1
|
Dong W, Liu J, Zhang Y, Huang M, Lin M, Peng X. DNA damages in hepatocytes are amended by an inflammation-driven rescue repair mechanism in chronic hepatitis B. Pathol Res Pract 2024; 260:155391. [PMID: 38850878 DOI: 10.1016/j.prp.2024.155391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/23/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Our previous study has shown that intrahepatic necroinflammation favors the eliminations of HBV integration and clonal hepatocytes. Here, the effect of inflammation on host DNA damage eliminations in liver biopsy tissues from patients with chronic hepatitis B (CHB) was further investigated. METHODS DNA damage markers, histone γ-H2AX and phosphorylated heterochromatin protein 1γ (p-HP1γ), and senescent marker p21 were detected using immunohistochemical and immunofluorescent assays in liver biopsy samples from 69 CHB patients and 12 liver cirrhosis (LC) patients. Twenty paired hepatocellular carcinoma (HCC) surgical samples were used as controls. RESULTS Both γ-H2AX and p-HP1γ were sensitively detected in nuclear and cytoplasmic/nuclear patterns. Nuclear γ-H2AX was superior as a DNA damage marker in hepatocytes. The level of nuclear γ-H2AX in CHB, comparable to those in LC and HCC, was correlated with liver fibrosis and coexisted with the senescent marker p21. However, hepatocytes carried an alleviated level of DNA damages, which was associated with the level of cytoplasmic γ-H2AX. Cytoplasmic γ-H2AX chiefly occurred in hepatocytes near necroinflammatory foci, was correlated with liver inflammation and usually indicated the decrease or disappearance of nuclear γ-H2AX. The lack of cytoplasmic γ-H2AX together with the high level of nuclear γ-H2AX was associated with the progression from large cell changes/dysplasia to small cell changes/dysplasia. CONCLUSIONS Hepatocytes in CHB already carry massive DNA damages and undergo cellular senescence. The DNA damages in those senescent hepatocytes are histopathologically demonstrated to be amended by a novel cytoplasmic γ-H2AX-indicated and inflammation-driven rescue repair mechanism, which may be involved in hepatocarcinogenesis if it works improperly.
Collapse
Affiliation(s)
- Wenxiao Dong
- Department of Infectious Diseases, Jiangmen Central Hospital, Jiangmen, Guangdong 529000, China
| | - Jian Liu
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China
| | - Yansong Zhang
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China
| | - Mingxing Huang
- Department of Infectious Diseases, The Third People's Hospital of Zhuhai, Zhuhai, Guangdong 519000, China
| | - Minyi Lin
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China.
| | - Xiaomou Peng
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China.
| |
Collapse
|
2
|
Okuda A, Takai M, Kurisu R, Takamoto M, Ikeda H, Tsujiuchi T. Roles of lysophosphatidic acid (LPA) receptor-2 (LPA 2) in the regulation of cellular responses induced by X-ray irradiation and hydrogen peroxide in pancreatic cancer cells. Int J Radiat Biol 2023; 99:1925-1933. [PMID: 37523658 DOI: 10.1080/09553002.2023.2241890] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/10/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE Lysophosphatidic acid (LPA) receptor-mediated signaling regulates various biological functions in cancer cells. This study aimed to evaluate the roles of LPA receptor-2 (LPA2) in cellular responses induced by X-ray irradiation in pancreatic cancer PANC-1 cells. Since X-ray irradiation generates reactive oxygen species (ROS), PANC-1 cells were treated with hydrogen peroxide (H2O2). H2O2 is a key member of ROS. METHODS To investigate the cell survival rate to X-ray irradiation, PANC-1 cells were irradiated with X-rays (2.5-15 Gy). LPAR2 expression levels were measured by quantitative real-time RT-PCR analysis. The effects of LPA2 on the cell survival and motility were evaluated using LPA2 knockdown cells. To establish H2O2 treated cells, PANC-1 cells were cultured in 10% FBS-DMEM with H2O2 (30 µM) for 2 weeks. The cell motility and survival rate to cisplatin (CDDP) of H2O2 treated cells were examined. RESULTS LPAR2 expression was significantly increased in PANC-1 cells irradiated with X-rays. PANC-1 cell motility was markedly decreased by X-ray irradiation. The reduced cell motility activity by X-ray irradiation was enhanced by LPA2 knockdown. The cell survival to X-ray irradiation was elevated in PANC-1 cells treated with GRI-977143 (LPA2 agonist) and suppressed by LPA2 knockdown. On the other hand, LPAR2 expression was markedly higher in H2O2 treated cells than in H2O2 untreated cells. H2O2 treated cells showed the high cell survival to CDDP in comparison with H2O2 untreated cells. GRI-977143 increased the cell survival to CDDP of H2O2 treated cells, while LPA2 knockdown suppressed. CONCLUSIONS The present results suggest that the activation of LPA2-mediated signaling plays an important role in the modulation of cellular functions induced by X-ray irradiation and H2O2 in PANC-1 cells.
Collapse
Affiliation(s)
- Aya Okuda
- Department of Life Science, Division of Molecular Oncology, Faculty of Science and Engineering, Kindai University, Higashiosaka, Japan
| | - Miwa Takai
- Department of Life Science, Division of Molecular Oncology, Faculty of Science and Engineering, Kindai University, Higashiosaka, Japan
| | - Rio Kurisu
- Department of Life Science, Division of Molecular Oncology, Faculty of Science and Engineering, Kindai University, Higashiosaka, Japan
| | - Miyu Takamoto
- Department of Life Science, Division of Molecular Oncology, Faculty of Science and Engineering, Kindai University, Higashiosaka, Japan
| | - Hiroko Ikeda
- Department of Life Science, Division of Molecular Oncology, Faculty of Science and Engineering, Kindai University, Higashiosaka, Japan
| | - Toshifumi Tsujiuchi
- Department of Life Science, Division of Molecular Oncology, Faculty of Science and Engineering, Kindai University, Higashiosaka, Japan
| |
Collapse
|
3
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
4
|
Xie X, Su M, Ren K, Ma X, Lv Z, Li Z, Mei Y, Ji P. Clonal hematopoiesis and bone marrow inflammation. Transl Res 2023; 255:159-170. [PMID: 36347490 DOI: 10.1016/j.trsl.2022.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
Clonal hematopoiesis (CH) occurs in hematopoietic stem cells with increased risks of progressing to hematologic malignancies. CH mutations are predominantly found in aged populations and correlate with an increased incidence of cardiovascular and other diseases. Increased lines of evidence demonstrate that CH mutations are closely related to the inflammatory bone marrow microenvironment. In this review, we summarize the recent advances in this topic starting from the discovery of CH and its mutations. We focus on the most commonly mutated and well-studied genes in CH and their contributions to the innate immune responses and inflammatory signaling, especially in the hematopoietic cells of bone marrow. We also aimed to discuss the interrelationship between inflammatory bone marrow microenvironment and CH mutations. Finally, we provide our perspectives on the challenges in the field and possible future directions to help understand the pathophysiology of CH.
Collapse
Affiliation(s)
- Xinshu Xie
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Meng Su
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Kehan Ren
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Xuezhen Ma
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zhiyi Lv
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zhaofeng Li
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yang Mei
- School of Biomedical Sciences, Hunan University, Changsha, China; Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, China.
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois.
| |
Collapse
|
5
|
Storchova R, Palek M, Palkova N, Veverka P, Brom T, Hofr C, Macurek L. Phosphorylation of TRF2 promotes its interaction with TIN2 and regulates DNA damage response at telomeres. Nucleic Acids Res 2023; 51:1154-1172. [PMID: 36651296 PMCID: PMC9943673 DOI: 10.1093/nar/gkac1269] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/25/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Protein phosphatase magnesium-dependent 1 delta (PPM1D) terminates the cell cycle checkpoint by dephosphorylating the tumour suppressor protein p53. By targeting additional substrates at chromatin, PPM1D contributes to the control of DNA damage response and DNA repair. Using proximity biotinylation followed by proteomic analysis, we identified a novel interaction between PPM1D and the shelterin complex that protects telomeric DNA. In addition, confocal microscopy revealed that endogenous PPM1D localises at telomeres. Further, we found that ATR phosphorylated TRF2 at S410 after induction of DNA double strand breaks at telomeres and this modification increased after inhibition or loss of PPM1D. TRF2 phosphorylation stimulated its interaction with TIN2 both in vitro and at telomeres. Conversely, induced expression of PPM1D impaired localisation of TIN2 and TPP1 at telomeres. Finally, recruitment of the DNA repair factor 53BP1 to the telomeric breaks was strongly reduced after inhibition of PPM1D and was rescued by the expression of TRF2-S410A mutant. Our results suggest that TRF2 phosphorylation promotes the association of TIN2 within the shelterin complex and regulates DNA repair at telomeres.
Collapse
Affiliation(s)
- Radka Storchova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
| | - Matous Palek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
| | - Natalie Palkova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
| | - Pavel Veverka
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| | - Tomas Brom
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| | - Ctirad Hofr
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| | - Libor Macurek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
| |
Collapse
|
6
|
Leem J, Bai GY, Kim JS, Oh JS. Increased WIP1 Expression With Aging Suppresses the Capacity of Oocytes to Respond to and Repair DNA Damage. Front Cell Dev Biol 2022; 9:810928. [PMID: 35004701 PMCID: PMC8740286 DOI: 10.3389/fcell.2021.810928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 01/02/2023] Open
Abstract
If fertilization does not occur for a prolonged time after ovulation, oocytes undergo a time-dependent deterioration in quality in vivo and in vitro, referred to as postovulatory aging. The DNA damage response is thought to decline with aging, but little is known about how mammalian oocytes respond to the DNA damage during in vitro postovulatory aging. Here we show that increased WIP1 during in vitro postovulatory aging suppresses the capacity of oocytes to respond to and repair DNA damage. During in vitro aging, oocytes progressively lost their capacity to respond to DNA double-strand breaks, which corresponded with an increase in WIP1 expression. Increased WIP1 impaired the amplification of γ-H2AX signaling, which reduced the DNA repair capacity. WIP1 inhibition restored the DNA repair capacity, which prevented deterioration in oocyte quality and improved the fertilization and developmental competence of aged oocytes. Importantly, WIP1 was also found to be high in maternally aged oocytes, and WIP1 inhibition enhanced the DNA repair capacity of maternally aged oocytes. Therefore, our results demonstrate that increased WIP1 is responsible for the age-related decline in DNA repair capacity in oocytes, and WIP1 inhibition could restore DNA repair capacity in aged oocytes.
