1
|
Küper D, Klos J, Kühl F, Attili R, Brand K, Weissenborn K, Lichtinghagen R, Huber R. Influence of Anticoagulants and Heparin Contaminants on the Suitability of MMP-9 as a Blood-Derived Biomarker. Int J Mol Sci 2024; 25:10106. [PMID: 39337591 PMCID: PMC11432500 DOI: 10.3390/ijms251810106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
In contrast to other common anticoagulants such as citrate and low-molecular-weight heparin (LMWH), high-molecular-weight heparin (HMWH) induces the expression of matrix metalloproteinase (MMP)-9, which is also measured as a biomarker for stroke in blood samples. Mechanistically, HMWH-stimulated T cells produce cytokines that induce monocytic MMP-9 expression. Here, the influence of further anticoagulants (Fondaparinux, Hirudin, and Alteplase) and the heparin-contaminating glycosaminoglycans (GAG) hyaluronic acid (HA), dermatan sulfate (DS), chondroitin sulfate (CS), and over-sulfated CS (OSCS) on MMP-9 was analyzed to assess its suitability as a biomarker under various conditions. Therefore, starved Jurkat T cells were stimulated with anticoagulants/contaminants. Subsequently, starved monocytic THP-1 cells were incubated with the conditioned Jurkat supernatant, and MMP-9 mRNA levels were monitored (quantitative (q)PCR). Jurkat-derived mediators secreted in response to anticoagulants/contaminants were also assessed (proteome profiler array). The supernatants of HMWH-, Hirudin-, CS-, and OSCS-treated Jurkat cells comprised combinations of activating mediators and led to a significant (in the case of OSCS, dramatic) MMP-9 induction in THP-1. HA induced MMP-9 only in high concentrations, while LMWH, Fondaparinux, Alteplase, and DS had no effect. This indicates that depending on molecular weight and charge (but independent of anticoagulant activity), anticoagulants/contaminants provoke the expression of T-cell-derived cytokines/chemokines that induce monocytic MMP-9 expression, thus potentially impairing the diagnostic validity of MMP-9.
Collapse
Affiliation(s)
- Daniela Küper
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (D.K.); (J.K.); (F.K.); (R.A.); (K.B.); (R.L.)
| | - Josefin Klos
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (D.K.); (J.K.); (F.K.); (R.A.); (K.B.); (R.L.)
| | - Friederike Kühl
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (D.K.); (J.K.); (F.K.); (R.A.); (K.B.); (R.L.)
| | - Rozan Attili
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (D.K.); (J.K.); (F.K.); (R.A.); (K.B.); (R.L.)
- Faculty of Pharmacy and Medical Sciences, Hebron University, Hebron 711, Palestine
| | - Korbinian Brand
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (D.K.); (J.K.); (F.K.); (R.A.); (K.B.); (R.L.)
| | - Karin Weissenborn
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
| | - Ralf Lichtinghagen
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (D.K.); (J.K.); (F.K.); (R.A.); (K.B.); (R.L.)
| | - René Huber
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (D.K.); (J.K.); (F.K.); (R.A.); (K.B.); (R.L.)
| |
Collapse
|
2
|
Menezes R, Vincent R, Osorno L, Hu P, Arinzeh TL. Biomaterials and tissue engineering approaches using glycosaminoglycans for tissue repair: Lessons learned from the native extracellular matrix. Acta Biomater 2023; 163:210-227. [PMID: 36182056 PMCID: PMC10043054 DOI: 10.1016/j.actbio.2022.09.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 01/30/2023]
Abstract
Glycosaminoglycans (GAGs) are an important component of the extracellular matrix as they influence cell behavior and have been sought for tissue regeneration, biomaterials, and drug delivery applications. GAGs are known to interact with growth factors and other bioactive molecules and impact tissue mechanics. This review provides an overview of native GAGs, their structure, and properties, specifically their interaction with proteins, their effect on cell behavior, and their mechanical role in the ECM. GAGs' function in the extracellular environment is still being understood however, promising studies have led to the development of medical devices and therapies. Native GAGs, including hyaluronic acid, chondroitin sulfate, and heparin, have been widely explored in tissue engineering and biomaterial approaches for tissue repair or replacement. This review focuses on orthopaedic and wound healing applications. The use of GAGs in these applications have had significant advances leading to clinical use. Promising studies using GAG mimetics and future directions are also discussed. STATEMENT OF SIGNIFICANCE: Glycosaminoglycans (GAGs) are an important component of the native extracellular matrix and have shown promise in medical devices and therapies. This review emphasizes the structure and properties of native GAGs, their role in the ECM providing biochemical and mechanical cues that influence cell behavior, and their use in tissue regeneration and biomaterial approaches for orthopaedic and wound healing applications.
Collapse
Affiliation(s)
- Roseline Menezes
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Richard Vincent
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Laura Osorno
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Phillip Hu
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Treena Livingston Arinzeh
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States; Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States.
| |
Collapse
|
3
|
Houlton J, Zubkova OV, Clarkson AN. Recovery of Post-Stroke Spatial Memory and Thalamocortical Connectivity Following Novel Glycomimetic and rhBDNF Treatment. Int J Mol Sci 2022; 23:ijms23094817. [PMID: 35563207 PMCID: PMC9101131 DOI: 10.3390/ijms23094817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Stroke-induced cognitive impairments remain of significant concern, with very few treatment options available. The involvement of glycosaminoglycans in neuroregenerative processes is becoming better understood and recent advancements in technology have allowed for cost-effective synthesis of novel glycomimetics. The current study evaluated the therapeutic potential of two novel glycomimetics, compound A and G, when administered systemically five-days post-photothrombotic stroke to the PFC. As glycosaminoglycans are thought to facilitate growth factor function, we also investigated the combination of our glycomimetics with intracerebral, recombinant human brain-derived neurotrophic factor (rhBDNF). C56BL/6J mice received sham or stroke surgery and experimental treatment (day-5), before undergoing the object location recognition task (OLRT). Four-weeks post-surgery, animals received prelimbic injections of the retrograde tracer cholera toxin B (CTB), before tissue was collected for quantification of thalamo-PFC connectivity and reactive astrogliosis. Compound A or G treatment alone modulated a degree of reactive astrogliosis yet did not influence spatial memory performance. Contrastingly, compound G+rhBDNF treatment significantly improved spatial memory, dampened reactive astrogliosis and limited stroke-induced loss of connectivity between the PFC and midline thalamus. As rhBDNF treatment had negligible effects, these findings support compound A acted synergistically to enhance rhBDNF to restrict secondary degeneration and facilitate functional recovery after PFC stroke.
Collapse
Affiliation(s)
- Josh Houlton
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand;
| | - Olga V. Zubkova
- The Ferrier Research Institute, Gracefield Research Centre, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand;
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand;
- Correspondence: ; Tel./Fax: +64-3-279-7326
| |
Collapse
|
4
|
Lin L, Li S, Gao N, Wang W, Zhang T, Yang L, Yang X, Luo D, Ji X, Zhao J. The Toxicology of Native Fucosylated Glycosaminoglycans and the Safety of Their Depolymerized Products as Anticoagulants. Mar Drugs 2021; 19:487. [PMID: 34564149 PMCID: PMC8467514 DOI: 10.3390/md19090487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Fucosylated glycosaminoglycan (FG) from sea cucumber is a potent anticoagulant by inhibiting intrinsic coagulation tenase (iXase). However, high-molecular-weight FGs can activate platelets and plasma contact system, and induce hypotension in rats, which limits its application. Herein, we found that FG from T. ananas (TaFG) and FG from H. fuscopunctata (HfFG) at 4.0 mg/kg (i.v.) could cause significant cardiovascular and respiratory dysfunction in rats, even lethality, while their depolymerized products had no obvious side effects. After injection, native FG increased rat plasma kallikrein activity and levels of the vasoactive peptide bradykinin (BK), consistent with their contact activation activity, which was assumed to be the cause of hypotension in rats. However, the hemodynamic effects of native FG cannot be prevented by the BK receptor antagonist. Further study showed that native FG induced in vivo procoagulation, thrombocytopenia, and pulmonary embolism. Additionally, its lethal effect could be prevented by anticoagulant combined with antiplatelet drugs. In summary, the acute toxicity of native FG is mainly ascribed to pulmonary microvessel embolism due to platelet aggregation and contact activation-mediated coagulation, while depolymerized FG is a safe anticoagulant candidate by selectively targeting iXase.
