1
|
Lu W, Chen Z, Xu H, Shen Z, Wu Z, Li M. Decreased ZMIZ1 suppresses melanogenesis in vitiligo by regulating mTOR/AKT/GSK-3β-mediated glucose uptake. In Vitro Cell Dev Biol Anim 2024; 60:67-79. [PMID: 38117454 DOI: 10.1007/s11626-023-00837-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
The loss of epidermal melanocytes is a distinguishing feature of vitiligo (VIT), a prevalent and long-lasting skin ailment. While various hypotheses exist to explain the cause of VIT, the precise mechanisms leading to this disease remain unclear. Zinc finger MIZ-type containing 1 (ZMIZ1) has a strong link with the development and occurrence of VIT. However, the exact role of ZMIZ1 and its underlying mechanisms in VIT are not well understood. Our study aims to illustrate that targeting ZMIZ1 is an effective therapeutic and prophylactic strategy for treating VIT. We obtained the RNA expression profile of VIT samples using RNA-seq and determined the locations and expression of ZMIZ1 in these samples via immunochemistry. Glucose uptake was analyzed through immunofluorescence and glucose uptake assay. We evaluated mRNA levels using qPCR and used plasmids transfection to knock down ZMIZ1 in PIG1 and PIG3V cell lines. The activation of the mTOR/AKT/GSK-3β signalling pathway was assessed using Western blotting analysis. We found that ZMIZ1 expression was decreased in VIT samples. Decreased ZMIZ1 expression inhibits the proliferation, migration, and invasion of melanocytes in vitro. Moreover, we revealed that decreased ZMIZ1 could also inhibit the glucose uptake of melanocytes in vitro. Decreased ZMIZ1 expression inhibits the activation of the mTOR/AKT/GSK-3β pathway and the expression of melanin synthesis-related proteins in melanocytes. Finally, we demonstrated that decreased ZMIZ1 may inhibit the cell viability of melanocytes and the synthesis of melanin by mTOR/AKT/GSK-3β-mediated oxidative stress in vitro. In conclusion, our study suggests that decreased ZMIZ1 suppresses melanogenesis in vitiligo by regulating the mTOR/AKT/GSK-3β-mediated glucose uptake in vitro, making ZMIZ1 an attractive therapeutic target for the treatment of VIT.
Collapse
Affiliation(s)
- Wenli Lu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhuo Chen
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Xu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhengyu Shen
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhouwei Wu
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
2
|
Salas-Lloret D, Jansen NS, Nagamalleswari E, van der Meulen C, Gracheva E, de Ru AH, Otte HAM, van Veelen PA, Pichler A, Goedhart J, Vertegaal AC, González-Prieto R. SUMO-activated target traps (SATTs) enable the identification of a comprehensive E3-specific SUMO proteome. SCIENCE ADVANCES 2023; 9:eadh2073. [PMID: 37531430 PMCID: PMC10396300 DOI: 10.1126/sciadv.adh2073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
Ubiquitin and ubiquitin-like conjugation cascades consist of dedicated E1, E2, and E3 enzymes with E3s providing substrate specificity. Mass spectrometry-based approaches have enabled the identification of more than 6500 SUMO2/3 target proteins. The limited number of SUMO E3s provides the unique opportunity to systematically study E3 substrate wiring. We developed SUMO-activated target traps (SATTs) and systematically identified substrates for eight different SUMO E3s, PIAS1, PIAS2, PIAS3, PIAS4, NSMCE2, ZNF451, LAZSUL (ZNF451-3), and ZMIZ2. SATTs enabled us to identify 427 SUMO1 and 961 SUMO2/3 targets in an E3-specific manner. We found pronounced E3 substrate preference. Quantitative proteomics enabled us to measure substrate specificity of E3s, quantified using the SATT index. Furthermore, we developed the Polar SATTs web-based tool to browse the dataset in an interactive manner. Overall, we uncover E3-to-target wiring of 1388 SUMO substrates, highlighting unique and overlapping sets of substrates for eight different SUMO E3 ligases.
