1
|
Guo JF, Zhou H, Hu ZR, Yang YL, Wang WB, Zhang YR, Li X, Mulati N, Li YX, Wu L, Long Y, He JM. The Arabidopsis heterotrimeric G protein α subunit binds to and inhibits the inward rectifying potassium channel KAT1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112363. [PMID: 39710151 DOI: 10.1016/j.plantsci.2024.112363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
In animal cells, Gα subunit of the heterotrimeric G proteins can bind to both the N-terminal and C-terminal domains of G-protein-activated inwardly rectifying K+ channels (GIRKs) to inhibit their activities. In Arabidopsis guard cells, the Gα subunit GPA1 mediates multiple stimuli-regulated stomatal movements via inhibiting guard cell inward-rectifying K+ (K+in) current, but it remains unclear whether GPA1 directly interacts with and inhibits the activities of K+in channels. Here, we found that GPA1 interacted with the transmembrane domain rather than the intracellular domain of the Shaker family K+in channel KAT1. Two-Electrode Voltage-Clamp experiments in Xenopus oocytes demonstrated that GPA1 significantly inhibited KAT1 channel activity. However, GPA1 could not inhibit the assembly of KAT1 as well as KAT2 as homo- and hetero-tetramers and alter the subcellular localization and protein stability of these channels. In conclusion, these findings reveal a novel regulatory mechanism for Gα inhibition of the Shaker family K+in channel KAT1 via binding to its channel transmembrane domains but without affecting its subcellular localization, protein stability and the formation of functional homo- and hetero-tetramers. This suggests that in both animal and plant cells, Gα can regulate K+in channels through physical interaction, albeit with differing mechanisms of interaction and regulation.
Collapse
Affiliation(s)
- Jiang-Fan Guo
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Hui Zhou
- State key laboratory of crop stress adaptation and improvement, Henan University, Kaifeng 450046, China
| | - Zhuo-Ran Hu
- State key laboratory of crop stress adaptation and improvement, Henan University, Kaifeng 450046, China
| | - Ya-Lan Yang
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Wen-Bin Wang
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yan-Ru Zhang
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xue Li
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Nuerkaimaier Mulati
- College of Life and Geographic Sciences, Kashi University, Kashi, Xinjiang 844000, China
| | - Ying-Xin Li
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lu Wu
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Long
- State key laboratory of crop stress adaptation and improvement, Henan University, Kaifeng 450046, China.
| | - Jun-Min He
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
2
|
Liu H, Liang X, Liu R, Liu C, Luo S, Zhang Z, Liu Z, Xue S. Hydrogen sulfide inhibits Arabidopsis inward potassium channels via protein persulfidation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 39888262 DOI: 10.1111/jipb.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025]
Abstract
Hydrogen sulfide inhibits the inward-rectifying potassium ion current by inducing the persulfide modification on three cysteine residues of the inward potassium channel KAT1. This persulfidation inhibits the activity of KAT1 and KAT2 and suppresses the activity of heterologous channels formed by KAT1 and KAT2.
Collapse
Affiliation(s)
- Hai Liu
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiushuo Liang
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruiwen Liu
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chang Liu
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheng Luo
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiwei Zhang
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhu Liu
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaowu Xue
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
3
|
Chen G, Qin Y, Wang J, Li S, Zeng F, Deng F, Chater C, Xu S, Chen ZH. Stomatal evolution and plant adaptation to future climate. PLANT, CELL & ENVIRONMENT 2024; 47:3299-3315. [PMID: 38757448 DOI: 10.1111/pce.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/18/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Global climate change is affecting plant photosynthesis and transpiration processes, as well as increasing weather extremes impacting socio-political and environmental events and decisions for decades to come. One major research challenge in plant biology and ecology is the interaction of photosynthesis with the environment. Stomata control plant gas exchange and their evolution was a crucial innovation that facilitated the earliest land plants to colonize terrestrial environments. Stomata couple homoiohydry, together with cuticles, intercellular gas space, with the endohydric water-conducting system, enabling plants to adapt and diversify across the planet. Plants control stomatal movement in response to environmental change through regulating guard cell turgor mediated by membrane transporters and signaling transduction. However, the origin, evolution, and active control of stomata remain controversial topics. We first review stomatal evolution and diversity, providing fossil and phylogenetic evidence of their origins. We summarize functional evolution of guard cell membrane transporters in the context of climate changes and environmental stresses. Our analyses show that the core signaling elements of stomatal movement are more ancient than stomata, while genes involved in stomatal development co-evolved de novo with the earliest stomata. These results suggest that novel stomatal development-specific genes were acquired during plant evolution, whereas genes regulating stomatal movement, especially cell signaling pathways, were inherited ancestrally and co-opted by dynamic functional differentiation. These two processes reflect the different adaptation strategies during land plant evolution.
Collapse
Affiliation(s)
- Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuan Qin
- College of Agriculture, Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, China
| | - Jian Wang
- Central Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Sujuan Li
- Central Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fanrong Zeng
- College of Agriculture, Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, China
| | - Fenglin Deng
- College of Agriculture, Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, China
| | - Caspar Chater
- Royal Botanic Gardens, Kew, Richmond, UK
- Plants, Photosynthesis, and Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Shengchun Xu
- Central Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| |
Collapse
|
4
|
Zeng H, Chen H, Zhang M, Ding M, Xu F, Yan F, Kinoshita T, Zhu Y. Plasma membrane H +-ATPases in mineral nutrition and crop improvement. TRENDS IN PLANT SCIENCE 2024; 29:978-994. [PMID: 38582687 DOI: 10.1016/j.tplants.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 04/08/2024]
Abstract
Plasma membrane H+-ATPases (PMAs) pump H+ out of the cytoplasm by consuming ATP to generate a membrane potential and proton motive force for the transmembrane transport of nutrients into and out of plant cells. PMAs are involved in nutrient acquisition by regulating root growth, nutrient uptake, and translocation, as well as the establishment of symbiosis with arbuscular mycorrhizas. Under nutrient stresses, PMAs are activated to pump more H+ and promote organic anion excretion, thus improving nutrient availability in the rhizosphere. Herein we review recent progress in the physiological functions and the underlying molecular mechanisms of PMAs in the efficient acquisition and utilization of various nutrients in plants. We also discuss perspectives for the application of PMAs in improving crop production and quality.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.
| | - Huiying Chen
- College of Life and Environmental Sciences, Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Maoxing Zhang
- International Research Centre for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan 528000, China
| | - Ming Ding
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Feiyun Xu
- Center for Plant Water-Use and Nutrition Regulation, College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University of Giessen, Giessen, Germany
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 4660824, Japan.
| | - Yiyong Zhu
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Gao X, Xu X, Sun T, Lu Y, Jia Y, Zhou J, Fu P, Zhang Y, Yang G. Structural changes in the conversion of an Arabidopsis outward-rectifying K + channel into an inward-rectifying channel. PLANT COMMUNICATIONS 2024; 5:100844. [PMID: 38341617 PMCID: PMC11211230 DOI: 10.1016/j.xplc.2024.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Affiliation(s)
- Xudong Gao
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xia Xu
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tengfei Sun
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuhan Lu
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yutian Jia
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaqi Zhou
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Fu
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanming Zhang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guanghui Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Yuan G, Nong T, Hunpatin OS, Shi C, Su X, Wang Q, Liu H, Dai P, Ning Y. Research Progress on Plant Shaker K + Channels. PLANTS (BASEL, SWITZERLAND) 2024; 13:1423. [PMID: 38794493 PMCID: PMC11125005 DOI: 10.3390/plants13101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Plant growth and development are driven by intricate processes, with the cell membrane serving as a crucial interface between cells and their external environment. Maintaining balance and signal transduction across the cell membrane is essential for cellular stability and a host of life processes. Ion channels play a critical role in regulating intracellular ion concentrations and potentials. Among these, K+ channels on plant cell membranes are of paramount importance. The research of Shaker K+ channels has become a paradigm in the study of plant ion channels. This study offers a comprehensive overview of advancements in Shaker K+ channels, including insights into protein structure, function, regulatory mechanisms, and research techniques. Investigating Shaker K+ channels has enhanced our understanding of the regulatory mechanisms governing ion absorption and transport in plant cells. This knowledge offers invaluable guidance for enhancing crop yields and improving resistance to environmental stressors. Moreover, an extensive review of research methodologies in Shaker K+ channel studies provides essential reference solutions for researchers, promoting further advancements in ion channel research.
Collapse
Affiliation(s)
- Guang Yuan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tongjia Nong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Oluwaseyi Setonji Hunpatin
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuhan Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoqing Su
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Haobao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Peigang Dai
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yang Ning
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
7
|
González-García A, Kanli M, Wisowski N, Montoliu-Silvestre E, Locascio A, Sifres A, Gómez M, Ramos J, Porcel R, Andrés-Colás N, Mulet JM, Yenush L. Maternal Embryo Effect Arrest 31 (MEE31) is a moonlighting protein involved in GDP-D-mannose biosynthesis and KAT1 potassium channel regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111897. [PMID: 37852415 DOI: 10.1016/j.plantsci.2023.111897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Due to anthropogenic global warming, droughts are expected to increase and water availability to decrease in the coming decades. For this reason, research is increasingly focused on developing plant varieties and crop cultivars with reduced water consumption. Transpiration occurs through stomatal pores, resulting in water loss. Potassium plays a significant role in stomatal regulation. KAT1 is an inward-rectifying potassium channel that contributes to stomatal opening. Using a yeast high-throughput screening of an Arabidopsis cDNA library, MEE31 was found to physically interact with KAT1. MEE31 was initially identified in a screen for mutants with delayed embryonic development. The gene encodes a conserved phosphomannose isomerase (PMI). We report here that MEE31 interacts with and increases KAT1 activity in yeast and this interaction was also confirmed in plants. In addition, MEE31 complements the function of the yeast homologue, whereas the truncated version recovered in the screening does not, thus uncoupling the enzymatic activity from KAT1 regulation. We show that MEE31 overexpression leads to increased stomatal opening in Arabidopsis transgenic lines. Our data suggest that MEE31 is a moonlighting protein involved in both GDP-D-mannose biosynthesis and KAT1 regulation.
Collapse
Affiliation(s)
- Adrián González-García
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Maria Kanli
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Natalia Wisowski
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Eva Montoliu-Silvestre
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Alicia Sifres
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Marcos Gómez
- Departamento de Química Agrícola, Edafología y Microbiología, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - José Ramos
- Departamento de Química Agrícola, Edafología y Microbiología, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Nuria Andrés-Colás
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| |
Collapse
|
8
|
Mudrilov MA, Ladeynova MM, Kuznetsova DV, Vodeneev VA. Ion Channels in Electrical Signaling in Higher Plants. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1467-1487. [PMID: 38105018 DOI: 10.1134/s000629792310005x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 12/19/2023]
Abstract
Electrical signals (ESs) appearing in plants under the action of various external factors play an important role in adaptation to changing environmental conditions. Generation of ES in higher plant cells is associated with activation of Ca2+, K+, and anion fluxes, as well as with changes in the activity of plasma membrane H+-ATPase. In the present review, molecular nature of the ion channels contributing to ESs transmission in higher plants is analyzed based on comparison of the data from molecular-genetic and electrophysiological studies. Based on such characteristics of ion channels as selectivity, activation mechanism, and intracellular and tissue localization, those ion channels that meet the requirements for potential participation in ES generation were selected from a wide variety of ion channels in higher plants. Analysis of the data of experimental studies performed on mutants with suppressed or enhanced expression of a certain channel gene revealed those channels whose activation contributes to ESs formation. The channels responsible for Ca2+ flux during generation of ESs include channels of the GLR family, for K+ flux - GORK, for anions - MSL. Consideration of the prospects of further studies suggests the need to combine electrophysiological and genetic approaches along with analysis of ion concentrations in intact plants within a single study.