Collapse
Affiliation(s)
- Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sujuan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China;
| | - Weili Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taocui Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
| | - Xingzhi Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
| | - Dan Luo
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650201, China;
| | - Xu Ji
- School of Chemical Science and Technology, Yunnan University, Kunming 650201, China
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China;
| |
Collapse
|
5
|
Jain N, Singh S. Glycans in scaffold design in tissue reconstruction. J BIOACT COMPAT POL 2021. [DOI: 10.1177/0883911521997847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Development of an artificial tissue by tissue engineering is witnessed to be one of the long lasting clarified solutions for the damaged tissue function restoration. To accomplish this, a scaffold is designed as a cell carrier in which the extracellular matrix (ECM) performs a prominent task of controlling the inoculated cell’s destiny. ECM composition, topography and mechanical properties lead to different types of interactions between cells and ECM components that trigger an assortment of cellular reactions via diverse sensing mechanisms and downstream signaling pathways. The polysaccharides in the form of proteoglycans and glycoproteins yield better outcomes when included in the designed matrices. Glycosaminoglycan (GAG) chains present on proteoglycans show a wide range of operations such as sequestering of critical effector morphogens which encourage proficient nutrient contribution toward the growing stem cells for their development and endurance. In this review we discuss how the glycosylation aspects are of considerable importance in everyday housekeeping functions of a cell especially when placed in a controlled environment under ideal growth conditions. Hydrogels made from these GAG chains have been used extensively as a resorbable material that mimics the natural ECM functions for an efficient control over cell attachment, permeability, viability, proliferation, and differentiation processes. Also the incorporation of non-mammalian polysaccharides can elicit specific receptor responses which authorize the creation of numerous vigorous frameworks while prolonging the low cost and immunogenicity of the substance.
Collapse
Affiliation(s)
- Nipun Jain
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Shashi Singh
- CSIR—Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
6
|
Hiebert P. The Nrf2 transcription factor: A multifaceted regulator of the extracellular matrix. Matrix Biol Plus 2021; 10:100057. [PMID: 34195594 PMCID: PMC8233472 DOI: 10.1016/j.mbplus.2021.100057] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
The transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) is widely recognized as a master regulator of the cellular stress response by facilitating the transcription of cytoprotective genes. As such, the Nrf2 pathway is critical in guarding the cell from the harmful effects of excessive reactive oxygen species/reactive nitrogen species (ROS/RNS) and in maintaining cellular redox balance. While excessive ROS/RNS are harmful to the cell, physiological levels of ROS/RNS play important roles in regulating numerous signaling pathways important for normal cellular function, including the synthesis of extracellular matrix (ECM). Recent advances have underscored the importance of ROS/RNS, and by extension, factors that influence redox-balance such as Nrf2, in regulating ECM production and deposition. In addition to reducing the oxidative burden in the cell, the discovery that Nrf2 can also directly target genes that regulate and form the ECM has cemented it as a multifaceted player in the regulation of ECM proteins, and provides new insight into its potential usefulness as a target for treating ECM-related pathologies. Reactive oxygen/nitrogen species regulate extracellular matrix. Nrf2 can directly target extracellular matrix gene transcription. Regulation of extracellular matrix by Nrf2 potentially impacts tissue repair/cancer.
Collapse
Affiliation(s)
- Paul Hiebert
- Institute for Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
7
|
Mishra S, Ganguli M. Functions of, and replenishment strategies for, chondroitin sulfate in the human body. Drug Discov Today 2021; 26:1185-1199. [PMID: 33549530 DOI: 10.1016/j.drudis.2021.01.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/26/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Chondroitin sulfate (CS) belongs to a class of molecules called glycosaminoglycans (GAGs). These are long, linear chains of polysaccharides comprising alternating amino sugars and hexuronic acid. Similar to other GAGs, CS is important in a multitude of biological activities. Alteration of CS levels has been implicated in several pathological conditions, including osteoarthritis (OA) and other inflammatory diseases, as well as physiological conditions, such as aging. Therefore, devising replenishment strategies for this molecule is an important area of research. In this review, we discuss the nature of CS, its function in different organs, and its implications in health and disease. We also describe different methods for the exogenous administration of CS.
Collapse
Affiliation(s)
- Sarita Mishra
- CSIR - Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Munia Ganguli
- CSIR - Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Lemmnitzer K, Köhling S, Freyse J, Rademann J, Schiller J. Characterization of defined sulfated heparin-like oligosaccharides by electrospray ionization ion trap mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4692. [PMID: 33415813 DOI: 10.1002/jms.4692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Glycosaminoglycans (GAG) as long, unbranched polysaccharides are major components of the extracellular matrix. Many studies provided additional evidence of a specific binding between mediators and sulfated GAG, at which the sulfation code-which means the number and positions of sulfate groups along the polysaccharide chain-plays an important role. GAG from natural sources are very inhomogeneous regarding their sulfation patterns and molecular weight. Additionally, there is a high risk of contamination. This results in a growing interest in the careful characterization of native GAG and the synthesis of artificial GAG. Additionally, chemically oversulfated GAG analogues show many favorable properties. However, the structural characterization of these carbohydrates by mass spectrometry remains challenging. One significant problem is the sulfate loss during the ionization, which increases with the number of sulfate residues. We used the sulfated pentasaccharide fondaparinux as model substance to optimize sample preparation and measurement conditions, compared different established desalination methods and already existing protocols for sulfated oligosaccharides, and investigated their impact on the quality of the mass spectra. After optimization of the measurement conditions, we could establish a gentle and fast protocol for the mass spectrometry characterization of (fully) sulfated, artificial GAG-like oligosaccharides with minimized sulfate loss in the positive and negative ion mode. Here, the negative ion mode was more sensitive in comparison with the positive one, and fondaparinux species with sulfate loss were not detectable under the optimized conditions in the positive ion mode.
Collapse
Affiliation(s)
- Katharina Lemmnitzer
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Sebastian Köhling
- Department of Biology, Chemistry, and Pharmacy, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Free University of Berlin, Berlin, Germany
| | - Joanna Freyse
- Department of Biology, Chemistry, and Pharmacy, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Free University of Berlin, Berlin, Germany
| | - Jörg Rademann
- Department of Biology, Chemistry, and Pharmacy, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Free University of Berlin, Berlin, Germany
| | - Jürgen Schiller
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| |
Collapse
|
9
|
Neves MI, Araújo M, Moroni L, da Silva RM, Barrias CC. Glycosaminoglycan-Inspired Biomaterials for the Development of Bioactive Hydrogel Networks. Molecules 2020; 25:E978. [PMID: 32098281 PMCID: PMC7070556 DOI: 10.3390/molecules25040978] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Glycosaminoglycans (GAG) are long, linear polysaccharides that display a wide range of relevant biological roles. Particularly, in the extracellular matrix (ECM) GAG specifically interact with other biological molecules, such as growth factors, protecting them from proteolysis or inhibiting factors. Additionally, ECM GAG are partially responsible for the mechanical stability of tissues due to their capacity to retain high amounts of water, enabling hydration of the ECM and rendering it resistant to compressive forces. In this review, the use of GAG for developing hydrogel networks with improved biological activity and/or mechanical properties is discussed. Greater focus is given to strategies involving the production of hydrogels that are composed of GAG alone or in combination with other materials. Additionally, approaches used to introduce GAG-inspired features in biomaterials of different sources will also be presented.
Collapse
Affiliation(s)
- Mariana I. Neves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia da Universidade do Porto, Departamento de Engenharia Metalúrgica e de Materiais, Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Marco Araújo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ET Maastricht, The Netherlands;
| | - Ricardo M.P. da Silva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Cristina C. Barrias
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
10
|
Lan Y, Li X, Liu Y, He Y, Hao C, Wang H, Jin L, Zhang G, Zhang S, Zhou A, Zhang L. Pingyangmycin inhibits glycosaminoglycan sulphation in both cancer cells and tumour tissues. J Cell Mol Med 2020; 24:3419-3430. [PMID: 32068946 PMCID: PMC7131950 DOI: 10.1111/jcmm.15017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 12/18/2022] Open
Abstract
Pingyangmycin is a clinically used anticancer drug and induces lung fibrosis in certain cancer patients. We previously reported that the negatively charged cell surface glycosaminoglycans are involved in the cellular uptake of the positively charged pingyangmycin. However, it is unknown if pingyangmycin affects glycosaminoglycan structures. Seven cell lines and a Lewis lung carcinoma‐injected C57BL/6 mouse model were used to understand the cytotoxicity of pingyangmycin and its effect on glycosaminoglycan biosynthesis. Stable isotope labelling coupled with LC/MS method was used to quantify glycosaminoglycan disaccharide compositions from pingyangmycin‐treated and untreated cell and tumour samples. Pingyangmycin reduced both chondroitin sulphate and heparan sulphate sulphation in cancer cells and in tumours. The effect was persistent at different pingyangmycin concentrations and at different exposure times. Moreover, the cytotoxicity of pingyangmycin was decreased in the presence of soluble glycosaminoglycans, in the glycosaminoglycan‐deficient cell line CHO745, and in the presence of chlorate. A flow cytometry‐based cell surface FGF/FGFR/glycosaminoglycan binding assay also showed that pingyangmycin changed cell surface glycosaminoglycan structures. Changes in the structures of glycosaminoglycans may be related to fibrosis induced by pingyangmycin in certain cancer patients.