Collapse
Affiliation(s)
- Daniel Salas-Lloret
- Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Nicolette S. Jansen
- Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Coen van der Meulen
- Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Ekaterina Gracheva
- Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Arnoud H. de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - H. Anne Marie Otte
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Peter A. van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Andrea Pichler
- Max Plank Institute for Immunobiology and Epigenetics, Freiburg, Germany
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | | | | | - Román González-Prieto
- Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-CSIC-Universidad-Pablo de Olavide, Sevilla, Spain
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
3
|
Lomelí H. ZMIZ proteins: partners in transcriptional regulation and risk factors for human disease. J Mol Med (Berl) 2022; 100:973-983. [PMID: 35670836 DOI: 10.1007/s00109-022-02216-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/11/2022] [Accepted: 05/30/2022] [Indexed: 01/23/2023]
Abstract
Coregulator proteins interact with signal-dependent transcription factors to modify their transcriptional activity. ZMIZ1 and ZMIZ2 (zinc finger MIZ-type containing 1 and 2) are coregulators with nonredundant functions that share unique structural characteristics. Among other interacting domains, they possess a MIZ (Msx-interacting zinc finger) that relates them to members of the protein inhibitor of activated STAT (PIAS) family and provides them the capacity to function as SUMO E3 ligases. The ZMIZ proteins stimulate the activity of various signaling pathways, including the androgen receptor (AR), P53, SMAD3/4, WNT/β-catenin, and NOTCH1 pathways, and interact with the BAF chromatin remodeling complex. Due to their molecular versatility, ZMIZ proteins have pleiotropic effects and thus are important for embryonic development and for human diseases. Both have been widely associated with cancer, and ZMIZ1 has been very frequently identified as a risk allele for several autoimmune conditions and other disorders. Moreover, mutations in the coding region of the ZMIZ1 gene are responsible for a severe syndromic neurodevelopmental disability. Because the actions of coregulators are highly gene-specific, a better knowledge of the associations that exist between the function of the ZMIZ coregulators and human pathologies is expected to potentiate the use of ZMIZ1 and ZMIZ2 as new drug targets for diseases such as hormone-dependent cancers.
Collapse
Affiliation(s)
- Hilda Lomelí
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México.
| |
Collapse
|
4
|
Gunderson CC, Radhakrishnan R, Gomathinayagam R, Husain S, Aravindan S, Moore KM, Dhanasekaran DN, Jayaraman M. Circulating Tumor Cell-Free DNA Genes as Prognostic Gene Signature for Platinum Resistant Ovarian Cancer Diagnosis. Biomark Insights 2022; 17:11772719221088404. [PMID: 35370397 PMCID: PMC8966103 DOI: 10.1177/11772719221088404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Clinical management of gynecological cancer begins by optimal debulking with first-line platinum-based chemotherapy. However, in ~80% patients, ovarian cancer will recur and is lethal. Prognostic gene signature panel identifying platinum-resistance enables better patient stratification for precision therapy. Retrospectively collected serum from 11 "poor" (<6 months progression free interval [PFI]) and 22 "favorable" (>24 months PFI) prognosis patients, were evaluated using circulating cell-free DNA (cfDNA). DNA from both groups showed 50 to 10 000 bp fragments. Pairwise analysis of sequenced cfDNA from patients showed that gene dosages were higher for 29 genes and lower for 64 genes in poor than favorable prognosis patients. Gene ontology analysis of higher dose genes predominantly grouped into cytoskeletal proteins, while lower dose genes, as hydrolases and receptors. Higher dosage genes searched for cancer-relatedness in Reactome database indicated 15 genes were referenced with cancer. Among them 3 genes, TGFBR2, ZMIZ2, and NRG2, were interacting with more than 4 cancer-associated genes. Protein expression analysis of tumor samples indicated that TGFBR2 was downregulated and ZMIZ2 was upregulated in poor prognosis patients. Our results indicate that the cfDNA gene dosage combined with protein expression in tumor samples can serve as gene signature panel for prognosis determination amongst ovarian cancer patients.
Collapse
Affiliation(s)
- Camille C Gunderson
- Section of Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Rohini Gomathinayagam
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sanam Husain
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sheeja Aravindan
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kathleen M Moore
- Section of Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Muralidharan Jayaraman
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA,Muralidharan Jayaraman, Department of Cell Biology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, 975 NE 10th Street, BRC416, Oklahoma City, OK 73104, USA.
| |
Collapse
|
5
|
Zou X, Liu Y, Di J, Wei W, Watanabe N, Li J, Li X. ZMIZ2 promotes the development of triple-receptor negative breast cancer. Cancer Cell Int 2022; 22:52. [PMID: 35101047 PMCID: PMC8802436 DOI: 10.1186/s12935-021-02393-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/04/2021] [Indexed: 12/25/2023] Open
Abstract
Background Triple-receptor negative breast cancer (TNBC) is an aggressive breast tumor subtype that generally has a poor prognosis. This study aimed to investigate the role and regulatory mechanisms of Zinc finger MIZ-type containing 2 (ZMIZ2) in relation to TNBC. Methods Based on data from The Cancer Genome Atlas (TCGA), the expression of ZMIZ2 in different subtypes and its correlation with androgen receptor (AR) were analyzed, and a regulatory mechanism network was constructed. The expression and prognostic value of ZMIZ2 in clinical TNBC tissue samples were also investigated. Furthermore, in vitro studies were conducted to investigate the effects of ZMIZ2 knockdown on the malignant behaviors of TNBC cells and target gene expression. Results Based on TCGA data, ZMIZ2 was found to be significantly upregulated in TNBC tissues and its expression was negatively correlated with AR expression. Key relationships, such as the ZMIZ2-CCL5, ZMIZ2/AR-MCM3, ZMIZ2/AR-E2F4, and the ZMIZ2/AR-DHX38 were identified, which were enriched in NOD-like receptor signaling pathway/toll-like receptor signaling pathway, DNA replication, cell cycle, and spliceosome, respectively. Moreover, ZMIZ2 was upregulated in clinical breast cancer tissues and its high expression was correlated with the poor prognosis of TNBC patients. Furthermore, ZMIZ2 expression was increased in breast cancer cells, and a knockdown of ZMIZ2 inhibited MDA-MB-231 cell proliferation, migration, and invasion, induced cell cycle arrest in the G1 phase, and promoted cell apoptosis. Furthermore, ZMIZ2 knockdown inhibited the mRNA and protein expression of CCL5, MCM3, E2F4, and DHX38. Conclusion Our findings reveal that ZMIZ2 is upregulated in TNBC tissues and is associated with its poor prognosis. ZMIZ2 may promote TNBC progression by promoting the expression of its target genes and affecting the corresponding pathways. Consequently, ZMIZ2 may serve as a promising target for future TNBC treatments. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02393-x.