Collapse
Affiliation(s)
- Jiyeon Leem
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Guang-Yu Bai
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, South Korea
| | - Jae-Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jeong Su Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
7
|
Storchova R, Burdova K, Palek M, Medema RH, Macurek L. A novel assay for screening WIP1 phosphatase substrates in nuclear extracts. FEBS J 2021; 288:6035-6051. [PMID: 33982878 DOI: 10.1111/febs.15965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022]
Abstract
Upon exposure to genotoxic stress, cells activate DNA damage response (DDR) that coordinates DNA repair with a temporal arrest in the cell cycle progression. DDR is triggered by activation of ataxia telangiectasia mutated/ataxia telangiectasia and Rad3-related protein kinases that phosphorylate multiple targets including tumor suppressor protein tumor suppressor p53 (p53). In addition, DNA damage can activate parallel stress response pathways [such as mitogen-activated protein kinase p38 alpha (p38)/MAPK-activated protein kinase 2 (MK2) kinases] contributing to establishing the cell cycle arrest. Wild-type p53-induced phosphatase 1 (WIP1) controls timely inactivation of DDR and is needed for recovery from the G2 checkpoint by counteracting the function of p53. Here, we developed a simple in vitro assay for testing WIP1 substrates in nuclear extracts. Whereas we did not detect any activity of WIP1 toward p38/MK2, we confirmed p53 as a substrate of WIP1. Inhibition or inactivation of WIP1 in U2OS cells increased phosphorylation of p53 at S15 and potentiated its acetylation at K382. Further, we identified Deleted in breast cancer gene 1 (DBC1) as a new substrate of WIP1 but surprisingly, depletion of DBC1 did not interfere with the ability of WIP1 to regulate p53 acetylation. Instead, we have found that WIP1 activity suppresses p53-K382 acetylation by inhibiting the interaction between p53 and the acetyltransferase p300. Newly established phosphatase assay allows an easy comparison of WIP1 ability to dephosphorylate various proteins and thus contributes to identification of its physiological substrates.
Collapse
Affiliation(s)
- Radka Storchova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Kamila Burdova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Matous Palek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - René H Medema
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Libor Macurek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
8
|
Shi L, Tian Q, Feng C, Zhang P, Zhao Y. The biological function and the regulatory roles of wild-type p53-induced phosphatase 1 in immune system. Int Rev Immunol 2020; 39:280-291. [PMID: 32696682 DOI: 10.1080/08830185.2020.1795153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Wild-type p53-induced phosphatase 1 (WIP1) belongs to the protein phosphatase 2C (PP2C) family and is a mammalian serine/threonine specific protein phosphatase to dephosphorylate numerous signaling molecules. Mammalian WIP1 regulates a wide array of targeting molecules and plays key regulatory roles in many cell processes such as DNA damage and repair, cell proliferation, differentiation, apoptosis, and senescence. WIP1 promotes the formation and development of tumors as an oncogene and a negative regulator of p53. It is also involved in the regulation of aging, neurological diseases and immune diseases. Recent studies demonstrated the critical roles of WIP1 in the differentiation and function of immune cells including T cells, neutrophils and macrophages. In the present manuscript, we briefly summarized the expression patterns, biological function and the target molecules and signal pathways of WIP1 and mainly discussed the latest advances on the regulatory effects of WIP1 in the immune system. WIP1 may be a potential target molecule to treat cancers and immune diseases such as allergic asthma.
Collapse
Affiliation(s)
- Lu Shi
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qianchuan Tian
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chang Feng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Akamandisa MP, Nie K, Nahta R, Hambardzumyan D, Castellino RC. Inhibition of mutant PPM1D enhances DNA damage response and growth suppressive effects of ionizing radiation in diffuse intrinsic pontine glioma. Neuro Oncol 2020; 21:786-799. [PMID: 30852603 DOI: 10.1093/neuonc/noz053] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Children with diffuse intrinsic pontine glioma (DIPG) succumb to disease within 2 years of diagnosis despite treatment with ionizing radiation (IR) and/or chemotherapy. Our aim was to determine the role of protein phosphatase, magnesium-dependent 1, delta (PPM1D) mutation, present in up to 25% of cases, in DIPG pathogenesis and treatment. METHODS Using genetic and pharmacologic approaches, we assayed effects of PPM1D mutation on DIPG growth and murine survival. We assayed effects of targeting mutated PPM1D alone or with IR on signaling, cell cycle, proliferation, and apoptosis in patient-derived DIPG cells in vitro, in organotypic brain slices, and in vivo. RESULTS PPM1D-mutated DIPG cell lines exhibited increased proliferation in vitro and in vivo, conferring reduced survival in orthotopically xenografted mice, through stabilization of truncated PPM1D protein and inactivation of DNA damage response (DDR) effectors p53 and H2A.X. PPM1D knockdown or treatment with PPM1D inhibitors suppressed growth of PPM1D-mutated DIPGs in vitro. Orthotopic xenografting of PPM1D short hairpin RNA-transduced or PPM1D inhibitor-treated, PPM1D-mutated DIPG cells into immunodeficient mice resulted in reduced tumor proliferation, increased apoptosis, and extended mouse survival. PPM1D inhibition had similar effects to IR alone on DIPG growth inhibition and augmented the anti-proliferative and pro-apoptotic effects of IR in PPM1D-mutated DIPG models. CONCLUSIONS PPM1D mutations inactivate DDR and promote DIPG growth. Treatment with PPM1D inhibitors activated DDR pathways and enhanced the anti-proliferative and pro-apoptotic effects of IR in DIPG models. Our results support continued development of PPM1D inhibitors for phase I/II trials in children with DIPG.
Collapse
Affiliation(s)
- Mwangala Precious Akamandisa
- Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia.,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Kai Nie
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Rita Nahta
- Department of Pharmacology, Emory University, Atlanta, GA.,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Dolores Hambardzumyan
- Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia.,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Robert Craig Castellino
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
10
|
Ohba S, Johannessen TCA, Chatla K, Yang X, Pieper RO, Mukherjee J. Phosphoglycerate Mutase 1 Activates DNA Damage Repair via Regulation of WIP1 Activity. Cell Rep 2020; 31:107518. [PMID: 32294440 DOI: 10.1016/j.celrep.2020.03.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/18/2019] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
The metabolic enzyme phosphoglycerate mutase 1 (PGAM1) is overexpressed in several types of cancer, suggesting an additional function beyond its established role in the glycolytic pathway. We here report that PGAM1 is overexpressed in gliomas where it increases the efficiency of the DNA damage response (DDR) pathway by cytoplasmic binding of WIP1 phosphatase, thereby preventing WIP1 nuclear translocation and subsequent dephosphorylation of the ATM signaling pathway. Silencing of PGAM1 expression in glioma cells consequently decreases formation of γ-H2AX foci, increases apoptosis, and decreases clonogenicity following irradiation (IR) and temozolomide (TMZ) treatment. Furthermore, mice intracranially implanted with PGAM1-knockdown cells have significantly improved survival after treatment with IR and TMZ. These effects are counteracted by exogenous expression of two kinase-dead PGAM1 mutants, H186R and Y92F, indicating an important non-enzymatic function of PGAM1. Our findings identify PGAM1 as a potential therapeutic target in gliomas.
Collapse
Affiliation(s)
- Shigeo Ohba
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurosurgery, Fujita Health University, Toyoake, Aichi, Japan
| | - Tor-Christian Aase Johannessen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | - Kamalakar Chatla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Xiaodong Yang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Russell O Pieper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joydeep Mukherjee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
11
|
Wang Z, Xu C, Diplas BH, Moure CJ, Chen CPJ, Chen LH, Du C, Zhu H, Greer PK, Zhang L, He Y, Waitkus MS, Yan H. Targeting Mutant PPM1D Sensitizes Diffuse Intrinsic Pontine Glioma Cells to the PARP Inhibitor Olaparib. Mol Cancer Res 2020; 18:968-980. [PMID: 32229503 DOI: 10.1158/1541-7786.mcr-19-0507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/09/2019] [Accepted: 03/24/2020] [Indexed: 11/16/2022]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an invariably fatal brain tumor occurring predominantly in children. Up to 90% of pediatric DIPGs harbor a somatic heterozygous mutation resulting in the replacement of lysine 27 with methionine (K27M) in genes encoding histone H3.3 (H3F3A, 65%) or H3.1 (HIST1H3B, 25%). Several studies have also identified recurrent truncating mutations in the gene encoding protein phosphatase 1D, PPM1D, in 9%-23% of DIPGs. Here, we sought to investigate the therapeutic potential of targeting PPM1D, alone or in combination with inhibitors targeting specific components of DNA damage response pathways in patient-derived DIPG cell lines. We found that GSK2830371, an allosteric PPM1D inhibitor, suppressed the proliferation of PPM1D-mutant, but not PPM1D wild-type DIPG cells. We further observed that PPM1D inhibition sensitized PPM1D-mutant DIPG cells to PARP inhibitor (PARPi) treatment. Mechanistically, combined PPM1D and PARP inhibition show synergistic effects on suppressing a p53-dependent RAD51 expression and the formation of RAD51 nuclear foci, possibly leading to impaired homologous recombination (HR)-mediated DNA repair in PPM1D-mutant DIPG cells. Collectively, our findings reveal the potential role of the PPM1D-p53 signaling axis in the regulation of HR-mediated DNA repair and provide preclinical evidence demonstrating that combined inhibition of PPM1D and PARP1/2 may be a promising therapeutic combination for targeting PPM1D-mutant DIPG tumors. IMPLICATIONS: The findings support the use of PARPi in combination with PPM1D inhibition against PPM1D-mutant DIPGs.
Collapse
Affiliation(s)
- Zhaohui Wang
- Department of Pathology, Duke University, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Cheng Xu
- Department of Pathology, Duke University, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Bill H Diplas
- Department of Pathology, Duke University, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Casey J Moure
- Department of Pathology, Duke University, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Chin-Pu Jason Chen
- Department of Pathology, Duke University, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Lee H Chen
- Department of Pathology, Duke University, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Changzheng Du
- Department of Pathology, Duke University, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Huishan Zhu
- Department of Pathology, Duke University, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Paula K Greer
- Department of Pathology, Duke University, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yiping He
- Department of Pathology, Duke University, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Matthew S Waitkus
- Department of Pathology, Duke University, Durham, North Carolina. .,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Hai Yan
- Department of Pathology, Duke University, Durham, North Carolina. .,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
12
|
Choi BK, Fujiwara K, Dayaram T, Darlington Y, Dickerson J, Goodell MA, Donehower LA. WIP1 dephosphorylation of p27 Kip1 Serine 140 destabilizes p27 Kip1 and reverses anti-proliferative effects of ATM phosphorylation. Cell Cycle 2020; 19:479-491. [PMID: 31959038 PMCID: PMC7100888 DOI: 10.1080/15384101.2020.1717025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/22/2019] [Accepted: 11/07/2019] [Indexed: 01/07/2023] Open
Abstract
The phosphoinositide-3-kinase like kinases (PIKK) such as ATM and ATR play a key role in initiating the cellular DNA damage response (DDR). One key ATM target is the cyclin-dependent kinase inhibitor p27Kip1 that promotes G1 arrest. ATM activates p27Kip1-induced arrest in part through phosphorylation of p27Kip1 at Serine 140. Here we show that this site is dephosphorylated by the type 2C serine/threonine phosphatase, WIP1 (Wildtype p53-Induced Phosphatase-1), encoded by the PPM1D gene. WIP1 has been shown to dephosphorylate numerous ATM target sites in DDR proteins, and its overexpression and/or mutation has often been associated with oncogenesis. We demonstrate that wildtype, but not phosphatase-dead WIP1, efficiently dephosphorylates p27Kip1 Ser140 both in vitro and in cells and that this dephosphorylation is sensitive to the WIP1-specific inhibitor GSK 2830371. Increased expression of wildtype WIP1 reduces stability of p27Kip1 while increased expression of similar amounts of phosphatase-dead WIP1 has no effect on p27Kip1 protein stability. Overexpression of wildtype p27Kip1 reduces cell proliferation and colony forming capability relative to the S140A (constitutively non-phosphorylated) form of p27. Thus, WIP1 plays a significant role in homeostatic modulation of p27Kip1 activity following activation by ATM.