Collapse
Affiliation(s)
- Ying Lan
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.,College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiulian Li
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yong Liu
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanli He
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui Hao
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hua Wang
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liying Jin
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guoqing Zhang
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shufeng Zhang
- College of Chemistry, Tianjin Normal University, Tianjin, China
| | - Aimin Zhou
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Lijuan Zhang
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Pomin VH, Vignovich WP, Gonzales AV, Vasconcelos AA, Mulloy B. Galactosaminoglycans: Medical Applications and Drawbacks. Molecules 2019; 24:E2803. [PMID: 31374852 PMCID: PMC6696379 DOI: 10.3390/molecules24152803] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 12/28/2022] Open
Abstract
Galactosaminoglycans (GalAGs) are sulfated glycans composed of alternating N-acetylgalactosamine and uronic acid units. Uronic acid epimerization, sulfation patterns and fucosylation are modifications observed on these molecules. GalAGs have been extensively studied and exploited because of their multiple biomedical functions. Chondroitin sulfates (CSs), the main representative family of GalAGs, have been used in alternative therapy of joint pain/inflammation and osteoarthritis. The relatively novel fucosylated chondroitin sulfate (FCS), commonly found in sea cucumbers, has been screened in multiple systems in addition to its widely studied anticoagulant action. Biomedical properties of GalAGs are directly dependent on the sugar composition, presence or lack of fucose branches, as well as sulfation patterns. Although research interest in GalAGs has increased considerably over the three last decades, perhaps motivated by the parallel progress of glycomics, serious questions concerning the effectiveness and potential side effects of GalAGs have recently been raised. Doubts have centered particularly on the beneficial functions of CS-based therapeutic supplements and the potential harmful effects of FCS as similarly observed for oversulfated chondroitin sulfate, as a contaminant of heparin. Unexpected components were also detected in CS-based pharmaceutical preparations. This review therefore aims to offer a discussion on (1) the current and potential therapeutic applications of GalAGs, including those of unique features extracted from marine sources, and (2) the potential drawbacks of this class of molecules when applied to medicine.
Collapse
Affiliation(s)
- Vitor H Pomin
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA.
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA.
| | - William P Vignovich
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA
| | - Alysia V Gonzales
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA
| | - Ariana A Vasconcelos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Barbara Mulloy
- Imperial College, Department of Medicine, Burlington Danes Building, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
12
|
Heparin: An essential drug for modern medicine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:1-19. [PMID: 31030744 DOI: 10.1016/bs.pmbts.2019.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Heparin is a life-saving drug, which belongs to few clinically used drugs without defined molecular structures in modern medicine. Heparin is the mostly negatively charged biopolymer with a broad distributions in molecular weight, charge density, and biological activities. Heparin is mainly composed of repeating trisulfated disaccharide units, which is made by mast cells that are enriched in the intestines, lungs or livers of animals. Porcine intestines and bovine lungs are two mostly used sources for heparin isolation. Heparin is well known for its anticoagulant and antithrombotic pharmacological effects. The anticoagulant activity of heparin is attributable to a 3-O-sulfate and 6-O-sulfate containing pentasaccharide sequence or a minimum eight-repeating disaccharide units containing the pentasaccharide sequence that catalyzes the suicidal inactivation of factor Xa or thrombin by a serpin or serine protease inhibitor named antithrombin III, respectively. Thus, heparin is responsible for the simultaneous inhibition of both thrombin generation and thrombin activity in the blood circulation. Moreover, heparin has many pharmacological properties such as anti-inflammatory, anti-viral, anti-angiogenesis, anti-neoplastic, and anti-metastatic effects though high affinity interactions with a variety of proteases, protease inhibitors, chemokines, cytokines, growth factors, and their respective receptors. The one drug multiple molecular targeting properties make heparin a very special drug in that various clinical trials are still conducting worldwide even 100 years after its discovery. In this review, we will summarize the structure-function relationship and the molecular mechanisms of heparin. We will also provide an overview of different clinical and potential clinical applications of heparin.
Collapse
|
13
|
Shan M, Feng N, Zhang L. Efficacy of heparinoid PSS in treating cardiovascular diseases and beyond—A review of 31 years clinical experiences in China. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:75-93. [DOI: 10.1016/bs.pmbts.2019.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Marine glycan-derived therapeutics in China. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:113-134. [DOI: 10.1016/bs.pmbts.2019.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Wu G, Mai X, Liu F, Lin M, Dong X, Xu Q, Hao C, Zhang L, Yu R, Jiang T. Synthesis of novel 10,11-methylenedioxy-camptothecin glycoside derivatives and investigation of their anti-tumor effects in vivo. RSC Adv 2019; 9:11142-11150. [PMID: 35520228 PMCID: PMC9063016 DOI: 10.1039/c9ra00315k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/21/2019] [Indexed: 11/21/2022] Open
Abstract
10,11-Methylenedioxy-camptothecin (FL118) is a novel camptothecin analogue that possesses exceptional antitumor efficacy in human tumor xenograft models. The aim of the current study was to develop novel 20-substituted FL118 derivatives coupled with glycosyl-succinic acid esters with improved antitumor efficacy. These FL118 glycoside derivatives were designed, synthesized and their cytotoxicity evaluated in three tumor cell lines (A-549, MDA-MB-231 and RM-1). All of the derivatives showed superior in vitro cytotoxic activity and were more potent than irinotecan in A549 and MDA-MB-231 cells. In mouse prostate cancer cells RM-1, 10,11-methylenedioxy-camptothecin rhamnoside 11b displayed significant activities with IC50 of 48.27 nM. Western blot analysis demonstrated that 11b inhibited survivin expression and induced cancer cells apoptosis. Further cell cycle analyses clearly showed 11b induced G2/M phase cell cycle arrest. Molecule docking studies suggested that the binding mode of 11b was different from that of the crystal complex of ligand topotecan in Top1/DNA. Importantly, 11b showed high in vivo antitumor efficacy in the RM-1 mouse model with transplantation of prostate cancer (TGI = 44.9%) at dose of 9 mg kg−1 without apparent toxicity. In a RM-1 xenograft model, 11b had superior in vivo antitumor efficacy (TGI = 44.9%) at a dose of 9 mg kg−1.![]()
Collapse
|
16
|
Xu L, Tang L, Zhang L. Proteoglycans as miscommunication biomarkers for cancer diagnosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:59-92. [DOI: 10.1016/bs.pmbts.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Dou H, Song A, Jia S, Zhang L. Heparinoids Danaparoid and Sulodexide as clinically used drugs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:55-74. [DOI: 10.1016/bs.pmbts.2019.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Lin L, Xu L, Xiao C, Zhou L, Gao N, Wu M, Zhao J. Plasma contact activation by a fucosylated chondroitin sulfate and its structure–activity relationship study. Glycobiology 2018; 28:754-764. [PMID: 30016441 DOI: 10.1093/glycob/cwy067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/13/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Li Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Chuang Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Lutan Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Na Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
19
|
Tang Y, Zhang S, Chang Y, Fan D, Agostini AD, Zhang L, Jiang T. Aglycone Ebselen and β-d-Xyloside Primed Glycosaminoglycans Co-contribute to Ebselen β-d-Xyloside-Induced Cytotoxicity. J Med Chem 2018; 61:2937-2948. [PMID: 29584939 DOI: 10.1021/acs.jmedchem.7b01835] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Most β-d-xylosides with hydrophobic aglycones are nontoxic primers for glycosaminoglycan assembly in animal cells. However, when Ebselen was conjugated to d-xylose, d-glucose, d-galactose, and d-lactose (8A-D), only Ebselen β-d-xyloside (8A) showed significant cytotoxicity in human cancer cells. The following facts indicated that the aglycone Ebselen and β-d-xyloside primed glycosaminoglycans co-contributed to the observed cytotoxicity: 1. Ebselen induced S phase cell cycle arrest, whereas 8A induced G2/M cell cycle arrest; 2. 8A augmented early and late phase cancer cell apoptosis significantly compared to that of Ebselen and 8B-D; 3. Both 8A and phenyl-β-d-xyloside primed glycosaminoglycans with similar disaccharide compositions in CHO-pgsA745 cells; 4. Glycosaminoglycans could be detected inside of cells only when treated with 8A, indicating Ebselen contributed to the unique property of intracellular localization of the primed glycosaminoglycans. Thus, 8A represents a lead compound for the development of novel antitumor strategy by targeting glycosaminoglycans.