Collapse
Affiliation(s)
- Xiaopan Zou
- The Key Laboratory of Molecular Epigenetic, Institute of Genetics and Cytology, Northeast Normal University, No.5268 Renmin Street, Nanguan District, Changchun, 130024, Jilin, China.,Breast and Thyroid Surgery, Jilin Province People's Hospital, Changchun, 130021, Jilin, China
| | - Yan Liu
- The Key Laboratory of Molecular Epigenetic, Institute of Genetics and Cytology, Northeast Normal University, No.5268 Renmin Street, Nanguan District, Changchun, 130024, Jilin, China
| | - Jun Di
- Pathological Diagnostic Center, Jilin Province People's Hospital, Changchun, 130021, Jilin, China
| | - Wei Wei
- The Key Laboratory of Molecular Epigenetic, Institute of Genetics and Cytology, Northeast Normal University, No.5268 Renmin Street, Nanguan District, Changchun, 130024, Jilin, China
| | - Nobumoto Watanabe
- Bio-Active Compounds Discovery Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Jiang Li
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510180, Guangdong, China.
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetic, Institute of Genetics and Cytology, Northeast Normal University, No.5268 Renmin Street, Nanguan District, Changchun, 130024, Jilin, China.
| |
Collapse
|
6
|
Li M, Fan Y, Wang Y, Xu J, Xu H. ZMIZ1 promotes the proliferation and migration of melanocytes in vitiligo. Exp Ther Med 2020; 20:1371-1378. [PMID: 32765670 PMCID: PMC7390964 DOI: 10.3892/etm.2020.8849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/25/2020] [Indexed: 12/30/2022] Open
Abstract
Genome wide association studies have revealed that the zinc finger MIZ-type containing 1 (ZMIZ1) is involved in the pathogenesis of vitiligo; however, the underlying mechanism remains unclear. The present study aimed to investigate the effects of ZMIZ1 on the proliferation, apoptosis and migration of the human melanocyte cell lines PIG1 and PIG3V. ZMIZ1 overexpression and knockdown PIG1 and PIG3V cell models were established by lentivirus infection, and the effects of ZMIZ1 on cell proliferation and apoptosis were determined using an MTT assay and flow cytometry, respectively. Furthermore, the expression levels of proliferation- and apoptosis-associated proteins were analyzed using western blotting. Additionally, Transwell assays were performed to determine the effect of ZMIZ1 on the migration of PIG1 and PIG3V cells. Finally, the effect of ZMIZ1 on cytoskeletal remodeling in PIG1 and PIG3V cells was analyzed using immunocytochemistry. The overexpression of ZMIZ1 promoted the proliferation and inhibited the apoptosis of PIG1 and PIG3V cells, whereas the genetic knockdown of ZMIZ1 resulted in the opposite effects. Furthermore, ZMIZ1 overexpression increased the migration, whereas the knockdown of ZMIZ1 inhibited the migration and altered remodeling of the actin cytoskeleton in PIG1 and PIG3V cells. In conclusion, the results of the present study suggest that ZMIZ1 regulates the proliferation, apoptosis and migration of PIG1 and PIG3V cells, and indicate that ZMIZ1 may serve as a potential therapeutic target for vitiligo.
Collapse
Affiliation(s)
- Meng Li
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200011, P.R. China
| | - Yibin Fan
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yutong Wang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200011, P.R. China
| | - Jinhua Xu
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Hui Xu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
7
|
Taheri M, Oskooei VK, Ghafouri-Fard S. Protein inhibitor of activated STAT genes are differentially expressed in breast tumor tissues. Per Med 2019; 16:277-285. [DOI: 10.2217/pme-2018-0070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aim: Protein inhibitor of activated STAT ( PIAS) family includes transcriptional regulator proteins with SUMO E3 ligase activity. They regulate expression of several genes involved in cell proliferation, differentiation and survival. Method: We evaluated expression of PIAS1–4 genes in 54 breast cancer tissues and their paired adjacent noncancerous tissues. Results: PIAS2 and PIAS3 genes were significantly downregulated in tumoral tissues compared with adjacent noncancerous tissues. PIAS1–3 expressions were significantly lower in estrogen receptor (ER+) samples compared with ER- samples while PIAS4 had the opposite trend. PIAS3 expression was significantly higher in grade 1 samples compared with grade 2 samples. Conclusion: These findings highlight the role of PIAS genes in the pathogenesis of breast cancer and their association with determinants of response to antihormone therapies.
