 2024; 13:RP96942. [PMID: 39479958 PMCID: PMC11527432 DOI: 10.7554/elife.96942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
We analyzed here how formin-like 1 β (FMNL1β), an actin cytoskeleton-regulatory protein, regulates microtubule-organizing center (MTOC) and multivesicular bodies (MVB) polarization and exosome secretion at an immune synapse (IS) model in a phosphorylation-dependent manner. IS formation was associated with transient recruitment of FMNL1β to the IS, which was independent of protein kinase C δ (PKCδ). Simultaneous RNA interference of all FMNL1 isoforms prevented MTOC/MVB polarization and exosome secretion, which were restored by FMNL1βWT expression. However, expression of the non-phosphorylatable mutant FMNL1βS1086A did not restore neither MTOC/MVB polarization nor exosome secretion to control levels, supporting the crucial role of S1086 phosphorylation in MTOC/MVB polarization and exosome secretion. In contrast, the phosphomimetic mutant, FMNL1βS1086D, restored MTOC/MVB polarization and exosome secretion. Conversely, FMNL1βS1086D mutant did not recover the deficient MTOC/MVB polarization occurring in PKCδ-interfered clones, indicating that S1086 FMNL1β phosphorylation alone is not sufficient for MTOC/MVB polarization and exosome secretion. FMNL1 interference inhibited the depletion of F-actin at the central region of the immune synapse (cIS), which is necessary for MTOC/MVB polarization. FMNL1βWT and FMNL1βS1086D, but not FMNL1βS1086A expression, restored F-actin depletion at the cIS. Thus, actin cytoskeleton reorganization at the IS underlies the effects of all these FMNL1β variants on polarized secretory traffic. FMNL1 was found in the IS made by primary T lymphocytes, both in T cell receptor (TCR) and chimeric antigen receptor (CAR)-evoked synapses. Taken together, these results point out a crucial role of S1086 phosphorylation in FMNL1β activation, leading to cortical actin reorganization and subsequent control of MTOC/MVB polarization and exosome secretion.
Collapse
Affiliation(s)
- Javier Ruiz-Navarro
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | | | - Irene Sanz-Fernández
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | - Pablo Barbeito
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | - Alfonso Navarro-Zapata
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, La Paz University HospitalMadridSpain
- Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Center (CNIO)MadridSpain
| | - Antonio Pérez-Martínez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, La Paz University HospitalMadridSpain
- Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Center (CNIO)MadridSpain
- Department of Pediatric Hemato-Oncology, La Paz University HospitalMadridSpain
- Pediatric Department, Autonomous University of MadridMadridSpain
| | - Francesc R Garcia-Gonzalo
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII)MadridSpain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ)MadridSpain
| | - Víctor Calvo
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | | |
Collapse
|
2
|
Sigler AL, Thompson SB, Ellwood-Digel L, Kandasamy A, Michaels MJ, Thumkeo D, Narumiya S, Del Alamo JC, Jacobelli J. FMNL1 and mDia1 promote efficient T cell migration through complex environments via distinct mechanisms. Front Immunol 2024; 15:1467415. [PMID: 39430739 PMCID: PMC11486666 DOI: 10.3389/fimmu.2024.1467415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
Lymphocyte trafficking and migration through tissues is critical for adaptive immune function and, to perform their roles, T cells must be able to navigate through diverse tissue environments that present a range of mechanical challenges. T cells predominantly express two members of the formin family of actin effectors, Formin-like 1 (FMNL1) and mammalian diaphanous-related formin 1 (mDia1). While both FMNL1 and mDia1 have been studied individually, they have not been directly compared to determine functional differences in promoting T cell migration. Through in vivo analysis and the use of in vitro 2D and 3D model environments, we demonstrate that FMNL1 and mDia1 are both required for effective T cell migration, but they have different localization and roles in T cells, with specific environment-dependent functions. We found that mDia1 promotes general motility in 3D environments in conjunction with Myosin-II activity. We also show that, while mDia1 is almost entirely in the cytoplasmic compartment, a portion of FMNL1 physically associates with the nucleus. Furthermore, FMNL1 localizes to the rear of migrating T cells and contributes to efficient migration by promoting deformation of the rigid T cell nucleus in confined environments. Overall, our data indicates that while FMNL1 and mDia1 have similar mechanisms of actin polymerization, they have distinct roles in promoting T cell migration. This suggests that differential modulation of FMNL1 and mDia1 can be an attractive therapeutic route to fine-tune T cell migration behavior.
Collapse
Affiliation(s)
- Ashton L. Sigler
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Scott B. Thompson
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Logan Ellwood-Digel
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Adithan Kandasamy
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Mary J. Michaels
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Dean Thumkeo
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Juan C. Del Alamo
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
- Division of Cardiology, University of Washington, Seattle, WA, United States
| | - Jordan Jacobelli
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
3
|
Kar N, Logue JS. Nucleating amoeboid cancer cell motility with Diaphanous related formins. Cytoskeleton (Hoboken) 2024. [PMID: 38761126 DOI: 10.1002/cm.21880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
The tissue invasive capacity of cancer cells is determined by their phenotypic plasticity. For instance, mesenchymal to amoeboid transition has been found to facilitate the passage of cancer cells through confined environments. This phenotypic transition is also heavily regulated by the architecture of the actin cytoskeleton, which may increase myosin contractility and the intracellular pressure that is known to drive bleb formation. In this review, we highlight several Diaphanous related formins (DRFs) that have been found to promote or suppress bleb formation in cancer cells, which is a hallmark of amoeboid migration. Based on the work discussed here, the role of the DRFs in cancer(s) is worthy of further scrutiny in animal models, as they may prove to be therapeutic targets.
Collapse
Affiliation(s)
- Neelakshi Kar
- Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, USA
| | - Jeremy S Logue
- Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
4
|
Crater JM, Dunn D, Nixon DF, O’Brien RLF. HIV-1 Mediated Cortical Actin Disruption Mirrors ARP2/3 Defects Found in Primary T Cell Immunodeficiencies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.27.550856. [PMID: 38405733 PMCID: PMC10888893 DOI: 10.1101/2023.07.27.550856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
During cell movement, cortical actin balances mechanical and osmotic forces to maintain cell function while providing the scaffold for cell shape. Migrating CD4+ T cells have a polarized structure with a leading edge containing dynamic branched and linear F-actin structures that bridge intracellular components to surface adhesion molecules. These actin structures are complemented with a microtubular network beaded with membrane bound organelles in the trailing uropod. Disruption of actin structures leads to dysregulated migration and changes in morphology of affected cells. In HIV-1 infection, CD4+ T cells have dysregulated movement. However, the precise mechanisms by which HIV-1 affects CD4+ T cell movement are unknown. Here, we show that HIV-1 infection of primary CD4+ T cells causes at least four progressive morphological differences as a result of virally induced cortical cytoskeleton disruption, shown by ultrastructural and time lapse imaging. Infection with a ΔNef virus partially abrogated the dysfunctional phenotype in infected cells and partially restored a wild-type shape. The pathological morphologies after HIV-1 infection phenocopy leukocytes which contain genetic determinants of specific T cell Inborn Errors of Immunity (IEI) or Primary Immunodeficiencies (PID) that affect the actin cytoskeleton. To identify potential actin regulatory pathways that may be linked to the morphological deformities, uninfected CD4+ T cell morphology was characterized following addition of small molecule chemical inhibitors. The ARP2/3 inhibitor CK-666 recapitulated three of the four abnormal morphologies we observed in HIV-1 infected cells. Restoring ARP2/3 function and cortical actin integrity in people living with HIV-1 infection is a new avenue of investigation to eradicate HIV-1 infected cells from the body.
Collapse
Affiliation(s)
- Jacqueline M. Crater
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Dunn
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Douglas F. Nixon
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Robert L. Furler O’Brien
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
5
|
Lu G, Wang H, Xu R, Xu J, An F, Xu H, Nie H, Mei J, Zhan Q, Zhang Q. Formin protein FMNL1 is a biomarker for tumor-infiltrating immune cells and associated with well immunotherapeutic response. J Cancer 2023; 14:2978-2989. [PMID: 37859818 PMCID: PMC10583584 DOI: 10.7150/jca.86965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/03/2023] [Indexed: 10/21/2023] Open
Abstract
Background: Increased studies on the basis of bulk RNA-sequencing (RNA-seq) data of cancer identify numbers of immune-related genes which may play potential regulatory roles in the tumor microenvironment (TME) without in-depth validation. Methods: In the current study, the immunological correlation and cell subpopulation expression pattern of FMNL1 were analyzed using public data. In addition, the cell subpopulation expression pattern of FMNL1 was also deeply validated using single-cell RNA-sequencing (scRNA-seq) and multiplexed quantitative immunofluorescence (mQIF). Results: Bulk FMNL1 mRNA was related to better prognosis in hepatocellular carcinoma (HCC) and was able to identify immuno-hot tumor in not only HCC but also multiple cancer types. Bulk FMNL1 mRNA also predicted the response to immunotherapy in multiple cancers. Further validation using scRNA-seq and mQIF revealed that FMNL1 was a biomarker for immune cells. Conclusions: FMNL1 is a biomarker for immune cells in not only hepatocellular carcinoma, but also multiple cancer types. Moreover, immune infiltration analysis using the bulk RNA-seq data would be further validated using scRNA-seq and/or mQIF to describe the cell subpopulation expression pattern in tumor tissues for more in-depth and appropriate understanding.
Collapse
Affiliation(s)
- Guomin Lu
- Departments of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Hui Wang
- Departments of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Rui Xu
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Junying Xu
- Departments of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Fangmei An
- Departments of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Haoran Xu
- Departments of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - He Nie
- Departments of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Jie Mei
- Departments of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Qiang Zhan
- Departments of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Qinglin Zhang
- Departments of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| |
Collapse
|
6
|
Soupene E, Kuypers FA. Dual Role of ACBD6 in the Acylation Remodeling of Lipids and Proteins. Biomolecules 2022; 12:biom12121726. [PMID: 36551154 PMCID: PMC9775454 DOI: 10.3390/biom12121726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The transfer of acyl chains to proteins and lipids from acyl-CoA donor molecules is achieved by the actions of diverse enzymes and proteins, including the acyl-CoA binding domain-containing protein ACBD6. N-myristoyl-transferase (NMT) enzymes catalyze the covalent attachment of a 14-carbon acyl chain from the relatively rare myristoyl-CoA to the N-terminal glycine residue of myr-proteins. The interaction of the ankyrin-repeat domain of ACBD6 with NMT produces an active enzymatic complex for the use of myristoyl-CoA protected from competitive inhibition by acyl donor competitors. The absence of the ACBD6/NMT complex in ACBD6.KO cells increased the sensitivity of the cells to competitors and significantly reduced myristoylation of proteins. Protein palmitoylation was not altered in those cells. The specific defect in myristoyl-transferase activity of the ACBD6.KO cells provided further evidence of the essential functional role of the interaction of ACBD6 with the NMT enzymes. Acyl-CoAs bound to the acyl-CoA binding domain of ACBD6 are acyl donors for the lysophospholipid acyl-transferase enzymes (LPLAT), which acylate single acyl-chain lipids, such as the bioactive molecules LPA and LPC. Whereas the formation of acyl-CoAs was not altered in ACBD6.KO cells, lipid acylation processes were significantly reduced. The defect in PC formation from LPC by the LPCAT enzymes resulted in reduced lipid droplets content. The diversity of the processes affected by ACBD6 highlight its dual function as a carrier and a regulator of acyl-CoA dependent reactions. The unique role of ACBD6 represents an essential common feature of (acyl-CoA)-dependent modification pathways controlling the lipid and protein composition of human cell membranes.