Collapse
Affiliation(s)
- Maxim A Mudrilov
- Department of Biophysics, Lobachevsky National Research State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Maria M Ladeynova
- Department of Biophysics, Lobachevsky National Research State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Darya V Kuznetsova
- Department of Biophysics, Lobachevsky National Research State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Vladimir A Vodeneev
- Department of Biophysics, Lobachevsky National Research State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia.
| |
Collapse
|
9
|
Chen G, Wang J, He G, Li S, Li X, Tao X, Liang S, Deng F, Zeng F, Chen ZH, Xu S. Physiological and transcriptomic evidence of antioxidative system and ion transport in chromium detoxification in germinating seedlings of soybean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121047. [PMID: 36646408 DOI: 10.1016/j.envpol.2023.121047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/13/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Chromium (Cr) toxicity impairs the productivity of crops and is a major threat to food security worldwide. However, the effect of Cr toxicity on seed germination and transcriptome of germinating seedlings of soybean crop has not been fully explored. In this study, two Cr-tolerant lines (J82, S125) and two Cr-sensitive ones (LD1, RL) were screened out of twenty-one soybean (Glycine max L.) genotypes based on seed germination rate, seed germinative energy, seed germination index, and growth of germinating seedlings under 50 mg L-1 Cr treatment. We found that Cr stress inhibits the growth of soybean seed germinating seedlings due to the Cr-induced overaccumulation of reactive oxygen species (ROS). Significantly different levels of element contents, antioxidant enzyme activities, malondialdehyde content were observed in the four soybean genotypes with contrasting Cr tolerance. Further, a total of 13,777 differentially expressed genes (DEGs) were identified in transcriptomic sequencing and 1298 DEGs in six gene modules were found highly correlated with the physiological traits by weighted correlation network analysis (WGCNA) analysis. The DEGs encoding antioxidant enzymes, transcription factors, and ion transporters are proposed to confer Cr tolerance in soybean germinating seedlings by reducing the uptake and translocation of Cr, decreasing the level of ROS, and keeping the osmotic balance in soybean germinating seedings. In conclusion, our study provided a molecular regulation network on soybean Cr tolerance at seed germinating stage and identified candidate genes for molecular breeding of low Cr accumulation soybean cultivars.
Collapse
Affiliation(s)
- Guang Chen
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jian Wang
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Guoxin He
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Sujuan Li
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xuetong Li
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoyuan Tao
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shuang Liang
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Shengchun Xu
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
10
|
Zhou H, Hu Z, Luo Y, Feng C, Long Y. Multiple ALMT subunits combine to form functional anion channels: A case study for rice ALMT7. FRONTIERS IN PLANT SCIENCE 2022; 13:1012578. [PMID: 36452104 PMCID: PMC9702572 DOI: 10.3389/fpls.2022.1012578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/03/2022] [Indexed: 06/17/2023]
Abstract
The Aluminum Activated Malate Transporter (ALMT) family members are anion channels that play important roles in organic acid transport, stress resistance, growth, development, fertilization and GABA responses. The rice malate permeable OsALMT7 influences panicle development and grain yield. A truncated OsALMT7 mutant, panicle apical abortion1 (paab1) lacking at least 2 transmembrane helices, mediates reduced malate efflux resulting in yield reducing. Here, we further investigated the contribution of OsALMT7 transmembrane helices to channel activity, using heterologous expression in Xenopus laevis oocytes. We further found that OsALMT7 formed as a homomer by co-expressing OsALMT7 and paab1 proteins in oocytes and detecting the physical interaction between two OsALMT7, and between OsALMT7 and paab1 mutant protein. Further study proved that not just OsALMT7, mutants of TaALMT1 inhibit wild-type TaALMT1 channel, indicating that ALMTs might perform channel function as homomers. Our discovery brings a light for ion channel structure and homomultimer regulation understanding for ALMT anion channels and potential for crop grain yield and stress response improvement in the context of the essential role of ALMTs in these plant processes.
Collapse
Affiliation(s)
| | | | | | | | - Yu Long
- *Correspondence: Yu Long, ; Cuizhu Feng,
| |
Collapse
|
11
|
Mostofa MG, Rahman MM, Ghosh TK, Kabir AH, Abdelrahman M, Rahman Khan MA, Mochida K, Tran LSP. Potassium in plant physiological adaptation to abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:279-289. [PMID: 35932652 DOI: 10.1016/j.plaphy.2022.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 05/02/2023]
Abstract
Potassium (K) is an integral part of plant nutrition, playing essential roles in plant growth and development. Despite its abundance in soils, the limitedly available form of K ion (K+) for plant uptake is a critical factor for agricultural production. Plants have evolved complex transport systems to maintain appropriate K+ levels in tissues under changing environmental conditions. Adequate stimulation and coordinated actions of multiple K+-channels and K+-transporters are required for nutrient homeostasis, reproductive growth, cellular signaling and stress adaptation responses in plants. Various contemporary studies revealed that K+-homeostasis plays a substantial role in plant responses and tolerance to abiotic stresses. The beneficial effects of K+ in plant responses to abiotic stresses include its roles in physiological and biochemical mechanisms involved in photosynthesis, osmoprotection, stomatal regulation, water-nutrient absorption, nutrient translocation and enzyme activation. Over the last decade, we have seen considerable breakthroughs in K research, owing to the advances in omics technologies. In this aspect, omics investigations (e.g., transcriptomics, metabolomics, and proteomics) in systems biology manner have broadened our understanding of how K+ signals are perceived, conveyed, and integrated for improving plant physiological resilience to abiotic stresses. Here, we update on how K+-uptake and K+-distribution are regulated under various types of abiotic stress. We discuss the effects of K+ on several physiological functions and the interaction of K+ with other nutrients to improve plant potential against abiotic stress-induced adverse consequences. Understanding of how K+ orchestrates physiological mechanisms and contributes to abiotic stress tolerance in plants is essential for practicing sustainable agriculture amidst the climate crisis in global agriculture.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.
| | - Md Mezanur Rahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Totan Kumar Ghosh
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | | | | | - Md Arifur Rahman Khan
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan; Kihara Institute for Biological Research, Yokohama City University, Yokohama 230-0045, Japan; School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam.
| |
Collapse
|
12
|
BnKAT2 Positively Regulates the Main Inflorescence Length and Silique Number in Brassica napus by Regulating the Auxin and Cytokinin Signaling Pathways. PLANTS 2022; 11:plants11131679. [PMID: 35807631 PMCID: PMC9269334 DOI: 10.3390/plants11131679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
Brassica napus is the dominant oil crop cultivated in China for its high quality and high yield. The length of the main inflorescence and the number of siliques produced are important traits contributing to rapeseed yield. Therefore, studying genes related to main inflorescence and silique number is beneficial to increase rapeseed yield. Herein, we focused on the effects of BnKAT2 on the main inflorescence length and silique number in B. napus. We explored the mechanism of BnKAT2 increasing the effective length of main inflorescence and the number of siliques through bioinformatics analysis, transgenic technology, and transcriptome sequencing analysis. The full BnKAT2(BnaA01g09060D) sequence is 3674 bp, while its open reading frame is 2055 bp, and the encoded protein comprises 684 amino acids. BnKAT2 is predicted to possess two structural domains, namely KHA and CNMP-binding domains. The overexpression of BnKAT2 effectively increased the length of the main inflorescence and the number of siliques in B. napus, as well as in transgenic Arabidopsis thaliana. The type-A Arabidopsis response regulator (A-ARR), negative regulators of the cytokinin, are downregulated in the BnKAT2-overexpressing lines. The Aux/IAA, key genes in auxin signaling pathways, are downregulated in the BnKAT2-overexpressing lines. These results indicate that BnKAT2 might regulate the effective length of the main inflorescence and the number of siliques through the auxin and cytokinin signaling pathways. Our study provides a new potential function gene responsible for improvement of main inflorescence length and silique number, as well as a candidate gene for developing markers used in MAS (marker-assisted selection) breeding to improve rapeseed yield.
Collapse
|
13
|
Dawson J, Pandey S, Yu Q, Schaub P, Wüst F, Moradi AB, Dovzhenko O, Palme K, Welsch R. Determination of protoplast growth properties using quantitative single-cell tracking analysis. PLANT METHODS 2022; 18:64. [PMID: 35585602 PMCID: PMC9118701 DOI: 10.1186/s13007-022-00895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Although quantitative single-cell analysis is frequently applied in animal systems, e.g. to identify novel drugs, similar applications on plant single cells are largely missing. We have exploited the applicability of high-throughput microscopic image analysis on plant single cells using tobacco leaf protoplasts, cell-wall free single cells isolated by lytic digestion. Protoplasts regenerate their cell wall within several days after isolation and have the potential to expand and proliferate, generating microcalli and finally whole plants after the application of suitable regeneration conditions. RESULTS High-throughput automated microscopy coupled with the development of image processing pipelines allowed to quantify various developmental properties of thousands of protoplasts during the initial days following cultivation by immobilization in multi-well-plates. The focus on early protoplast responses allowed to study cell expansion prior to the initiation of proliferation and without the effects of shape-compromising cell walls. We compared growth parameters of wild-type tobacco cells with cells expressing the antiapoptotic protein Bcl2-associated athanogene 4 from Arabidopsis (AtBAG4). CONCLUSIONS AtBAG4-expressing protoplasts showed a higher proportion of cells responding with positive area increases than the wild type and showed increased growth rates as well as increased proliferation rates upon continued cultivation. These features are associated with reported observations on a BAG4-mediated increased resilience to various stress responses and improved cellular survival rates following transformation approaches. Moreover, our single-cell expansion results suggest a BAG4-mediated, cell-independent increase of potassium channel abundance which was hitherto reported for guard cells only. The possibility to explain plant phenotypes with single-cell properties, extracted with the single-cell processing and analysis pipeline developed, allows to envision novel biotechnological screening strategies able to determine improved plant properties via single-cell analysis.