Collapse
Affiliation(s)
- Mohammad Taheri
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid K Oskooei
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Ghashghaei M, Niazi TM, Aguilar-Mahecha A, Klein KO, Greenwood CMT, Basik M, Muanza TM. Identification of a Radiosensitivity Molecular Signature Induced by Enzalutamide in Hormone-sensitive and Hormone-resistant Prostate Cancer Cells. Sci Rep 2019; 9:8838. [PMID: 31221986 PMCID: PMC6586860 DOI: 10.1038/s41598-019-44991-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is the most common cancer amongst men. A novel androgen receptor (AR) antagonist, enzalutamide (ENZA) has recently been demonstrated to enhance the effect of radiation (XRT) by impairing the DNA damage repair process. This study aimed to identify a radiosensitive gene signature induced by ENZA in the PCa cells and to elucidate the biological pathways which influence this radiosensitivity. We treated LNCaP (AR-positive, hormone-sensitive PCa cells) and C4-2 (AR-positive, hormone-resistant PCa cells) cells with ENZA alone and in combination with androgen deprivation therapy (ADT) and XRT. Using one-way ANOVA on the gene expression profiling, we observed significantly differentially expressed (DE) genes in inflammation-and metabolism-related genes in hormone-sensitive and hormone-resistant PCa cell lines respectively. Survival analysis in both the TCGA PRAD and GSE25136 datasets suggested an association between the expression of these genes and time to recurrence. These results indicated that ENZA alone or in combination with ADT enhanced the effect of XRT through immune and inflammation-related pathways in LNCaP cells and metabolic-related pathways in C4-2 cells. Kaplan–Meier analysis and Cox proportional hazard models showed that low expression of all the candidate genes except for PTPRN2 were associated with tumor progression and recurrence in a PCa cohort.
Collapse
Affiliation(s)
- Maryam Ghashghaei
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Tamim M Niazi
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Department of Radiation Oncology, Jewish General Hospital, Montreal, QC, Canada
| | | | - Kathleen Oros Klein
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Celia M T Greenwood
- Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, QC, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada.,Departments of Human Genetics, McGill University, Montreal, QC, Canada
| | - Mark Basik
- Department of Oncology, Jewish General Hospital, Montreal, QC, Canada.,Department of Surgery and Oncology, Jewish General Hospital, Montréal, QC, Canada
| | - Thierry M Muanza
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada. .,Division of Experimental Medicine, McGill University, Montreal, QC, Canada. .,Department of Radiation Oncology, Jewish General Hospital, Montreal, QC, Canada.
| |
Collapse
|
9
|
Eicher JD, Chami N, Kacprowski T, Nomura A, Chen MH, Yanek LR, Tajuddin SM, Schick UM, Slater AJ, Pankratz N, Polfus L, Schurmann C, Giri A, Brody JA, Lange LA, Manichaikul A, Hill WD, Pazoki R, Elliot P, Evangelou E, Tzoulaki I, Gao H, Vergnaud AC, Mathias RA, Becker DM, Becker LC, Burt A, Crosslin DR, Lyytikäinen LP, Nikus K, Hernesniemi J, Kähönen M, Raitoharju E, Mononen N, Raitakari OT, Lehtimäki T, Cushman M, Zakai NA, Nickerson DA, Raffield LM, Quarells R, Willer CJ, Peloso GM, Abecasis GR, Liu DJ, Deloukas P, Samani NJ, Schunkert H, Erdmann J, Fornage M, Richard M, Tardif JC, Rioux JD, Dube MP, de Denus S, Lu Y, Bottinger EP, Loos RJF, Smith AV, Harris TB, Launer LJ, Gudnason V, Velez Edwards DR, Torstenson ES, Liu Y, Tracy RP, Rotter JI, Rich SS, Highland HM, Boerwinkle E, Li J, Lange E, Wilson JG, Mihailov E, Mägi R, Hirschhorn J, Metspalu A, Esko T, Vacchi-Suzzi C, Nalls MA, Zonderman AB, Evans MK, Engström G, Orho-Melander M, Melander O, O'Donoghue ML, Waterworth DM, Wallentin L, White HD, Floyd JS, Bartz TM, Rice KM, Psaty BM, Starr JM, Liewald DCM, Hayward C, Deary IJ, Greinacher A, Völker U, Thiele T, Völzke H, van Rooij FJA, Uitterlinden AG, Franco OH, Dehghan A, Edwards TL, Ganesh SK, Kathiresan S, Faraday N, Auer PL, Reiner AP, Lettre G, Johnson AD. Platelet-Related Variants Identified by Exomechip Meta-analysis in 157,293 Individuals. Am J Hum Genet 2016; 99:40-55. [PMID: 27346686 PMCID: PMC5005441 DOI: 10.1016/j.ajhg.2016.05.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/03/2016] [Indexed: 12/13/2022] Open
Abstract
Platelet production, maintenance, and clearance are tightly controlled processes indicative of platelets' important roles in hemostasis and thrombosis. Platelets are common targets for primary and secondary prevention of several conditions. They are monitored clinically by complete blood counts, specifically with measurements of platelet count (PLT) and mean platelet volume (MPV). Identifying genetic effects on PLT and MPV can provide mechanistic insights into platelet biology and their role in disease. Therefore, we formed the Blood Cell Consortium (BCX) to perform a large-scale meta-analysis of Exomechip association results for PLT and MPV in 157,293 and 57,617 individuals, respectively. Using the low-frequency/rare coding variant-enriched Exomechip genotyping array, we sought to identify genetic variants associated with PLT and MPV. In addition to confirming 47 known PLT and 20 known MPV associations, we identified 32 PLT and 18 MPV associations not previously observed in the literature across the allele frequency spectrum, including rare large effect (FCER1A), low-frequency (IQGAP2, MAP1A, LY75), and common (ZMIZ2, SMG6, PEAR1, ARFGAP3/PACSIN2) variants. Several variants associated with PLT/MPV (PEAR1, MRVI1, PTGES3) were also associated with platelet reactivity. In concurrent BCX analyses, there was overlap of platelet-associated variants with red (MAP1A, TMPRSS6, ZMIZ2) and white (PEAR1, ZMIZ2, LY75) blood cell traits, suggesting common regulatory pathways with shared genetic architecture among these hematopoietic lineages. Our large-scale Exomechip analyses identified previously undocumented associations with platelet traits and further indicate that several complex quantitative hematological, lipid, and cardiovascular traits share genetic factors.