Collapse
Affiliation(s)
- Yang Tang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266071 , P. R. China.,Medical Systems Biology Center for Complex Diseases , Affiliated Hospital of Qingdao University , Qingdao 266003 , P. R. China
| | - Siqi Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266071 , P. R. China
| | - Yajing Chang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266071 , P. R. China.,Medical Systems Biology Center for Complex Diseases , Affiliated Hospital of Qingdao University , Qingdao 266003 , P. R. China
| | - Dacheng Fan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266071 , P. R. China
| | - Ariane De Agostini
- Department of Gynecology and Obstetrics , Geneva University Hospitals and University of Geneva , Geneva 14 , Switzerland
| | - Lijuan Zhang
- Medical Systems Biology Center for Complex Diseases , Affiliated Hospital of Qingdao University , Qingdao 266003 , P. R. China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266071 , P. R. China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National of Laboratory for Marine Science and Technology , Qingdao 266003 , P. R. China
| |
Collapse
|
20
|
Xin M, Sun Y, Chen H, Li Q, Dun Y, Guan H, Hao J, Li C. Propylene glycol guluronate sulfate (PGGS) reduces lipid accumulation via AMP-activated kinase activation in palmitate-induced HepG2 cells. Int J Biol Macromol 2018; 114:26-34. [PMID: 29550423 DOI: 10.1016/j.ijbiomac.2018.03.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease (CVD) is the No. 1 cause of death worldwide. Hyperlipidemia is one of the major risk factors for CVD. Maintaining lipid homeostasis is an effective way to prevent CVD. We prepared propylene glycol guluronate sulfate (PGGS), a sulfated polysaccharide, and investigated its effect on lipid metabolism in HepG2 cells. We found that total cholesterol (TC) and triglycerides (TG) were significantly decreased in the cells after PGGS treatment. We have also shown that the AMPK signaling is activated after PGGS treatment as evidenced by changes in the expression of many AMPK downstream targets including SREBP-1c, SIRT-1, CPT1, PPARα, and FAS. Our results have demonstrated that PGGS is a potentially novel lipid-lowering agent for CVD prevention.
Collapse
Affiliation(s)
- Meng Xin
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yang Sun
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Haijiao Chen
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Quancai Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yunlou Dun
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Huashi Guan
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Chunxia Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
21
|
Activated HGF-c-Met Axis in Head and Neck Cancer. Cancers (Basel) 2017; 9:cancers9120169. [PMID: 29231907 PMCID: PMC5742817 DOI: 10.3390/cancers9120169] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/14/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly morbid disease. Recent developments including Food and Drug Administration (FDA) approved molecular targeted agent’s pembrolizumab and cetuximab show promise but did not improve the five-year survival which is currently less than 40%. The hepatocyte growth factor receptor; also known as mesenchymal–epithelial transition factor (c-Met) and its ligand hepatocyte growth factor (HGF) are overexpressed in head and neck squamous cell carcinoma (HNSCC); and regulates tumor progression and response to therapy. The c-Met pathway has been shown to regulate many cellular processes such as cell proliferation, invasion, and angiogenesis. The c-Met pathway is involved in cross-talk, activation, and perpetuation of other signaling pathways, curbing the cogency of a blockade molecule on a single pathway. The receptor and its ligand act on several downstream effectors including phospholipase C gamma (PLCγ), cellular Src kinase (c-Src), phosphotidylinsitol-3-OH kinase (PI3K) alpha serine/threonine-protein kinase (Akt), mitogen activate protein kinase (MAPK), and wingless-related integration site (Wnt) pathways. They are also known to cross-talk with other receptors; namely epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) and specifically contribute to treatment resistance. Clinical trials targeting the c-Met axis in HNSCC have been undertaken because of significant preclinical work demonstrating a relationship between HGF/c-Met signaling and cancer cell survival. Here we focus on HGF/c-Met impact on cellular signaling in HNSCC to potentiate tumor growth and disrupt therapeutic efficacy. Herein we summarize the current understanding of HGF/c-Met signaling and its effects on HNSCC. The intertwining of c-Met signaling with other signaling pathways provides opportunities for more robust and specific therapies, leading to better clinical outcomes.
Collapse
|
22
|
Hou N, Zhang M, Xu Y, Sun Z, Wang J, Zhang L, Zhang Q. Polysaccharides and their depolymerized fragments from Costaria costata: Molecular weight and sulfation-dependent anticoagulant and FGF/FGFR signal activating activities. Int J Biol Macromol 2017; 105:1511-1518. [PMID: 28619642 DOI: 10.1016/j.ijbiomac.2017.06.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/17/2017] [Accepted: 06/03/2017] [Indexed: 12/21/2022]
Abstract
Crude polysaccharides from Costaria costata were extracted by hot water and further fractionated by anion exchange chromatography into three polysaccharide fractions. Three low molecular weight fragments were then prepared by degradation of the polysaccharides with hydrogen peroxide and ascorbic acid. The structural features of the polysaccharides and their low molecular weight fragments were elucidated for the first time based on the HGPC, FT-IR, NMR, MS, monosaccharide composition, and other chemical analyses. Their anticoagulant and FGF-1, -2, -7, -8, -9, -10/FGFR1c signaling activation activities in BaF3 cells were also examined. Our studies showed that the polysaccharides were sulfated at different positions of galactose and fucose residues. The APTT-, PT- and TT-based anticoagulant assay results indicated that a high molecular weight and a higher degree of sulfation were essential for their anticoagulant activities. In contrast, not only the polysaccharides but also the depolymerized fragments showed significant FGF/FGFR signal activating activities in a FGF-, molecular weight-, and sulfation-dependent manner. The results presented in current study demonstrated the potential use of the polysaccharides and their fragments as anticoagulants and FGF signal regulators.
Collapse
Affiliation(s)
- Ningning Hou
- Key Laboratory of Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China
| | - Meng Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yingjie Xu
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zhongmin Sun
- Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China; Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jing Wang
- Key Laboratory of Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China
| | - Lijuan Zhang
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Quanbin Zhang
- Key Laboratory of Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China.
| |
Collapse
|
23
|
Chen A, Lan Y, Liu J, Zhang F, Zhang L, Li B, Zhao X. The structure property and endothelial protective activity of fucoidan from Laminaria japonica. Int J Biol Macromol 2017; 105:1421-1429. [PMID: 28754625 DOI: 10.1016/j.ijbiomac.2017.07.148] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/01/2017] [Accepted: 07/24/2017] [Indexed: 11/28/2022]
Abstract
Four antithrombotic fucoidan fractions F1, F2, LF1, and LF2 with different monosaccharide composition, molecular weight, and degree of sulfation and sulfate position were prepared from Laminaria japonica by hot water extraction and radical degradation. Their endothelial protective activity and possible action mechanism were studied using both cell- and rat-based models systematically. By comparison, the low molecular weight (LMW) fucoidan LF1 and LF2 were more potent than the medium molecular weight (MMW) fucoidan F1 and F2 in endothelial protection, down-regulation of von Willebrand Factor, CD31 and CD51 expressing endothelial microparticles in adrenalin-induced arterial endothelial injury rats and human umbilical vein endothelial cell system. However, the highly sulfated fucoidan fractions F2 and LF2 were better at inducing FGFR1c-expressing BaF3 cell proliferation in the presence of FGF-1, -2, -7, -8, -9 or -10. These results indicated that the chemical property of fucoidan was correlated to its specific biological activity tested. Therefore, defying fucoidan's monosaccharide composition, molecular weight, and degree of sulfation might be important in developing it into a medicine.