Collapse
Affiliation(s)
- Byung-Kwon Choi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kenichiro Fujiwara
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Tajhal Dayaram
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Yolanda Darlington
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Joshua Dickerson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Margaret A. Goodell
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Lawrence A. Donehower
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
13
|
Cell Cycle and DNA Repair Regulation in the Damage Response: Protein Phosphatases Take Over the Reins. Int J Mol Sci 2020; 21:ijms21020446. [PMID: 31936707 PMCID: PMC7014277 DOI: 10.3390/ijms21020446] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cells are constantly suffering genotoxic stresses that affect the integrity of our genetic material. Genotoxic insults must be repaired to avoid the loss or inappropriate transmission of the genetic information, a situation that could lead to the appearance of developmental abnormalities and tumorigenesis. To combat this threat, eukaryotic cells have evolved a set of sophisticated molecular mechanisms that are collectively known as the DNA damage response (DDR). This surveillance system controls several aspects of the cellular response, including the detection of lesions, a temporary cell cycle arrest, and the repair of the broken DNA. While the regulation of the DDR by numerous kinases has been well documented over the last decade, the complex roles of protein dephosphorylation have only recently begun to be investigated. Here, we review recent progress in the characterization of DDR-related protein phosphatases during the response to a DNA lesion, focusing mainly on their ability to modulate the DNA damage checkpoint and the repair of the damaged DNA. We also discuss their protein composition and structure, target specificity, and biochemical regulation along the different stages encompassed in the DDR. The compilation of this information will allow us to better comprehend the physiological significance of protein dephosphorylation in the maintenance of genome integrity and cell viability in response to genotoxic stress.
Collapse
|
14
|
Michmerhuizen AR, Chandler B, Olsen E, Wilder-Romans K, Moubadder L, Liu M, Pesch AM, Zhang A, Ritter C, Ward ST, Santola A, Nyati S, Rae JM, Hayes D, Feng FY, Spratt D, Wahl D, Eisner J, Pierce LJ, Speers C. Seviteronel, a Novel CYP17 Lyase Inhibitor and Androgen Receptor Antagonist, Radiosensitizes AR-Positive Triple Negative Breast Cancer Cells. Front Endocrinol (Lausanne) 2020; 11:35. [PMID: 32117061 PMCID: PMC7027396 DOI: 10.3389/fendo.2020.00035] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/17/2020] [Indexed: 12/21/2022] Open
Abstract
Increased rates of locoregional recurrence (LR) have been observed in triple negative breast cancer (TNBC) despite multimodality therapy, including radiation (RT). Recent data suggest inhibiting the androgen receptor (AR) may be an effective radiosensitizing strategy, and AR is expressed in 15-35% of TNBC tumors. The aim of this study was to determine whether seviteronel (INO-464), a novel CYP17 lyase inhibitor and AR antagonist, is able to radiosensitize AR-positive (AR+) TNBC models. In cell viability assays, seviteronel and enzalutamide exhibited limited effect as a single agent (IC50 > 10 μM). Using clonogenic survival assays, however, AR knockdown and AR inhibition with seviteronel were effective at radiosensitizing cells with radiation enhancement ratios of 1.20-1.89 in models of TNBC with high AR expression. AR-negative (AR-) models, regardless of their estrogen receptor expression, were not radiosensitized with seviteronel treatment at concentrations up to 5 μM. Radiosensitization of AR+ TNBC models was at least partially dependent on impaired dsDNA break repair with significant delays in repair at 6, 16, and 24 h as measured by immunofluorescent staining of γH2AX foci. Similar effects were observed in an in vivo AR+ TNBC xenograft model where there was a significant reduction in tumor volume and a delay to tumor doubling and tripling times in mice treated with seviteronel and radiation. Following combination treatment with seviteronel and radiation, increased binding of AR occurred at DNA damage response genes, including genes involved both in homologous recombination and non-homologous end joining. This trend was not observed with combination treatment of enzalutamide and RT, suggesting that seviteronel may have a different mechanism of radiosensitization compared to other AR inhibitors. Enzalutamide and seviteronel treatment also had different effects on AR and AR target genes as measured by immunoblot and qPCR. These results implicate AR as a mediator of radioresistance in AR+ TNBC models and support the use of seviteronel as a radiosensitizing agent in AR+ TNBC.
Collapse
Affiliation(s)
- Anna R. Michmerhuizen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Benjamin Chandler
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Cancer Biology Program, University of Michigan, Ann Arbor, MI, United States
| | - Eric Olsen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Kari Wilder-Romans
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Leah Moubadder
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Meilan Liu
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Andrea M. Pesch
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Amanda Zhang
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Cassandra Ritter
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - S. Tanner Ward
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Alyssa Santola
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Shyam Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - James M. Rae
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Daniel Hayes
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Felix Y. Feng
- Department of Urology, Medicine and Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| | - Daniel Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Daniel Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Joel Eisner
- Innocrin Pharmaceuticals Inc., Durham, NC, United States
| | - Lori J. Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Corey Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Corey Speers
| |
Collapse
|
15
|
Burdova K, Storchova R, Palek M, Macurek L. WIP1 Promotes Homologous Recombination and Modulates Sensitivity to PARP Inhibitors. Cells 2019; 8:cells8101258. [PMID: 31619012 PMCID: PMC6830099 DOI: 10.3390/cells8101258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/23/2022] Open
Abstract
Genotoxic stress triggers a combined action of DNA repair and cell cycle checkpoint pathways. Protein phosphatase 2C delta (referred to as WIP1) is involved in timely inactivation of DNA damage response by suppressing function of p53 and other targets at chromatin. Here we show that WIP1 promotes DNA repair through homologous recombination. Loss or inhibition of WIP1 delayed disappearance of the ionizing radiation-induced 53BP1 foci in S/G2 cells and promoted cell death. We identify breast cancer associated protein 1 (BRCA1) as interactor and substrate of WIP1 and demonstrate that WIP1 activity is needed for correct dynamics of BRCA1 recruitment to chromatin flanking the DNA lesion. In addition, WIP1 dephosphorylates 53BP1 at Threonine 543 that was previously implicated in mediating interaction with RIF1. Finally, we report that inhibition of WIP1 allowed accumulation of DNA damage in S/G2 cells and increased sensitivity of cancer cells to a poly-(ADP-ribose) polymerase inhibitor olaparib. We propose that inhibition of WIP1 may increase sensitivity of BRCA1-proficient cancer cells to olaparib.
Collapse
Affiliation(s)
- Kamila Burdova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ14220 Prague, Czech Republic.
| | - Radka Storchova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ14220 Prague, Czech Republic.
| | - Matous Palek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ14220 Prague, Czech Republic.
| | - Libor Macurek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ14220 Prague, Czech Republic.
| |
Collapse
|
16
|
Clausse V, Tao D, Debnath S, Fang Y, Tagad HD, Wang Y, Sun H, LeClair CA, Mazur SJ, Lane K, Shi ZD, Vasalatiy O, Eells R, Baker LK, Henderson MJ, Webb MR, Shen M, Hall MD, Appella E, Appella DH, Coussens NP. Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens. J Biol Chem 2019; 294:17654-17668. [PMID: 31481464 PMCID: PMC6873202 DOI: 10.1074/jbc.ra119.010201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/30/2019] [Indexed: 01/07/2023] Open
Abstract
WT P53-Induced Phosphatase 1 (WIP1) is a member of the magnesium-dependent serine/threonine protein phosphatase (PPM) family and is induced by P53 in response to DNA damage. In several human cancers, the WIP1 protein is overexpressed, which is generally associated with a worse prognosis. Although WIP1 is an attractive therapeutic target, no potent, selective, and bioactive small-molecule modulator with favorable pharmacokinetics has been reported. Phosphatase enzymes are among the most challenging targets for small molecules because of the difficulty of achieving both modulator selectivity and bioavailability. Another major obstacle has been the availability of robust and physiologically relevant phosphatase assays that are suitable for high-throughput screening. Here, we describe orthogonal biochemical WIP1 activity assays that utilize phosphopeptides from native WIP1 substrates. We optimized an MS assay to quantify the enzymatically dephosphorylated peptide reaction product in a 384-well format. Additionally, a red-shifted fluorescence assay was optimized in a 1,536-well format to enable real-time WIP1 activity measurements through the detection of the orthogonal reaction product, Pi. We validated these two optimized assays by quantitative high-throughput screening against the National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection and used secondary assays to confirm and evaluate inhibitors identified in the primary screen. Five inhibitors were further tested with an orthogonal WIP1 activity assay and surface plasmon resonance binding studies. Our results validate the application of miniaturized physiologically relevant and orthogonal WIP1 activity assays to discover small-molecule modulators from high-throughput screens.
Collapse
Affiliation(s)
- Victor Clausse
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Subrata Debnath
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Yuhong Fang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Harichandra D Tagad
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Yuhong Wang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Hongmao Sun
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Christopher A LeClair
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Sharlyn J Mazur
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Kelly Lane
- Imaging Probe Development Center, NHLBI, National Institutes of Health, Rockville, Maryland 20850
| | - Zhen-Dan Shi
- Imaging Probe Development Center, NHLBI, National Institutes of Health, Rockville, Maryland 20850
| | - Olga Vasalatiy
- Imaging Probe Development Center, NHLBI, National Institutes of Health, Rockville, Maryland 20850
| | - Rebecca Eells
- Reaction Biology Corporation, 1 Great Valley Parkway, Suite 2, Malvern, Pennsylvania 19355
| | - Lynn K Baker
- Reaction Biology Corporation, 1 Great Valley Parkway, Suite 2, Malvern, Pennsylvania 19355
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Martin R Webb
- Francis Crick Institute, 1 Midland Road, London NW1 AT, United Kingdom
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Ettore Appella
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Daniel H Appella
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Nathan P Coussens
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| |
Collapse
|
17
|
Fons NR, Sundaram RK, Breuer GA, Peng S, McLean RL, Kalathil AN, Schmidt MS, Carvalho DM, Mackay A, Jones C, Carcaboso ÁM, Nazarian J, Berens ME, Brenner C, Bindra RS. PPM1D mutations silence NAPRT gene expression and confer NAMPT inhibitor sensitivity in glioma. Nat Commun 2019; 10:3790. [PMID: 31439867 PMCID: PMC6706443 DOI: 10.1038/s41467-019-11732-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 08/01/2019] [Indexed: 12/11/2022] Open
Abstract
Pediatric high-grade gliomas are among the deadliest of childhood cancers due to limited knowledge of early driving events in their gliomagenesis and the lack of effective therapies available. In this study, we investigate the oncogenic role of PPM1D, a protein phosphatase often found truncated in pediatric gliomas such as DIPG, and uncover a synthetic lethal interaction between PPM1D mutations and nicotinamide phosphoribosyltransferase (NAMPT) inhibition. Specifically, we show that mutant PPM1D drives hypermethylation of CpG islands throughout the genome and promotes epigenetic silencing of nicotinic acid phosphoribosyltransferase (NAPRT), a key gene involved in NAD biosynthesis. Notably, PPM1D mutant cells are shown to be sensitive to NAMPT inhibitors in vitro and in vivo, within both engineered isogenic astrocytes and primary patient-derived model systems, suggesting the possible application of NAMPT inhibitors for the treatment of pediatric gliomas. Overall, our results reveal a promising approach for the targeting of PPM1D mutant tumors, and define a critical link between oncogenic driver mutations and NAD metabolism, which can be exploited for tumor-specific cell killing.