Collapse
|
7
|
Systematic Characterization of Expression Patterns and Immunocorrelations of Formin-Like Genes in Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8577821. [PMID: 36124068 PMCID: PMC9482526 DOI: 10.1155/2022/8577821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
Abstract
Background. Members of the formin-like gene (FMNL) family are required for cytoskeleton-related processes, and their expressions are implicated to the progression of a multitude of malignancies. However, there are insufficient studies on transcription factors and promising prognosis benefit of FMNLs during the genesis of breast cancer (BrCa). Methods. The transcriptional levels of FMNL family members in primary BrCa tissues and their association with intrinsic subclasses were analyzed using the UALCAN database. Then, the prognostic values of FMNLs in BrCa patients were investigated via the Kaplan-Meier plotter. Moreover, the correlations between FMNL expression levels and immune infiltrations were analyzed using the TIMER database. In addition, the expression patterns of FMNLs in BrCa were investigated by single-cell RNA-sequencing (scRNA-seq) analysis and were validated by immunohistochemistry (IHC) staining. Results. The transcriptional level of FMNL1 was shown to be considerably increased in BrCa. It is surprising that the transcriptional quantities of FMNL2 and FMNL3 were substantially reduced. In addition, during the comparison of several BrCa subclasses, FMNL1 and FMNL2 mRNA levels of patients with HER2-positive and triple-negative BrCa subclasses increased, while FMNL3 mRNA levels reduced. With the processions of experimentation, high FMNL1 expression was hopefully linked to well clinical outcome, while high FMNL2 expression predicted poor prognosis. Moreover, FMNL1 was highly expressed in tumor-infiltrating immune cells (TIICs) in tumor tissues. Last but not least, FMNL1 was highly expressed in TIICs and served as a gene marker for TIICs. Conclusions. The fact and result which we analyzed demonstrate FMNL1 as a diagnostic marker for TIICs by comprehensively elucidating the expression patterns and changeable prognostic implications of FMNLs in BrCa clinical applications.
Collapse
|
8
|
Discovery of anti-Formin-like 1 protein (FMNL1) antibodies in membranous nephropathy and other glomerular diseases. Sci Rep 2022; 12:13659. [PMID: 35953506 PMCID: PMC9372176 DOI: 10.1038/s41598-022-17696-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/29/2022] [Indexed: 12/28/2022] Open
Abstract
Evidence has shown that podocyte-directed autoantibodies can cause membranous nephropathy (MN). In the present work we investigated sera of MN patients using a high-density peptide array covering the whole coding sequences of the human genome encompassing 7,499,126 tiled peptides. A panel of 21 proteins reactive to MN sera were identified. We focused our attention on Formin-like 1 (FMNL1), a protein expressed by macrophages in MN patients tissues. High levels of anti-FMNL1 IgG4 were demonstrated in sera of MN patients with an orthogonal methodology (ELISA) contemporary demonstrating FMNL1 positive cells in kidney co-staining with CD68 in glomeruli. High levels of circulating anti-FMNL1 IgG4 were associated with lack of remission of proteinuria, potentially indicating that autoantibodies directed against cells other than podocytes, involved in tissue repair, might play a role in MN disease progression. High serum levels of anti-FMNL1 IgGs were also observed in other non-autoimmune glomerolonephrites, i.e. idiopathic and genetic FSGS, IgAGN. These findings are suggestive of a broader role of those autoantibodies in other glomerular disease conditions.
Collapse
|
9
|
Li W, Li F, Zhang X, Lin HK, Xu C. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduct Target Ther 2021; 6:422. [PMID: 34924561 PMCID: PMC8685280 DOI: 10.1038/s41392-021-00825-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
More and more in-depth studies have revealed that the occurrence and development of tumors depend on gene mutation and tumor heterogeneity. The most important manifestation of tumor heterogeneity is the dynamic change of tumor microenvironment (TME) heterogeneity. This depends not only on the tumor cells themselves in the microenvironment where the infiltrating immune cells and matrix together forming an antitumor and/or pro-tumor network. TME has resulted in novel therapeutic interventions as a place beyond tumor beds. The malignant cancer cells, tumor infiltrate immune cells, angiogenic vascular cells, lymphatic endothelial cells, cancer-associated fibroblastic cells, and the released factors including intracellular metabolites, hormonal signals and inflammatory mediators all contribute actively to cancer progression. Protein post-translational modification (PTM) is often regarded as a degradative mechanism in protein destruction or turnover to maintain physiological homeostasis. Advances in quantitative transcriptomics, proteomics, and nuclease-based gene editing are now paving the global ways for exploring PTMs. In this review, we focus on recent developments in the PTM area and speculate on their importance as a critical functional readout for the regulation of TME. A wealth of information has been emerging to prove useful in the search for conventional therapies and the development of global therapeutic strategies.
Collapse
Affiliation(s)
- Wen Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
| | - Feifei Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Chuan Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China.
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA.
| |
Collapse
|
10
|
Bello-Gamboa A, Velasco M, Moreno S, Herranz G, Ilie R, Huetos S, Dávila S, Sánchez A, Bernardino De La Serna J, Calvo V, Izquierdo M. Actin reorganization at the centrosomal area and the immune synapse regulates polarized secretory traffic of multivesicular bodies in T lymphocytes. J Extracell Vesicles 2020; 9:1759926. [PMID: 32939232 PMCID: PMC7480611 DOI: 10.1080/20013078.2020.1759926] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
T-cell receptor stimulation induces the convergence of multivesicular bodies towards the microtubule-organizing centre (MTOC) and the polarization of the MTOC to the immune synapse (IS). These events lead to exosome secretion at the IS. We describe here that upon IS formation centrosomal area F-actin decreased concomitantly with MTOC polarization to the IS. PKCδ-interfered T cell clones showed a sustained level of centrosomal area F-actin associated with defective MTOC polarization. We analysed the contribution of two actin cytoskeleton-regulatory proteins, FMNL1 and paxillin, to the regulation of cortical and centrosomal F-actin networks. FMNL1β phosphorylation and F-actin reorganization at the IS were inhibited in PKCδ-interfered clones. F-actin depletion at the central region of the IS, a requirement for MTOC polarization, was associated with FMNL1β phosphorylation at its C-terminal, autoregulatory region. Interfering all FMNL1 isoforms prevented MTOC polarization; nonetheless, FMNL1β re-expression restored MTOC polarization in a centrosomal area F-actin reorganization-independent manner. Moreover, PKCδ-interfered clones exhibited decreased paxillin phosphorylation at the MTOC, which suggests an alternative actin cytoskeleton regulatory pathway. Our results infer that PKCδ regulates MTOC polarization and secretory traffic leading to exosome secretion in a coordinated manner by means of two distinct pathways, one involving FMNL1β regulation and controlling F-actin reorganization at the IS, and the other, comprising paxillin phosphorylation potentially controlling centrosomal area F-actin reorganization. Abbreviations Ab, antibody; AICD, activation-induced cell death; AIP, average intensity projection; APC, antigen-presenting cell; BCR, B-cell receptor for antigen; C, centre of mass; cent2, centrin 2; cIS, central region of the immune synapse; CMAC, CellTracker™ Blue (7-amino-4-chloromethylcoumarin); cSMAC, central supramolecular activation cluster; CTL, cytotoxic T lymphocytes; DAG, diacylglycerol; DGKα, diacylglycerol kinase α; Dia1, Diaphanous-1; dSMAC, distal supramolecular activation cluster; ECL, enhanced chemiluminescence; ESCRT, endosomal sorting complex required for traffic; F-actin, filamentous actin; Fact-low cIS, F-actin-low region at the centre of the immune synapse; FasL, Fas ligand; FMNL1, formin-like 1; fps, frames per second; GFP, green fluorescent protein; HBSS, Hank’s balanced salt solution; HRP, horseradish peroxidase; ILV, intraluminal vesicles; IS, immune synapse; MFI, mean fluorescence intensity; MHC, major histocompatibility complex; MIP, maximal intensity projection; MVB, multivesicular bodies; MTOC, microtubule-organizing centre; NS, not significant; PBL, peripheral blood lymphocytes; PKC, protein kinase C; PKCδ, protein kinase C δ isoform; PLC, phospholipase C; PMA, phorbol myristate acetate; Pol. Index, polarization index; pSMAC, peripheral supramolecular activation cluster; PSF, point spread function; ROI, region of interest; SD, standard deviation; shRNA, short hairpin RNA; SEE, Staphylococcus enterotoxin E; SMAC, supramolecular activation cluster; TCR, T-cell receptor for antigen; T-helper (Th); TRANS, transmittance; WB, Western blot.