Collapse
Affiliation(s)
- John D Eicher
- Population Sciences Branch, National Heart Lung and Blood Institute, The Framingham Heart Study, Framingham, MA 01702, USA
| | - Nathalie Chami
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
| | - Tim Kacprowski
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald and Ernst-Mortiz-Arndt University Greifswald, Greifswald 17475, Germany; DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Akihiro Nomura
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 9200942, Japan
| | - Ming-Huei Chen
- Population Sciences Branch, National Heart Lung and Blood Institute, The Framingham Heart Study, Framingham, MA 01702, USA
| | - Lisa R Yanek
- Department of Medicine, Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Salman M Tajuddin
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Ursula M Schick
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew J Slater
- Genetics, Target Sciences, GlaxoSmithKline, Research Triangle Park, NC 27709, USA; OmicSoft Corporation, Cary, NC 27513, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55454, USA
| | - Linda Polfus
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ayush Giri
- Division of Epidemiology, Institute for Medicine and Public Health, Vanderbilt University, Nashville, TN 37235, USA
| | - Jennifer A Brody
- Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Leslie A Lange
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - W David Hill
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Raha Pazoki
- Department of Epidemiology, Erasmus MC, Rotterdam 3000, the Netherlands
| | - Paul Elliot
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK; Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina 45110, Greece
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK; Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina 45110, Greece
| | - He Gao
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Anne-Claire Vergnaud
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Rasika A Mathias
- Department of Medicine, Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Divisions of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Diane M Becker
- Department of Medicine, Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lewis C Becker
- Department of Medicine, Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Divisions of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amber Burt
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - David R Crosslin
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98105, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland; Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere 33514, Finland
| | - Kjell Nikus
- Department of Cardiology, Heart Center, Tampere University Hospital, Tampere 33521, Finland; University of Tampere, School of Medicine, Tampere 33514, Finland
| | - Jussi Hernesniemi
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland; Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere 33514, Finland; Department of Cardiology, Heart Center, Tampere University Hospital, Tampere 33521, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere 33521, Finland; Department of Clinical Physiology, University of Tampere, Tampere 33514, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland; Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere 33514, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland; Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere 33514, Finland
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20521, Finland; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20520, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland; Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere 33514, Finland
| | - Mary Cushman
- Departments of Medicine and Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Neil A Zakai
- Departments of Medicine and Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Rakale Quarells
- Morehouse School of Medicine, Social Epidemiology Research Center, Cardiovascular Research Institute, Atlanta, GA 30310, USA
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48108, USA; Department of Computational Medicine and Bioinformatics, Department of Human Genetics, University of Michigan, Ann Arbor, MI 48108, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI 48108, USA
| | - Gina M Peloso
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Goncalo R Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48108, USA
| | - Dajiang J Liu
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Panos Deloukas
- William Harvey Research Institute, Queen Mary University London, London E1 4NS, UK; Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK; NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Heribert Schunkert