Collapse
Affiliation(s)
- Nathan R Fons
- Department of Pathology, Yale University, New Haven, CT, 06520, USA.,Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA
| | - Ranjini K Sundaram
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA
| | - Gregory A Breuer
- Department of Pathology, Yale University, New Haven, CT, 06520, USA.,Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA
| | - Sen Peng
- The Translational Genomics Research Institute (TGen), Phoenix, AZ, 85004, USA
| | - Ryan L McLean
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA
| | - Aravind N Kalathil
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA
| | - Mark S Schmidt
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Diana M Carvalho
- Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Alan Mackay
- Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Chris Jones
- Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | | | - Javad Nazarian
- Children's National Health System, Washington, DC, 20010, USA
| | - Michael E Berens
- The Translational Genomics Research Institute (TGen), Phoenix, AZ, 85004, USA.
| | - Charles Brenner
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.
| | - Ranjit S Bindra
- Department of Pathology, Yale University, New Haven, CT, 06520, USA. .,Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
18
|
Ge Y, Liu BL, Cui JP, Li SQ. Livin promotes colon cancer progression by regulation of H2A.X Y39ph via JMJD6. Life Sci 2019; 234:116788. [PMID: 31445935 DOI: 10.1016/j.lfs.2019.116788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/07/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
Livin is an important member of the human inhibitor of apoptosis proteins (IAPs) family. IAPs are proteins with antiapoptotic abilities, and their functions are different from the Bcl-2 (B-cell lymphoma-2) family proteins. However, the precise role of Livin in colon cancer progression remains unclear. The purpose of this study is to assess the effect of overexpression Livin in colon cancer cells and to examine its molecular mechanism. We demonstrated that Livin induced a colon cancer phenotype, including proliferation and migration, by regulating H2A.XY39ph (histone family 2A variant (H2AX) phosphorylated on the 39th serine site). We elucidated that Livin degraded Jumonji-C domain-containing 6 protein (JMJD6), which was mediated by the proteasome murine double minute 2 (MDM2), thereby regulating H2A.XY39ph. Above all, the overexpression of JMJD6 recovered H2A.XY39ph in colon cancer cells with a high level of Livin, thus inhibiting colon cancer malignancy progression. These results reveal a previously unrecognized role for Livin in regulating the tumor-initiating capacity in colon cancer and provide a novel treatment strategy in cancer via the interruption of H2A.XY39ph function and the interaction between H2A.XY39ph and JMJD6.
Collapse
Affiliation(s)
- Yang Ge
- The Six Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Bao-Lin Liu
- The Six Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jun-Peng Cui
- The Six Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Shu-Qiang Li
- The Six Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
19
|
Kim JJ, Lee SY, Miller KM. Preserving genome integrity and function: the DNA damage response and histone modifications. Crit Rev Biochem Mol Biol 2019; 54:208-241. [PMID: 31164001 DOI: 10.1080/10409238.2019.1620676] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modulation of chromatin templates in response to cellular cues, including DNA damage, relies heavily on the post-translation modification of histones. Numerous types of histone modifications including phosphorylation, methylation, acetylation, and ubiquitylation occur on specific histone residues in response to DNA damage. These histone marks regulate both the structure and function of chromatin, allowing for the transition between chromatin states that function in undamaged condition to those that occur in the presence of DNA damage. Histone modifications play well-recognized roles in sensing, processing, and repairing damaged DNA to ensure the integrity of genetic information and cellular homeostasis. This review highlights our current understanding of histone modifications as they relate to DNA damage responses (DDRs) and their involvement in genome maintenance, including the potential targeting of histone modification regulators in cancer, a disease that exhibits both epigenetic dysregulation and intrinsic DNA damage.
Collapse
Affiliation(s)
- Jae Jin Kim
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| | - Seo Yun Lee
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| | - Kyle M Miller
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
20
|
Wang B, Zhang Z, Xia S, Jiang M, Wang Y. Expression of γ-H2AX and patient prognosis in breast cancer cohort. J Cell Biochem 2019; 120:12958-12965. [PMID: 30920061 DOI: 10.1002/jcb.28567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 12/30/2022]
Abstract
H2AX phosphorylation is a novel marker of DNA double-stranded breaks. In the present study, we assessed the γ-H2AX expression, its association with other clinicopathologic characteristics, and the prognosis in a cohort of 97 patients with breast cancer. Ninety-seven specimens of tumor tissue and 77 adjacent normal tissues from patients with breast cancer were examined. All patients underwent modified radical mastectomy or local tumor resection without lymph node dissection. γ-H2AX expression was assessed by standard immunohistochemistry. Patients were followed after surgery for a mean duration of 70.1 ± 18.7 months (range, 6-93 months). The γ-H2AX staining was positive in 27 (27.8%) patients. The positive rates of H2AX were 26.0% and 2.6% in tumor tissue and adjacent normal tissues, respectively. γ-H2AX positive status was negatively associated with TNM staging, with 24 positive cases (32.4%) in TNM staging I-II, while no positive cases in TNM staging III-IV (P = 0.026). Sixteen patients (16.5%) died during the follow-up. No significant association between γ-H2AX expression and patient survival was detected. The unadjusted HR (hazard ratio) for γ-H2AX positive was 0.84 (95% CI: 0.27, 2.60). In TNM staging subgroup analysis, death only occurred in γ-H2AX negative patients. Our study is the first study to demonstrate that expression of γ-H2AX is associated with TNM staging. Due to the small sample and limited follow-up time, we did not observe a significant association between γ-H2AX and patient survival. γ-H2AX expression could be a potential biomarker for cancer diagnosis and prediction, and further studies are in need.
Collapse
Affiliation(s)
- Beili Wang
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Zhang
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shi'an Xia
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mawei Jiang
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yajie Wang
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
21
|
Cai Q, Wang JJ, Shao W, Ying SH, Feng MG. Rtt109-dependent histone H3 K56 acetylation and gene activity are essential for the biological control potential of Beauveria bassiana. PEST MANAGEMENT SCIENCE 2018; 74:2626-2635. [PMID: 29704296 DOI: 10.1002/ps.5054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/28/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Rtt109 is a histone acetyltransferase that catalyzes histone H3K56 acetylation required for genomic stability, DNA damage repair and virulence-related gene activity in yeast-like human pathogens but remains functionally unknown in fungal insect pathogens. This study seeks to elucidate the catalytic activity of a Rtt109 orthologue and its possible role in sustaining the biological control potential of Beauveria bassiana, a fungal entomopathogen. RESULTS Deletion of rtt109 in B. bassiana abolished histone H3K56 acetylation and triggered histone H2A-S129 phosphorylation. Consequently, the deletion mutant showed increased sensitivity to the stresses of DNA damage, oxidation, cell wall perturbation, high osmolarity and heat shock during colony growth, severe conidiation defects under normal culture conditions, reduced conidial hydrophobicity, decreased conidial UV-B resistance, and attenuated virulence through normal cuticle infection. These phenotypic changes correlated well with reduced transcript levels of many genes that encode the families of H2A-S129 dephosphorylation-related protein phosphatases, DNA damage-repairing factors, antioxidant enzymes, heat-shock proteins, key developmental activators, hydrophobins and cuticle-degrading Pr1 proteases respectively. CONCLUSION Rtt109 can acetylate H3K56 and dephosphorylate H2A-S129 in direct and indirect ways respectively, and hence has an essential role in sustaining the genomic stability and global gene activity required for conidiation capacity, environmental fitness and pest control potential in B. bassiana. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qing Cai
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Juan-Juan Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- School of Biological Science and Biotechnology, University of Jinan, Jinan, People's Republic of China
| | - Wei Shao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
22
|
Sethy R, Rakesh R, Patne K, Arya V, Sharma T, Haokip DT, Kumari R, Muthuswami R. Regulation of ATM and ATR by SMARCAL1 and BRG1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:1076-1092. [PMID: 30317028 DOI: 10.1016/j.bbagrm.2018.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/03/2018] [Accepted: 10/06/2018] [Indexed: 11/25/2022]
Abstract
The G2/M checkpoint is activated on DNA damage by the ATM and ATR kinases that are regulated by post-translational modifications. In this paper, the transcriptional co-regulation of ATM and ATR by SMARCAL1 and BRG1, both members of the ATP-dependent chromatin remodeling protein family, is described. SMARCAL1 and BRG1 co-localize on the promoters of ATM and ATR; downregulation of SMARCAL1 and BRG1 results in transcriptional repression of ATM/ATR and overriding of the G2/M checkpoint leading to mitotic abnormalities. On doxorubicin-induced DNA damage, SMARCAL1 and BRG1 are upregulated and these two proteins in turn, upregulate the expression of ATM/ATR. The transcriptional response to DNA damage is feedback regulated by phospho-ATM as it binds to the promoters of SMARCAL1, BRG1, ATM and ATR on DNA damage. The regulation of ATM/ATR is rendered non-functional in Schimke Immuno-Osseous Dysplasia where SMARCAL1 is mutated and in Coffin-Siris Syndrome where BRG1 is mutated. Thus, an intricate transcriptional regulation of DNA damage response genes mediated by SMARCAL1 and BRG1 is present in mammalian cells.
Collapse
Affiliation(s)
| | | | - Ketki Patne
- School of Life Sciences, JNU, New Delhi, India
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
53BP1 restrains DNA end resection, and its dosage imbalance upsets DNA double-strand break (DSB) repair pathway choice. Here, by monitoring 53BP1 distribution on DSB-flanking chromatin, we have established a dose-dependent role of the RING finger protein RNF169 in limiting 53BP1 DSB deposition. Moreover, we found that forced expression of RNF169 overcomes 53BP1 activity and stimulates mutagenic DSB repair via the single-strand annealing pathway. Our findings suggest that aberrant expression of RNF169 may represent a deleterious factor in DSB repair control and in maintenance of genome stability. Unrestrained 53BP1 activity at DNA double-strand breaks (DSBs) hampers DNA end resection and upsets DSB repair pathway choice. RNF169 acts as a molecular rheostat to limit 53BP1 deposition at DSBs, but how this fine balance translates to DSB repair control remains undefined. In striking contrast to 53BP1, ChIP analyses of AsiSI-induced DSBs unveiled that RNF169 exhibits robust accumulation at DNA end-proximal regions and preferentially targets resected, RPA-bound DSBs. Accordingly, we found that RNF169 promotes CtIP-dependent DSB resection and favors homology-mediated DSB repair, and further showed that RNF169 dose-dependently stimulates single-strand annealing repair, in part, by alleviating the 53BP1-imposed barrier to DSB end resection. Our results highlight the interplay of RNF169 with 53BP1 in fine-tuning choice of DSB repair pathways.
Collapse
|
24
|
Gil RS, Vagnarelli P. Protein phosphatases in chromatin structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:90-101. [PMID: 30036566 PMCID: PMC6227384 DOI: 10.1016/j.bbamcr.2018.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/29/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022]
Abstract
Chromatin structure and dynamics are highly controlled and regulated processes that play an essential role in many aspects of cell biology. The chromatin transition stages and the factors that control this process are regulated by post-translation modifications, including phosphorylation. While the role of protein kinases in chromatin dynamics has been quite well studied, the nature and regulation of the counteracting phosphatases represent an emerging field but are still at their infancy. In this review we summarize the current literature on phosphatases involved in the regulation of chromatin structure and dynamics, with emphases on the major knowledge gaps that should require attention and more investigation.