Collapse
Affiliation(s)
- Ana Bello-Gamboa
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain
| | - Marta Velasco
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain
| | - Solange Moreno
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain
| | - Gonzalo Herranz
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain.,Centro De Biología Molecular Severo Ochoa, Universidad Autónoma De Madrid, Cantoblanco, Madrid, Spain
| | - Roxana Ilie
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain
| | - Silvia Huetos
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain
| | - Sergio Dávila
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain.,Nanostructured Functional Surfaces Program, IMDEA Nanociencia, Universidad Autónoma De Madrid, Cantoblanco, Madrid, Spain
| | - Alicia Sánchez
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain.,Neuroimmunology Unit, Puerta De Hierro-Segovia De Arana Health Research Institute, Madrid, Spain
| | - Jorge Bernardino De La Serna
- National Heart & Lung Institute, Faculty of Medicine, Imperial College London, South Kensington Campus, London, UK.,Central Laser Facility, Science and Technology Facilities Council, UK Research and Innovation. Research Complex at Harwell, Harwell-Oxford, UK
| | - Víctor Calvo
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain
| | - Manuel Izquierdo
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain
| |
Collapse
|
11
|
Thompson SB, Sandor AM, Lui V, Chung JW, Waldman MM, Long RA, Estin ML, Matsuda JL, Friedman RS, Jacobelli J. Formin-like 1 mediates effector T cell trafficking to inflammatory sites to enable T cell-mediated autoimmunity. eLife 2020; 9:58046. [PMID: 32510333 PMCID: PMC7308091 DOI: 10.7554/elife.58046] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/07/2020] [Indexed: 01/21/2023] Open
Abstract
Lymphocyte migration is essential for the function of the adaptive immune system, and regulation of T cell entry into tissues is an effective therapy in autoimmune diseases. Little is known about the specific role of cytoskeletal effectors that mediate mechanical forces and morphological changes essential for migration in complex environments. We developed a new Formin-like-1 (FMNL1) knock-out mouse model and determined that the cytoskeletal effector FMNL1 is selectively required for effector T cell trafficking to inflamed tissues, without affecting naïve T cell entry into secondary lymphoid organs. Here, we identify a FMNL1-dependent mechanism of actin polymerization at the back of the cell that enables migration of the rigid lymphocyte nucleus through restrictive barriers. Furthermore, FMNL1-deficiency impairs the ability of self-reactive effector T cells to induce autoimmune disease. Overall, our data suggest that FMNL1 may be a potential therapeutic target to specifically modulate T cell trafficking to inflammatory sites.
Collapse
Affiliation(s)
- Scott B Thompson
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Adam M Sandor
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Victor Lui
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Jeffrey W Chung
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center, University of Colorado School of Medicine, Aurora, United States
| | - Monique M Waldman
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center, University of Colorado School of Medicine, Aurora, United States
| | - Robert A Long
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Miriam L Estin
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Jennifer L Matsuda
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Rachel S Friedman
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center, University of Colorado School of Medicine, Aurora, United States
| | - Jordan Jacobelli
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center, University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
12
|
Abstract
Cell migration is an essential process, both in unicellular organisms such as amoeba and as individual or collective motility in highly developed multicellular organisms like mammals. It is controlled by a variety of activities combining protrusive and contractile forces, normally generated by actin filaments. Here, we summarize actin filament assembly and turnover processes, and how respective biochemical activities translate into different protrusion types engaged in migration. These actin-based plasma membrane protrusions include actin-related protein 2/3 complex-dependent structures such as lamellipodia and membrane ruffles, filopodia as well as plasma membrane blebs. We also address observed antagonisms between these protrusion types, and propose a model - also inspired by previous literature - in which a complex balance between specific Rho GTPase signaling pathways dictates the protrusion mechanism employed by cells. Furthermore, we revisit published work regarding the fascinating antagonism between Rac and Rho GTPases, and how this intricate signaling network can define cell behavior and modes of migration. Finally, we discuss how the assembly of actin filament networks can feed back onto their regulators, as exemplified for the lamellipodial factor WAVE regulatory complex, tightly controlling accumulation of this complex at specific subcellular locations as well as its turnover.
Collapse
|
13
|
Yang XY, Liao JJ, Xue WR. FMNL1 down-regulation suppresses bone metastasis through reducing TGF-β1 expression in non-small cell lung cancer (NSCLC). Biomed Pharmacother 2019; 117:109126. [PMID: 31387165 DOI: 10.1016/j.biopha.2019.109126] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 12/25/2022] Open
Abstract
Approximately 40% of patients with non-small cell lung cancer (NSCLC) develop bone metastasis. The formin protein formin-like 1 (FMNL1) plays a key role in the pathogenic processes of hematopoietic malignancies, and has been reported to be associated with the progression of multiple types of cancer. In the study, we found that FMNL1 expression was markedly up-regulated in primary NSCLC samples, and stronger expression of FNML1 was detected in bone metastasis. Reducing FMNL1 expression significantly suppressed cell proliferation in NSCLC cells. We also investigated the functional effects of FMNL1 knockdown on the inhibition of migration and invasion by meditating the expression of epithelial to mesenchymal transition (EMT)-associated signals in NSCLC cells. The transforming growth factor-β1 (TGF-β1)/SMADs signaling pathway was repressed in FMNL1-knockdown NSCLC cells. Further studies indicated that additional treatment with TGF-β1 could markedly abrogate FMNL1 knockdown-induced suppression of migration and invasion in NSCLC cells. In addition, NSCLC cell-induced osteoclastogenesis was also inhibited by FMNL1 deletion, as evidenced by the down-regulated expression of tartrate-resistant acid phosphatase (TRAP) and NFATc1. In vivo studies confirmed the results that FMNL1 knockdown markedly limited tumor growth. Importantly, decreasing FMNL1 reduced bone metastasis ability in vivo. Therefore, our results demonstrated that suppressing FMNL1 expression could inhibit bone metastasis in NSCLC through blocking TGF-β1 signaling, and FMNL1 might be a novel target for developing effective therapeutic strategy to limit the bone metastasis of NSCLC.
Collapse
Affiliation(s)
- Xing-Yi Yang
- Doppler Ultrasonic Department, Fenyang College of Shanxi Medical University, Fenyang, 032200, China
| | - Jun-Jie Liao
- Department of Radiology, Huizhou City People's Hospital of Guangdong Province, Huizhou, 516001, China
| | - Wu-Rong Xue
- Department of Image, CT Room, Yulin Xingyuan Hospital, Yulin, 719000, China.
| |
Collapse
|
14
|
Miller EW, Blystone SD. The carboxy-terminus of the formin FMNL1ɣ bundles actin to potentiate adenocarcinoma migration. J Cell Biochem 2019; 120:14383-14404. [PMID: 30977161 DOI: 10.1002/jcb.28694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 12/31/2022]
Abstract
The formin family of proteins contributes to spatiotemporal control of actin cytoskeletal rearrangements during motile cell activities. The FMNL subfamily exhibits multiple mechanisms of linear actin filament formation and organization. Here we report novel actin-modifying functions of FMNL1 in breast adenocarcinoma migration models. FMNL1 is required for efficient cell migration and its three isoforms exhibit distinct localization. Suppression of FMNL1 protein expression results in a significant impairment of cell adhesion, migration, and invasion. Overexpression of FMNL1ɣ, but not FMNL1β or FMNL1α, enhances cell adhesion independent of the FH2 domain and FMNL1ɣ rescues migration in cells depleted of all three endogenous isoforms. While FMNL1ɣ inhibits actin assembly in vitro, it facilitates bundling of filamentous actin independent of the FH2 domain. The unique interactions of FMNL1ɣ with filamentous actin provide a new understanding of formin domain functions and its effect on motility of diverse cell types suggest a broader role than previously realized.
Collapse
Affiliation(s)
- Eric W Miller
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York
| | - Scott D Blystone
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
15
|
Tapodi A, Clemens DM, Uwineza A, Jarrin M, Goldberg MW, Thinon E, Heal WP, Tate EW, Nemeth-Cahalan K, Vorontsova I, Hall JE, Quinlan RA. BFSP1 C-terminal domains released by post-translational processing events can alter significantly the calcium regulation of AQP0 water permeability. Exp Eye Res 2019; 185:107585. [PMID: 30790544 PMCID: PMC6713518 DOI: 10.1016/j.exer.2019.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/26/2019] [Accepted: 02/03/2019] [Indexed: 01/20/2023]
Abstract
BFSP1 (beaded filament structural protein 1, filensin) is a cytoskeletal protein expressed in the eye lens. It binds AQP0 in vitro and its C-terminal sequences have been suggested to regulate the water channel activity of AQP0. A myristoylated fragment from the C-terminus of BFSP1 was found in AQP0 enriched fractions. Here we identify BFSP1 as a substrate for caspase-mediated cleavage at several C-terminal sites including D433. Cleavage at D433 exposes a cryptic myristoylation sequence (434–440). We confirm that this sequence is an excellent substrate for both NMT1 and 2 (N-myristoyl transferase). Thus caspase cleavage may promote formation of myristoylated fragments derived from the BFSP1 C-terminus (G434-S665). Myristoylation at G434 is not required for membrane association. Biochemical fractionation and immunogold labeling confirmed that C-terminal BFSP1 fragments containing the myristoylation sequence colocalized with AQP0 in the same plasma membrane compartments of lens fibre cells. To determine the functional significance of the association of BFSP1 G434-S665 sequences with AQP0, we measured AQP0 water permeability in Xenopus oocytes co-transfected with transcripts expressing both AQP0 and various C-terminal domain fragments of BFSP1 generated by caspase cleavage. We found that different fragments dramatically alter the response of AQP0 to different concentrations of Ca2+. The complete C-terminal fragment (G434-S665) eliminates calcium regulation altogether. Shorter fragments can enhance regulation by elevated calcium or reverse the response, indicative of the regulatory potential of BFSP1 with respect to AQP0. In particular, elimination of the myristoylation site by the mutation G434A reverses the order of water permeability sensitivity to different Ca2+ concentrations.
Collapse
Affiliation(s)
- Antal Tapodi
- Department of Biosciences, The University of Durham, South Road, Durham, DH1 3LE, UK
| | | | - Alice Uwineza
- Department of Biosciences, The University of Durham, South Road, Durham, DH1 3LE, UK
| | - Miguel Jarrin
- Department of Biosciences, The University of Durham, South Road, Durham, DH1 3LE, UK
| | - Martin W Goldberg
- Department of Biosciences, The University of Durham, South Road, Durham, DH1 3LE, UK
| | - Emmanuelle Thinon
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Wood Lane, London, W12 0BZ, UK; Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Wood Lane, London, W12 0BZ, UK
| | - William P Heal
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Wood Lane, London, W12 0BZ, UK; Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Wood Lane, London, W12 0BZ, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Wood Lane, London, W12 0BZ, UK; Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Wood Lane, London, W12 0BZ, UK
| | | | | | - James E Hall
- Physiology and Biophysics, UC Irvine, Irvine, CA, USA.
| | - Roy A Quinlan
- Department of Biosciences, The University of Durham, South Road, Durham, DH1 3LE, UK; Biophysical Sciences Institute, The University of Durham, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
16
|
Abstract
Formin homology proteins (formins) are a highly conserved family of cytoskeletal remodeling proteins that are involved in a diverse array of cellular functions. Formins are best known for their ability to regulate actin dynamics, but the same functional domains also govern stability and organization of microtubules. It is thought that this dual activity allows them to coordinate the activity of these two major cytoskeletal networks and thereby influence cellular architecture. Golgi ribbon assembly is dependent upon cooperative interactions between actin filaments and cytoplasmic microtubules originating both at the Golgi itself and from the centrosome. Similarly, centrosome assembly, centriole duplication, and centrosome positioning are also reliant on a dialogue between both cytoskeletal networks. As presented in this chapter, a growing body of evidence suggests that multiple formin proteins play essential roles in these central cellular processes.