Collapse
Affiliation(s)
- Jonathan Dawson
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Str. 2, 18059, Rostock, Germany
- Augusta University, 1201 Goss Ln, Augusta, GA, 30912, USA
| | - Saurabh Pandey
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Qiuju Yu
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- ScreenSYS GmbH, Engesserstr. 4, 79108, Freiburg, Germany
| | - Patrick Schaub
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- ScreenSYS GmbH, Engesserstr. 4, 79108, Freiburg, Germany
| | - Florian Wüst
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- ScreenSYS GmbH, Engesserstr. 4, 79108, Freiburg, Germany
| | - Amir Bahram Moradi
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Oleksandr Dovzhenko
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- ScreenSYS GmbH, Engesserstr. 4, 79108, Freiburg, Germany
| | - Klaus Palme
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- ScreenSYS GmbH, Engesserstr. 4, 79108, Freiburg, Germany
- BIOSS Center for Biological Signaling Studies, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Ralf Welsch
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.
- ScreenSYS GmbH, Engesserstr. 4, 79108, Freiburg, Germany.
| |
Collapse
|
14
|
Nieves-Cordones M, Azeem F, Long Y, Boeglin M, Duby G, Mouline K, Hosy E, Vavasseur A, Chérel I, Simonneau T, Gaymard F, Leung J, Gaillard I, Thibaud JB, Véry AA, Boudaoud A, Sentenac H. Non-autonomous stomatal control by pavement cell turgor via the K+ channel subunit AtKC1. THE PLANT CELL 2022; 34:2019-2037. [PMID: 35157082 PMCID: PMC9048897 DOI: 10.1093/plcell/koac038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 01/28/2022] [Indexed: 05/27/2023]
Abstract
Stomata optimize land plants' photosynthetic requirements and limit water vapor loss. So far, all of the molecular and electrical components identified as regulating stomatal aperture are produced, and operate, directly within the guard cells. However, a completely autonomous function of guard cells is inconsistent with anatomical and biophysical observations hinting at mechanical contributions of epidermal origins. Here, potassium (K+) assays, membrane potential measurements, microindentation, and plasmolysis experiments provide evidence that disruption of the Arabidopsis thaliana K+ channel subunit gene AtKC1 reduces pavement cell turgor, due to decreased K+ accumulation, without affecting guard cell turgor. This results in an impaired back pressure of pavement cells onto guard cells, leading to larger stomatal apertures. Poorly rectifying membrane conductances to K+ were consistently observed in pavement cells. This plasmalemma property is likely to play an essential role in K+ shuttling within the epidermis. Functional complementation reveals that restoration of the wild-type stomatal functioning requires the expression of the transgenic AtKC1 at least in the pavement cells and trichomes. Altogether, the data suggest that AtKC1 activity contributes to the building of the back pressure that pavement cells exert onto guard cells by tuning K+ distribution throughout the leaf epidermis.
Collapse
Affiliation(s)
| | | | | | - Martin Boeglin
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Geoffrey Duby
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Karine Mouline
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | | | - Alain Vavasseur
- CEA Cadarache DSV DEVM LEMS UMR 163, CNRS/CEA, F-13108 St Paul Lez Durance, France
| | - Isabelle Chérel
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Thierry Simonneau
- INRA Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, Place Viala, 2, F-34060 Montpellier Cedex 1, France
| | - Frédéric Gaymard
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Jeffrey Leung
- Université Paris-Saclay, INRAE, AgroParisTech, CNRS, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Isabelle Gaillard
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Jean-Baptiste Thibaud
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
- Institut des biomolécules Max Mousseron (UMR 5247 CNRS-UM-ENSCM) Campus CNRS, 1919 route de Mende, F-34293 Montpellier Cedex 05, France
| | | | | | | |
Collapse
|
15
|
Li Y, Zhang X, Zhang Y, Ren H. Controlling the Gate: The Functions of the Cytoskeleton in Stomatal Movement. FRONTIERS IN PLANT SCIENCE 2022; 13:849729. [PMID: 35283892 PMCID: PMC8905143 DOI: 10.3389/fpls.2022.849729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/26/2022] [Indexed: 05/03/2023]
Abstract
Stomata are specialized epidermal structures composed of two guard cells and are involved in gas and water exchange between plants and the environment and pathogen entry into the plant interior. Stomatal movement is a response to many internal and external stimuli to increase adaptability to environmental change. The cytoskeleton, including actin filaments and microtubules, is highly dynamic in guard cells during stomatal movement, and the destruction of the cytoskeleton interferes with stomatal movement. In this review, we discuss recent progress on the organization and dynamics of actin filaments and microtubule network in guard cells, and we pay special attention to cytoskeletal-associated protein-mediated cytoskeletal rearrangements during stomatal movement. We also discuss the potential mechanisms of stomatal movement in relation to the cytoskeleton and attempt to provide a foundation for further research in this field.
Collapse
Affiliation(s)
- Yihao Li
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Xin Zhang
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- *Correspondence: Yi Zhang,
| | - Haiyun Ren
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- Haiyun Ren,
| |
Collapse
|
16
|
Kashtoh H, Baek KH. Structural and Functional Insights into the Role of Guard Cell Ion Channels in Abiotic Stress-Induced Stomatal Closure. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122774. [PMID: 34961246 PMCID: PMC8707303 DOI: 10.3390/plants10122774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
A stomatal pore is formed by a pair of specialized guard cells and serves as a major gateway for water transpiration and atmospheric CO2 influx for photosynthesis in plants. These pores must be tightly controlled, as inadequate CO2 intake and excessive water loss are devastating for plants. When the plants are exposed to extreme weather conditions such as high CO2 levels, O3, low air humidity, and drought, the turgor pressure of the guard cells exhibits an appropriate response against these stresses, which leads to stomatal closure. This phenomenon involves a complex network of ion channels and their regulation. It is well-established that the turgor pressure of guard cells is regulated by ions transportation across the membrane, such as anions and potassium ions. In this review, the guard cell ion channels are discussed, highlighting the structure and functions of key ion channels; the SLAC1 anion channel and KAT1 potassium channel, and their regulatory components, emphasizing their significance in guard cell response to various stimuli.
Collapse
|
17
|
Lefoulon C. The bare necessities of plant K+ channel regulation. PLANT PHYSIOLOGY 2021; 187:2092-2109. [PMID: 34618033 PMCID: PMC8644596 DOI: 10.1093/plphys/kiab266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 05/29/2023]
Abstract
Potassium (K+) channels serve a wide range of functions in plants from mineral nutrition and osmotic balance to turgor generation for cell expansion and guard cell aperture control. Plant K+ channels are members of the superfamily of voltage-dependent K+ channels, or Kv channels, that include the Shaker channels first identified in fruit flies (Drosophila melanogaster). Kv channels have been studied in depth over the past half century and are the best-known of the voltage-dependent channels in plants. Like the Kv channels of animals, the plant Kv channels are regulated over timescales of milliseconds by conformational mechanisms that are commonly referred to as gating. Many aspects of gating are now well established, but these channels still hold some secrets, especially when it comes to the control of gating. How this control is achieved is especially important, as it holds substantial prospects for solutions to plant breeding with improved growth and water use efficiencies. Resolution of the structure for the KAT1 K+ channel, the first channel from plants to be crystallized, shows that many previous assumptions about how the channels function need now to be revisited. Here, I strip the plant Kv channels bare to understand how they work, how they are gated by voltage and, in some cases, by K+ itself, and how the gating of these channels can be regulated by the binding with other protein partners. Each of these features of plant Kv channels has important implications for plant physiology.
Collapse
Affiliation(s)
- Cécile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, Scotland
| |
Collapse
|
18
|
Monder H, Maillard M, Chérel I, Zimmermann SD, Paris N, Cuéllar T, Gaillard I. Adjustment of K + Fluxes and Grapevine Defense in the Face of Climate Change. Int J Mol Sci 2021; 22:10398. [PMID: 34638737 PMCID: PMC8508874 DOI: 10.3390/ijms221910398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
Grapevine is one of the most economically important fruit crops due to the high value of its fruit and its importance in winemaking. The current decrease in grape berry quality and production can be seen as the consequence of various abiotic constraints imposed by climate changes. Specifically, produced wines have become too sweet, with a stronger impression of alcohol and fewer aromatic qualities. Potassium is known to play a major role in grapevine growth, as well as grape composition and wine quality. Importantly, potassium ions (K+) are involved in the initiation and maintenance of the berry loading process during ripening. Moreover, K+ has also been implicated in various defense mechanisms against abiotic stress. The first part of this review discusses the main negative consequences of the current climate, how they disturb the quality of grape berries at harvest and thus ultimately compromise the potential to obtain a great wine. In the second part, the essential electrical and osmotic functions of K+, which are intimately dependent on K+ transport systems, membrane energization, and cell K+ homeostasis, are presented. This knowledge will help to select crops that are better adapted to adverse environmental conditions.
Collapse
Affiliation(s)
- Houssein Monder
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Morgan Maillard
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Isabelle Chérel
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Sabine Dagmar Zimmermann
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Nadine Paris
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Teresa Cuéllar
- CIRAD, UMR AGAP, Univ Montpellier, INRAE, Institut Agro, F-34398 Montpellier, France;
| | - Isabelle Gaillard
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| |
Collapse
|
19
|
Ronzier E, Corratgé-Faillie C, Sanchez F, Brière C, Xiong TC. Ca 2+-Dependent Protein Kinase 6 Enhances KAT2 Shaker Channel Activity in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22041596. [PMID: 33562460 PMCID: PMC7914964 DOI: 10.3390/ijms22041596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022] Open
Abstract
Post-translational regulations of Shaker-like voltage-gated K+ channels were reported to be essential for rapid responses to environmental stresses in plants. In particular, it has been shown that calcium-dependent protein kinases (CPKs) regulate Shaker channels in plants. Here, the focus was on KAT2, a Shaker channel cloned in the model plant Arabidopsis thaliana, where is it expressed namely in the vascular tissues of leaves. After co-expression of KAT2 with AtCPK6 in Xenopuslaevis oocytes, voltage-clamp recordings demonstrated that AtCPK6 stimulates the activity of KAT2 in a calcium-dependent manner. A physical interaction between these two proteins has also been shown by Förster resonance energy transfer by fluorescence lifetime imaging (FRET-FLIM). Peptide array assays support that AtCPK6 phosphorylates KAT2 at several positions, also in a calcium-dependent manner. Finally, K+ fluorescence imaging in planta suggests that K+ distribution is impaired in kat2 knock-out mutant leaves. We propose that the AtCPK6/KAT2 couple plays a role in the homeostasis of K+ distribution in leaves.
Collapse
Affiliation(s)
- Elsa Ronzier
- BPMP, University Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France; (E.R.); (C.C.-F.); (F.S.)
| | - Claire Corratgé-Faillie
- BPMP, University Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France; (E.R.); (C.C.-F.); (F.S.)
| | - Frédéric Sanchez
- BPMP, University Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France; (E.R.); (C.C.-F.); (F.S.)
- BIOM 7232, Avenue Pierre Fabre, 66650 Banyuls-Sur-Mer, France
| | - Christian Brière
- Laboratoire de Recherche en Sciences Végétales, UMR CNRS/UPS 5546, 24 chemin de Borde Rouge, 31326 Castanet-Tolosan, France;
| | - Tou Cheu Xiong
- BPMP, University Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France; (E.R.); (C.C.-F.); (F.S.)