Collapse
Affiliation(s)
- Raquel Sales Gil
- Colleges of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Paola Vagnarelli
- Colleges of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK.
| |
Collapse
|
25
|
Leem J, Kim JS, Oh JS. WIP1 phosphatase suppresses the DNA damage response during G2/prophase arrest in mouse oocytes†. Biol Reprod 2018; 99:798-805. [DOI: 10.1093/biolre/ioy108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/30/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jiyeon Leem
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Jae-Sung Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jeong Su Oh
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
26
|
Bhattacharya D, Hiregange D, Rao BJ. ATR kinase regulates its attenuation via PPM1D phosphatase recruitment to chromatin during recovery from DNA replication stress signalling. J Biosci 2018; 43:25-47. [PMID: 29485113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In eukaryotes, in response to replication stress, DNA damage response kinase, ATR is activated, whose signalling abrogation leads to cell lethality due to aberrant fork remodelling and excessive origin firing. Here we report that inhibition of ATR kinase activity specifically during replication stress recovery results in persistent ATR signalling, evidenced by the presence of ATR-dependent phosphorylation marks (gamma H2AX, pChk1 and pRad17) and delayed cell cycle re-entry. Further, such disruption of ATR signalling attenuation leads to double-strand breaks, fork collapse and thereby 'replication catastrophe'. PPM1D phosphatase, a nucleolar localized protein, relocates to chromatin during replication stress and reverts back to nucleolus following stress recovery, under the control of ATR kinase action. Inhibition of ATR kinase activity, specifically during post replication stress, triggers dislodging of the chromatin-bound PPM1D from nucleus to cytoplasm followed by its degradation, thereby leading to persistence of activated ATR marks in the nuclei. Chemical inhibition of PPM1D activity or SiRNA mediated depletion of the protein during post replication stress recovery 'phenocopies' ATR kinase inhibition by failing to attenuate ATR signalling. Collectively, our observations suggest a novel role of ATR kinase in mediating its own signal attenuation via PPM1D recruitment to chromatin as an essential mechanism for restarting the stalled forks, cell-cycle re-entry and cellular recovery from replication stress.
Collapse
Affiliation(s)
- Debadrita Bhattacharya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400 005, India
| | | | | |
Collapse
|
27
|
Post-Translational Modifications of H2A Histone Variants and Their Role in Cancer. Cancers (Basel) 2018; 10:cancers10030059. [PMID: 29495465 PMCID: PMC5876634 DOI: 10.3390/cancers10030059] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/19/2018] [Accepted: 02/25/2018] [Indexed: 12/12/2022] Open
Abstract
Histone variants are chromatin components that replace replication-coupled histones in a fraction of nucleosomes and confer particular characteristics to chromatin. H2A variants represent the most numerous and diverse group among histone protein families. In the nucleosomal structure, H2A-H2B dimers can be removed and exchanged more easily than the stable H3-H4 core. The unstructured N-terminal histone tails of all histones, but also the C-terminal tails of H2A histones protrude out of the compact structure of the nucleosome core. These accessible tails are the preferential target sites for a large number of post-translational modifications (PTMs). While some PTMs are shared between replication-coupled H2A and H2A variants, many modifications are limited to a specific histone variant. The present review focuses on the H2A variants H2A.Z, H2A.X, and macroH2A, and summarizes their functions in chromatin and how these are linked to cancer development and progression. H2A.Z primarily acts as an oncogene and macroH2A and H2A.X as tumour suppressors. We further focus on the regulation by PTMs, which helps to understand a degree of context dependency.
Collapse
|
28
|
Bhattacharya D, Hiregange D, Rao BJ. ATR kinase regulates its attenuation via PPM1D phosphatase recruitment to chromatin during recovery from DNA replication stress signalling. J Biosci 2018. [DOI: 10.1007/s12038-018-9736-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Pechackova S, Burdova K, Benada J, Kleiblova P, Jenikova G, Macurek L. Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3. Oncotarget 2018; 7:14458-75. [PMID: 26883108 PMCID: PMC4924728 DOI: 10.18632/oncotarget.7363] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/29/2016] [Indexed: 02/07/2023] Open
Abstract
PP2C family serine/threonine phosphatase WIP1 acts as a negative regulator of the tumor suppressor p53 and is implicated in silencing of cellular responses to genotoxic stress. Chromosomal locus 17q23 carrying the PPM1D (coding for WIP1) is commonly amplified in breast carcinomas and WIP1 was proposed as potential pharmacological target. Here we employed a cellular model with knocked out PPM1D to validate the specificity and efficiency of GSK2830371, novel small molecule inhibitor of WIP1. We have found that GSK2830371 increased activation of the DNA damage response pathway to a comparable level as the loss of PPM1D. In addition, GSK2830371 did not affect proliferation of cells lacking PPM1D but significantly supressed proliferation of breast cancer cells with amplified PPM1D. Over time cells treated with GSK2830371 accumulated in G1 and G2 phases of the cell cycle in a p21-dependent manner and were prone to induction of senescence by a low dose of MDM2 antagonist nutlin-3. In addition, combined treatment with GSK2830371 and doxorubicin or nutlin-3 potentiated cell death through a strong induction of p53 pathway and activation of caspase 9. We conclude that efficient inhibition of WIP1 by GSK2830371 sensitizes breast cancer cells with amplified PPM1D and wild type p53 to chemotherapy.
Collapse
Affiliation(s)
- Sona Pechackova
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic
| | - Kamila Burdova
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic
| | - Jan Benada
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic
| | - Petra Kleiblova
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic.,Institute of Biochemistry and Experimental Oncology, Charles University in Prague, CZ-12853 Prague, Czech Republic
| | - Gabriela Jenikova
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic
| | - Libor Macurek
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic
| |
Collapse
|
30
|
Abstract
Cells undergoing oncogenic transformation frequently inactivate tumor suppressor pathways that could prevent their uncontrolled growth. Among those pathways p53 and p38MAPK pathways play a critical role in regulation of cell cycle, senescence and cell death in response to activation of oncogenes, stress and DNA damage. Consequently, these two pathways are important in determining the sensitivity of tumor cells to anti-cancer treatment. Wild type p53-induced phosphatase, Wip1, is involved in governance of both pathways. Recently, strategies directed to manipulation with Wip1 activity proposed to advance current day anticancer treatment and novel chemical compounds synthesized to improve specificity of manipulation with Wip1 activity. Here we reviewed the history of Wip1 studies in vitro and in vivo, in genetically modified animal models that support Wip1 role in tumorigenesis through regulation of p53 and p38MAPK pathways. Based on our knowledge we propose several recommendations for future more accurate studies of Wip1 interactions with other pathways involved in tumorigenesis using recently developed tools and for adoption of Wip1 manipulation strategies in anti-cancer therapy.
Collapse
|
31
|
Chang H, Wei JW, Tao YL, Ding PR, Xia YF, Gao YH, Xiao WW. CCR6 Is a Predicting Biomarker of Radiosensitivity and Potential Target of Radiosensitization in Rectal Cancer. Cancer Res Treat 2017; 50:1203-1213. [PMID: 29268566 PMCID: PMC6192915 DOI: 10.4143/crt.2017.538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022] Open
Abstract
PURPOSE This study aimed to explore the functions and mechanisms of C-C motif chemokine receptor 6 (CCR6), a gene associated with progression and metastasis of colorectal cancer (CRC), in radiosensitivity of rectal cancer (RC). Materials and Methods RNA sequencing and immunohistochemical analysis on CCR6 expression were performed in pretreatment tissues of RC patients exhibiting different therapeutic effects of radiotherapy. Colonogenic survival assay was conducted in different CRC cell lines to assess their radiosensitivity. And the impact of CCR6 expression on radiosensitivity was validated through RNA interference. The DNA damage repair (DDR) abilities of cell lines with different CCR6 expression were evaluated through immunofluorescence-based γH2AX quantification. RESULTS The CCR6 mRNA level was higher in patients without pathologic complete remission (pCR) than in those with pCR (fold changed, 2.11; p=0.004). High-level expression of CCR6 protein was more common in the bad responders than in the good responders (76.3% vs. 37.5%, p < 0.001). The CRC cell lines with higher CCR6 expression (LoVo and sw480) appeared to be more radioresistant, compared with the sw620 cell line which had lower CCR6 expression. CCR6 knockdown made the LoVo cells more sensitive to ionizing radiation (sensitization enhancement ratio, 1.738; p < 0.001), and decreased their DDR efficiency. CONCLUSION CCR6 might affect the RC radiosensitivity through DDR process. These findings supported CCR6 as a predicting biomarker of radiosensitivity and a potential target of radiosensitization for RC patients.
Collapse
Affiliation(s)
- Hui Chang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Wang Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ya-Lan Tao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Pei-Rong Ding
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yun-Fei Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuan-Hong Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei-Wei Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
32
|
Zhan XH, Xu QY, Tian R, Yan H, Zhang M, Wu J, Wang W, He J. MicroRNA16 regulates glioma cell proliferation, apoptosis and invasion by targeting Wip1-ATM-p53 feedback loop. Oncotarget 2017; 8:54788-54798. [PMID: 28903382 PMCID: PMC5589621 DOI: 10.18632/oncotarget.18510] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/27/2017] [Indexed: 01/05/2023] Open
Abstract
The present study aimed to investigate the role and underlying mechanisms of microRNA16 (miR-16) on proliferation, apoptosis and invasion of glioma cells. The cell models of miR-16 upregulation and Negative control group (NC group) were built. The cell functions of different groups were detected by colony formation assay, transwell chamber assay, proliferation, apoptosis and cycle experiments. The intracranial orthotopic transplantation animal models were built to different groups: miR-16 agomir group, miR-16 antagomir group and their NC group. The expressions of miR-16, Wip1, ATM and p53 were measured by qRT-PCR, western blot and immunohistochemistry. As a result, miR-16 overexpressed groups had lower cloning formation rate and proliferation rate, less invasive cells, higher early apoptosis rate than the control groups. G1 phase was significantly smaller compared miR-16 overexpressed groups with the control groups, and S phase significantly lesser. Cell growth was retardated. Differences were statistically significant (P <0.05). Compared with miR-16 overexpressed groups and NC groups, the Wip1 gene and protein expression were downregulated, while ATM and p53 genes, p-ATM and p-p53 proteins were upregulated. The differences were statistically significant (P <0.05). Taken together, our findings demonstrated that miR-16 suppressed glioma cell proliferation and invasion, promoted apoptosis and inhibited cell cycle by targeting Wip1-ATM-p53 signaling pathway.