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich 80333, Germany; Deutsches Herzzentrum München, Technische Universität München, Munich 80333, Germany
| | - Jeanette Erdmann
- Institute for Integrative and Experimental Genomics, University of Lübeck, Lübeck 23562, Germany; DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck 23562, Germany
| | - Myriam Fornage
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Melissa Richard
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jean-Claude Tardif
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
| | - John D Rioux
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
| | - Marie-Pierre Dube
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
| | - Simon de Denus
- Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; Faculty of Pharmacy, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Albert Vernon Smith
- Icelandic Heart Association, Kopavogur 201, Iceland; Faculty of Medicine, University of Iceland, Reykjavik 101, Iceland
| | - Tamara B Harris
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Intramural Research Program, NIH, Bethesda, MD 21224, USA
| | - Lenore J Launer
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Intramural Research Program, NIH, Bethesda, MD 21224, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur 201, Iceland; Faculty of Medicine, University of Iceland, Reykjavik 101, Iceland
| | - Digna R Velez Edwards
- Vanderbilt Epidemiology Center, Department of Obstetrics & Gynecology, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37203, USA
| | - Eric S Torstenson
- Division of Epidemiology, Institute for Medicine and Public Health, Vanderbilt University, Nashville, TN 37235, USA
| | - Yongmei Liu
- Center for Human Genetics, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Russell P Tracy
- Departments of Pathology and Laboratory Medicine and Biochemistry, University of Vermont College of Medicine, Colchester, VT 05446, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute, Torrance, CA 90502, USA; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Heather M Highland
- The University of Texas School of Public Health, The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Li
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Ethan Lange
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA; Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Evelin Mihailov
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Joel Hirschhorn
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Department of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Tõnu Esko
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Caterina Vacchi-Suzzi
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD 21224, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Gunnar Engström
- Department of Clinical Sciences Malmö, Lund University, Malmö 221 00, Sweden; Skåne University Hospital, Malmö 222 41, Sweden
| | - Marju Orho-Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö 221 00, Sweden; Skåne University Hospital, Malmö 222 41, Sweden
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö 221 00, Sweden; Skåne University Hospital, Malmö 222 41, Sweden
| | - Michelle L O'Donoghue
- TIMI Study Group, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Dawn M Waterworth
- Genetics, Target Sciences, GlaxoSmithKline, King of Prussia, PA 19406, USA
| | - Lars Wallentin
- Department of Medical Sciences, Cardiology, and Uppsala Clinical Research Center, Uppsala University, Uppsala 751 85, Sweden
| | - Harvey D White
- Green Lane Cardiovascular Service, Auckland City Hospital and University of Auckland, Auckland 1142, New Zealand
| | - James S Floyd
- Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Traci M Bartz
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA 98101, USA; Group Health Research Institute, Group Health Cooperative, Seattle, WA 98101, USA
| | - J M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Alzheimer Scotland Research Centre, Edinburgh EH8 9JZ, UK
| | - David C M Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Andreas Greinacher
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald and Ernst-Mortiz-Arndt University Greifswald, Greifswald 17475, Germany; DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Thomas Thiele
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Henry Völzke
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany; Institute for Community Medicine, University Medicine Greifswald, Greifswald 13347, Germany
| | | | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, Rotterdam 3000, the Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam 3000, the Netherlands; Netherlands Consortium for Healthy Ageing (NCHA), Rotterdam 3015, the Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC, Rotterdam 3000, the Netherlands
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus MC, Rotterdam 3000, the Netherlands
| | - Todd L Edwards
- Division of Epidemiology, Institute for Medicine and Public Health, Vanderbilt University, Nashville, TN 37235, USA
| | - Santhi K Ganesh
- Departments of Internal and Human Genetics, University of Michigan, Ann Arbor, MI 48108, USA
| | - Sekar Kathiresan
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nauder Faraday
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53205, USA
| | - Alex P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Guillaume Lettre
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
| | - Andrew D Johnson
- Population Sciences Branch, National Heart Lung and Blood Institute, The Framingham Heart Study, Framingham, MA 01702, USA.