- Correspondence:
| |
Collapse
|
20
|
Jarratt-Barnham E, Wang L, Ning Y, Davies JM. The Complex Story of Plant Cyclic Nucleotide-Gated Channels. Int J Mol Sci 2021; 22:ijms22020874. [PMID: 33467208 PMCID: PMC7830781 DOI: 10.3390/ijms22020874] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Plant cyclic nucleotide-gated channels (CNGCs) are tetrameric cation channels which may be activated by the cyclic nucleotides (cNMPs) adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP). The genome of Arabidopsis thaliana encodes 20 CNGC subunits associated with aspects of development, stress response and immunity. Recently, it has been demonstrated that CNGC subunits form heterotetrameric complexes which behave differently from the homotetramers produced by their constituent subunits. These findings have widespread implications for future signalling research and may help explain how specificity can be achieved by CNGCs that are known to act in disparate pathways. Regulation of complex formation may involve cyclic nucleotide-gated channel-like proteins.
Collapse
|
21
|
Dreyer I, Sussmilch FC, Fukushima K, Riadi G, Becker D, Schultz J, Hedrich R. How to Grow a Tree: Plant Voltage-Dependent Cation Channels in the Spotlight of Evolution. TRENDS IN PLANT SCIENCE 2021; 26:41-52. [PMID: 32868178 DOI: 10.1016/j.tplants.2020.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Phylogenetic analysis can be a powerful tool for generating hypotheses regarding the evolution of physiological processes. Here, we provide an updated view of the evolution of the main cation channels in plant electrical signalling: the Shaker family of voltage-gated potassium channels and the two-pore cation (K+) channel (TPC1) family. Strikingly, the TPC1 family followed the same conservative evolutionary path as one particular subfamily of Shaker channels (Kout) and remained highly invariant after terrestrialisation, suggesting that electrical signalling was, and remains, key to survival on land. We note that phylogenetic analyses can have pitfalls, which may lead to erroneous conclusions. To avoid these in the future, we suggest guidelines for analyses of ion channel evolution in plants.
Collapse
Affiliation(s)
- Ingo Dreyer
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 2 Norte 685, Talca, Chile.
| | - Frances C Sussmilch
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany; School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Kenji Fukushima
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Gonzalo Riadi
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Jörg Schultz
- Department of Bioinformatics, Biozentrum, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany.
| |
Collapse
|
22
|
Iosip AL, Böhm J, Scherzer S, Al-Rasheid KAS, Dreyer I, Schultz J, Becker D, Kreuzer I, Hedrich R. The Venus flytrap trigger hair-specific potassium channel KDM1 can reestablish the K+ gradient required for hapto-electric signaling. PLoS Biol 2020; 18:e3000964. [PMID: 33296375 PMCID: PMC7725304 DOI: 10.1371/journal.pbio.3000964] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022] Open
Abstract
The carnivorous plant Dionaea muscipula harbors multicellular trigger hairs designed to sense mechanical stimuli upon contact with animal prey. At the base of the trigger hair, mechanosensation is transduced into an all-or-nothing action potential (AP) that spreads all over the trap, ultimately leading to trap closure and prey capture. To reveal the molecular basis for the unique functional repertoire of this mechanoresponsive plant structure, we determined the transcriptome of D. muscipula’s trigger hair. Among the genes that were found to be highly specific to the trigger hair, the Shaker-type channel KDM1 was electrophysiologically characterized as a hyperpolarization- and acid-activated K+-selective channel, thus allowing the reuptake of K+ ions into the trigger hair’s sensory cells during the hyperpolarization phase of the AP. During trap development, the increased electrical excitability of the trigger hair is associated with the transcriptional induction of KDM1. Conversely, when KDM1 is blocked by Cs+ in adult traps, the initiation of APs in response to trigger hair deflection is reduced, and trap closure is suppressed. KDM1 thus plays a dominant role in K+ homeostasis in the context of AP and turgor formation underlying the mechanosensation of trigger hair cells and thus D. muscipula’s hapto-electric signaling. Transcriptomic and electrophysiological studies of the carnivorous Venus flytrap reveal that potassium uptake via a trigger hair-specific potassium channel builds the basis for mechanosensation of likely prey and generation of an action potential that triggers closure of the trap.
Collapse
Affiliation(s)
- Anda L. Iosip
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| | - Jennifer Böhm
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Sönke Scherzer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | | | - Ingo Dreyer
- Center of Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile
| | - Jörg Schultz
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Ines Kreuzer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
- * E-mail: (IK); (RH)
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
- * E-mail: (IK); (RH)
| |
Collapse
|
23
|
Jin R, Zhang A, Sun J, Chen X, Liu M, Zhao P, Jiang W, Tang Z. Identification of Shaker K + channel family members in sweetpotato and functional exploration of IbAKT1. Gene 2020; 768:145311. [PMID: 33220344 DOI: 10.1016/j.gene.2020.145311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 01/27/2023]
Abstract
The Shaker K+ channel family plays a vital role in potassium absorption and stress resistance in plants. However little information on the genes family is available about sweetpotato. In the present study, eleven sweetpotato Shaker K+ channel genes were identified and classified into five groups based on phylogenetic relationships, conserved motifs, and gene structure analyses. Based on synteny analysis, four duplicated gene pairs were identified, derived from both ancient and recent duplication, whereas only one resulted from tandem duplication events. Different expression pattern of Shaker K+ channel genes in roots of Xu32 and NZ1 resulted in different K+ deficiency tolerances, suggesting there is different mechanism of K+ uptake in sweetpotato cultivars with different K+-tolerance levels. Quantitative real-time PCR analysis revealed that the shaker K+ channel genes responded to drought and high salt stresses. Higher K+ influx under normal condition and lower K+ efflux under K+ deficiency stress were observed in IbAKT1 overexpressing transgenic roots than in adventitious roots, which indicated that IbAKT1 may play an important role in the regulation of K+ deficiency tolerance in sweetpotato. This is the first genome-wide analysis of Shaker K+ channel genes and the first functional analysis of IbAKT1 in sweetpotato. Our results provide valuable information on the gene structure, evolution, expression and functions of the Shaker K+ channel gene family in sweetpotato.
Collapse
Affiliation(s)
- Rong Jin
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Jiangsu, China; Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Aijun Zhang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Jiangsu, China; Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Jian Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Xiaoguang Chen
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Jiangsu, China; Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Ming Liu
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Jiangsu, China; Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Peng Zhao
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Jiangsu, China; Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Wei Jiang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Jiangsu, China; Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Zhonghou Tang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Jiangsu, China; Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China.
| |
Collapse
|
24
|
Somasundaram S, Véry AA, Vinekar RS, Ishikawa T, Kumari K, Pulipati S, Kumaresan K, Corratgé-Faillie C, Sowdhamini R, Parida A, Shabala L, Shabala S, Venkataraman G. Homology Modeling Identifies Crucial Amino-Acid Residues That Confer Higher Na+ Transport Capacity of OcHKT1;5 from Oryza coarctata Roxb. PLANT & CELL PHYSIOLOGY 2020; 61:1321-1334. [PMID: 32379873 DOI: 10.1093/pcp/pcaa061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 04/28/2020] [Indexed: 05/20/2023]
Abstract
HKT1;5 loci/alleles are important determinants of crop salinity tolerance. HKT1;5s encode plasmalemma-localized Na+ transporters, which move xylem Na+ into xylem parenchyma cells, reducing shoot Na+ accumulation. Allelic variation in rice OsHKT1;5 sequence in specific landraces (Nona Bokra OsHKT1;5-NB/Nipponbare OsHKT1;5-Ni) correlates with variation in salt tolerance. Oryza coarctata, a halophytic wild rice, grows in fluctuating salinity at the seawater-estuarine interface in Indian and Bangladeshi coastal regions. The distinct transport characteristics of the shoots and roots expressing the O. coarctata OcHKT1;5 transporter are reported vis-à-vis OsHKT1;5-Ni. Yeast sodium extrusion-deficient cells expressing OcHKT1;5 are sensitive to increasing Na+ (10-100 mM). Electrophysiological measurements in Xenopus oocytes expressing O. coarctata or rice HKT1;5 transporters indicate that OcHKT1;5, like OsHKT1;5-Ni, is a Na+-selective transporter, but displays 16-fold lower affinity for Na+ and 3.5-fold higher maximal conductance than OsHKT1;5-Ni. For Na+ concentrations >10 mM, OcHKT1;5 conductance is higher than that of OsHKT1;5-Ni, indicating the potential of OcHKT1;5 for increasing domesticated rice salt tolerance. Homology modeling/simulation suggests that four key amino-acid changes in OcHKT1;5 (in loops on the extracellular side; E239K, G207R, G214R, L363V) account for its lower affinity and higher Na+ conductance vis-à-vis OsHKT1;5-Ni. Of these, E239K in OcHKT1;5 confers lower affinity for Na+ transport, as evidenced by Na+ transport assays of reciprocal site-directed mutants for both transporters (OcHKT1;5-K239E, OsHKT1;5-Ni-E270K) in Xenopus oocytes. Both transporters have likely analogous roles in xylem sap desalinization, and differences in xylem sap Na+ concentrations in both species are attributed to differences in Na+ transport affinity/conductance between the transporters.
Collapse
Affiliation(s)
- Suji Somasundaram
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India
| | - Anne-Aliénor Véry
- Biochimie & Physiologie Moléculaire des Plantes, UMR Univ. Montpellier, CNRS, INRAE, SupAgro, 34060 Montpellier Cedex 2, France
| | - Rithvik S Vinekar
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Bangalore 560 065, India
| | - Tetsuya Ishikawa
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, TAS 7001, Australia
| | - Kumkum Kumari
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India
- Biochimie & Physiologie Moléculaire des Plantes, UMR Univ. Montpellier, CNRS, INRAE, SupAgro, 34060 Montpellier Cedex 2, France
| | - Shalini Pulipati
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India
| | - Kavitha Kumaresan
- Krishi Vigyan Kendra, Thurupathisaram, Kanyakumari District, Tamil Nadu 629901, India
| | - Claire Corratgé-Faillie
- Biochimie & Physiologie Moléculaire des Plantes, UMR Univ. Montpellier, CNRS, INRAE, SupAgro, 34060 Montpellier Cedex 2, France
| | - R Sowdhamini
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Bangalore 560 065, India
| | - Ajay Parida
- Institute of Life Sciences (ILS), NALCO Square, Bhubaneswar, Odisha 751023, India
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, TAS 7001, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, TAS 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India
| |
Collapse
|
25
|
Srivastava AK, Shankar A, Nalini Chandran AK, Sharma M, Jung KH, Suprasanna P, Pandey GK. Emerging concepts of potassium homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:608-619. [PMID: 31624829 DOI: 10.1093/jxb/erz458] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Potassium (K+) is an essential cation in all organisms that influences crop production and ecosystem stability. Although most soils are rich in K minerals, relatively little K+ is present in forms that are available to plants. Moreover, leaching and run-off from the upper soil layers contribute to K+ deficiencies in agricultural soils. Hence, the demand for K fertilizer is increasing worldwide. K+ regulates multiple processes in cells and organs, with K+ deficiency resulting in decreased plant growth and productivity. Here, we discuss the complexity of the reactive oxygen species-calcium-hormone signalling network that is responsible for the sensing of K+ deficiency in plants, together with genetic approaches using K+ transporters that have been used to increase K+ use efficiency (KUE) in plants, particularly under environmental stress conditions such as salinity and heavy metal contamination. Publicly available rice transcriptome data are used to demonstrate the two-way relationship between K+ and nitrogen nutrition, highlighting how each nutrient can regulate the uptake and root to shoot translocation of the other. Future research directions are discussed in terms of this relationship, as well as prospects for molecular approaches for the generation of improved varieties and the implementation of new agronomic practices. An increased knowledge of the systems that sense and take up K+, and their regulation, will not only improve current understanding of plant K+ homeostasis but also facilitate new research and the implementation of measures to improve plant KUE for sustainable food production.