Collapse
Affiliation(s)
- Anjin Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao, PR China; Qingdao Municipal Hospital, Qingdao, PR China
| | - Ying Lan
- Qingdao Municipal Hospital, Qingdao, PR China
| | - Jingwen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Fang Zhang
- Qingdao Municipal Hospital, Qingdao, PR China
| | - Lijuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China; Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Bafang Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Xue Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, PR China.
| |
Collapse
|
24
|
Heparin Mimetics: Their Therapeutic Potential. Pharmaceuticals (Basel) 2017; 10:ph10040078. [PMID: 28974047 PMCID: PMC5748635 DOI: 10.3390/ph10040078] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 01/04/2023] Open
Abstract
Heparin mimetics are synthetic and semi-synthetic compounds that are highly sulfated, structurally distinct analogues of glycosaminoglycans. These mimetics are often rationally designed to increase potency and binding selectivity towards specific proteins involved in disease manifestations. Some of the major therapeutic arenas towards which heparin mimetics are targeted include: coagulation and thrombosis, cancers, and inflammatory diseases. Although Fondaparinux, a rationally designed heparin mimetic, is now approved for prophylaxis and treatment of venous thromboembolism, the search for novel anticoagulant heparin mimetics with increased affinity and fewer side effects remains a subject of research. However, increasingly, research is focusing on the non-anticoagulant activities of these molecules. Heparin mimetics have potential as anti-cancer agents due to their ability to: (1) inhibit heparanase, an endoglycosidase which facilitates the spread of tumor cells; and (2) inhibit angiogenesis by binding to growth factors. The heparin mimetic, PI-88 is in clinical trials for post-surgical hepatocellular carcinoma and advanced melanoma. The anti-inflammatory properties of heparin mimetics have primarily been attributed to their ability to interact with: complement system proteins, selectins and chemokines; each of which function differently to facilitate inflammation. The efficacy of low/non-anticoagulant heparin mimetics in animal models of different inflammatory diseases has been demonstrated. These findings, plus clinical data that indicates heparin has anti-inflammatory activity, will raise the momentum for developing heparin mimetics as a new class of therapeutic agent for inflammatory diseases.
Collapse
|
25
|
Wang W, Yin R, Zhang M, Yu R, Hao C, Zhang L, Jiang T. Boronic Acid Modifications Enhance the Anti-Influenza A Virus Activities of Novel Quindoline Derivatives. J Med Chem 2017; 60:2840-2852. [PMID: 28267329 DOI: 10.1021/acs.jmedchem.6b00326] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The unique glycan-binding ability of chemically synthesized boronic acid derivatives makes them emerging candidates for developing anti-influenza A virus (IAV) drugs. Herein we report the synthesis and the anti-IAV activities of three series of novel boronic acid-modified quindoline derivatives both in vitro and in vivo. Boronic acid-modified compounds 6a and 7a effectively prevented the entry of virus RNP into the nucleus, reduced virus titers in IAV infected cells, and also inhibited the activity of viral neuraminidase. Compound 7a possessed broad antiviral spectrum and was able to inhibit cellular NF-κB and MAPK signaling pathways to block IAV infection. More importantly, IAV infected mice treated with compound 7a showed better survival rates than mice treated with oseltamivir, a popular anti-IAV drug. Thus, our study provides not only an antiviral preclinical candidate but also useful information for further research and development of boronic acid-modified anti-IAV drugs.
Collapse
Affiliation(s)
- Wei Wang
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China , Qingdao 266003, P. R. China.,Marine Biomedical Research Institute of Qingdao , Qingdao 266003, P. R. China
| | - Ruijuan Yin
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China , Qingdao 266003, P. R. China.,Marine Biomedical Research Institute of Qingdao , Qingdao 266003, P. R. China
| | - Meng Zhang
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China , Qingdao 266003, P. R. China
| | - Rilei Yu
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China , Qingdao 266003, P. R. China.,Marine Biomedical Research Institute of Qingdao , Qingdao 266003, P. R. China
| | - Cui Hao
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University Medical College , Qingdao, 266003, P. R. China
| | - Lijuan Zhang
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University Medical College , Qingdao, 266003, P. R. China
| | - Tao Jiang
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China , Qingdao 266003, P. R. China.,Marine Biomedical Research Institute of Qingdao , Qingdao 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology , Qingdao, 266237, P. R. China
| |
Collapse
|
26
|
Li Q, Zeng Y, Wang L, Guan H, Li C, Zhang L. The heparin-like activities of negatively charged derivatives of low-molecular-weight polymannuronate and polyguluronate. Carbohydr Polym 2017; 155:313-320. [DOI: 10.1016/j.carbpol.2016.08.084] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/29/2016] [Accepted: 08/26/2016] [Indexed: 11/16/2022]
|
27
|
The initiation and effects of plasma contact activation: an overview. Int J Hematol 2016; 105:235-243. [PMID: 27848184 DOI: 10.1007/s12185-016-2132-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
Abstract
The plasma contact system sits atop the intrinsic coagulation cascade and plasma kallikrein-kinin pathway, and in vivo its activation contributes, respectively, to coagulation and inflammation mainly via two downstream pathways. This system has been widely investigated, its activation mechanisms by negatively charged surfaces and the interactions within its components, factor XII, prekallikrein and high molecular weight kininogen are well understood at the biochemical level. However, as most of the activators that have been discovered by in vitro experiments are exogenous, the physiological activators and roles of the contact system have remained unclear and controversial. In the last two decades, several physiological activators have been identified, and a better understanding of its roles and its connection with other signaling pathways has been obtained from in vivo studies. In this article, we present an overview of the contact pathway with a focus on the activation mechanisms, natural stimuli, possible physiological roles, potential risks of its excessive activation, remaining questions and future prospects.
Collapse
|
28
|
A Brazilian perspective for the use of bovine heparin in open heart surgery. Int J Cardiol 2016; 223:611-612. [PMID: 27561168 DOI: 10.1016/j.ijcard.2016.08.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/03/2016] [Indexed: 11/23/2022]
|
29
|
Tong S, Zhang M, Wang S, Yin R, Yu R, Wan S, Jiang T, Zhang L. Isothiouronium modification empowers pyrimidine-substituted curcumin analogs potent cytotoxicity and Golgi localization. Eur J Med Chem 2016; 123:849-857. [PMID: 27543879 DOI: 10.1016/j.ejmech.2016.07.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/18/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
Most of protein post-translational modifications occur in the Golgi and many human diseases are associated with abnormal Golgi function or improper post translational modifications of proteins in the Golgi. In this study, we designed and synthesized 4 × 6 series of novel isothiouronium-modified (E,E)-4,6-bis(styryl)-pyrimidine analogs and found that they localized at the Golgi as visualized by the intrinsic fluorescence of the analogs. The isothiouronium-modified analogs had potent cytotoxicity in both normal (Chinese Hamster Ovary or CHO) and cancer cells. Furthermore, permethylated isothiouronium-modified analogs showed cancer cell-selective cytotoxicity. The molecular mechanisms underlying Golgi localization of isothiouronium-modified compounds were investigated using 7 CHO and 4 human cancer cell lines and the results indicated that the compounds had binding partners in the Golgi. Thus, isothiouronium-modified analogs might be promising anticancer agents, novel Golgi staining reagents, and useful research tools for studying Golgi functions in normal or cancer cells and in Golgi-related human diseases.
Collapse
Affiliation(s)
- Sheng Tong
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Meng Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shixi Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Ruijuan Yin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shengbiao Wan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| | - Lijuan Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
30
|
He Y, Lan Y, Liu Y, Yu H, Han Z, Li X, Zhang L. Pingyangmycin and Bleomycin Share the Same Cytotoxicity Pathway. Molecules 2016; 21:molecules21070862. [PMID: 27376254 PMCID: PMC6274306 DOI: 10.3390/molecules21070862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 01/22/2023] Open
Abstract
Pingyangmycin is an anticancer drug known as bleomycin A5 (A5), discovered in the Pingyang County of Zhejiang Province of China. Bleomycin (BLM) is a mixture of mainly two compounds (A2 and B2), which is on the World Health Organization’s list of essential medicines. Both BLM and A5 are hydrophilic molecules that depend on transporters or endocytosis receptors to get inside of cells. Once inside, the anticancer activities rely on their abilities to produce DNA breaks, thus leading to cell death. Interestingly, the half maximal inhibitory concentration (IC50) of BLMs in different cancer cell lines varies from nM to μM ranges. Different cellular uptake, DNA repair rate, and/or increased drug detoxification might be some of the reasons; however, the molecules and signaling pathways responsible for these processes are largely unknown. In the current study, we purified the A2 and B2 from the BLM and tested the cytotoxicities and the molecular mechanisms of each individual compound or in combination with six different cell lines, including a Chinese hamster ovary (CHO) cell line defective in glycosaminoglycan biosynthesis. Our data suggested that glycosaminoglycans might be involved in the cellular uptake of BLMs. Moreover, both BLM and A5 shared similar signaling pathways and are involved in cell cycle and apoptosis in different cancer cell lines.