Collapse
Affiliation(s)
- Xiao-Hong Zhan
- 1 School of Medicine, Shandong University, Jinan 250012, Shangdong Province, P.R. China
- 2 Department of Pathology, Anhui Provincial Cancer Hospital; Anhui Provincial Hospital, Anhui Medical University, Hefei 230031, Anhui Province, P.R. China
- 3 Department of Pathology, The Affiliated Central Hospital of Qingdao University, Qingdao 266000, Shandong Province, P.R. China
| | - Qiu-Yan Xu
- 2 Department of Pathology, Anhui Provincial Cancer Hospital; Anhui Provincial Hospital, Anhui Medical University, Hefei 230031, Anhui Province, P.R. China
| | - Rui Tian
- 2 Department of Pathology, Anhui Provincial Cancer Hospital; Anhui Provincial Hospital, Anhui Medical University, Hefei 230031, Anhui Province, P.R. China
| | - Hong Yan
- 2 Department of Pathology, Anhui Provincial Cancer Hospital; Anhui Provincial Hospital, Anhui Medical University, Hefei 230031, Anhui Province, P.R. China
| | - Min Zhang
- 2 Department of Pathology, Anhui Provincial Cancer Hospital; Anhui Provincial Hospital, Anhui Medical University, Hefei 230031, Anhui Province, P.R. China
| | - Jing Wu
- 2 Department of Pathology, Anhui Provincial Cancer Hospital; Anhui Provincial Hospital, Anhui Medical University, Hefei 230031, Anhui Province, P.R. China
| | - Wei Wang
- 4 Department of Medical Oncology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, Anhui Province, P.R. China
| | - Jie He
- 1 School of Medicine, Shandong University, Jinan 250012, Shangdong Province, P.R. China
- 2 Department of Pathology, Anhui Provincial Cancer Hospital; Anhui Provincial Hospital, Anhui Medical University, Hefei 230031, Anhui Province, P.R. China
| |
Collapse
|
33
|
Pecháčková S, Burdová K, Macurek L. WIP1 phosphatase as pharmacological target in cancer therapy. J Mol Med (Berl) 2017; 95:589-599. [PMID: 28439615 PMCID: PMC5442293 DOI: 10.1007/s00109-017-1536-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
DNA damage response (DDR) pathway protects cells from genome instability and prevents cancer development. Tumor suppressor p53 is a key molecule that interconnects DDR, cell cycle checkpoints, and cell fate decisions in the presence of genotoxic stress. Inactivating mutations in TP53 and other genes implicated in DDR potentiate cancer development and also influence the sensitivity of cancer cells to treatment. Protein phosphatase 2C delta (referred to as WIP1) is a negative regulator of DDR and has been proposed as potential pharmaceutical target. Until recently, exploitation of WIP1 inhibition for suppression of cancer cell growth was compromised by the lack of selective small-molecule inhibitors effective at cellular and organismal levels. Here, we review recent advances in development of WIP1 inhibitors and discuss their potential use in cancer treatment.
Collapse
Affiliation(s)
- Soňa Pecháčková
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220, Prague, Czech Republic
| | - Kamila Burdová
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220, Prague, Czech Republic
| | - Libor Macurek
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220, Prague, Czech Republic.
| |
Collapse
|
34
|
Wamsley JJ, Issaeva N, An H, Lu X, Donehower LA, Yarbrough WG. LZAP is a novel Wip1 binding partner and positive regulator of its phosphatase activity in vitro. Cell Cycle 2016; 16:213-223. [PMID: 28027003 DOI: 10.1080/15384101.2016.1261767] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The phosphatase Wip1 attenuates the DNA damage response (DDR) by removing phosphorylation marks from a number of DDR proteins (p53, MDM2, Chk1/2, p38). Wip1 also dephosphorylates and inactivates RelA. Notably, LZAP, a putative tumor suppressor, has been linked to dephosphorylation of several of these substrates, including RelA, p38, Chk1, and Chk2. LZAP has no known catalytic activity or functional motifs, suggesting that it exerts its effects through interaction with other proteins. Here we show that LZAP binds Wip1 and stimulates its phosphatase activity. LZAP had been previously shown to bind many Wip1 substrates (RelA, p38, Chk1/2), and our results show that LZAP also binds the previously identified Wip1 substrate, MDM2. This work identifies 2 novel Wip1 substrates, ERK1 and HuR, and demonstrates that HuR is a binding partner of LZAP. Pleasingly, LZAP potentiated Wip1 catalytic activity toward each substrate tested, regardless of whether full-length substrates or phosphopeptides were utilized. Since this effect was observed on ERK1, which does not bind LZAP, as well as for each of 7 peptides tested, we hypothesize that LZAP binding to the substrate is not required for this effect and that LZAP directly binds Wip1 to augment its phosphatase activity.
Collapse
Affiliation(s)
- J Jacob Wamsley
- a Department of Surgery, Division of Otolaryngology , Yale University , New Haven , CT , USA
| | - Natalia Issaeva
- a Department of Surgery, Division of Otolaryngology , Yale University , New Haven , CT , USA.,b Yale Cancer Center, Yale University , New Haven , CT , USA
| | - Hanbing An
- c Department of Surgery , Vanderbilt University , Nashville , TN , USA
| | - Xinyuan Lu
- d Department of Medicine , University of California San Francisco , San Francisco , CA , USA
| | - Lawrence A Donehower
- e Department of Molecular Virology and Microbiology , Baylor College of Medicine , Houston , TX , USA
| | - Wendell G Yarbrough
- a Department of Surgery, Division of Otolaryngology , Yale University , New Haven , CT , USA.,b Yale Cancer Center, Yale University , New Haven , CT , USA.,f Department of Pathology , Yale University , New Haven , CT , USA
| |
Collapse
|
35
|
de Boer HR, Llobet SG, van Vugt MATM. Erratum to: Controlling the response to DNA damage by the APC/C-Cdh1. Cell Mol Life Sci 2016; 73:2985-2998. [PMID: 27251328 PMCID: PMC4969907 DOI: 10.1007/s00018-016-2279-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- H Rudolf de Boer
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sergi Guerrero Llobet
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
36
|
Adriaens C, Standaert L, Barra J, Latil M, Verfaillie A, Kalev P, Boeckx B, Wijnhoven PWG, Radaelli E, Vermi W, Leucci E, Lapouge G, Beck B, van den Oord J, Nakagawa S, Hirose T, Sablina AA, Lambrechts D, Aerts S, Blanpain C, Marine JC. p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat Med 2016; 22:861-8. [PMID: 27376578 DOI: 10.1038/nm.4135] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/02/2016] [Indexed: 12/13/2022]
Abstract
In a search for mediators of the p53 tumor suppressor pathway, which induces pleiotropic and often antagonistic cellular responses, we identified the long noncoding RNA (lncRNA) NEAT1. NEAT1 is an essential architectural component of paraspeckle nuclear bodies, whose pathophysiological relevance remains unclear. Activation of p53, pharmacologically or by oncogene-induced replication stress, stimulated the formation of paraspeckles in mouse and human cells. Silencing Neat1 expression in mice, which prevents paraspeckle formation, sensitized preneoplastic cells to DNA-damage-induced cell death and impaired skin tumorigenesis. We provide mechanistic evidence that NEAT1 promotes ATR signaling in response to replication stress and is thereby engaged in a negative feedback loop that attenuates oncogene-dependent activation of p53. NEAT1 targeting in established human cancer cell lines induced synthetic lethality with genotoxic chemotherapeutics, including PARP inhibitors, and nongenotoxic activation of p53. This study establishes a key genetic link between NEAT1 paraspeckles, p53 biology and tumorigenesis and identifies NEAT1 as a promising target to enhance sensitivity of cancer cells to both chemotherapy and p53 reactivation therapy.
Collapse
Affiliation(s)
- Carmen Adriaens
- Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, VIB, KU Leuven, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Laura Standaert
- Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, VIB, KU Leuven, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Jasmine Barra
- Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, VIB, KU Leuven, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Mathilde Latil
- Université Libre de Bruxelles, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Bruxelles, Belgium
| | - Annelien Verfaillie
- Laboratory of Computational Biology, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Peter Kalev
- Laboratory for Mechanisms of Cell Transformation, Center for the Biology of Disease, VIB, KU Leuven, Leuven, Belgium
- Laboratory for Mechanisms of Cell Transformation, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Bram Boeckx
- Vesalius Research Center, VIB, KU Leuven, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Paul W G Wijnhoven
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Enrico Radaelli
- Mouse Histopathology Core Facility, Center for the Biology of Disease, VIB, KU Leuven, Leuven, Belgium
| | - William Vermi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eleonora Leucci
- Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, VIB, KU Leuven, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Gaëlle Lapouge
- Université Libre de Bruxelles, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Bruxelles, Belgium
| | - Benjamin Beck
- Université Libre de Bruxelles, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Bruxelles, Belgium
| | - Joost van den Oord
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN, Wako, Japan
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Anna A Sablina
- Laboratory for Mechanisms of Cell Transformation, Center for the Biology of Disease, VIB, KU Leuven, Leuven, Belgium
- Laboratory for Mechanisms of Cell Transformation, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Vesalius Research Center, VIB, KU Leuven, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Stein Aerts
- Laboratory of Computational Biology, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Cédric Blanpain
- Université Libre de Bruxelles, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Bruxelles, Belgium
- WELBIO, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, VIB, KU Leuven, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Center for Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Kulashreshtha M, Mehta IS, Kumar P, Rao BJ. Chromosome territory relocation during DNA repair requires nuclear myosin 1 recruitment to chromatin mediated by ϒ-H2AX signaling. Nucleic Acids Res 2016; 44:8272-91. [PMID: 27365048 PMCID: PMC5041470 DOI: 10.1093/nar/gkw573] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/03/2016] [Indexed: 11/22/2022] Open
Abstract
During DNA damage response (DDR), certain gene rich chromosome territories (CTs) relocate to newer positions within interphase nuclei and revert to their native locations following repair. Such dynamic relocation of CTs has been observed under various cellular conditions, however, the underlying mechanistic basis of the same has remained largely elusive. In this study, we aim to understand the temporal and molecular details of such crosstalk between DDR signaling and CT relocation dynamics. We demonstrate that signaling at DNA double strand breaks (DSBs) by the phosphorylated histone variant (ϒ-H2AX) is a pre-requisite for damage induced CT relocation, as cells deficient in ϒ-H2AX signaling fail to exhibit such a response. Inhibition of Rad51 or DNA Ligase IV mediated late steps of double strand break repair does not seem to abrogate CT relocation completely. Upon DNA damage, an increase in the levels of chromatin bound motor protein nuclear myosin 1 (NM1) ensues, which appears to be functionally linked to ϒ-H2AX signaling. Importantly, the motor function of NM1 is essential for its recruitment to chromatin and CT relocation following damage. Taking these observations together, we propose that early DDR sensing and signaling result in NM1 recruitment to chromosomes which in turn guides DNA damage induced CT relocation.