Collapse
Affiliation(s)
- John Copeland
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
17
|
Young LE, Latario CJ, Higgs HN. Roles for Ena/VASP proteins in FMNL3-mediated filopodial assembly. J Cell Sci 2018; 131:131/21/jcs220814. [PMID: 30373894 DOI: 10.1242/jcs.220814] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/25/2018] [Indexed: 02/01/2023] Open
Abstract
Filopodia are actin-dependent finger-like structures that protrude from the plasma membrane. Actin filament barbed-end-binding proteins localized to filopodial tips are key to filopodial assembly. Two classes of barbed-end-binding proteins are formins and Ena/VASP proteins, and both classes have been localized to filopodial tips in specific cellular contexts. Here, we examine the filopodial roles of the FMNL formins and Ena/VASP proteins in U2OS cells. FMNL3 suppression reduces filopodial assembly by 90%, and FMNL3 is enriched at >95% of filopodial tips. Suppression of VASP or Mena (also known as ENAH) reduces filopodial assembly by >75%. However, VASP and Mena do not display consistent filopodial tip localization, but are enriched in focal adhesions (FAs). Interestingly, >85% of FMNL3-containing filopodia are associated with FAs. Two situations increase Ena/VASP filopodial localization: (1) expression of myosin-X, and (2) actively spreading cells. In spreading cells, filopodia often mark sites of nascent adhesions. Interestingly, VASP suppression in spreading cells causes a significant increase in adhesion assembly at filopodial tips. This work demonstrates that, in U2OS cells, Ena/VASP proteins play roles in filopodia beyond those at filopodial tips.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lorna E Young
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Casey J Latario
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| |
Collapse
|
18
|
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 2018; 118:919-988. [PMID: 29292991 DOI: 10.1021/acs.chemrev.6b00750] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.
Collapse
Affiliation(s)
- Hong Jiang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiao Chen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Pornpun Aramsangtienchai
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Zhen Tong
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
19
|
Cohen S, Kovari DT, Wei W, Keate R, Curtis JE, Nie S. Cdc42 regulates the cellular localization of Cdc42ep1 in controlling neural crest cell migration. J Mol Cell Biol 2017; 10:376-387. [PMID: 29040749 PMCID: PMC6692865 DOI: 10.1093/jmcb/mjx044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 10/02/2017] [Indexed: 01/12/2023] Open
Abstract
The member of Rho family of small GTPases Cdc42 plays important and conserved roles in cell polarity and motility. The Cdc42ep family proteins have been identified to bind to Cdc42, yet how they interact with Cdc42 to regulate cell migration remains to be elucidated. In this study, we focus on Cdc42ep1, which is expressed predominantly in the highly migratory neural crest cells in frog embryos. Through morpholino-mediated knockdown, we show that Cdc42ep1 is required for the migration of cranial neural crest cells. Loss of Cdc42ep1 leads to rounder cell shapes and the formation of membrane blebs, consistent with the observed disruption in actin organization and focal adhesion alignment. As a result, Cdc42ep1 is critical for neural crest cells to apply traction forces at the correct place to migrate efficiently. We further show that Cdc42ep1 is localized to two areas in neural crest cells: in membrane protrusions together with Cdc42 and in perinuclear patches where Cdc42 is absent. Cdc42 directly interacts with Cdc42ep1 (through the CRIB domain) and changes in Cdc42 level shift the distribution of Cdc42ep1 between these two subcellular locations, controlling the formation of membrane protrusions and directionality of migration as a consequence. These results suggest that Cdc42ep1 elaborates Cdc42 activity in neural crest cells to promote their efficient migration.
Collapse
Affiliation(s)
- Shlomi Cohen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA,School of Physics, Georgia Institute of Technology, Atlanta, GA, USA,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Wenbin Wei
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rebecca Keate
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jennifer E Curtis
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shuyi Nie
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA,Correspondence to: Shuyi Nie, E-mail:
| |
Collapse
|
20
|
Udenwobele DI, Su RC, Good SV, Ball TB, Varma Shrivastav S, Shrivastav A. Myristoylation: An Important Protein Modification in the Immune Response. Front Immunol 2017; 8:751. [PMID: 28713376 PMCID: PMC5492501 DOI: 10.3389/fimmu.2017.00751] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/13/2017] [Indexed: 01/24/2023] Open
Abstract
Protein N-myristoylation is a cotranslational lipidic modification specific to the alpha-amino group of an N-terminal glycine residue of many eukaryotic and viral proteins. The ubiquitous eukaryotic enzyme, N-myristoyltransferase, catalyzes the myristoylation process. Precisely, attachment of a myristoyl group increases specific protein–protein interactions leading to subcellular localization of myristoylated proteins with its signaling partners. The birth of the field of myristoylation, a little over three decades ago, has led to the understanding of the significance of protein myristoylation in regulating cellular signaling pathways in several biological processes especially in carcinogenesis and more recently immune function. This review discusses myristoylation as a prerequisite step in initiating many immune cell signaling cascades. In particular, we discuss the hitherto unappreciated implication of myristoylation during myelopoiesis, innate immune response, lymphopoiesis for T cells, and the formation of the immunological synapse. Furthermore, we discuss the role of myristoylation in inducing the virological synapse during human immunodeficiency virus infection as well as its clinical implication. This review aims to summarize existing knowledge in the field and to highlight gaps in our understanding of the role of myristoylation in immune function so as to further investigate into the dynamics of myristoylation-dependent immune regulation.
Collapse
Affiliation(s)
- Daniel Ikenna Udenwobele
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Biochemistry, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Ruey-Chyi Su
- JC Wilt Infectious Diseases Research Institute, National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Sara V Good
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Terry Blake Ball
- JC Wilt Infectious Diseases Research Institute, National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Shailly Varma Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,VastCon Inc., Winnipeg, MB, Canada
| | - Anuraag Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
21
|
Formin like 1 expression is increased on CD4+ T lymphocytes in spontaneous autoimmune uveitis. J Proteomics 2017; 154:102-108. [DOI: 10.1016/j.jprot.2016.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/22/2016] [Accepted: 12/27/2016] [Indexed: 12/27/2022]
|
22
|
Péladeau C, Heibein A, Maltez MT, Copeland SJ, Copeland JW. A specific FMNL2 isoform is up-regulated in invasive cells. BMC Cell Biol 2016; 17:32. [PMID: 27578625 PMCID: PMC5006604 DOI: 10.1186/s12860-016-0110-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/23/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Formins are a highly conserved family of cytoskeletal remodeling proteins. A growing body of evidence suggests that formins play key roles in the progression and spread of a variety of cancers. There are 15 human formin proteins and of these the Diaphanous-Related Formins (DRFs) are the best characterized. Included in the DRFs are the Formin-Like proteins, FMNL1, 2 & 3, each of which have been strongly implicated in driving tumorigenesis and metastasis of specific tumors. In particular, increased FMNL2 expression correlates with increased invasiveness of colorectal cancer (CRC) in vivo and for a variety of CRC cell-lines in vitro. FMNL2 expression is also required for invasive cell motility in other cancer cell-lines. There are multiple alternatively spliced isoforms of FMNL2 and it is predicted that the encoded proteins will differ in their regulation, subcellular localization and in their ability to regulate cytoskeletal dynamics. RESULTS Using RT-PCR we identified four FMNL2 isoforms expressed in CRC and melanoma cell-lines. We find that a previously uncharacterized FMNL2 isoform is predominantly expressed in a variety of melanoma and CRC cell lines; this isoform is also more effective in driving 3D motility. Building on previous reports, we also show that FMNL2 is required for invasion in A375 and WM266.4 melanoma cells. CONCLUSIONS Taken together, these results suggest that FMNL2 is likely to be generally required in melanoma cells for invasion, that a specific isoform of FMNL2 is up-regulated in invasive CRC and melanoma cells and this isoform is the most effective at facilitating invasion.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Allan Heibein
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Melissa T Maltez
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Sarah J Copeland
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - John W Copeland
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
23
|
Skau CT, Waterman CM. Specification of Architecture and Function of Actin Structures by Actin Nucleation Factors. Annu Rev Biophys 2016; 44:285-310. [PMID: 26098516 DOI: 10.1146/annurev-biophys-060414-034308] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The actin cytoskeleton is essential for diverse processes in mammalian cells; these processes range from establishing cell polarity to powering cell migration to driving cytokinesis to positioning intracellular organelles. How these many functions are carried out in a spatiotemporally regulated manner in a single cytoplasm has been the subject of much study in the cytoskeleton field. Recent work has identified a host of actin nucleation factors that can build architecturally diverse actin structures. The biochemical properties of these factors, coupled with their cellular location, likely define the functional properties of actin structures. In this article, we describe how recent advances in cell biology and biochemistry have begun to elucidate the role of individual actin nucleation factors in generating distinct cellular structures. We also consider how the localization and orientation of actin nucleation factors, in addition to their kinetic properties, are critical to their ability to build a functional actin cytoskeleton.
Collapse
Affiliation(s)
- Colleen T Skau
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892; ,
| | | |
Collapse
|
24
|
Formins at the Junction. Trends Biochem Sci 2015; 41:148-159. [PMID: 26732401 DOI: 10.1016/j.tibs.2015.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 12/21/2022]
Abstract
The actin cytoskeleton and adhesion junctions are physically and functionally coupled at the cell-cell interface between epithelial cells. The actin regulatory complex Arp2/3 has an established role in the turnover of junctional actin; however, the role of formins, the largest group of actin regulators, is less clear. Formins dynamically shape the actin cytoskeleton and have various functions within cells. In this review we describe recent progress on how formins regulate actin dynamics at cell-cell contacts and highlight formin functions during polarized protein traffic necessary for epithelialization.