Collapse
Affiliation(s)
- Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Alka Shankar
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Anil Kumar Nalini Chandran
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| | - Manisha Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Girdhar K Pandey
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| |
Collapse
|
26
|
Lim CW, Kim SH, Choi HW, Luan S, Lee SC. The Shaker Type Potassium Channel, GORK, Regulates Abscisic Acid Signaling in Arabidopsis. THE PLANT PATHOLOGY JOURNAL 2019; 35:684-691. [PMID: 31832048 PMCID: PMC6901251 DOI: 10.5423/ppj.oa.07.2019.0199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 05/25/2023]
Abstract
Evolution of adaptive mechanisms to abiotic stress is essential for plant growth and development. Plants adapt to stress conditions by activating the abscisic acid (ABA) signaling pathway. It has been suggested that the ABA receptor, clade A protein phosphatase, SnRK2 type kinase, and SLAC1 anion channel are important components of the ABA signaling pathway. In this study, we report that the shaker type potassium (K+) channel, GORK, modulates plant responses to ABA and abiotic stresses. Our results indicate that the full length of PP2CA is needed to interact with the GORK C-terminal region. We identified a loss of function allele in gork that displayed ABA-hyposensitive phenotype. gork and pp2ca mutants showed opposite responses to ABA in seed germination and seedling growth. Additionally, gork mutant was tolerant to the NaCl and mannitol treatments, whereas pp2ca mutant was sensitive to the NaCl and mannitol treatments. Thus, our results indicate that GORK enhances the sensitivity to ABA and negatively regulates the mechanisms involved in high salinity and osmotic stresses via PP2CA-mediated signals.
Collapse
Affiliation(s)
- Chae Woo Lim
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul 06974, Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK 21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Hyong Woo Choi
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Sung Chul Lee
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
27
|
Villette J, Cuéllar T, Zimmermann SD, Verdeil JL, Gaillard I. Unique features of the grapevine VvK5.1 channel support novel functions for outward K+ channels in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6181-6193. [PMID: 31327013 PMCID: PMC6859719 DOI: 10.1093/jxb/erz341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 05/04/2023]
Abstract
Grapevine (Vitis vinifera L.), one of the most important fruit crops, is a model plant for studying the physiology of fleshy fruits. Here, we report on the characterization of a new grapevine Shaker-type K+ channel, VvK5.1. Phylogenetic analysis revealed that VvK5.1 belongs to the SKOR-like subfamily. Our functional characterization of VvK5.1 in Xenopus oocytes confirms that it is an outwardly rectifying K+ channel that displays strict K+ selectivity. Gene expression level analyses by real-time quantitative PCR showed that VvK5.1 expression was detected in berries, roots, and flowers. In contrast to its Arabidopsis thaliana counterpart that is involved in K+ secretion in the root pericycle, allowing root to shoot K+ translocation, VvK5.1 expression territory is greatly enlarged. Using in situ hybridization we showed that VvK5.1 is expressed in the phloem and perivascular cells of berries and in flower pistil. In the root, in addition to being expressed in the root pericycle like AtSKOR, a strong expression of VvK5.1 is detected in small cells facing the xylem that are involved in lateral root formation. This fine and selective expression pattern of VvK5.1 at the early stage of lateral root primordia supports a role for outward channels to switch on cell division initiation.
Collapse
Affiliation(s)
- Jérémy Villette
- BPMP, Université Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Teresa Cuéllar
- CIRAD, UMR AGAP, F-34398 Montpellier, France
- Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | | | - Jean-Luc Verdeil
- CIRAD, UMR AGAP, F-34398 Montpellier, France
- Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Isabelle Gaillard
- BPMP, Université Montpellier, CNRS, INRA, SupAgro, Montpellier, France
- Correspondence:
| |
Collapse
|
28
|
Locascio A, Marqués MC, García-Martínez G, Corratgé-Faillie C, Andrés-Colás N, Rubio L, Fernández JA, Véry AA, Mulet JM, Yenush L. BCL2-ASSOCIATED ATHANOGENE4 Regulates the KAT1 Potassium Channel and Controls Stomatal Movement. PLANT PHYSIOLOGY 2019; 181:1277-1294. [PMID: 31451552 PMCID: PMC6836829 DOI: 10.1104/pp.19.00224] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/05/2019] [Indexed: 05/18/2023]
Abstract
Potassium (K+) is a key monovalent cation necessary for multiple aspects of cell growth and survival. In plants, this cation also plays a key role in the control of stomatal movement. KAT1 and its homolog KAT2 are the main inward rectifying channels present in guard cells, mediating K+ influx into these cells, resulting in stomatal opening. To gain further insight into the regulation of these channels, we performed a split-ubiquitin protein-protein interaction screen searching for KAT1 interactors in Arabidopsis (Arabidopsis thaliana). We characterized one of these candidates, BCL2-ASSOCIATED ATHANOGENE4 (BAG4), in detail using biochemical and genetic approaches to confirm this interaction and its effect on KAT1 activity. We show that BAG4 improves KAT1-mediated K+ transport in two heterologous systems and provide evidence that in plants, BAG4 interacts with KAT1 and favors the arrival of KAT1 at the plasma membrane. Importantly, lines lacking or overexpressing the BAG4 gene show altered KAT1 plasma membrane accumulation and alterations in stomatal movement. Our data allowed us to identify a KAT1 regulator and define a potential target for the plant BAG family. The identification of physiologically relevant regulators of K+ channels will aid in the design of approaches that may impact drought tolerance and pathogen susceptibility.
Collapse
Affiliation(s)
- Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Maria Carmen Marqués
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Guillermo García-Martínez
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Claire Corratgé-Faillie
- Biochimie et Physiologie Moléculaire des Plantes, Université Montpellier, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique (INRA), SupAgro Montpellier, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| | - Nuria Andrés-Colás
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Lourdes Rubio
- Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos S/N, 29010 Málaga, Spain
| | - José Antonio Fernández
- Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos S/N, 29010 Málaga, Spain
| | - Anne-Aliénor Véry
- Biochimie et Physiologie Moléculaire des Plantes, Université Montpellier, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique (INRA), SupAgro Montpellier, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| | - José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| |
Collapse
|
29
|
Locascio A, Andrés-Colás N, Mulet JM, Yenush L. Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters. Int J Mol Sci 2019; 20:E2133. [PMID: 31052176 PMCID: PMC6539216 DOI: 10.3390/ijms20092133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Sodium and potassium are two alkali cations abundant in the biosphere. Potassium is essential for plants and its concentration must be maintained at approximately 150 mM in the plant cell cytoplasm including under circumstances where its concentration is much lower in soil. On the other hand, sodium must be extruded from the plant or accumulated either in the vacuole or in specific plant structures. Maintaining a high intracellular K+/Na+ ratio under adverse environmental conditions or in the presence of salt is essential to maintain cellular homeostasis and to avoid toxicity. The baker's yeast, Saccharomyces cerevisiae, has been used to identify and characterize participants in potassium and sodium homeostasis in plants for many years. Its utility resides in the fact that the electric gradient across the membrane and the vacuoles is similar to plants. Most plant proteins can be expressed in yeast and are functional in this unicellular model system, which allows for productive structure-function studies for ion transporting proteins. Moreover, yeast can also be used as a high-throughput platform for the identification of genes that confer stress tolerance and for the study of protein-protein interactions. In this review, we summarize advances regarding potassium and sodium transport that have been discovered using the yeast model system, the state-of-the-art of the available techniques and the future directions and opportunities in this field.
Collapse
Affiliation(s)
- Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Nuria Andrés-Colás
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| |
Collapse
|
30
|
Ragel P, Raddatz N, Leidi EO, Quintero FJ, Pardo JM. Regulation of K + Nutrition in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:281. [PMID: 30949187 PMCID: PMC6435592 DOI: 10.3389/fpls.2019.00281] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/20/2019] [Indexed: 05/17/2023]
Abstract
Modern agriculture relies on mineral fertilization. Unlike other major macronutrients, potassium (K+) is not incorporated into organic matter but remains as soluble ion in the cell sap contributing up to 10% of the dry organic matter. Consequently, K+ constitutes a chief osmoticum to drive cellular expansion and organ movements, such as stomata aperture. Moreover, K+ transport is critical for the control of cytoplasmic and luminal pH in endosomes, regulation of membrane potential, and enzyme activity. Not surprisingly, plants have evolved a large ensemble of K+ transporters with defined functions in nutrient uptake by roots, storage in vacuoles, and ion translocation between tissues and organs. This review describes critical transport proteins governing K+ nutrition, their regulation, and coordinated activity, and summarizes our current understanding of signaling pathways activated by K+ starvation.
Collapse
Affiliation(s)
- Paula Ragel
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
- Centre for Organismal Studies, Universität Heidelberg, Heidelberg, Germany
| | - Natalia Raddatz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| | - Eduardo O. Leidi
- Instituto de Recursos Naturales y Agrobiologia de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
| | - Francisco J. Quintero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| | - José M. Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| |
Collapse
|
31
|
The Complex Fine-Tuning of K⁺ Fluxes in Plants in Relation to Osmotic and Ionic Abiotic Stresses. Int J Mol Sci 2019; 20:ijms20030715. [PMID: 30736441 PMCID: PMC6387338 DOI: 10.3390/ijms20030715] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
As the main cation in plant cells, potassium plays an essential role in adaptive responses, especially through its involvement in osmotic pressure and membrane potential adjustments. K+ homeostasis must, therefore, be finely controlled. As a result of different abiotic stresses, especially those resulting from global warming, K⁺ fluxes and plant distribution of this ion are disturbed. The hormone abscisic acid (ABA) is a key player in responses to these climate stresses. It triggers signaling cascades that ultimately lead to modulation of the activities of K⁺ channels and transporters. After a brief overview of transcriptional changes induced by abiotic stresses, this review deals with the post-translational molecular mechanisms in different plant organs, in Arabidopsis and species of agronomical interest, triggering changes in K⁺ uptake from the soil, K⁺ transport and accumulation throughout the plant, and stomatal regulation. These modifications involve phosphorylation/dephosphorylation mechanisms, modifications of targeting, and interactions with regulatory partner proteins. Interestingly, many signaling pathways are common to K⁺ and Cl-/NO3- counter-ion transport systems. These cross-talks are also addressed.