Collapse
Affiliation(s)
- Mugdha Kulashreshtha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Ishita S Mehta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India UM-DAE Centre for Excellence in Basic Sciences, Biological Sciences, Kalina Campus, Santacruz (E), Mumbai, Maharashtra 400098, India
| | - Pradeep Kumar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India UM-DAE Centre for Excellence in Basic Sciences, Biological Sciences, Kalina Campus, Santacruz (E), Mumbai, Maharashtra 400098, India
| | - Basuthkar J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| |
Collapse
|
38
|
Clausse V, Goloudina AR, Uyanik B, Kochetkova EY, Richaud S, Fedorova OA, Hammann A, Bardou M, Barlev NA, Garrido C, Demidov ON. Wee1 inhibition potentiates Wip1-dependent p53-negative tumor cell death during chemotherapy. Cell Death Dis 2016; 7:e2195. [PMID: 27077811 PMCID: PMC4855675 DOI: 10.1038/cddis.2016.96] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 12/16/2022]
Abstract
Inactivation of p53 found in more than half of human cancers is often associated with increased tumor resistance to anti-cancer therapy. We have previously shown that overexpression of the phosphatase Wip1 in p53-negative tumors sensitizes them to chemotherapeutic agents, while protecting normal tissues from the side effects of anti-cancer treatment. In this study, we decided to search for kinases that prevent Wip1-mediated sensitization of cancer cells, thereby interfering with efficacy of genotoxic anti-cancer drugs. To this end, we performed a flow cytometry-based screening in order to identify kinases that regulated the levels of γH2AX, which were used as readout. Another criterion of the screen was increased sensitivity of p53-negative tumor cells to cisplatin (CDDP) in a Wip1-dependent manner. We have found that a treatment with a low dose (75 nM) of MK-1775, a recently described specific chemical inhibitor of Wee1, decreases CDDP-induced H2AX phosphorylation in p53-negative cells and enhances the Wip1-sensitization of p53-negative tumors. We were able to reduce CDDP effective concentration by 40% with a combination of Wip1 overexpression and Wee1 kinase inhibition. We have observed that Wee1 inhibition potentiates Wip1-dependent tumor sensitization effect by reducing levels of Hipk2 kinase, a negative regulator of Wip1 pathway. In addition, during CDDP treatment, the combination of Wee1 inhibition and Wip1 overexpression has a mild but significant protective effect in normal cells and tissues. Our results indicate that inhibition of the negative regulators of Wip1 pathway, Wee1 and Hipk2, in p53-negative tumors could potentiate efficiency of chemotherapeutic agents without concomitant increase of cytotoxicity in normal tissues. The development and clinical use of Wee1 and Hipk1 kinase chemical inhibitors might be a promising strategy to improve anti-cancer therapy.
Collapse
Affiliation(s)
- V Clausse
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France
| | - A R Goloudina
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France
| | - B Uyanik
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France
| | | | - S Richaud
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France
| | - O A Fedorova
- Institute of Cytology, RAS, St. Petersburg, Russia
| | - A Hammann
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France
| | - M Bardou
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France
| | - N A Barlev
- Institute of Cytology, RAS, St. Petersburg, Russia
| | - C Garrido
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France.,Anticancer Center Georges François Leclerc, Dijon, France
| | - O N Demidov
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France.,Institute of Cytology, RAS, St. Petersburg, Russia
| |
Collapse
|
39
|
de Boer HR, Guerrero Llobet S, van Vugt MATM. Controlling the response to DNA damage by the APC/C-Cdh1. Cell Mol Life Sci 2016; 73:949-60. [PMID: 26650195 PMCID: PMC4744251 DOI: 10.1007/s00018-015-2096-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/10/2015] [Accepted: 11/16/2015] [Indexed: 12/31/2022]
Abstract
Proper cell cycle progression is safeguarded by the oscillating activities of cyclin/cyclin-dependent kinase complexes. An important player in the regulation of mitotic cyclins is the anaphase-promoting complex/cyclosome (APC/C), a multi-subunit E3 ubiquitin ligase. Prior to entry into mitosis, the APC/C remains inactive, which allows the accumulation of mitotic regulators. APC/C activation requires binding to either the Cdc20 or Cdh1 adaptor protein, which sequentially bind the APC/C and facilitate targeting of multiple mitotic regulators for proteasomal destruction, including Securin and Cyclin B, to ensure proper chromosome segregation and mitotic exit. Emerging data have indicated that the APC/C, particularly in association with Cdh1, also functions prior to mitotic entry. Specifically, the APC/C-Cdh1 is activated in response to DNA damage in G2 phase cells. These observations are in line with in vitro and in vivo genetic studies, in which cells lacking Cdh1 expression display various defects, including impaired DNA repair and aberrant cell cycle checkpoints. In this review, we summarize the current literature on APC/C regulation in response to DNA damage, the functions of APC/C-Cdh1 activation upon DNA damage, and speculate how APC/C-Cdh1 can control cell fate in the context of persistent DNA damage.
Collapse
Affiliation(s)
- H Rudolf de Boer
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - S Guerrero Llobet
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
40
|
TIPRL Inhibits Protein Phosphatase 4 Activity and Promotes H2AX Phosphorylation in the DNA Damage Response. PLoS One 2015; 10:e0145938. [PMID: 26717153 PMCID: PMC4696667 DOI: 10.1371/journal.pone.0145938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/10/2015] [Indexed: 11/19/2022] Open
Abstract
Despite advances in our understanding of protein kinase regulation in the DNA damage response, the mechanism that controls protein phosphatase activity in this pathway is unclear. Unlike kinases, the activity and specificity of serine/threonine phosphatases is governed largely by their associated proteins. Here we show that Tip41-like protein (TIPRL), an evolutionarily conserved binding protein for PP2A-family phosphatases, is a negative regulator of protein phosphatase 4 (PP4). Knockdown of TIPRL resulted in increased PP4 phosphatase activity and formation of the active PP4-C/PP4R2 complex known to dephosphorylate γ-H2AX. Thus, overexpression of TIPRL promotes phosphorylation of H2AX, and increases γ-H2AX positive foci in response to DNA damage, whereas knockdown of TIPRL inhibits γ-H2AX phosphorylation. In correlation with γ-H2AX levels, we found that TIPRL overexpression promotes cell death in response to genotoxic stress, and knockdown of TIPRL protects cells from genotoxic agents. Taken together, these data demonstrate that TIPRL inhibits PP4 activity to allow for H2AX phosphorylation and the subsequent DNA damage response.
Collapse
|
41
|
Tutton S, Azzam GA, Stong N, Vladimirova O, Wiedmer A, Monteith JA, Beishline K, Wang Z, Deng Z, Riethman H, McMahon SB, Murphy M, Lieberman PM. Subtelomeric p53 binding prevents accumulation of DNA damage at human telomeres. EMBO J 2015; 35:193-207. [PMID: 26658110 DOI: 10.15252/embj.201490880] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 11/11/2015] [Indexed: 11/09/2022] Open
Abstract
Telomeres and tumor suppressor protein TP53 (p53) function in genome protection, but a direct role of p53 at telomeres has not yet been described. Here, we have identified non-canonical p53-binding sites within the human subtelomeres that suppress the accumulation of DNA damage at telomeric repeat DNA. These non-canonical subtelomeric p53-binding sites conferred transcription enhancer-like functions that include an increase in local histone H3K9 and H3K27 acetylation and stimulation of subtelomeric transcripts, including telomere repeat-containing RNA (TERRA). p53 suppressed formation of telomere-associated γH2AX and prevented telomere DNA degradation in response to DNA damage stress. Our findings indicate that p53 provides a direct chromatin-associated protection to human telomeres, as well as other fragile genomic sites. We propose that p53-associated chromatin modifications enhance local DNA repair or protection to provide a previously unrecognized tumor suppressor function of p53.
Collapse
Affiliation(s)
| | | | | | | | | | - Jessica A Monteith
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Zhuo Wang
- The Wistar Institute, Philadelphia, PA, USA
| | - Zhong Deng
- The Wistar Institute, Philadelphia, PA, USA
| | | | - Steven B McMahon
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | |
Collapse
|
42
|
Peng B, Wang J, Hu Y, Zhao H, Hou W, Zhao H, Wang H, Liao J, Xu X. Modulation of LSD1 phosphorylation by CK2/WIP1 regulates RNF168-dependent 53BP1 recruitment in response to DNA damage. Nucleic Acids Res 2015; 43:5936-47. [PMID: 25999347 PMCID: PMC4499147 DOI: 10.1093/nar/gkv528] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/10/2015] [Indexed: 12/12/2022] Open
Abstract
Proper DNA damage response is essential for the maintenance of genome integrity. The E3 ligase RNF168 deficiency fully prevents both the initial recruitment and retention of 53BP1 at sites of DNA damage. In response to DNA damage, RNF168-dependent recruitment of the lysine-specific demethylase LSD1 to the site of DNA damage promotes local H3K4me2 demethylation and ubiquitination of H2A/H2AX, facilitating 53BP1 recruitment to sites of DNA damage. Alternatively, RNF168-mediated K63-linked ubiquitylation of 53BP1 is required for the initial recruitment of 53BP1 to sites of DNA damage and for its function in repair. We demonstrated here that phosphorylation and dephosphorylation of LSD1 at S131 and S137 was mediated by casein kinase 2 (CK2) and wild-type p53-induced phosphatase 1 (WIP1), respectively. LSD1, RNF168 and 53BP1 interacted with each other directly. CK2-mediated phosphorylation of LSD1 exhibited no impact on its interaction with 53BP1, but promoted its interaction with RNF168 and RNF168-dependent 53BP1 ubiquitination and subsequent recruitment to the DNA damage sites. Furthermore, overexpression of phosphorylation-defective mutants failed to restore LSD1 depletion-induced cellular sensitivity to DNA damage. Taken together, our results suggest that LSD1 phosphorylation modulated by CK2/WIP1 regulates RNF168-dependent 53BP1 recruitment directly in response to DNA damage and cellular sensitivity to DNA damaging agents.
Collapse
Affiliation(s)
- Bin Peng
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jing Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuan Hu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hongli Zhao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wenya Hou
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hongchang Zhao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ji Liao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xingzhi Xu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
43
|
Mirzayans R, Andrais B, Scott A, Wang YW, Weiss RH, Murray D. Spontaneous γH2AX Foci in Human Solid Tumor-Derived Cell Lines in Relation to p21WAF1 and WIP1 Expression. Int J Mol Sci 2015; 16:11609-28. [PMID: 26006237 PMCID: PMC4463719 DOI: 10.3390/ijms160511609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/12/2015] [Accepted: 05/15/2015] [Indexed: 12/26/2022] Open
Abstract
Phosphorylation of H2AX on Ser139 (γH2AX) after exposure to ionizing radiation produces nuclear foci that are detectable by immunofluorescence microscopy. These so-called γH2AX foci have been adopted as quantitative markers for DNA double-strand breaks. High numbers of spontaneous γH2AX foci have also been reported for some human solid tumor-derived cell lines, but the molecular mechanism(s) for this response remains elusive. Here we show that cancer cells (e.g., HCT116; MCF7) that constitutively express detectable levels of p21WAF1 (p21) exhibit low numbers of γH2AX foci (<3/nucleus), whereas p21 knockout cells (HCT116p21−/−) and constitutively low p21-expressing cells (e.g., MDA-MB-231) exhibit high numbers of foci (e.g., >50/nucleus), and that these foci are not associated with apoptosis. The majority (>95%) of cells within HCT116p21−/− and MDA-MB-231 cultures contain high levels of phosphorylated p53, which is localized in the nucleus. We further show an inverse relationship between γH2AX foci and nuclear accumulation of WIP1, an oncogenic phosphatase. Our studies suggest that: (i) p21 deficiency might provide a selective pressure for the emergence of apoptosis-resistant progeny exhibiting genomic instability, manifested as spontaneous γH2AX foci coupled with phosphorylation and nuclear accumulation of p53; and (ii) p21 might contribute to positive regulation of WIP1, resulting in dephosphorylation of γH2AX.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| | - Bonnie Andrais
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| | - April Scott
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| | - Ying W Wang
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| | - Robert H Weiss
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, CA 95616, USA.