Collapse
|
25
|
Miller MR, Blystone SD. Reliable and inexpensive expression of large, tagged, exogenous proteins in murine bone marrow-derived macrophages using a second generation lentiviral system. J Biol Methods 2015; 2:e23. [PMID: 26457319 DOI: 10.14440/jbm.2015.66] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Over the past two decades, researchers have struggled to efficiently express foreign DNA in primary macrophages, impeding research progress. The applications of lipofection, electroporation, microinjection, and viral-mediated transfer typically result in disruptions in macrophage differentiation and function, low expression levels of exogenous proteins, limited efficiency and high cell mortality. In this report, after extensive optimization, we present a method of expressing large tagged proteins at high efficiency, consistency, and low cost using lentiviral infection. This method utilizes laboratory-propagated second generation plasmids to produce efficient virus that can be stored for later use. The expression of proteins up to 150 kDa in size is achieved in 30-70% of cells while maintaining normal macrophage differentiation and morphology as determined by fluorescence microscopy and Western blot analysis. This manuscript delineates the reagents and methods used to produce lentivirus to express exogenous DNA in murine bone marrow-derived macrophages sufficient for single cell microscopy as well as functional assays requiring large numbers of murine bone marrow-derived macrophages.
Collapse
Affiliation(s)
- Matthew R Miller
- Department of Cell & Developmental Biology, SUNY Upstate Medical University, 750 East Adams St. Syracuse, NY 13210, USA
| | - Scott D Blystone
- Department of Cell & Developmental Biology, SUNY Upstate Medical University, 750 East Adams St. Syracuse, NY 13210, USA
| |
Collapse
|
26
|
Jang WI, Jo YJ, Kim HC, Jia JL, Namgoong S, Kim NH. Non-muscle tropomyosin (Tpm3) is crucial for asymmetric cell division and maintenance of cortical integrity in mouse oocytes. Cell Cycle 2015; 13:2359-69. [PMID: 25483187 DOI: 10.4161/cc.29333] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tropomyosins are actin-binding cytoskeletal proteins that play a pivotal role in regulating the function of actin filaments in muscle and non-muscle cells; however, the roles of non-muscle tropomyosins in mouse oocytes are unknown. This study investigated the expression and functions of non-muscle tropomyosin (Tpm3) during meiotic maturation of mouse oocytes. Tpm3 mRNA was detected at all developmental stages in mouse oocytes. Tpm3 protein was localized at the cortex during the germinal vesicle and germinal vesicle breakdown stages. However, the overall fluorescence intensity of Tpm3 immunostaining was markedly decreased in metaphase II oocytes. Knockdown of Tpm3 impaired asymmetric division of oocytes and spindle migration, considerably reduced the amount of cortical actin, and caused membrane blebbing during cytokinesis. Expression of a constitutively active cofilin mutant and Tpm3 overexpression confirmed that Tpm3 protects cortical actin from depolymerization by cofilin. The data indicate that Tpm3 plays crucial roles in maintaining cortical actin integrity and asymmetric cell division during oocyte maturation, and that dynamic regulation of cortical actin by Tpm3 is critical to ensure proper polar body protrusion.
Collapse
Affiliation(s)
- Woo-In Jang
- a Department of Animal Sciences; Chungbuk National University; Cheongju, Chungbuk, Republic of Korea
| | | | | | | | | | | |
Collapse
|
27
|
Wang Y, Arjonen A, Pouwels J, Ta H, Pausch P, Bange G, Engel U, Pan X, Fackler OT, Ivaska J, Grosse R. Formin-like 2 Promotes β1-Integrin Trafficking and Invasive Motility Downstream of PKCα. Dev Cell 2015; 34:475-83. [PMID: 26256210 DOI: 10.1016/j.devcel.2015.06.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/01/2015] [Accepted: 06/18/2015] [Indexed: 11/28/2022]
Abstract
Regulated turnover of integrin receptors is essential for cell adhesion and migration. Pathways selectively regulating β1-integrin recycling are implicated in cancer invasion and metastasis, yet proteins required for the internalization of this pro-invasive integrin remain to be identified. Here, we uncover formin-like 2 (FMNL2) as a critical regulator of β1-integrin internalization downstream of protein kinase C (PKC). PKCα associates with and phosphorylates FMNL2 at S1072 within its Diaphanous autoregulatory region, leading to the release of formin autoinhibition. Phosphorylation of FMNL2 triggers its rapid relocation and promotes its interaction with the cytoplasmic tails of the α-integrin subunits for β1-integrin endocytosis. FMNL2 drives β1-integrin internalization and invasive motility in a phosphorylation-dependent manner, while a FMNL2 mutant defective in actin assembly interferes with β1-integrin endocytosis and cancer cell invasion. Our data establish a role for FMNL2 in the regulation of β1-integrin and provide a mechanistic understanding of the function of FMNL2 in cancer invasiveness.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Pharmacology, University of Marburg, 35043 Marburg, Germany
| | - Antti Arjonen
- Turku Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | - Jeroen Pouwels
- Turku Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | - Haisen Ta
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Patrick Pausch
- LOEWE Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, University of Marburg, 35043 Marburg, Germany
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, University of Marburg, 35043 Marburg, Germany
| | - Ulrike Engel
- Nikon Imaging Center and COS, University of Heidelberg, 69120 Heidelberg, Germany
| | - Xiaoyu Pan
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku, 20520 Turku, Finland; Department of Biochemistry and Food Chemistry, University of Turku, 20520 Turku, Finland
| | - Robert Grosse
- Institute of Pharmacology, University of Marburg, 35043 Marburg, Germany.
| |
Collapse
|
28
|
Wang F, Zhang L, Duan X, Zhang GL, Wang ZB, Wang Q, Xiong B, Sun SC. RhoA-mediated FMNL1 regulates GM130 for actin assembly and phosphorylates MAPK for spindle formation in mouse oocyte meiosis. Cell Cycle 2015; 14:2835-43. [PMID: 26083584 DOI: 10.1080/15384101.2015.1031438] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Formin-like 1 (FMNL1) is a member of Formin family proteins which are the actin nucleators. Although FMNL1 activities have been shown to be essential for cell adhesion, cytokinesis, cell polarization and migration in mitosis, the functional roles of mammalian FMNL1 during oocyte meiosis remain uncertain. In this study, we investigated the functions of FMNL1 in mouse oocytes using specific morpholino (MO) microinjection and live cell imaging. Immunofluorescent staining showed that in addition to its cytoplasmic distribution, FMNL1 was primarily localized at the spindle poles after germinal vesicle breakdown (GVBD). FMNL1 knockdown caused the low rate of polar body extrusion and resulted in large polar bodies. Time-lapse microscopic and immunofluorescence intensity analysis indicated that this might be due to the aberrant actin expression levels. Cortical polarity was disrupted as shown by a loss of actin cap and cortical granule free domain (CGFD) formation, which was confirmed by a failure of meiotic spindle positioning. And this might be the reason for the large polar body formation. Spindle formation was also disrupted, which might be due to the abnormal localization of p-MAPK. These results indicated that FMNL1 affected both actin dynamics and spindle formation for the oocyte polar body extrusion. Moreover, FMNL1 depletion resulted in aberrant localization and expression patterns of a cis-Golgi marker protein, GM130. Finally, we found that the small GTPase RhoA might be the upstream regulator of FMNL1. Taken together, our data indicate that FMNL1 is required for spindle organization and actin assembly through a RhoA-FMNL1-GM130 pathway during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Fei Wang
- a College of Animal Science and Technology; Nanjing Agricultural University ; Nanjing , China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Miller MR, Blystone SD. Human Macrophages Utilize the Podosome Formin FMNL1 for Adhesion and Migration. ACTA ACUST UNITED AC 2015; 4:1-11. [PMID: 26942206 DOI: 10.4236/cellbio.2015.41001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Macrophages play a crucial role in detecting, regulating, and resolving immune crises, requiring migration through complex extracellular matrices. Unwarranted macrophage inflammatory activity potentiates kidney disease, rheumatoid arthritis, and transplant rejection. Proper remodeling of the actin cytoskeleton, especially at adhesion structures, is essential to the translocation of macrophages. Macrophages form actin-rich adhesions termed "podosomes", giving them the capacity to make contacts with the substratum for traction through interstitial tissues. Macrophages express multiple formins, including FMNL1, Dia1, and Fhod1, with potential to impact actin remodeling involved in migration. Formins are a family of proteins that are best known for modifying the actin cytoskeleton via nucleation, elongation, bundling, and/or severing actin filaments. In this study we demonstrate that the formin FMNL1 is a key regulator of podosomes and is required for normal macrophage migration. Additionally, this is the first study to demonstrate defects in primary human cell migration resulting from specific formin silencing. Pharmacologic inhibition of all formin activity results in a significant decrease in podosome formation and normal macrophage migration. Furthermore, targeted suppression of FMNL1 results in decreases in macrophage migration similar to inhibition of all expressed macrophage formins. These novel findings suggest FMNL1 as a possible chemotherapeutic target to hinder macrophage migration, which could offer an innovative method for limiting unnecessary macrophage-mediated inflammation. We hypothesize that formins are required in podosome actin dynamics to support macrophage migration.
Collapse
Affiliation(s)
- Matthew R Miller
- Department of Cell & Developmental Biology, SUNY Upstate Medical University, New York, USA
| | - Scott D Blystone
- Department of Cell & Developmental Biology, SUNY Upstate Medical University, New York, USA
| |
Collapse
|
30
|
|
31
|
Gauvin TJ, Young LE, Higgs HN. The formin FMNL3 assembles plasma membrane protrusions that participate in cell-cell adhesion. Mol Biol Cell 2014; 26:467-77. [PMID: 25428984 PMCID: PMC4310738 DOI: 10.1091/mbc.e14-07-1247] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
FMNL3 localizes broadly over the plasma membrane as discrete puncta, with particular enrichment in filopodia and ruffles and at cell–cell contacts. In addition, a population of FMNL3-containing vesicles of endocytic origin can fuse with the plasma membrane. FMNL3 suppression causes reductions in filopodia and cell–cell adhesion. FMNL3 is a vertebrate-specific formin protein previously shown to play a role in angiogenesis and cell migration. Here we define the cellular localization of endogenous FMNL3, the dynamics of GFP-tagged FMNL3 during cell migration, and the effects of FMNL3 suppression in mammalian culture cells. The majority of FMNL3 localizes in a punctate pattern, with >95% of these puncta being indistinguishable from the plasma membrane by fluorescence microscopy. A small number of dynamic cytoplasmic FMNL3 patches also exist, which enrich near cell–cell contact sites and fuse with the plasma membrane at these sites. These cytoplasmic puncta appear to be part of larger membranes of endocytic origin. On the plasma membrane, FMNL3 enriches particularly in filopodia and membrane ruffles and at nascent cell–cell adhesions. FMNL3-containing filopodia occur both at the cell–substratum interface and at cell–cell contacts, with the latter being 10-fold more stable. FMNL3 suppression by siRNA has two major effects: decrease in filopodia and compromised cell–cell adhesion in cells migrating as a sheet. Overall our results suggest that FMNL3 functions in assembly of actin-based protrusions that are specialized for cell–cell adhesion.