Collapse
|
32
|
Ragel P, Raddatz N, Leidi EO, Quintero FJ, Pardo JM. Regulation of K + Nutrition in Plants. FRONTIERS IN PLANT SCIENCE 2019. [PMID: 30949187 DOI: 10.3389/fpls.2019.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Modern agriculture relies on mineral fertilization. Unlike other major macronutrients, potassium (K+) is not incorporated into organic matter but remains as soluble ion in the cell sap contributing up to 10% of the dry organic matter. Consequently, K+ constitutes a chief osmoticum to drive cellular expansion and organ movements, such as stomata aperture. Moreover, K+ transport is critical for the control of cytoplasmic and luminal pH in endosomes, regulation of membrane potential, and enzyme activity. Not surprisingly, plants have evolved a large ensemble of K+ transporters with defined functions in nutrient uptake by roots, storage in vacuoles, and ion translocation between tissues and organs. This review describes critical transport proteins governing K+ nutrition, their regulation, and coordinated activity, and summarizes our current understanding of signaling pathways activated by K+ starvation.
Collapse
Affiliation(s)
- Paula Ragel
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
- Centre for Organismal Studies, Universität Heidelberg, Heidelberg, Germany
| | - Natalia Raddatz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| | - Eduardo O Leidi
- Instituto de Recursos Naturales y Agrobiologia de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
| | - Francisco J Quintero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| | - José M Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| |
Collapse
|
33
|
Gao YQ, Wu WH, Wang Y. The K + channel KZM2 is involved in stomatal movement by modulating inward K + currents in maize guard cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:662-675. [PMID: 28891257 DOI: 10.1111/tpj.13712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Stomata are the major gates in plant leaf that allow water and gas exchange, which is essential for plant transpiration and photosynthesis. Stomatal movement is mainly controlled by the ion channels and transporters in guard cells. In Arabidopsis, the inward Shaker K+ channels, such as KAT1 and KAT2, are responsible for stomatal opening. However, the characterization of inward K+ channels in maize guard cells is limited. In the present study, we identified two KAT1-like Shaker K+ channels, KZM2 and KZM3, which were highly expressed in maize guard cells. Subcellular analysis indicated that KZM2 and KZM3 can localize at the plasma membrane. Electrophysiological characterization in HEK293 cells revealed that both KZM2 and KZM3 were inward K+ (Kin ) channels, but showing distinct channel kinetics. When expressed in Xenopus oocytes, only KZM3, but not KZM2, can mediate inward K+ currents. However, KZM2 can interact with KZM3 forming heteromeric Kin channel. In oocytes, KZM2 inhibited KZM3 channel conductance and negatively shifted the voltage dependence of KZM3. The activation of KZM2-KZM3 heteromeric channel became slower than the KZM3 channel. Patch-clamping results showed that the inward K+ currents of maize guard cells were significantly increased in the KZM2 RNAi lines. In addition, the RNAi lines exhibited faster stomatal opening after light exposure. In conclusion, the presented results demonstrate that KZM2 functions as a negative regulator to modulate the Kin channels in maize guard cells. KZM2 and KZM3 may form heteromeric Kin channel and control stomatal opening in maize.
Collapse
Affiliation(s)
- Yong-Qiang Gao
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
34
|
Identification of functionally important microRNAs from rice inflorescence at heading stage of a qDTY4.1-QTL bearing Near Isogenic Line under drought conditions. PLoS One 2017; 12:e0186382. [PMID: 29045473 PMCID: PMC5647096 DOI: 10.1371/journal.pone.0186382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/30/2017] [Indexed: 12/13/2022] Open
Abstract
A cross between IR64 (high-yielding but drought-susceptible) and Aday Sel (drought-tolerant) rice cultivars yielded a stable line with enhanced grain yield under drought screening field trials at International Rice Research Institute. The major effect qDTY4.1 drought tolerance and yield QTL was detected in the IR77298-14-1-2-10 Backcrossed Inbred Line (BIL) and its IR87705-7-15-B Near Isogenic Line (NIL) with 93.9% genetic similarity to IR64. Although rice yield is extremely susceptible to water stress at reproductive stage, currently, there is only one report on the detection of drought-responsive microRNAs in inflorescence tissue of a Japonica rice line. In this study, more drought-responsive microRNAs were identified in the inflorescence tissues of IR64, IR77298-14-1-2-10 and IR87705-7-15-B via next-generation sequencing. Among the 32 families of inflorescence-specific non-conserved microRNAs that were identified, 22 families were up-regulated in IR87705-7-15-B. Overall 9 conserved and 34 non-conserved microRNA families were found as drought-responsive in rice inflorescence with 5 conserved and 30 non-conserved families induced in the IR87705-7-15-B. The observation of more drought-responsive non-conserved microRNAs may imply their prominence over conserved microRNAs in drought response mechanisms of rice inflorescence. Gene Ontology annotation analysis on the target genes of drought-responsive microRNAs identified in IR87705-7-15-B revealed over-representation of biological processes including development, signalling and response to stimulus. Particularly, four inflorescence-specific microRNAs viz. osa-miR5485, osa-miR5487, osa-miR5492 and osa-miR5517, and two non-inflorescence specific microRNAs viz. osa-miR169d and osa-miR169f.2 target genes that are involved in flower or embryonic development. Among them, osa-miR169d, osa-miR5492 and osa-miR5517 are related to flowering time control. It is also worth mentioning that osa-miR2118 and osa-miR2275, which are implicated in the biosynthesis of rice inflorescence-specific small interfering RNAs, were induced in IR87705-7-15-B but repressed in IR77298-14-1-2-10. Further, gene search within qDTY4.1 QTL region had identified multiple copies of NBS-LRR resistance genes (potential target of osa-miR2118), subtilisins and genes implicated in stomatal movement, ABA metabolism and cuticular wax biosynthesis.
Collapse
|
35
|
Chen ZH, Chen G, Dai F, Wang Y, Hills A, Ruan YL, Zhang G, Franks PJ, Nevo E, Blatt MR. Molecular Evolution of Grass Stomata. TRENDS IN PLANT SCIENCE 2017; 22:124-139. [PMID: 27776931 DOI: 10.1016/j.tplants.2016.09.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 05/18/2023]
Abstract
Grasses began to diversify in the late Cretaceous Period and now dominate more than one third of global land area, including three-quarters of agricultural land. We hypothesize that their success is likely attributed to the evolution of highly responsive stomata capable of maximizing productivity in rapidly changing environments. Grass stomata harness the active turgor control mechanisms present in stomata of more ancient plant lineages, maximizing several morphological and developmental features to ensure rapid responses to environmental inputs. The evolutionary development of grass stomata appears to have been a gradual progression. Therefore, understanding the complex structures, developmental events, regulatory networks, and combinations of ion transporters necessary to drive rapid stomatal movement may inform future efforts towards breeding new crop varieties.
Collapse
Affiliation(s)
- Zhong-Hua Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Guang Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fei Dai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Wang
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Guoping Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Peter J Franks
- Faculty of Agriculture and Environment, The University of Sydney, Sydney, NSW 2006, Australia
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
36
|
Tounsi S, Ben Amar S, Masmoudi K, Sentenac H, Brini F, Véry AA. Characterization of Two HKT1;4 Transporters from Triticum monococcum to Elucidate the Determinants of the Wheat Salt Tolerance Nax1 QTL. PLANT & CELL PHYSIOLOGY 2016; 57:2047-2057. [PMID: 27440547 DOI: 10.1093/pcp/pcw123] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/06/2016] [Indexed: 05/20/2023]
Abstract
TmHKT1;4-A1 and TmHKT1;4-A2 are two Na+ transporter genes that have been identified as associated with the salt tolerance Nax1 locus found in a durum wheat (Triticum turgidum L. subsp. durum) line issued from a cross with T. monococcum. In the present study, we were interested in getting clues on the molecular mechanisms underpinning this salt tolerance quantitative trait locus (QTL). By analyzing the phylogenetic relationships between wheat and T. monococcum HKT1;4-type genes, we found that durum and bread wheat genomes possess a close homolog of TmHKT1;4-A1, but no functional close homolog of TmHKT1;4-A2. Furthermore, performing real-time reverse transcription-PCR experiments, we showed that TmHKT1;4-A1 and TmHKT1;4-A2 are similarly expressed in the leaves but that TmHKT1;4-A2 is more strongly expressed in the roots, which would enable it to contribute more to the prevention of Na+ transfer to the shoots upon salt stress. We also functionally characterized the TmHKT1;4-A1 and TmHKT1;4-A2 transporters by expressing them in Xenopus oocytes. The two transporters displayed close functional properties (high Na+/K+ selectivity, low affinity for Na+, stimulation by external K+ of Na+ transport), but differed in some quantitative parameters: Na+ affinity was 3-fold lower and the maximal inward conductance was 3-fold higher in TmHKT1;4-A2 than in TmHKT1;4-A1. The conductance of TmHKT1;4-A2 at high Na+ concentration (>10 mM) was also shown to be higher than that of the two durum wheat HKT1;4-type transporters so far characterized. Altogether, these data support the hypothesis that TmHKT1;4-A2 is responsible for the Nax1 trait and provide new insight into the understanding of this QTL.
Collapse
Affiliation(s)
- Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, BP '1177', 3018 Sfax, Tunisia
- Biochimie & Physiologie Moléculaire des plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| | - Siwar Ben Amar
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, BP '1177', 3018 Sfax, Tunisia
- Biochimie & Physiologie Moléculaire des plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| | - Khaled Masmoudi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, BP '1177', 3018 Sfax, Tunisia
- Present address: International Center for Biosaline Agriculture (ICBA), PO Box 14660, Dubai-United Arab Emirates
| | - Hervé Sentenac
- Biochimie & Physiologie Moléculaire des plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, BP '1177', 3018 Sfax, Tunisia
| | - Anne-Aliénor Véry
- Biochimie & Physiologie Moléculaire des plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| |
Collapse
|
37
|
Zhao C, Cai S, Wang Y, Chen ZH. Loss of nitrate reductases NIA1 and NIA2 impairs stomatal closure by altering genes of core ABA signaling components in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2016; 11:e1183088. [PMID: 27171851 PMCID: PMC4973779 DOI: 10.1080/15592324.2016.1183088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 05/21/2023]
Abstract
Nitrate reductases NIA1 and NIA2 determine NO production in plants and are critical to abscisic acid (ABA)-induced stomatal closure. However, the role for NIA1 and NIA2 in ABA signaling has not been paid much attention in nitrate reductase loss-of-function mutant nia1nia2. Recently, we have demonstrated that ABA-inhibited K(+)in current and ABA-enhanced slow anion current were absent in nia1nia2. Exogenous NO restored regulation of these channels for stomatal closure in nia1nia2. In this study, we found that mutating NIA1 and NIA2 impaired nearly all the key components of guard cell ABA signaling pathway in Arabidopsis. We also propose a simplified model for ABA signaling in the nia1nia2 mutant.