- Department of Medicine, Mather VA Medical Center, Sacramento, CA 95655, USA.
| | - David Murray
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
44
|
Richter M, Dayaram T, Gilmartin AG, Ganji G, Pemmasani SK, Van Der Key H, Shohet JM, Donehower LA, Kumar R. WIP1 phosphatase as a potential therapeutic target in neuroblastoma. PLoS One 2015; 10:e0115635. [PMID: 25658463 PMCID: PMC4319922 DOI: 10.1371/journal.pone.0115635] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/25/2014] [Indexed: 12/15/2022] Open
Abstract
The wild-type p53-induced phosphatase 1 (WIP1) is a serine/threonine phosphatase that negatively regulates multiple proteins involved in DNA damage response including p53, CHK2, Histone H2AX, and ATM, and it has been shown to be overexpressed or amplified in human cancers including breast and ovarian cancers. We examined WIP1 mRNA levels across multiple tumor types and found the highest levels in breast cancer, leukemia, medulloblastoma and neuroblastoma. Neuroblastoma is an exclusively TP53 wild type tumor at diagnosis and inhibition of p53 is required for tumorigenesis. Neuroblastomas in particular have previously been shown to have 17q amplification, harboring the WIP1 (PPM1D) gene and associated with poor clinical outcome. We therefore sought to determine whether inhibiting WIP1 with a selective antagonist, GSK2830371, can attenuate neuroblastoma cell growth through reactivation of p53 mediated tumor suppression. Neuroblastoma cell lines with wild-type TP53 alleles were highly sensitive to GSK2830371 treatment, while cell lines with mutant TP53 were resistant to GSK2830371. The majority of tested neuroblastoma cell lines with copy number gains of the PPM1D locus were also TP53 wild-type and sensitive to GSK2830371A; in contrast cell lines with no copy gain of PPM1D were mixed in their sensitivity to WIP1 inhibition, with the primary determinant being TP53 mutational status. Since WIP1 is involved in the cellular response to DNA damage and drugs used in neuroblastoma treatment induce apoptosis through DNA damage, we sought to determine whether GSK2830371 could act synergistically with standard of care chemotherapeutics. Treatment of wild-type TP53 neuroblastoma cell lines with both GSK2830371 and either doxorubicin or carboplatin resulted in enhanced cell death, mediated through caspase 3/7 induction, as compared to either agent alone. Our data suggests that WIP1 inhibition represents a novel therapeutic approach to neuroblastoma that could be integrated with current chemotherapeutic approaches.
Collapse
Affiliation(s)
- Mark Richter
- Oncology R&D, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania, United States of America
| | - Tajhal Dayaram
- Department of Molecular Virology and Microbiology and Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Aidan G. Gilmartin
- Oncology R&D, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania, United States of America
| | - Gopinath Ganji
- Oncology R&D, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania, United States of America
| | | | - Harjeet Van Der Key
- Platform Technology & Science, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania, United States of America
| | - Jason M. Shohet
- Texas Children’s Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lawrence A. Donehower
- Department of Molecular Virology and Microbiology and Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (LAD); (RK)
| | - Rakesh Kumar
- Oncology R&D, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania, United States of America
- * E-mail: (LAD); (RK)
| |
Collapse
|
45
|
Dong Y, Yin S, Song X, Huo Y, Fan L, Ye M, Hu H. Involvement of ROS-p38-H2AX axis in novel curcumin analogues-induced apoptosis in breast cancer cells. Mol Carcinog 2015; 55:323-34. [DOI: 10.1002/mc.22280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/25/2014] [Accepted: 12/08/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Yinhui Dong
- Department of Nutrition and Health; College of Food Science and Nutritional Engineering; China Agricultural University; Haidian District Beijing China
| | - Shutao Yin
- Department of Nutrition and Health; College of Food Science and Nutritional Engineering; China Agricultural University; Haidian District Beijing China
| | - Xinhua Song
- Department of Nutrition and Health; College of Food Science and Nutritional Engineering; China Agricultural University; Haidian District Beijing China
| | - Yazhen Huo
- Department of Nutrition and Health; College of Food Science and Nutritional Engineering; China Agricultural University; Haidian District Beijing China
| | - Lihong Fan
- College of Veterinary Medicine; China Agricultural University; Beijing Key Laboratory of Functional Food From Plant Resources; Haidian District Beijing China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Beijing China
| | - Hongbo Hu
- Department of Nutrition and Health; College of Food Science and Nutritional Engineering; China Agricultural University; Haidian District Beijing China
| |
Collapse
|
46
|
Shaltiel IA, Krenning L, Bruinsma W, Medema RH. The same, only different - DNA damage checkpoints and their reversal throughout the cell cycle. J Cell Sci 2015; 128:607-20. [PMID: 25609713 DOI: 10.1242/jcs.163766] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell cycle checkpoints activated by DNA double-strand breaks (DSBs) are essential for the maintenance of the genomic integrity of proliferating cells. Following DNA damage, cells must detect the break and either transiently block cell cycle progression, to allow time for repair, or exit the cell cycle. Reversal of a DNA-damage-induced checkpoint not only requires the repair of these lesions, but a cell must also prevent permanent exit from the cell cycle and actively terminate checkpoint signalling to allow cell cycle progression to resume. It is becoming increasingly clear that despite the shared mechanisms of DNA damage detection throughout the cell cycle, the checkpoint and its reversal are precisely tuned to each cell cycle phase. Furthermore, recent findings challenge the dogmatic view that complete repair is a precondition for cell cycle resumption. In this Commentary, we highlight cell-cycle-dependent differences in checkpoint signalling and recovery after a DNA DSB, and summarise the molecular mechanisms that underlie the reversal of DNA damage checkpoints, before discussing when and how cell fate decisions after a DSB are made.
Collapse
Affiliation(s)
- Indra A Shaltiel
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Lenno Krenning
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Wytse Bruinsma
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - René H Medema
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
47
|
Wip1 phosphatase in breast cancer. Oncogene 2014; 34:4429-38. [PMID: 25381821 DOI: 10.1038/onc.2014.375] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/02/2014] [Accepted: 10/05/2014] [Indexed: 12/13/2022]
Abstract
Understanding the factors contributing to tumor initiation, progression and evolution is of paramount significance. Among them, wild-type p53-induced phosphatase 1 (Wip1) is emerging as an important oncogene by virtue of its negative control on several key tumor suppressor pathways. Originally discovered as a p53-regulated gene, Wip1 has been subsequently found amplified and more recently mutated in a significant fraction of human cancers including breast tumors. Recent development in the field further uncovered the utility of anti-Wip1-directed therapies in delaying tumor onset or in reducing the tumor burden. Furthermore, Wip1 could be an important factor that contributes to tumor heterogeneity, suggesting that its inhibition may decrease the rate of cancer evolution. These effects depend on several signaling pathways modulated by Wip1 phosphatase in a spatial and temporal manner. In this review we discuss the recent development in understanding how Wip1 contributes to tumorigenesis with its relevance to breast cancer.
Collapse
|
48
|
TPX2 impacts acetylation of histone H4 at lysine 16: implications for DNA damage response. PLoS One 2014; 9:e110994. [PMID: 25365214 PMCID: PMC4217740 DOI: 10.1371/journal.pone.0110994] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 09/26/2014] [Indexed: 11/19/2022] Open
Abstract
During interphase, the spindle assembly factor TPX2 is compartmentalized in the nucleus where its roles remain largely uncharacterized. Recently, we found that TPX2 regulates the levels of serine 139-phosphoryated H2AX (γ-H2AX) at chromosomal breaks induced by ionizing radiation. Here, we report that TPX2 readily associates with the chromatin in the absence of ionizing radiation. Overexpression of TPX2 alters the DAPI staining pattern of interphase cells and depletion of TPX2 constitutively decreases the levels of histone H4 acetylated at lysine16 (H4K16ac) during G1-phase. Upon ionizing irradiation, this constitutive TPX2 depletion-dependent decrease in H4K16ac levels correlates with increased levels of γ-H2AX. The inversely correlated levels of H4K16ac and γ-H2AX can also be modified by altering the levels of SIRT1, herein identified as a novel protein complex partner of TPX2. Furthermore, we find that TPX2 depletion also interferes with formation of 53BP1 ionizing radiation-induced foci, known to depend on γ-H2AX and the acetylation status of H4K16. In brief, our study is the first indication of a constitutive control of TPX2 on H4K16ac levels, with potential implications for DNA damage response.
Collapse
|
49
|
Liu S, Qi L, Han W, Wan X, Jiang S, Li Y, Xie Y, Liu L, Zeng F, Liu Z, Zu X. Overexpression of wip1 is associated with biologic behavior in human clear cell renal cell carcinoma. PLoS One 2014; 9:e110218. [PMID: 25334029 PMCID: PMC4198297 DOI: 10.1371/journal.pone.0110218] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/09/2014] [Indexed: 12/28/2022] Open
Abstract
Wild-type p53-induced phosphatase (Wip1 or PPM1D) has been reported to be aberrantly expressed in various cancers and correlated with the malignant behavior of cancer cells. However, the function of Wip1 in RCC remains unclear. The present study investigated its abnormal expression and dysfunctions in clear cell renal cell carcinoma (ccRCC) in vitro. With the combination of immunohistochemistry, western blotting, immunofluorescence, qRT-PCR, and cell proliferation, migration and invasion assays, we found that levels of Wip1 mRNA and protein were dramatically increased in human ccRCC tissues (P<0.001 for both), and upregulation of Wip1 was significantly associated with depth of invasion (P<0.001), Distant metastasis (P = 0.001), lymph node status (P<0.001) and Fuhrman grade (P<0.001). Wip1 knockdown inhibited the proliferation, migration and invasion of 786-O and RLC-310 cells, whereas Wip1 overexpression promoted the growth and aggressive phenotype of 786-O and RLC-310 cells in vitro. The uni- and multivariate analyses indicated that expression of Wip1 was an independent predictor for survival of ccRCC patients (P = 0.003, P = 0.027 respectively). Wip1- negative patients had a higher tumor-free/overall survival rate than patients with high Wip1 expression (P = 0.001, P = 0.002 respectively). Overexpression of Wip1 is useful in the prediction of survival in ccRCC patients.
Collapse
Affiliation(s)
- Sulai Liu
- Department of Urology, Xiangya Hospital, The Central South University, Changsha, Hunan, China
| | - Lin Qi
- Department of Urology, Xiangya Hospital, The Central South University, Changsha, Hunan, China
- * E-mail:
| | - Weqing Han
- Department of Urology, The Affiliated Tumor Hospital of Xiangya Medical School, The Central South University, Changsha, China
| | - Xinxing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shusuan Jiang
- Department of Urology, The Affiliated Tumor Hospital of Xiangya Medical School, The Central South University, Changsha, China
| | - Yuan Li
- Department of Urology, Xiangya Hospital, The Central South University, Changsha, Hunan, China
| | - Yu Xie
- Department of Urology, The Affiliated Tumor Hospital of Xiangya Medical School, The Central South University, Changsha, China
| | - Longfei Liu
- Department of Urology, Xiangya Hospital, The Central South University, Changsha, Hunan, China
| | - Fuhua Zeng
- Department of Urology, The Affiliated Tumor Hospital of Xiangya Medical School, The Central South University, Changsha, China
| | - Zhizhong Liu
- Department of Urology, The Affiliated Tumor Hospital of Xiangya Medical School, The Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, The Central South University, Changsha, Hunan, China
| |
Collapse
|
50
|
Off-target response of a Wip1 chemical inhibitor in skin keratinocytes. J Dermatol Sci 2014; 73:125-34. [DOI: 10.1016/j.jdermsci.2013.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 07/15/2013] [Accepted: 09/05/2013] [Indexed: 01/05/2023]
|