Collapse
Affiliation(s)
- Timothy J Gauvin
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Lorna E Young
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Henry N Higgs
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
32
|
Abstract
Formin proteins were recognized as effectors of Rho GTPases some 15 years ago. They contribute to different cellular actin cytoskeleton structures by their ability to polymerize straight actin filaments at the barbed end. While not all formins necessarily interact with Rho GTPases, a subgroup of mammalian formins, termed Diaphanous-related formins or DRFs, were shown to be activated by small GTPases of the Rho superfamily. DRFs are autoinhibited in the resting state by an N- to C-terminal interaction that renders the central actin polymerization domain inactive. Upon the interaction with a GTP-bound Rho, Rac, or Cdc42 GTPase, the C-terminal autoregulation domain is displaced from its N-terminal recognition site and the formin becomes active to polymerize actin filaments. In this review we discuss the current knowledge on the structure, activation, and function of formin-GTPase interactions for the mammalian formin families Dia, Daam, FMNL, and FHOD. We describe both direct and indirect interactions of formins with GTPases, which lead to formin activation and cytoskeletal rearrangements. The multifaceted function of formins as effector proteins of Rho GTPases thus reflects the diversity of the actin cytoskeleton in cells.
Collapse
Affiliation(s)
- Sonja Kühn
- Center of Advanced European Studies and Research (caesar); Group Physical Biochemistry; Bonn, Germany
| | - Matthias Geyer
- Center of Advanced European Studies and Research (caesar); Group Physical Biochemistry; Bonn, Germany
| |
Collapse
|
33
|
Truong D, Copeland JW, Brumell JH. Bacterial subversion of host cytoskeletal machinery: hijacking formins and the Arp2/3 complex. Bioessays 2014; 36:687-96. [PMID: 24849003 DOI: 10.1002/bies.201400038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The host actin nucleation machinery is subverted by many bacterial pathogens to facilitate their entry, motility, replication, and survival. The majority of research conducted in the past primarily focused on exploitation of a host actin nucleator, the Arp2/3 complex, by bacterial pathogens. Recently, new studies have begun to explore the role of formins, another family of host actin nucleators, in bacterial pathogenesis. This review provides an overview of recent advances in the study of the exploitation of the Arp2/3 complex and formins by bacterial pathogens. Secreted bacterial effector proteins seem to manipulate the regulation of these actin nucleators or functionally mimic them to drive bacterial entry, motility and survival within host cells. An enhanced understanding of how formins are exploited will provide us with greater insight into how a fundamental eurkaryotic cellular process is utilized by bacteria and will also advance our knowledge of host-pathogen interactions.
Collapse
Affiliation(s)
- Dorothy Truong
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
34
|
Gardberg M, Heuser VD, Iljin K, Kampf C, Uhlen M, Carpén O. Characterization of Leukocyte Formin FMNL1 Expression in Human Tissues. J Histochem Cytochem 2014; 62:460-470. [PMID: 24700756 DOI: 10.1369/0022155414532293] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Formins are cytoskeleton regulating proteins characterized by a common FH2 structural domain. As key players in the assembly of actin filaments, formins direct dynamic cytoskeletal processes that influence cell shape, movement and adhesion. The large number of formin genes, fifteen in the human, suggests distinct tasks and expression patterns for individual family members, in addition to overlapping functions. Several formins have been associated with invasive cell properties in experimental models, linking them to cancer biology. One example is FMNL1, which is considered to be a leukocyte formin and is known to be overexpressed in lymphomas. Studies on FMNL1 and many other formins have been hampered by a lack of research tools, especially antibodies suitable for staining paraffin-embedded formalin-fixed tissues. Here we characterize, using bioinformatics tools and a validated antibody, the expression pattern of FMNL1 in human tissues and study its subcellular distribution. Our results indicate that FMNL1 expression is not restricted to hematopoietic tissues and that neoexpression of FMNL1 can be seen in epithelial cancer.
Collapse
Affiliation(s)
- Maria Gardberg
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland (MG,VDH, OC)Medical Biotechnology, VTT Technical Research Centre of Finland, and Turku Centre for Biotechnology, University of Turku, Turku, Finland (KI)Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden (CK)Science for Life Laboratory and Albanova University Center Royal Institute of Technology, Stockholm, Sweden (MU)
| | - Vanina D Heuser
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland (MG,VDH, OC)Medical Biotechnology, VTT Technical Research Centre of Finland, and Turku Centre for Biotechnology, University of Turku, Turku, Finland (KI)Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden (CK)Science for Life Laboratory and Albanova University Center Royal Institute of Technology, Stockholm, Sweden (MU)
| | - Kristiina Iljin
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland (MG,VDH, OC)Medical Biotechnology, VTT Technical Research Centre of Finland, and Turku Centre for Biotechnology, University of Turku, Turku, Finland (KI)Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden (CK)Science for Life Laboratory and Albanova University Center Royal Institute of Technology, Stockholm, Sweden (MU)
| | - Caroline Kampf
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland (MG,VDH, OC)Medical Biotechnology, VTT Technical Research Centre of Finland, and Turku Centre for Biotechnology, University of Turku, Turku, Finland (KI)Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden (CK)Science for Life Laboratory and Albanova University Center Royal Institute of Technology, Stockholm, Sweden (MU)
| | - Mathias Uhlen
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland (MG,VDH, OC)Medical Biotechnology, VTT Technical Research Centre of Finland, and Turku Centre for Biotechnology, University of Turku, Turku, Finland (KI)Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden (CK)Science for Life Laboratory and Albanova University Center Royal Institute of Technology, Stockholm, Sweden (MU)
| | - Olli Carpén
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland (MG,VDH, OC)Medical Biotechnology, VTT Technical Research Centre of Finland, and Turku Centre for Biotechnology, University of Turku, Turku, Finland (KI)Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden (CK)Science for Life Laboratory and Albanova University Center Royal Institute of Technology, Stockholm, Sweden (MU)
| |
Collapse
|
35
|
Pettee KM, Dvorak KM, Nestor-Kalinoski AL, Eisenmann KM. An mDia2/ROCK signaling axis regulates invasive egress from epithelial ovarian cancer spheroids. PLoS One 2014; 9:e90371. [PMID: 24587343 PMCID: PMC3938721 DOI: 10.1371/journal.pone.0090371] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/03/2014] [Indexed: 12/22/2022] Open
Abstract
Multi-cellular spheroids are enriched in ascites of epithelial ovarian cancer (OvCa) patients. They represent an invasive and chemoresistant cellular population fundamental to metastatic dissemination. The molecular mechanisms triggering single cell invasive egress from spheroids remain enigmatic. mDia formins are Rho GTPase effectors that are key regulators of F-actin cytoskeletal dynamics. We hypothesized that mDia2-driven F-actin dynamics promote single cell invasive transitions in clinically relevant three-dimensional (3D) OvCa spheroids. The current study is a dissection of the contribution of the F-actin assembly factor mDia2 formin in invasive transitions and using a clinically relevant ovarian cancer spheroid model. We show that RhoA-directed mDia2 activity is required for tight spheroid organization, and enrichment of mDia2 in the invasive cellular protrusions of collagen-embedded OVCA429 spheroids. Depleting mDia2 in ES-2 spheroids enhanced invasive dissemination of single amoeboid-shaped cells. This contrasts with spheroids treated with control siRNA, where a mesenchymal invasion program predominated. Inhibition of another RhoA effector, ROCK, had no impact on ES-2 spheroid formation but dramatically inhibited spheroid invasion through induction of a highly elongated morphology. Concurrent inhibition of ROCK and mDia2 blocked single cell invasion from ES-2 spheroids more effectively than inhibition of either protein alone, indicating that invasive egress of amoeboid cells from mDia2-depleted spheroids is ROCK-dependent. Our findings indicate that multiple GTPase effectors must be suppressed in order to fully block invasive egress from ovarian cancer spheroids. Furthermore, tightly regulated interplay between ROCK and mDia2 signaling pathways dictates the invasive capacities and the type of invasion program utilized by motile spheroid-derived ovarian cancer cells. As loss of the gene encoding mDia2, DRF3, has been linked to cancer progression and metastasis, our results set the stage for understanding molecular mechanisms involved in mDia2-dependent egress of invasive cells from primary epithelial tumors.
Collapse
MESH Headings
- Actin Cytoskeleton/chemistry
- Actin Cytoskeleton/metabolism
- Carcinoma, Ovarian Epithelial
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Cell Movement
- Female
- Formins
- Gene Expression Regulation, Neoplastic
- Humans
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/pathology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- rho-Associated Kinases/antagonists & inhibitors
- rho-Associated Kinases/genetics
- rho-Associated Kinases/metabolism
- rhoA GTP-Binding Protein/genetics
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Krista M. Pettee
- Department of Biochemistry and Cancer Biology, University of Toledo Health Science Campus, Toledo, Ohio, United States of America
| | - Kaitlyn M. Dvorak
- Department of Biochemistry and Cancer Biology, University of Toledo Health Science Campus, Toledo, Ohio, United States of America
| | - Andrea L. Nestor-Kalinoski
- Department of Surgery, University of Toledo Health Science Campus, Toledo, Ohio, United States of America
| | - Kathryn M. Eisenmann
- Department of Biochemistry and Cancer Biology, University of Toledo Health Science Campus, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
36
|
Favaro P, Traina F, Machado-Neto JA, Lazarini M, Lopes MR, Pereira JKN, Costa FF, Infante E, Ridley AJ, Saad STO. FMNL1 promotes proliferation and migration of leukemia cells. J Leukoc Biol 2013; 94:503-12. [PMID: 23801653 DOI: 10.1189/jlb.0113057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The human FMNL1 is expressed predominantly in hematopoietic cells and has been described previously as overexpressed in hematopoietic malignancies. However, it is not known whether FMNL1 contributes to leukemogenesis. Here, we investigate the FMNL1 function using two different human leukemia models: Namalwa and K562 cell lines. FMNL1 depletion reduced cell proliferation and colony formation in both leukemic cell types, as well as a decrease in the tumor growth of FMNL1-depleted Namalwa cell xenografts. In addition, there was a decrease in migration and in TEM in FMNL1-depleted Namalwa cells. FMNL1 endogenously associates with Rac1, and FMNL1 silencing resulted in an increased Rac1 activity. The reduced migration observed in FMNL1-depleted cells was restored by inhibiting Rac activity. Our results indicate that FMNL1 stimulates leukemia cell proliferation as well as migration. This suggests that FMNL1 contributes to leukemogenesis and could act in part through Rac1 regulation.