Collapse
Affiliation(s)
- Chenchen Zhao
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Shengguan Cai
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Yizhou Wang
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, United Kingdom
| | - Zhong-Hua Chen
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| |
Collapse
|
38
|
Zhang A, Ren HM, Tan YQ, Qi GN, Yao FY, Wu GL, Yang LW, Hussain J, Sun SJ, Wang YF. S-type Anion Channels SLAC1 and SLAH3 Function as Essential Negative Regulators of Inward K+ Channels and Stomatal Opening in Arabidopsis. THE PLANT CELL 2016; 28. [PMID: 27002025 PMCID: PMC4863386 DOI: 10.1105/tpc.15.01050] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Drought stress induces stomatal closure and inhibits stomatal opening simultaneously. However, the underlying molecular mechanism is still largely unknown. Here we show that S-type anion channels SLAC1 and SLAH3 mainly inhibit inward K+ (K+in) channel KAT1 by protein-protein interaction, and consequently prevent stomatal opening in Arabidopsis. Voltage-clamp results demonstrated that SLAC1 inhibited KAT1 dramatically, but did not inhibit KAT2. SLAH3 inhibited KAT1 to a weaker degree relative to SLAC1. Both the N terminus and the C terminuses of SLAC1 inhibited KAT1, but the inhibition by the N terminus was stronger. The C terminus was essential for the inhibition of KAT1 by SLAC1. Furthermore, drought stress strongly up-regulated the expression of SLAC1 and SLAH3 in Arabidopsis guard cells, and the over-expression of wild type and truncated SLAC1 dramatically impaired K+in currents of guard cells and light-induced stomatal opening. Additionally, the inhibition of KAT1 by SLAC1 and KC1 only partially overlapped, suggesting that SLAC1 and KC1 inhibited K+in channels using different molecular mechanisms. Taken together, we discovered a novel regulatory mechanism for stomatal movement, in which singling pathways for stomatal closure and opening are directly coupled together by protein-protein interaction between SLAC1/SLAH3 and KAT1 in Arabidopsis.
Collapse
Affiliation(s)
- An Zhang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Hui-Min Ren
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghaic China [CN]
| | - Yan-Qiu Tan
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghaic China [CN]
| | - Guo-Ning Qi
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Fen-Yong Yao
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Gui-Li Wu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Lu-Wen Yang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Jamshaid Hussain
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Shu-Jing Sun
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Yong-Fei Wang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai POSTAL_CODE: 200032 China [CN]
| |
Collapse
|
39
|
Zhang A, Ren HM, Tan YQ, Qi GN, Yao FY, Wu GL, Yang LW, Hussain J, Sun SJ, Wang YF. S-type Anion Channels SLAC1 and SLAH3 Function as Essential Negative Regulators of Inward K+ Channels and Stomatal Opening in Arabidopsis. THE PLANT CELL 2016; 28:949-955. [PMID: 27002025 PMCID: PMC4863386 DOI: 10.1105/tpc.16.01050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/22/2016] [Accepted: 03/17/2016] [Indexed: 05/08/2023]
Abstract
Drought stress induces stomatal closure and inhibits stomatal opening simultaneously. However, the underlying molecular mechanism is still largely unknown. Here we show that S-type anion channels SLAC1 and SLAH3 mainly inhibit inward K+ (K+in) channel KAT1 by protein-protein interaction, and consequently prevent stomatal opening in Arabidopsis. Voltage-clamp results demonstrated that SLAC1 inhibited KAT1 dramatically, but did not inhibit KAT2. SLAH3 inhibited KAT1 to a weaker degree relative to SLAC1. Both the N terminus and the C terminuses of SLAC1 inhibited KAT1, but the inhibition by the N terminus was stronger. The C terminus was essential for the inhibition of KAT1 by SLAC1. Furthermore, drought stress strongly up-regulated the expression of SLAC1 and SLAH3 in Arabidopsis guard cells, and the over-expression of wild type and truncated SLAC1 dramatically impaired K+in currents of guard cells and light-induced stomatal opening. Additionally, the inhibition of KAT1 by SLAC1 and KC1 only partially overlapped, suggesting that SLAC1 and KC1 inhibited K+in channels using different molecular mechanisms. Taken together, we discovered a novel regulatory mechanism for stomatal movement, in which singling pathways for stomatal closure and opening are directly coupled together by protein-protein interaction between SLAC1/SLAH3 and KAT1 in Arabidopsis.
Collapse
Affiliation(s)
- An Zhang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Hui-Min Ren
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghaic China [CN]
| | - Yan-Qiu Tan
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghaic China [CN]
| | - Guo-Ning Qi
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Fen-Yong Yao
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Gui-Li Wu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Lu-Wen Yang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Jamshaid Hussain
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Shu-Jing Sun
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Yong-Fei Wang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai POSTAL_CODE: 200032 China [CN]
| |
Collapse
|
40
|
Virlouvet L, Fromm M. Physiological and transcriptional memory in guard cells during repetitive dehydration stress. THE NEW PHYTOLOGIST 2015; 205:596-607. [PMID: 25345749 DOI: 10.1111/nph.13080] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/20/2014] [Indexed: 05/19/2023]
Abstract
Arabidopsis plants subjected to a daily dehydration stress and watered recovery cycle display physiological and transcriptional stress memory. Previously stressed plants have stomatal apertures that remain partially closed during a watered recovery period, facilitating reduced transpiration during a subsequent dehydration stress. Guard cells (GCs) display transcriptional memory that is similar to that in leaf tissues for some genes, but display GC-specific transcriptional memory for other genes. The rate-limiting abscisic acid (ABA) biosynthetic genes NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3) and ALDEHYDE OXIDASE 3 (AAO3) are expressed at much higher levels in GCs, particularly during the watered recovery interval, relative to their low levels in leaves. A genetic analysis using mutants in the ABA signaling pathway indicated that GC stomatal memory is ABA-dependent, and that ABA-dependent SNF1-RELATED PROTEIN KINASE 2.2 (SnRK2.2), SnRK2.3 and SnRK2.6 have distinguishable roles in the process. SnRK2.6 is more important for overall stomatal control, while SnRK2.2 and SnRK2.3 are more important for implementing GC stress memory in the subsequent dehydration response. Collectively, our results support a model of altered ABA production in GCs that maintains a partially closed stomatal aperture during an overnight watered recovery period.
Collapse
Affiliation(s)
- Laetitia Virlouvet
- University of Nebraska Center for Plant Science Innovation, 1901 Vine Street, Lincoln, NE, 68588, USA
| | | |
Collapse
|
41
|
Ronzier E, Corratgé-Faillie C, Sanchez F, Prado K, Brière C, Leonhardt N, Thibaud JB, Xiong TC. CPK13, a noncanonical Ca2+-dependent protein kinase, specifically inhibits KAT2 and KAT1 shaker K+ channels and reduces stomatal opening. PLANT PHYSIOLOGY 2014; 166:314-26. [PMID: 25037208 PMCID: PMC4149717 DOI: 10.1104/pp.114.240226] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/15/2014] [Indexed: 05/18/2023]
Abstract
Ca(2) (+)-dependent protein kinases (CPKs) form a large family of 34 genes in Arabidopsis (Arabidopsis thaliana). Based on their dependence on Ca(2+), CPKs can be sorted into three types: strictly Ca(2+)-dependent CPKs, Ca(2+)-stimulated CPKs (with a significant basal activity in the absence of Ca(2+)), and essentially calcium-insensitive CPKs. Here, we report on the third type of CPK, CPK13, which is expressed in guard cells but whose role is still unknown. We confirm the expression of CPK13 in Arabidopsis guard cells, and we show that its overexpression inhibits light-induced stomatal opening. We combine several approaches to identify a guard cell-expressed target. We provide evidence that CPK13 (1) specifically phosphorylates peptide arrays featuring Arabidopsis K(+) Channel KAT2 and KAT1 polypeptides, (2) inhibits KAT2 and/or KAT1 when expressed in Xenopus laevis oocytes, and (3) closely interacts in plant cells with KAT2 channels (Förster resonance energy transfer-fluorescence lifetime imaging microscopy). We propose that CPK13 reduces stomatal aperture through its inhibition of the guard cell-expressed KAT2 and KAT1 channels.
Collapse
Affiliation(s)
- Elsa Ronzier
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Claire Corratgé-Faillie
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Frédéric Sanchez
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Karine Prado
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Christian Brière
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Nathalie Leonhardt
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Jean-Baptiste Thibaud
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Tou Cheu Xiong
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| |
Collapse
|
42
|
Abstract
Potassium is a macronutrient that is crucial for healthy plant growth. Potassium availability, however, is often limited in agricultural fields and thus crop yields and quality are reduced. Therefore, improving the efficiency of potassium uptake and transport, as well as its utilization, in plants is important for agricultural sustainability. This review summarizes the current knowledge on the molecular mechanisms involved in potassium uptake and transport in plants, and the molecular response of plants to different levels of potassium availability. Based on this information, four strategies for improving potassium use efficiency in plants are proposed; 1) increased root volume, 2) increasing efficiency of potassium uptake from the soil and translocation in planta, 3) increasing mobility of potassium in soil, and 4) molecular breeding new varieties with greater potassium efficiency through marker assisted selection which will require identification and utilization of potassium associated quantitative trait loci.
Collapse
Affiliation(s)
- Ryoung Shin
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045,
Japan
| |
Collapse
|
43
|
Kollist H, Nuhkat M, Roelfsema MRG. Closing gaps: linking elements that control stomatal movement. THE NEW PHYTOLOGIST 2014; 203:44-62. [PMID: 24800691 DOI: 10.1111/nph.12832] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/27/2014] [Indexed: 05/18/2023]
Abstract
Stomata are an attractive experimental system in plant biology, because the responses of guard cells to environmental signals can be directly linked to changes in the aperture of stomatal pores. In this review, the mechanics of stomatal movement are discussed in relation to ion transport in guard cells. Emphasis is placed on the ion pumps, transporters, and channels in the plasma membrane, as well as in the vacuolar membrane. The biophysical properties of transport proteins for H(+), K(+), Ca(2+), and anions are discussed and related to their function in guard cells during stomatal movements. Guard cell signaling pathways for ABA, CO2, ozone, microbe-associated molecular patterns (MAMPs) and blue light are presented. Special attention is given to the regulation of the slow anion channel (SLAC) and SLAC homolog (SLAH)-type anion channels by the ABA signalosome. Over the last decade, several knowledge gaps in the regulation of ion transport in guard cells have been closed. The current state of knowledge is an excellent starting point for tackling important open questions concerning stress tolerance in plants.
Collapse
Affiliation(s)
- Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | | | | |
Collapse
|
44
|
Véry AA, Nieves-Cordones M, Daly M, Khan I, Fizames C, Sentenac H. Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species? JOURNAL OF PLANT PHYSIOLOGY 2014; 171:748-69. [PMID: 24666983 DOI: 10.1016/j.jplph.2014.01.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 01/30/2014] [Indexed: 05/20/2023]
Abstract
Cloning and characterizations of plant K(+) transport systems aside from Arabidopsis have been increasing over the past decade, favored by the availability of more and more plant genome sequences. Information now available enables the comparison of some of these systems between species. In this review, we focus on three families of plant K(+) transport systems that are active at the plasma membrane: the Shaker K(+) channel family, comprised of voltage-gated channels that dominate the plasma membrane conductance to K(+) in most environmental conditions, and two families of transporters, the HAK/KUP/KT K(+) transporter family, which includes some high-affinity transporters, and the HKT K(+) and/or Na(+) transporter family, in which K(+)-permeable members seem to be present in monocots only. The three families are briefly described, giving insights into the structure of their members and on functional properties and their roles in Arabidopsis or rice. The structure of the three families is then compared between plant species through phylogenic analyses. Within clusters of ortologues/paralogues, similarities and differences in terms of expression pattern, functional properties and, when known, regulatory interacting partners, are highlighted. The question of the physiological significance of highlighted differences is also addressed.