| |
Collapse
|
10
|
Nevado J, Rosenfeld JA, Mena R, Palomares-Bralo M, Vallespín E, Ángeles Mori M, Tenorio JA, Gripp KW, Denenberg E, Del Campo M, Plaja A, Martín-Arenas R, Santos-Simarro F, Armengol L, Gowans G, Orera M, Sanchez-Hombre MC, Corbacho-Fernández E, Fernández-Jaén A, Haldeman-Englert C, Saitta S, Dubbs H, Bénédicte DB, Li X, Devaney L, Dinulos MB, Vallee S, Crespo MC, Fernández B, Fernández-Montaño VE, Rueda-Arenas I, de Torres ML, Ellison JW, Raskin S, Venegas-Vega CA, Fernández-Ramírez F, Delicado A, García-Miñaúr S, Lapunzina P. PIAS4 is associated with macro/microcephaly in the novel interstitial 19p13.3 microdeletion/microduplication syndrome. Eur J Hum Genet 2015; 23:1615-26. [PMID: 25853300 DOI: 10.1038/ejhg.2015.51] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/23/2014] [Accepted: 02/17/2015] [Indexed: 12/24/2022] Open
Abstract
Array comparative genomic hybridization (aCGH) is a powerful genetic tool that has enabled the identification of novel imbalances in individuals with intellectual disability (ID), autistic disorders and congenital malformations. Here we report a 'genotype first' approach using aCGH on 13 unrelated patients with 19p13.3 submicroscopic rearrangement (11 deletions and 2 duplications) and review cases in the literature and in public databases. Shared phenotypic features suggest that these patients represent an interstitial microdeletion/microduplication syndrome at 19p13.3. Common features consist of abnormal head circumference in most patients (macrocephaly with the deletions and microcephaly with the duplications), ID with developmental delay (DD), hypotonia, speech delay and common dysmorphic features. The phenotype is associated with at least a ~0.113 Mb critical region harboring three strong candidate genes probably associated with DD, ID, speech delay and other dysmorphic features: MAP2K2, ZBTB7A and PIAS4, an E3 ubiquitin ligase involved in the ubiquitin signaling pathways, which we hypothesize for the first time to be associated with head size in humans.
Collapse
Affiliation(s)
- Julián Nevado
- Section of Functional and Structural Genomics Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Jill A Rosenfeld
- Signature Genomic Laboratories, PerkinElmer Inc., Spokane, WA, USA
| | - Rocío Mena
- Section of Functional and Structural Genomics Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - María Palomares-Bralo
- Section of Functional and Structural Genomics Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Elena Vallespín
- Section of Functional and Structural Genomics Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - María Ángeles Mori
- Section of Functional and Structural Genomics Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Jair A Tenorio
- Section of Functional and Structural Genomics Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Karen W Gripp
- AI DuPont Hospital for Children, Wilmington, DE, USA
| | | | | | | | - Rubén Martín-Arenas
- Section of Functional and Structural Genomics Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | | | | | | | | | | | | | | | | | - Sulagna Saitta
- Medical Genetics Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Holly Dubbs
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Xia Li
- Ameripath Northeast, Shelton, CT, USA
| | - Lani Devaney
- Henry Ford Health System, Sterling Heights, Michigan, USA
| | | | | | - M Carmen Crespo
- Section of Functional and Structural Genomics Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Blanca Fernández
- Section Cytogenetics, INGEMM-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Victoria E Fernández-Montaño
- Section of Functional and Structural Genomics Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Inmaculada Rueda-Arenas
- Section of Functional and Structural Genomics Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - María Luisa de Torres
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.,Section Cytogenetics, INGEMM-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | | | - Salmo Raskin
- Center for Health and Biological Sciences, Pontifícia Universidade Católica do Paraná (PUC-PR), Curitiba, Brazil
| | - Carlos A Venegas-Vega
- Genetic Unit Hospital General de México, México, México.,School of Medicine. Universidad Autónoma de México, México, México
| | | | - Alicia Delicado
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.,Section Cytogenetics, INGEMM-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Sixto García-Miñaúr
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.,Section of Clinical Genetics, INGEMM-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Pablo Lapunzina
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.,Section of Clinical Genetics, INGEMM-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
11
|
Sun Y, Zuo X, Zheng X, Zhou F, Liang B, Liu H, Chang R, Gao J, Sheng Y, Cui H, Wang W, Andiappan AK, Rotzschke O, Yang S, Sun L, Zhang F, Zhang X, Ren Y, Liu J. A comprehensive association analysis confirms ZMIZ1 to be a susceptibility gene for vitiligo in Chinese population. J Med Genet 2014; 51:345-53. [PMID: 24667117 DOI: 10.1136/jmedgenet-2013-102233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND ZMIZ1 has been shown to be associated with multiple autoimmune diseases and play a role in the development of melanocyte. The association of ZMIZ1 with vitiligo was also suggested, but the evidence did not reach genome-wide significance and has not been confirmed by independent studies. METHODS A fine mapping analysis of the ZMIZ1 locus was carried out in the dataset of 1117 vitiligo patients and 3437 controls through deep imputation. Ten suggestive SNPs were then analysed in an independent validation cohort of 7458 cases and 7542 controls. SNPs within ZMIZ1 locus were functionally annotated using the ENCODE and RegulomeDB databases and published eQTL dataset of primary immune cells. RESULTS A genome-wide significant association was discovered at rs1408944 (OR(combined)=1.18, p(combined)=1.38E-09) that locates at a DNAse hypersensitivity site and within a Myb_1 motif carried by the binding sites of six overlapping transcription factors (TFs) within the region. Gene Relationships Across Implicated Loci (GRAIL) analysis revealed biological connectivity between ZMIZ1 and previously discovered susceptibility loci for vitiligo as well as the six TFs. CONCLUSIONS Our study has confirmed ZMIZ1 as a novel susceptibility locus for vitiligo and further suggested rs1408944 to be the putative causal variant that potentially interrupts TF binding and thus the transcriptional regulation of ZMIZ1.