Collapse
Affiliation(s)
- Patricia Favaro
- Department of Biological Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
The formins FMNL1 and mDia1 regulate coiling phagocytosis of Borrelia burgdorferi by primary human macrophages. Infect Immun 2013; 81:1683-95. [PMID: 23460512 DOI: 10.1128/iai.01411-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Spirochetes of the Borrelia burgdorferi sensu lato complex are the causative agent of Lyme borreliosis, a tick-borne infectious disease primarily affecting the skin, nervous system, and joints. During infection, macrophages and dendritic cells are the first immune cells to encounter invading borreliae. Phagocytosis and intracellular processing of Borrelia by these cells is thus decisive for the eventual outcome of infection. Phagocytic uptake of Borrelia by macrophages proceeds preferentially through coiling phagocytosis, which is characterized by actin-rich unilateral pseudopods that capture and enwrap spirochetes. Actin-dependent growth of these pseudopods necessitates de novo nucleation of actin filaments, which is regulated by actin-nucleating factors such as Arp2/3 complex. Here, we demonstrate that, in addition, also actin-regulatory proteins of the formin family are important for uptake of borreliae by primary human macrophages. Using immunofluorescence, live-cell imaging, and ratiometric analysis, we find specific enrichment of the formins FMNL1 and mDia1 at macrophage pseudopods that are in contact with borreliae. Consistently, small interfering RNA (siRNA)-mediated knockdown of FMNL1 or mDia1 leads to decreased formation of Borrelia-induced pseudopods and to decreased internalization of borreliae by macrophages. Our results suggest that macrophage coiling phagocytosis is a complex process involving several actin nucleation/regulatory factors. They also point specifically to the formins mDia1 and FMNL1 as novel regulators of spirochete uptake by human immune cells.
Collapse
|
38
|
Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S. Function of alternative splicing. Gene 2013; 514:1-30. [PMID: 22909801 PMCID: PMC5632952 DOI: 10.1016/j.gene.2012.07.083] [Citation(s) in RCA: 515] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/21/2012] [Accepted: 07/30/2012] [Indexed: 12/15/2022]
Abstract
Almost all polymerase II transcripts undergo alternative pre-mRNA splicing. Here, we review the functions of alternative splicing events that have been experimentally determined. The overall function of alternative splicing is to increase the diversity of mRNAs expressed from the genome. Alternative splicing changes proteins encoded by mRNAs, which has profound functional effects. Experimental analysis of these protein isoforms showed that alternative splicing regulates binding between proteins, between proteins and nucleic acids as well as between proteins and membranes. Alternative splicing regulates the localization of proteins, their enzymatic properties and their interaction with ligands. In most cases, changes caused by individual splicing isoforms are small. However, cells typically coordinate numerous changes in 'splicing programs', which can have strong effects on cell proliferation, cell survival and properties of the nervous system. Due to its widespread usage and molecular versatility, alternative splicing emerges as a central element in gene regulation that interferes with almost every biological function analyzed.
Collapse
Affiliation(s)
- Olga Kelemen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Paolo Convertini
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhaiyi Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yuan Wen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Manli Shen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Marina Falaleeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
39
|
Weigand LU, Liang X, Schmied S, Mall S, Klar R, Stötzer OJ, Salat C, Götze K, Mautner J, Peschel C, Krackhardt AM. Isolation of human MHC class II-restricted T cell receptors from the autologous T-cell repertoire with potent anti-leukaemic reactivity. Immunology 2012; 137:226-38. [PMID: 23025755 DOI: 10.1111/imm.12000] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adoptive transfer of T cells genetically modified with tumour-specific T-cell receptors (TCR) is a promising novel approach in the treatment of cancer. We have previously isolated an allorestricted MHC class I-restricted TCR with specificity for Formin-like protein 1 (FMNL1) with potent activity against chronic lymphocytic leukaemia cells. CD4(+) T cells have been described to be highly important for tumour elimination although TCR derived from CD4(+) T cells with anti-tumour reactivity have been only rarely described. In this study we aimed to isolate MHC class-II-restricted CD4(+) T cells and TCR with specificity for leukaemia antigens. We used professional antigen-presenting cells pulsed with the leukaemia-associated and tumour-associated antigen FMNL1 for stimulation of autologous T cells in vitro. We isolated two CD4(+) HLA-DR-restricted T-cell clones and T-cell-derived TCR with so far unknown specificity but high reactivity against lymphoma cells and native malignant cells derived from HLA-matched patients with diverse leukaemias. Moreover, characterization of the TCR after TCR gene transfer revealed that specific characteristics of isolated TCR as reactivity in response to Toll-like receptors were transferable on effector cells. Our results have a major impact on the development of novel immunotherapies. They demonstrate that TCR with potent HLA-DR-restricted anti-leukaemic reactivity against so far undefined self-restricted antigens can be isolated from the healthy autorestricted CD4(+) T-cell repertoire and these TCR are highly interesting candidate tools for novel immunotherapies.
Collapse
Affiliation(s)
- Luise U Weigand
- Medizinische Klinik III, Innere Medizin mit Schwerpunkt Hämatologie und Onkologie, Technische Universität München, Münich
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Han Y, Yu G, Sarioglu H, Caballero-Martinez A, Schlott F, Ueffing M, Haase H, Peschel C, Krackhardt AM. Proteomic investigation of the interactome of FMNL1 in hematopoietic cells unveils a role in calcium-dependent membrane plasticity. J Proteomics 2012. [PMID: 23182705 DOI: 10.1016/j.jprot.2012.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Formin-like 1 (FMNL1) is a formin-related protein highly expressed in hematopoietic cells and overexpressed in leukemias as well as diverse transformed cell lines. It has been described to play a role in diverse functions of hematopoietic cells such as phagocytosis of macrophages as well as polarization and cytotoxicity of T cells. However, the specific role of FMNL1 in these processes has not been clarified yet and regulation by interaction partners in primary hematopoietic cells has never been investigated. We performed a proteomic screen for investigation of the interactome of FMNL1 in primary hematopoietic cells resulting in the identification of a number of interaction partners. Bioinformatic analysis considering semantic similarity suggested the giant protein AHNAK1 to be an essential interaction partner of FMNL1. We confirmed AHNAK1 as a general binding partner for FMNL1 in diverse hematopoietic cells and demonstrate that the N-terminal part of FMNL1 binds to the C-terminus of AHNAK1. Moreover, we show that the constitutively activated form of FMNL1 (FMNL1γ) induces localization of AHNAK1 to the cell membrane. Finally, we provide evidence that overexpression or knock down of FMNL1 has an impact on the capacitative calcium influx after ionomycin-mediated activation of diverse cell lines and primary cells.
Collapse
Affiliation(s)
- Yanan Han
- Medizinische Klinik III, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Santos-Ledo A, Jenny A, Marlow FL. Comparative gene expression analysis of the fmnl family of formins during zebrafish development and implications for tissue specific functions. Gene Expr Patterns 2012; 13:30-7. [PMID: 23072729 DOI: 10.1016/j.gep.2012.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/14/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
Fmlns belong to the Formin family, catalysts of linear actin polymerization with mostly unknown roles in vivo. In cell culture Fmnls are involved in cell migration and adhesion and the formation of different types of protrusions including filopodia and blebs, suggesting important roles during development. Moreover, Fmnls can act downstream of Rac and Cdc42, mediators of cytoskeletal changes as targets of important pathways required for shaping tissues. The zebrafish genome encodes five Fmnls. Here we report their tissue specific expression patterns during early development and pharyngula stages. The fmnls show overlapping and distinct expression patterns, which suggest that they could regulate similar processes during development, but may also have independent functions. In particular, we find a strong maternal contribution of all fmnls, but distinct expression patterns in the developing brain eye, ear, heart and vascular system.
Collapse
Affiliation(s)
- Adrián Santos-Ledo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | | | | |
Collapse
|
42
|
Wyse MM, Lei J, Nestor-Kalinoski AL, Eisenmann KM. Dia-interacting protein (DIP) imposes migratory plasticity in mDia2-dependent tumor cells in three-dimensional matrices. PLoS One 2012; 7:e45085. [PMID: 23024796 PMCID: PMC3443221 DOI: 10.1371/journal.pone.0045085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 08/16/2012] [Indexed: 11/18/2022] Open
Abstract
Tumor cells rely upon membrane pliancy to escape primary lesions and invade secondary metastatic sites. This process relies upon localized assembly and disassembly cycles of F-actin that support and underlie the plasma membrane. Dynamic actin generates both spear-like and bleb structures respectively characterizing mesenchymal and amoeboid motility programs utilized by metastatic cells in three-dimensional matrices. The molecular mechanism and physiological trigger(s) driving membrane plasticity are poorly understood. mDia formins are F-actin assembly factors directing membrane pliancy in motile cells. mDia2 is functionally coupled with its binding partner DIP, regulating cortical actin and inducing membrane blebbing in amoeboid cells. Here we show that mDia2 and DIP co-tether to nascent blebs and this linkage is required for bleb formation. DIP controls mesenchymal/amoeboid cell interconvertability, while CXCL12 induces assembly of mDia2:DIP complexes to bleb cortices in 3D matrices. These results demonstrate how DIP-directed mDia2-dependent F-actin dynamics regulate morphological plasticity in motile cancer cells.
Collapse
Affiliation(s)
- Meghan M. Wyse
- Department of Biochemistry, University of Toledo, Health Science Campus, Toledo, Ohio, United States of America
| | - Jun Lei
- Department of Biochemistry, University of Toledo, Health Science Campus, Toledo, Ohio, United States of America
| | - Andrea L. Nestor-Kalinoski
- Department of Surgery, University of Toledo, Health Science Campus, Toledo, Ohio, United States of America
| | - Kathryn M. Eisenmann
- Department of Biochemistry, University of Toledo, Health Science Campus, Toledo, Ohio, United States of America
| |
Collapse
|
43
|
Salbreux G, Charras G, Paluch E. Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol 2012; 22:536-45. [PMID: 22871642 DOI: 10.1016/j.tcb.2012.07.001] [Citation(s) in RCA: 514] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/27/2012] [Accepted: 07/04/2012] [Indexed: 12/11/2022]
Abstract
The cortex is a thin, crosslinked actin network lying immediately beneath the plasma membrane of animal cells. Myosin motors exert contractile forces in the meshwork. Because the cortex is attached to the cell membrane, it plays a central role in cell shape control. The proteic constituents of the cortex undergo rapid turnover, making the cortex both mechanically rigid and highly plastic, two properties essential to its function. The cortex has recently attracted increasing attention and its functions in cellular processes such as cytokinesis, cell migration, and embryogenesis are progressively being dissected. In this review, we summarize current knowledge on the structural organization, composition, and mechanics of the actin cortex, focusing on the link between molecular processes and macroscopic physical properties. We also highlight consequences of cortex dysfunction in disease.