Collapse
Affiliation(s)
- Yanli He
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Ying Lan
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Yong Liu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Haibo Yu
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China.
| | - Zhangrun Han
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Xiulian Li
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Lijuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
31
|
Anticoagulant and FGF/FGFR signal activating activities of the heparinoid propylene glycol alginate sodium sulfate and its oligosaccharides. Carbohydr Polym 2016; 136:641-8. [DOI: 10.1016/j.carbpol.2015.09.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/05/2015] [Accepted: 09/18/2015] [Indexed: 12/16/2022]
|
32
|
Kenne E, Nickel KF, Long AT, Fuchs TA, Stavrou EX, Stahl FR, Renné T. Factor XII: a novel target for safe prevention of thrombosis and inflammation. J Intern Med 2015; 278:571-85. [PMID: 26373901 DOI: 10.1111/joim.12430] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Plasma protein factor XII (FXII) activates the procoagulant and proinflammatory contact system that drives both the kallikrein-kinin system and the intrinsic pathway of coagulation. When zymogen FXII comes into contact with negatively charged surfaces, it auto-activates to the serine proteaseactivated FXII (FXIIa). Recently, various in vivo activators of FXII have been identified including heparin, misfolded protein aggregates, polyphosphate and nucleic acids. Murine models have established a central role of FXII in arterial and venous thrombosis. Despite its central function in thrombosis, deficiency in FXII does not impair haemostasis in animals and humans. In a preclinical cardiopulmonary bypass system in large animals, the FXIIa-blocking antibody 3F7 prevented thrombosis; however, in contrast to traditional anticoagulants, bleeding was not increased. In addition to its function in thrombosis, FXIIa initiates formation of the inflammatory mediator bradykinin. This mediator increases vascular leak, causes vasodilation, and induces chemotaxis with implications for septic, anaphylactic and allergic disease states. Therefore, targeting FXIIa appears to be a promising strategy for thromboprotection without associated bleeding risks but with anti-inflammatory properties.
Collapse
Affiliation(s)
- E Kenne
- Division of Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - K F Nickel
- Division of Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A T Long
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University and Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - T A Fuchs
- Division of Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - E X Stavrou
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University and Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - F R Stahl
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T Renné
- Division of Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
33
|
Lester J, Chandler T, Gemene KL. Reversible Electrochemical Sensor for Detection of High-Charge Density Polyanion Contaminants in Heparin. Anal Chem 2015; 87:11537-43. [DOI: 10.1021/acs.analchem.5b03347] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jacob Lester
- Department
of Chemistry, Northern Kentucky University, Nunn Drive, Highland Heights, Kentucky 41099, United States
| | - Timothy Chandler
- Department
of Chemistry, Northern Kentucky University, Nunn Drive, Highland Heights, Kentucky 41099, United States
| | - Kebede L. Gemene
- Department
of Chemistry, Northern Kentucky University, Nunn Drive, Highland Heights, Kentucky 41099, United States
| |
Collapse
|
34
|
Han Z, Zeng Y, Lu H, Zhang L. Determination of the degree of acetylation and the distribution of acetyl groups in chitosan by HPLC analysis of nitrous acid degraded and PMP labeled products. Carbohydr Res 2015; 413:75-84. [DOI: 10.1016/j.carres.2015.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 11/25/2022]
|
35
|
Zhang Z, Till S, Knappe S, Quinn C, Catarello J, Ray GJ, Scheiflinger F, Szabo CM, Dockal M. Screening of complex fucoidans from four brown algae species as procoagulant agents. Carbohydr Polym 2015; 115:677-85. [PMID: 25439948 DOI: 10.1016/j.carbpol.2014.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/26/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
Abstract
Fucoidans are complex sulfated polysaccharides extracted from brown algae. Depending on the concentration, they have been shown to stimulate and inhibit blood coagulation in vitro. Promotion of coagulation is mediated by blocking tissue factor pathway inhibitor (TFPI). We screened fucoidan extracts from four brown algae species in vitro with respect to their potential to improve coagulation in bleeding disorders. The fucoidans' pro- and anticoagulant activities were assessed by global hemostatic and standard clotting assays. Results showed that fucoidans improved coagulation parameters. Some fucoidans also activated the contact pathway of coagulation, an undesired property reported for sulfated glycosaminoglycans. Chemical evaluation of fucoidans' complex and variable structure included molecular weight (Mw), polydispersity (polyD), structural heterogeneity, and organic and inorganic impurities. Herewith, we describe a screening strategy that facilitates the identification of crude fucoidan extracts with desired biological and structural properties for improvement of compromised coagulation like in hemophilia.
Collapse
Affiliation(s)
- Zhenqing Zhang
- Baxter Healthcare Corporation, Round Lake, IL, USA; College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | | | | | | | | | - G Joseph Ray
- Baxter Healthcare Corporation, Round Lake, IL, USA
| | | | | | | |
Collapse
|
36
|
Zeng Y, Han Z, Qiu P, Zhou Z, Tang Y, Zhao Y, Zheng S, Xu C, Zhang X, Yin P, Jiang X, Lu H, Yu G, Zhang L. Salinity-induced anti-angiogenesis activities and structural changes of the polysaccharides from cultured Cordyceps Militaris. PLoS One 2014; 9:e103880. [PMID: 25203294 PMCID: PMC4159134 DOI: 10.1371/journal.pone.0103880] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/03/2014] [Indexed: 11/18/2022] Open
Abstract
Cordyceps is a rare and exotic mushroom that grows out of the head of a mummified caterpillar. Many companies are cultivating Cordyceps to meet the increased demand for its medicinal applications. However, the structures and functions of polysaccharides, one of the pharmaceutical active ingredients in Cordyceps, are difficult to reproduce in vitro. We hypothesized that mimicking the salty environment inside caterpillar bodies might make the cultured fungus synthesize polysaccharides with similar structures and functions to that of wild Cordyceps. By adding either sodium sulfate or sodium chloride into growth media, we observed the salinity-induced anti-angiogenesis activities of the polysaccharides purified from the cultured C. Militaris. To correlate the activities with the polysaccharide structures, we performed the (13)C-NMR analysis and observed profound structural changes including different proportions of α and β glycosidic bonds and appearances of uronic acid signals in the polysaccharides purified from the culture after the salts were added. By coupling the techniques of stable (34)S-sulfate isotope labeling, aniline- and D5-aniline tagging, and stable isotope facilitated uronic acid-reduction with LC-MS analysis, our data revealed for the first time the existence of covalently linked sulfate and the presence of polygalacuronic acids in the polysaccharides purified from the salt added C. Militaris culture. Our data showed that culturing C. Militaris with added salts changed the biosynthetic scheme and resulted in novel polysaccharide structures and functions. These findings might be insightful in terms of how to make C. Militaris cultures to reach or to exceed the potency of wild Cordyceps in future.