Collapse
Affiliation(s)
- Anne-Aliénor Véry
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France.
| | - Manuel Nieves-Cordones
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| | - Meriem Daly
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France; Laboratoire d'Ecologie et d'Environnement, Faculté des Sciences Ben M'sik, Université Hassan II-Mohammedia, Avenue Cdt Driss El Harti, BP 7955, Sidi Othmane, Casablanca, Morocco
| | - Imran Khan
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France; Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Cécile Fizames
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| | - Hervé Sentenac
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| |
Collapse
|
45
|
Anschütz U, Becker D, Shabala S. Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:670-87. [PMID: 24635902 DOI: 10.1016/j.jplph.2014.01.009] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/14/2014] [Accepted: 01/17/2014] [Indexed: 05/18/2023]
Abstract
Partially and fully completed plant genome sequencing projects in both lower and higher plants allow drawing a comprehensive picture of the molecular and structural diversities of plant potassium transporter genes and their encoded proteins. While the early focus of the research in this field was aimed on the structure-function studies and understanding of the molecular mechanisms underlying K(+) transport, availability of Arabidopsis thaliana mutant collections in combination with micro-array techniques have significantly advanced our understanding of K(+) channel physiology, providing novel insights into the transcriptional regulation of potassium homeostasis in plants. More recently, posttranslational regulation of potassium transport systems has moved into the center stage of potassium transport research. The current review is focused on the most exciting developments in this field. By summarizing recent work on potassium transporter regulation we show that potassium transport in general, and potassium channels in particular, represent important targets and are mediators of the cellular responses during different developmental stages in a plant's life cycle. We show that regulation of intracellular K(+) homeostasis is essential to mediate plant adaptive responses to a broad range of abiotic and biotic stresses including drought, salinity, and oxidative stress. We further link post-translational regulation of K(+) channels with programmed cell death and show that K(+) plays a critical role in controlling the latter process. Thus, is appears that K(+) is not just the essential nutrient required to support optimal plant growth and yield but is also an important signaling agent mediating a wide range of plant adaptive responses to environment.
Collapse
Affiliation(s)
- Uta Anschütz
- University of Wuerzburg, Plant Molecular Biology & Biophysics, Wuerzburg, Germany
| | - Dirk Becker
- University of Wuerzburg, Plant Molecular Biology & Biophysics, Wuerzburg, Germany.
| | - Sergey Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Australia
| |
Collapse
|
46
|
Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. THE NEW PHYTOLOGIST 2014; 202:35-49. [PMID: 24283512 DOI: 10.1111/nph.12613] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/21/2013] [Indexed: 05/18/2023]
Abstract
Plant growth and productivity are adversely affected by various abiotic stressors and plants develop a wide range of adaptive mechanisms to cope with these adverse conditions, including adjustment of growth and development brought about by changes in stomatal activity. Membrane ion transport systems are involved in the maintenance of cellular homeostasis during exposure to stress and ion transport activity is regulated by phosphorylation/dephosphorylation networks that respond to stress conditions. The phytohormone abscisic acid (ABA), which is produced rapidly in response to drought and salinity stress, plays a critical role in the regulation of stress responses and induces a series of signaling cascades. ABA signaling involves an ABA receptor complex, consisting of an ABA receptor family, phosphatases and kinases: these proteins play a central role in regulating a variety of diverse responses to drought stress, including the activities of membrane-localized factors, such as ion transporters. In this review, recent research on signal transduction networks that regulate the function ofmembrane transport systems in response to stress, especially water deficit and high salinity, is summarized and discussed. The signal transduction networks covered in this review have central roles in mitigating the effect of stress by maintaining plant homeostasis through the control of membrane transport systems.
Collapse
Affiliation(s)
- Yuriko Osakabe
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Kouyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Kouyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| |
Collapse
|
47
|
Adams E, Shin R. Transport, signaling, and homeostasis of potassium and sodium in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:231-49. [PMID: 24393374 DOI: 10.1111/jipb.12159] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/31/2013] [Indexed: 05/17/2023]
Abstract
Potassium (K⁺) is an essential macronutrient in plants and a lack of K⁺ significantly reduces the potential for plant growth and development. By contrast, sodium (Na⁺), while beneficial to some extent, at high concentrations it disturbs and inhibits various physiological processes and plant growth. Due to their chemical similarities, some functions of K⁺ can be undertaken by Na⁺ but K⁺ homeostasis is severely affected by salt stress, on the other hand. Recent advances have highlighted the fascinating regulatory mechanisms of K⁺ and Na⁺ transport and signaling in plants. This review summarizes three major topics: (i) the transport mechanisms of K⁺ and Na⁺ from the soil to the shoot and to the cellular compartments; (ii) the mechanisms through which plants sense and respond to K⁺ and Na⁺ availability; and (iii) the components involved in maintenance of K⁺/Na⁺ homeostasis in plants under salt stress.
Collapse
Affiliation(s)
- Eri Adams
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | | |
Collapse
|
48
|
Nieves-Cordones M, Gaillard I. Involvement of the S4-S5 linker and the C-linker domain regions to voltage-gating in plant Shaker channels: comparison with animal HCN and Kv channels. PLANT SIGNALING & BEHAVIOR 2014; 9:e972892. [PMID: 25482770 PMCID: PMC4622754 DOI: 10.4161/15592316.2014.972892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Among the different transport systems present in plant cells, Shaker channels constitute the major pathway for K(+) in the plasma membrane. Plant Shaker channels are members of the 6 transmembrane-1 pore (6TM-1P) cation channel superfamily as the animal Shaker (Kv) and HCN channels. All these channels are voltage-gated K(+) channels: Kv channels are outward-rectifiers, opened at depolarized voltages and HCN channels are inward-rectifiers, opened by membrane hyperpolarization. Among plant Shaker channels, we can find outward-rectifiers, inward-rectifiers and also weak-rectifiers, with weak voltage dependence. Despite the absence of crystal structures of plant Shaker channels, functional analyses coupled to homology modeling, mostly based on Kv and HCN crystals, have permitted the identification of several regions contributing to plant Shaker channel gating. In the present mini-review, we make an update on the voltage-gating mechanism of plant Shaker channels which seem to be comparable to that proposed for HCN channels.
Collapse
Affiliation(s)
- Manuel Nieves-Cordones
- Biochimie et Physiologie Moléculaire des Plantes; Institut de Biologie Intégrative des Plantes; Unité Mixte de Recherche 5004 Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386 Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier 2; Montpellier, France
- Correspondence to: Manuel Nieves-Cordones; , Isabelle Gaillard;
| | - Isabelle Gaillard
- Biochimie et Physiologie Moléculaire des Plantes; Institut de Biologie Intégrative des Plantes; Unité Mixte de Recherche 5004 Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386 Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier 2; Montpellier, France
- Correspondence to: Manuel Nieves-Cordones; , Isabelle Gaillard;
| |
Collapse
|
49
|
Hwang H, Yoon J, Kim HY, Min MK, Kim JA, Choi EH, Lan W, Bae YM, Luan S, Cho H, Kim BG. Unique features of two potassium channels, OsKAT2 and OsKAT3, expressed in rice guard cells. PLoS One 2013; 8:e72541. [PMID: 23967316 PMCID: PMC3742606 DOI: 10.1371/journal.pone.0072541] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/10/2013] [Indexed: 11/28/2022] Open
Abstract
Potassium is the most abundant cation and a myriad of transporters regulate K+ homeostasis in plant. Potassium plays a role as a major osmolyte to regulate stomatal movements that control water utility of land plants. Here we report the characterization of two inward rectifying shaker-like potassium channels, OsKAT2 and OsKAT3, expressed in guard cell of rice plants. While OsKAT2 showed typical potassium channel activity, like that of Arabidopsis KAT1, OsKAT3 did not despite high sequence similarity between the two channel proteins. Interestingly, the two potassium channels physically interacted with each other and such interaction negatively regulated the OsKAT2 channel activity in CHO cell system. Furthermore, deletion of the C-terminal domain recovered the channel activity of OsKAT3, suggesting that the C-terminal region was regulatory domain that inhibited channel activity. Two homologous channels with antagonistic interaction has not been previously reported and presents new information for potassium channel regulation in plants, especially in stomatal regulation.
Collapse
Affiliation(s)
- Hyunsik Hwang
- Department of Molecular Breeding, National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea
| | - Jinyoung Yoon
- Department of Molecular Breeding, National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea
| | - Hyun Yeong Kim
- Department of Molecular Breeding, National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea
| | - Myung Ki Min
- Department of Molecular Breeding, National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea
| | - Jin-Ae Kim
- Department of Molecular Breeding, National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea
| | - Eun-Hye Choi
- Department of Molecular Breeding, National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea
| | - Wenzhi Lan
- NJU-NJFU Joint Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Young-Min Bae
- Departments of Physiology, Konkuk University School of Medicine, Choongju, Korea
| | - Sheng Luan
- NJU-NJFU Joint Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Beom-Gi Kim
- Department of Molecular Breeding, National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea
- * E-mail:
| |
Collapse
|
50
|
Sharma T, Dreyer I, Riedelsberger J. The role of K(+) channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2013; 4:224. [PMID: 23818893 PMCID: PMC3694395 DOI: 10.3389/fpls.2013.00224] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/09/2013] [Indexed: 05/17/2023]
Abstract
Potassium (K(+)) is inevitable for plant growth and development. It plays a crucial role in the regulation of enzyme activities, in adjusting the electrical membrane potential and the cellular turgor, in regulating cellular homeostasis and in the stabilization of protein synthesis. Uptake of K(+) from the soil and its transport to growing organs is essential for a healthy plant development. Uptake and allocation of K(+) are performed by K(+) channels and transporters belonging to different protein families. In this review we summarize the knowledge on the versatile physiological roles of plant K(+) channels and their behavior under stress conditions in the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Tripti Sharma
- Molecular Biology, Institute for Biochemistry and Biology, University of PotsdamPotsdam, Germany
- IMPRS-PMPG, Max-Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Ingo Dreyer
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politécnica de MadridMadrid, Spain
- *Correspondence: Ingo Dreyer, Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M-40, km 37.7, Pozuelo de Alarcón, Madrid E-28223, Spain e-mail:
| | - Janin Riedelsberger
- Molecular Biology, Institute for Biochemistry and Biology, University of PotsdamPotsdam, Germany
- IMPRS-PMPG, Max-Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
- Janin Riedelsberger, Molecular Biology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, House 20, D-14476 Potsdam, Germany e-mail:
| |
Collapse
|