Collapse
Affiliation(s)
- Guillaume Salbreux
- Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany.
| | | | | |
Collapse
|
44
|
Roca-Cusachs P, Iskratsch T, Sheetz MP. Finding the weakest link: exploring integrin-mediated mechanical molecular pathways. J Cell Sci 2012; 125:3025-38. [PMID: 22797926 DOI: 10.1242/jcs.095794] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
From the extracellular matrix to the cytoskeleton, a network of molecular links connects cells to their environment. Molecules in this network transmit and detect mechanical forces, which subsequently determine cell behavior and fate. Here, we reconstruct the mechanical pathway followed by these forces. From matrix proteins to actin through integrins and adaptor proteins, we review how forces affect the lifetime of bonds and stretch or alter the conformation of proteins, and how these mechanical changes are converted into biochemical signals in mechanotransduction events. We evaluate which of the proteins in the network can participate in mechanotransduction and which are simply responsible for transmitting forces in a dynamic network. Besides their individual properties, we also analyze how the mechanical responses of a protein are determined by their serial connections from the matrix to actin, their parallel connections in integrin clusters and by the rate at which force is applied to them. All these define mechanical molecular pathways in cells, which are emerging as key regulators of cell function alongside better studied biochemical pathways.
Collapse
Affiliation(s)
- Pere Roca-Cusachs
- University of Barcelona and Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | | | | |
Collapse
|
45
|
Protein N-myristoylation is required for cellular morphological changes induced by two formin family proteins, FMNL2 and FMNL3. Biosci Biotechnol Biochem 2012; 76:1201-9. [PMID: 22790947 DOI: 10.1271/bbb.120069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The subcellular localization of 13 recently identified N-myristoylated proteins and the effects of overexpression of these proteins on cellular morphology were examined with the aim of understanding the physiological roles of the protein N-myristoylation that occurs on these proteins. Immunofluorescence staining of HEK293T cells transfected with cDNAs coding for the proteins revealed that most of them were associated with the plasma membrane or the membranes of intracellular compartments, and did not affect cellular morphology. However, two proteins, formin-like2 (FMNL2) and formin-like3 (FMNL3), both of them are members of the formin family of proteins, were associated mainly with the plasma membrane and induced significant cellular morphological changes. Inhibition of protein N-myristoylation by replacement of Gly2 with Ala or by the use of N-myristoylation inhibitor significantly inhibited membrane localization and the induction of cellular morphological changes, indicating that protein N-myristoylation plays critical roles in the cellular morphological changes induced by FMNL2 and FMNL3.
Collapse
|
46
|
Block J, Breitsprecher D, Kühn S, Winterhoff M, Kage F, Geffers R, Duwe P, Rohn J, Baum B, Brakebusch C, Geyer M, Stradal T, Faix J, Rottner K. FMNL2 drives actin-based protrusion and migration downstream of Cdc42. Curr Biol 2012; 22:1005-12. [PMID: 22608513 PMCID: PMC3765947 DOI: 10.1016/j.cub.2012.03.064] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/02/2012] [Accepted: 03/29/2012] [Indexed: 12/26/2022]
Abstract
Cell migration entails protrusion of lamellipodia, densely packed networks of actin filaments at the cell front. Filaments are generated by nucleation, likely mediated by Arp2/3 complex and its activator Scar/WAVE [1]. It is unclear whether formins contribute to lamellipodial actin filament nucleation or serve as elongators of filaments nucleated by Arp2/3 complex [2]. Here we show that the Diaphanous-related formin FMNL2, also known as FRL3 or FHOD2 [3], accumulates at lamellipodia and filopodia tips. FMNL2 is cotranslationally modified by myristoylation and regulated by interaction with the Rho-guanosine triphosphatase Cdc42. Abolition of myristoylation or Cdc42 binding interferes with proper FMNL2 activation, constituting an essential prerequisite for subcellular targeting. In vitro, C-terminal FMNL2 drives elongation rather than nucleation of actin filaments in the presence of profilin. In addition, filament ends generated by Arp2/3-mediated branching are captured and efficiently elongated by the formin. Consistent with these biochemical properties, RNAi-mediated silencing of FMNL2 expression decreases the rate of lamellipodia protrusion and, accordingly, the efficiency of cell migration. Our data establish that the FMNL subfamily member FMNL2 is a novel elongation factor of actin filaments that constitutes the first Cdc42 effector promoting cell migration and actin polymerization at the tips of lamellipodia.
Collapse
Affiliation(s)
- Jennifer Block
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115 Bonn, Germany
| | - Dennis Breitsprecher
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30623 Hannover, Germany
| | - Sonja Kühn
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Moritz Winterhoff
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30623 Hannover, Germany
| | - Frieda Kage
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115 Bonn, Germany
| | - Robert Geffers
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Patrick Duwe
- Institute for Molecular Cell Biology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
| | - Jennifer L. Rohn
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Cord Brakebusch
- BRIC, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Matthias Geyer
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Theresia E.B. Stradal
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute for Molecular Cell Biology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30623 Hannover, Germany
| | - Klemens Rottner
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115 Bonn, Germany
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Corresponding author
| |
Collapse
|
47
|
Rohn JL, Sims D, Liu T, Fedorova M, Schöck F, Dopie J, Vartiainen MK, Kiger AA, Perrimon N, Baum B. Comparative RNAi screening identifies a conserved core metazoan actinome by phenotype. ACTA ACUST UNITED AC 2012; 194:789-805. [PMID: 21893601 PMCID: PMC3171124 DOI: 10.1083/jcb.201103168] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNAi screens in Drosophila and human cells for novel actin
regulators revealed conserved roles for proteins involved in nuclear actin
export, RNA splicing, and ubiquitination. Although a large number of actin-binding proteins and their regulators have been
identified through classical approaches, gaps in our knowledge remain. Here, we
used genome-wide RNA interference as a systematic method to define metazoan
actin regulators based on visual phenotype. Using comparative screens in
cultured Drosophila and human cells, we generated phenotypic
profiles for annotated actin regulators together with proteins bearing predicted
actin-binding domains. These phenotypic clusters for the known metazoan
“actinome” were used to identify putative new core actin
regulators, together with a number of genes with conserved but poorly studied
roles in the regulation of the actin cytoskeleton, several of which we studied
in detail. This work suggests that although our search for new components of the
core actin machinery is nearing saturation, regulation at the level of nuclear
actin export, RNA splicing, ubiquitination, and other upstream processes remains
an important but unexplored frontier of actin biology.
Collapse
Affiliation(s)
- Jennifer L Rohn
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, England, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hetheridge C, Scott AN, Swain RK, Copeland JW, Higgs HN, Bicknell R, Mellor H. The formin FMNL3 is a cytoskeletal regulator of angiogenesis. J Cell Sci 2012; 125:1420-8. [PMID: 22275430 DOI: 10.1242/jcs.091066] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The process of angiogenesis requires endothelial cells (ECs) to undergo profound changes in shape and polarity. Although this must involve remodelling of the EC cytoskeleton, little is known about this process or the proteins that control it. We used a co-culture assay of angiogenesis to examine the cytoskeleton of ECs actively undergoing angiogenic morphogenesis. We found that elongation of ECs during angiogenesis is accompanied by stabilisation of microtubules and their alignment into parallel arrays directed at the growing tip. In other systems, similar microtubule alignments are mediated by the formin family of cytoskeletal regulators. We screened a library of human formins and indentified formin-like 3 (FMNL3; also known as FRL2) as a crucial regulator of EC elongation during angiogenesis. We showed that activated FMNL3 triggers microtubule alignment and that FMNL3 is required for this alignment during angiogenic morphogenesis. FMNL3 was highly expressed in the ECs of zebrafish during development and embryos that were depleted for FMNL3 showed profound defects in developmental angiogenesis that were rescued by expression of the human gene. We conclude that FMNL3 is a new regulator of endothelial microtubules during angiogenesis and is required for the conversion of quiescent ECs into their elongated angiogenic forms.
Collapse
Affiliation(s)
- Clare Hetheridge
- School of Biochemistry, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Cell migration requires sustained forward movement of the plasma membrane at the cell's front or "leading edge." To date, researchers have uncovered four distinct ways of extending the membrane at the leading edge. In lamellipodia and filopodia, actin polymerization directly pushes the plasma membrane forward, whereas in invadopodia, actin polymerization couples with the extracellular delivery of matrix-degrading metalloproteases to clear a path for cells through the extracellular matrix. Membrane blebs drive the plasma membrane forward using a combination of actomyosin-based contractility and reversible detachment of the membrane from the cortical actin cytoskeleton. Each protrusion type requires the coordination of a wide spectrum of signaling molecules and regulators of cytoskeletal dynamics. In addition, these different protrusion methods likely act in concert to move cells through complex environments in vivo.
Collapse
|
50
|
Colón-Franco JM, Gomez TS, Billadeau DD. Dynamic remodeling of the actin cytoskeleton by FMNL1γ is required for structural maintenance of the Golgi complex. J Cell Sci 2011; 124:3118-26. [PMID: 21868368 DOI: 10.1242/jcs.083725] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Formin-like 1 (FMNL1) is a member of the formin family of actin nucleators, and is one of the few formins for which in vitro activities have been well characterized. However, the functional roles of this mammalian formin remain ill-defined. In particular, it is unclear how the unique in vitro biochemical properties of FMNL1 relate to its regulation of cellular processes. Here, we demonstrate that FMNL1 depletion caused a dramatic increase in cellular F-actin content, which resulted in Golgi complex fragmentation. Moreover, increased F-actin and maintenance of Golgi structure were distinctly regulated by the gamma isoform of FMNL1, which required binding to actin. Importantly, in addition to Golgi fragmentation, increased F-actin content in the absence of FMNL1 also led to cation-independent mannose 6-phosphate receptor dispersal, lysosomal enlargement and missorting of cathepsin D. Taken together, our data support a model in which FMNL1 regulates cellular F-actin levels required to maintain structural integrity of the Golgi complex and lysosomes.
Collapse
Affiliation(s)
- Jessica M Colón-Franco
- Department of Biochemistry and Molecular Biology, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55901, USA
| | | | | |
Collapse
|