Collapse
Affiliation(s)
- Yangyang Zeng
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience & Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Zhangrun Han
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience & Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Peiju Qiu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience & Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Zijing Zhou
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience & Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yang Tang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience & Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yue Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience & Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Sha Zheng
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience & Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chenchen Xu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience & Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiuli Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience & Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Pinghe Yin
- Department of Chemistry, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaolu Jiang
- College of Food Science and Technology, Ocean University of China, Qingdao, China
| | - Hong Lu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience & Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience & Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lijuan Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience & Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| |
Collapse
|
37
|
|
38
|
Qiu P, Xu L, Gao L, Zhang M, Wang S, Tong S, Sun Y, Zhang L, Jiang T. Exploring pyrimidine-substituted curcumin analogues: Design, synthesis and effects on EGFR signaling. Bioorg Med Chem 2013; 21:5012-20. [DOI: 10.1016/j.bmc.2013.06.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/21/2013] [Accepted: 06/22/2013] [Indexed: 01/22/2023]
|
39
|
Sulkava S, Ollila HM, Ahola K, Partonen T, Viitasalo K, Kettunen J, Lappalainen M, Kivimäki M, Vahtera J, Lindström J, Härmä M, Puttonen S, Salomaa V, Paunio T. Genome-wide scan of job-related exhaustion with three replication studies implicate a susceptibility variant at the UST gene locus. Hum Mol Genet 2013; 22:3363-72. [PMID: 23620144 DOI: 10.1093/hmg/ddt185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Job-related exhaustion is the core dimension of burnout, a work-related stress syndrome that has several negative health consequences. In this study, we explored the molecular genetic background of job-related exhaustion. A genome-wide analysis of job-related exhaustion was performed in the GENMETS subcohort (n = 1256) of the Finnish population-based Health 2000 study. Replication analyses included an analysis of the strongest associations in the rest of the Health 2000 sample (n = 1660 workers) and in three independent populations (the FINRISK population cohort, n = 10 753; two occupational cohorts, total n = 1451). Job-related exhaustion was ascertained using a standard self-administered questionnaire (the Maslach Burnout Inventory (MBI)-GS exhaustion scale in the Health 2000 sample and the occupational cohorts) or a single question (FINRISK). A variant located in an intron of UST, uronyl-2-sulfotransferase (rs13219957), gave the strongest statistical evidence in the initial genome-wide study (P = 1.55 × 10(-7)), and was associated with job-related exhaustion in all the replication sets (P < 0.05; P = 6.75 × 10(-7) from the meta-analysis). Consistent with studies of mood disorders, individual common genetic variants did not have any strong effect on job-related exhaustion. However, the nominally significant signals from the allelic variant of UST in four separate samples suggest that this variant might be a weak risk factor for job-related exhaustion. Together with the previously reported associations of other dermatan/chondroitin sulfate genes with mood disorders, these results indicate a potential molecular pathway for stress-related traits and mark a candidate region for further studies of job-related and general exhaustion.
Collapse
Affiliation(s)
- Sonja Sulkava
- Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Scott RA, Panitch A. Glycosaminoglycans in biomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:388-98. [PMID: 23606640 DOI: 10.1002/wnan.1223] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycosaminoglycans (GAGs) compose one of four classes of mammalian biopolymers, and are arguably the most complex. The research areas of glycobiology, glycopolymers, and the use of GAGs within tissue engineering and regenerative medicine have grown exponentially during the past decade. Researchers are closing in on high throughput methods for GAG synthesis and sequencing, but our understanding of glycan sequence and the information contained in this sequence lags behind. Screening methods to identify key GAG-biopolymer interactions are providing insights into important targets for nanomedicine, regenerative medicine, and pharmaceutics. Importantly, GAGs are most often found in the form of glycolipids and proteoglycans. Several studies have shown that the clustering of GAGs, as is often the case in proteoglycans, increases the affinity between GAGs and other biopolymers. In addition, GAG clustering can create regions of high anionic charge, which leads to high osmotic pressure. Recent advances have led to proteoglycan mimics that exhibit many of the functions of proteoglycans including protection of the extracellular matrix from proteolytic activity, regulation of collagen fibril assembly on the nanoscale, alteration of matrix stiffness, and inhibition of platelet adhesion, among others. Collectively, these advances are stimulating possibilities for targeting of drugs, nanoparticles, and imaging agents, opening new avenues for mimicking nanoscale molecular interactions that allow for directed assembly of bulk materials, and providing avenues for the synthesis of proteoglycan mimics that enhance opportunities in regenerative medicine.
Collapse
Affiliation(s)
- Rebecca A Scott
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
41
|
Nyren-Erickson EK, Haldar MK, Totzauer JR, Ceglowski R, Patel DS, Friesner DL, Srivastava DK, Mallik S. Glycosaminoglycan-mediated selective changes in the aggregation states, zeta potentials, and intrinsic stability of liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16115-16125. [PMID: 23102026 PMCID: PMC3502640 DOI: 10.1021/la302566p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Though the aggregation of glycosaminoglycans (GAGs) in the presence of liposomes and divalent cations has been previously reported, the effects of different GAG species and minor changes in GAG composition on the aggregates that are formed are yet unknown. If minor changes in GAG composition produce observable changes in the liposome aggregate diameter or zeta potential, such a phenomenon may be used to detect potentially dangerous oversulfated contaminants in heparin. We studied the mechanism of the interactions between heparin and its oversulfated glycosaminoglycan contaminants with liposomes. Herein, we demonstrate that Mg(2+) acts to shield the incoming glycosaminoglycans from the negatively charged phosphate groups of the phospholipids and that changes in the aggregate diameter and zeta potential are a function of the glycosaminoglycan species and concentration as well as the liposome bilayer composition. These observations are supported by TEM studies. We have shown that the organizational states of the liposome bilayers are influenced by the presence of GAG and excess Mg(2+), resulting in a stabilizing effect that increases the T(m) value of DSPC liposomes; the magnitude of this effect is also dependent on the GAG species and concentration present. There is an inverse relationship between the percent change in aggregate diameter and the percent change in aggregate zeta potential as a function of GAG concentration in solution. Finally, we demonstrate that the diameter and zeta potential changes in POPC liposome aggregates in the presence of different oversulfated heparin contaminants at low concentrations allow for an accurate detection of oversulfated chondroitin sulfate at concentrations of as low as 1 mol %.
Collapse
Affiliation(s)
- Erin K. Nyren-Erickson
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Manas K. Haldar
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Jessica R. Totzauer
- Department of Pharmacy Practice, North Dakota State University, Fargo, North Dakota 58108-6050
| | | | - Dilipkumar S. Patel
- Department of Pharmacy Practice, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Daniel L. Friesner
- Department of Pharmacy Practice, North Dakota State University, Fargo, North Dakota 58108-6050
| | - D. K. Srivastava
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58108-6050
| |
Collapse
|
42
|
Abstract
The molecular basis for the anticoagulant action of heparin lies in its ability to bind to and enhance the inhibitory activity of the plasma protein antithrombin against several serine proteases of the coagulation system, most importantly factors IIa (thrombin), Xa and IXa. Two major mechanisms underlie heparin's potentiation of antithrombin. The conformational changes induced by heparin binding cause both expulsion of the reactive loop and exposure of exosites of the surface of antithrombin, which bind directly to the enzyme target; and a template mechanism exists in which both inhibitor and enzyme bind to the same heparin molecule. The relative importance of these two modes of action varies between enzymes. In addition, heparin can act through other serine protease inhibitors such as heparin co-factor II, protein C inhibitor and tissue factor plasminogen inhibitor. The antithrombotic action of heparin in vivo, though dominated by anticoagulant mechanisms, is more complex, and interactions with other plasma proteins and cells play significant roles in the living vasculature.
Collapse
Affiliation(s)
- Elaine Gray
- National Institute for Biological Standards and Control, Potter's Bar, Hertfordshire, UK.
| | | | | |
Collapse
|
43
|
Aich U, Shriver Z, Tharakaraman K, Raman R, Sasisekharan R. Competitive inhibition of heparinase by persulfonated glycosaminoglycans: a tool to detect heparin contamination. Anal Chem 2011; 83:7815-22. [PMID: 21863856 DOI: 10.1021/ac201498a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heparin and the low molecular weight heparins are extensively used as medicinal products to prevent and treat the formation of venous and arterial thrombi. In early 2008, administration of some heparin lots was associated with the advent of severe adverse effects, indicative of an anaphylactoid-like response. Application of orthogonal analytical tools enabled detection and identification of the contaminant as oversulfated chondroitin sulfate (OSCS) was reported in our earlier report. Herein, we investigate whether enzymatic depolymerization using the bacterially derived heparinases, given the structural understanding of their substrate specificity, can be used to identify the presence of OSCS in heparin. We also extend this analysis to examine the effect of other persulfonated glycosaminoglycans (GAGs) on the action of the heparinases. We find that all persulfonated GAGs examined were effective inhibitors of heparinase I, with IC(50) values ranging from approximately 0.5-2 μg/mL. Finally, using this biochemical understanding, we develop a rapid, simple assay to assess the purity of heparin using heparinase digestion followed by size-exclusion HPLC analysis to identify and quantify digestion products. In the context of the assay, we demonstrate that less than 0.1% (w/w) of OSCS (and other persulfonated polysaccharides) can routinely be detected in heparin.
Collapse
Affiliation(s)
- Udayanath Aich
- Harvard-MIT Division of Health Sciences and Technology, the Koch Institute for Integrative, Cancer Research and the Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
44
|
Lima MA, Rudd TR, de Farias EHC, Ebner LF, Gesteira TF, de Souza LM, Mendes A, Córdula CR, Martins JRM, Hoppensteadt D, Fareed J, Sassaki GL, Yates EA, Tersariol ILS, Nader HB. A new approach for heparin standardization: combination of scanning UV spectroscopy, nuclear magnetic resonance and principal component analysis. PLoS One 2011; 6:e15970. [PMID: 21267460 PMCID: PMC3022730 DOI: 10.1371/journal.pone.0015970] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 12/01/2010] [Indexed: 11/30/2022] Open
Abstract
The year 2007 was marked by widespread adverse clinical responses to heparin use, leading to a global recall of potentially affected heparin batches in 2008. Several analytical methods have since been developed to detect impurities in heparin preparations; however, many are costly and dependent on instrumentation with only limited accessibility. A method based on a simple UV-scanning assay, combined with principal component analysis (PCA), was developed to detect impurities, such as glycosaminoglycans, other complex polysaccharides and aromatic compounds, in heparin preparations. Results were confirmed by NMR spectroscopy. This approach provides an additional, sensitive tool to determine heparin purity and safety, even when NMR spectroscopy failed, requiring only standard laboratory equipment and computing facilities.
Collapse
Affiliation(s)
- Marcelo A. Lima
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Timothy R. Rudd
- School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Eduardo H. C. de Farias
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lyvia F. Ebner
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tarsis F. Gesteira
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lauro M. de Souza
- Laboratório de Química de Carboidratos, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Aline Mendes
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carolina R. Córdula
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João R. M. Martins
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Debra Hoppensteadt
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois, United States of America
| | - Jawed Fareed
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois, United States of America
| | - Guilherme L. Sassaki
- Laboratório de Química de Carboidratos, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Edwin A. Yates
- School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Ivarne L. S. Tersariol
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Helena B. Nader
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
45
|
Pan J, Qian Y, Weiser P, Zhou X, Lu H, Studelska DR, Zhang L. Glycosaminoglycans and activated contact system in cancer patient plasmas. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:473-95. [PMID: 20807657 DOI: 10.1016/s1877-1173(10)93020-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Oncogenic mutations create cancer cells. Cancer cells require thrombin for growth, angiogenesis, and metastasis. All cancer patients display a hypercoagulable state, which includes platelet activation, blood coagulation, complement activation, vasodilatation, and inflammation. This often results in thrombosis, the second leading cause of death in cancer patients. It is established that chemically oversulfated glycosaminoglycans (GAGs) induce thrombin generation through contact system activation in human plasma. Thrombin is responsible for thrombosis. In this chapter, we show that plasmas from lung cancer patients contain activated contact systems apparent by the absence of high molecular weight kininogen and processed C1inh, by abnormal kallikrein and thrombin activities, and by increased glucosamine, galactosamine, and GAG levels. Activated contact systems were also evident in plasmas from breast, colon, and pancreatic cancer patients. These data suggest that GAGs or other molecules produced by tumors induce abnormal thrombin generation through contact system activation. Therefore, the contact system and glycans represent new targets for cancer diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Jing Pan
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhang L. Glycosaminoglycan (GAG) biosynthesis and GAG-binding proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:1-17. [PMID: 20807638 DOI: 10.1016/s1877-1173(10)93001-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two major types of glycosaminoglycan (GAG) polysaccharides, heparan sulfate and chondroitin sulfate, are polymerized and modified by enzymes that are encoded by more than 40 genes in animal cells. Because of the expression repertoire of the GAG assembly and modification enzymes, each heparan sulfate and chondroitin sulfate chain has a sulfation pattern, chain length, and fine structure that is potentially unique to each animal cell. GAGs interact with hundreds of proteins. Such interactions protect growth factors, chemokines, and cytokines against proteolysis. GAGs catalyze protease (such as thrombin) inhibition by serpins. GAGs regulate multiple signaling pathways including, but not limited to, fibroblast growth factor (FGF)/FGFR, hepatocyte growth factor (HGF)/c-Met, glial cell line-derived neurotrophic factor (GDNF)/c-Ret/GFRalpha1, vascular endothelial growth factor (VEGF)/VEGFR, platelet derived growth factor (PDGF)/PDGFR, BAFF/TACI, Indian hedgehog, Wnt, and BMP signaling pathways,where genetic studies have revealed an absolute requirement for GAGs in these pathways. Most importantly, protein/GAG aggregates induce thrombin generation and immune system upregulation by activating the contact system. Abnormal protein/GAG aggregates are associated with a variety of devastating human diseases including, but not limited to, Alzheimer's, diabetes, prion or transmissible spongiform encephalopathies, Lupus, heparin-induced thrombocytopenia/thrombosis, and different kinds of cancers. Therefore, GAGs are essential components of modern molecular biology and human physiology. Understanding GAG structure and function at molecular level with regard to development and health represents a unique opportunity in combating different kinds of human diseases.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO, USA
| |
Collapse
|
47
|
Weiser P, Qian Y, Pan J, Zhou X, Lu H, Studelska DR, Shih FF, Zhang L. Activated contact system and abnormal glycosaminoglycans in lupus and other auto- and non-autoimmune diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:443-72. [PMID: 20807656 DOI: 10.1016/s1877-1173(10)93019-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Systemic lupus erythematosus (SLE), heparin-induced thrombocytopenia (HIT), rheumatoid arthritis (RA) are marked by the presence of autoantibodies against negatively changed DNA, phospholipids, heparin, and chondroitin sulfate, respectively. Heparin/protein complexes induce contact system activation in HIT patient plasmas. The activated contact system generates thrombin. Thrombin is responsible for thrombosis, a common cause of death and disabilities for both HIT and SLE. In this chapter, we analyze plasma contact system proteins, thrombin- and kallikrein-like activities, glucosamine and galactosamine content from SLE-, RA-, osteoarthritis (OA)-, and psoriasis (Ps)-patient plasmas in addition to pooled 30+ healthy patient plasmas. We found that all SLE patient plasmas exhibited abnormal contact systems marked by the absence of high molecular weight kininogen, the presence of processed C1 inhibitor (C1inh), the display of abnormal thrombin- and kallikrein-like activities, and increased levels of plasma glucosamine and galactosamine. Different patterns of contact system activation distinguish SLE, RA, and Ps whereas no contact system activation is observed in normal and OA patient plasmas. The presence of paradoxical "lupus anticoagulants" in certain thrombosis-prone SLE patient plasmas, marked by delayed clotting in clinical plasma test, was explained by the consumption of contact system proteins, especially high molecular weight kininogen. Finally, we discovered that mouse and human SLE autoantibodies bind to cell surface GAGs with structural selectivity. In conclusion, markers of abnormal contact system activation represent potential new targets for autoimmune disease diagnosis, prevention, and treatment. These markers might also be useful in monitoring SLE activity/severity and in pinpointing patients with SLE-associated arthritis and psoriasis.
Collapse
Affiliation(s)
- Peter Weiser
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Chondroitin sulfate and abnormal contact system in rheumatoid arthritis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:423-42. [PMID: 20807655 DOI: 10.1016/s1877-1173(10)93018-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Rheumatoid arthritis (RA) is a heterogeneous autoimmune disease that affects 1% of the population worldwide. In the K/BxN mouse model of RA, autoantibodies specific for glucose-6-phosphate isomerase (GPI) from these mice can transfer joint-specific inflammation to normal mice. The binding of GPI/autoantibody to the cartilage surface is a prerequisite for autoantibody-induced joint-specific inflammation in the mouse model. Chondroitin sulfate (CS) on cartilage surface is the long sought high-affinity receptor for GPI. The binding affinity and structural differences between mouse paw/ankle CS and knee/elbow CS correlate with the distal to proximal disease severity in these joints. The data presented in this chapter indicate that autoantigen/autoantibodies in blood circulation activate contact system to produce vasodilators to allow immune complex, protein aggregates, and other plasma proteins to get into the joints. Cartilage surface CS binds and retains autoantigen/autoantibodies. The CS/autoantigen/autoantibody complexes could induce C3a and C5a production through contact system activation. C3a and C5a trigger degranulation of mast cells, which further recruit plasma contact system and complement proteins, immune cells, and immune activation factors to facilitate joint-specific tissue destruction. Therefore, either reducing autoantibody production or inhibiting autoantibody-induced contact system activation might be effective in RA prevention.
Collapse
|
49
|
Qian Y, Pan J, Zhou X, Weiser P, Lu H, Zhang L. Molecular Mechanism Underlines Heparin-Induced Thrombocytopenia and Thrombosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:395-421. [DOI: 10.1016/s1877-1173(10)93017-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|