Collapse
Affiliation(s)
- Yonghu Sun
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Clinicopathological and molecular significance of Sumolyation marker (ubiquitin conjugating enzyme 9 (UBC9)) expression in breast cancer of black women. Pathol Res Pract 2014; 210:10-7. [DOI: 10.1016/j.prp.2013.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/22/2013] [Accepted: 09/23/2013] [Indexed: 01/17/2023]
|
13
|
Lee SH, Zhu C, Peng Y, Johnson DT, Lehmann L, Sun Z. Identification of a novel role of ZMIZ2 protein in regulating the activity of the Wnt/β-catenin signaling pathway. J Biol Chem 2013; 288:35913-24. [PMID: 24174533 DOI: 10.1074/jbc.m113.529727] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ZMIZ2, also named ZIMP7, is a protein inhibitor of activated STAT (PIAS)-like protein and a transcriptional coactivator. In this study, we investigated the interaction between ZMIZ2 and β-catenin, a key regulator of the Wnt signaling pathway. We demonstrated that the expression of exogenous ZMIZ2 augments TCF (T cell factor) and β-catenin-mediated transcription. In contrast, shRNA knockdown of ZMIZ2 expression specifically represses the enhancement of TCF/β-catenin-mediated transcription by ZMIZ2. Using Wnt3a-conditioned medium, we demonstrated that ZMIZ2 can enhance Wnt ligand-induced TCF/β-catenin-mediated transcription. We also showed a promotional role of ZMIZ2 in enhancing β-catenin downstream target gene expression in human cells and in Zmiz2 null (Zmiz2(-/-)) mouse embryonic fibroblasts (MEFs). The regulatory role of Zmiz2 in Wnt-induced TCF/β-catenin-mediated transcription can be restored in Zmiz2(-/-) MEFs that were infected with adenoviral expression vectors for Zmiz2. Moreover, enhancement of Zmiz2 on TCF/β-catenin-mediated transcription was further demonstrated in Zmiz2 knockout and Axin2 reporter compound mice. Furthermore, the protein-protein interaction between ZMIZ2 and β-catenin was identified by co-immunoprecipitation and in vitro protein pulldown assays. We also observed recruitment of endogenous ZMIZ2 onto the promoter region of the Axin 2 gene, a β-catenin downstream target promoter, in a Wnt ligand-inducible manner. Finally, a promotional role of ZMIZ2 on cell growth was demonstrated in human cell lines and Zmiz2 knockout MEFs. Our findings demonstrate a novel interaction between ZMIZ2 and β-catenin and elucidate a novel mechanism for PIAS-like proteins in regulating Wnt signaling pathways.
Collapse
Affiliation(s)
- Suk Hyung Lee
- From the Departments of Urology and Genetics, Stanford University School of Medicine, Stanford, California 94305-5328
| | | | | | | | | | | |
Collapse
|
14
|
Agboola A, Musa A, Banjo A, Ayoade B, Deji-Agboola M, Nolan C, Rakha E, Ellis I, Green A. PIASγ expression in relation to clinicopathological, tumour factors and survival in indigenous black breast cancer women. J Clin Pathol 2013; 67:301-6. [DOI: 10.1136/jclinpath-2013-201658] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Rakowski LA, Garagiola DD, Li CM, Decker M, Caruso S, Jones M, Kuick R, Cierpicki T, Maillard I, Chiang MY. Convergence of the ZMIZ1 and NOTCH1 pathways at C-MYC in acute T lymphoblastic leukemias. Cancer Res 2013; 73:930-41. [PMID: 23161489 PMCID: PMC3549029 DOI: 10.1158/0008-5472.can-12-1389] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Activating NOTCH1 mutations are found in 50% to 60% of human T-cell acute lymphoblastic leukemia (T-ALL) samples. In mouse models, these mutations generally fail to induce leukemia. This observation suggests that NOTCH1 activation must collaborate with other genetic events. Mutagenesis screens previously implicated ZMIZ1 as a possible NOTCH1 collaborator in leukemia. ZMIZ1 is a transcriptional coactivator of the protein inhibitor of activated STAT (PIAS)-like family. Its role in oncogenesis is unknown. Here, we show that activated NOTCH1 and ZMIZ1 collaborate to induce T-ALL in mice. ZMIZ1 and activated NOTCH1 are coexpressed in a subset of human T-ALL patients and cell lines. ZMIZ1 inhibition slowed growth and sensitized leukemic cells to corticosteroids and NOTCH inhibitors. Gene expression profiling identified C-MYC, but not other NOTCH-regulated genes, as an essential downstream target of ZMIZ1. ZMIZ1 functionally interacts with NOTCH1 to promote C-MYC transcription and activity. The mechanism does not involve the NOTCH pathway and appears to be indirect and mediated independently of canonical PIAS functions through a novel N-terminal domain. Our study shows the importance of identifying genetic collaborations between parallel leukemic pathways that may be therapeutically targeted. They also raise new inquiries into potential NOTCH-ZMIZ1 collaboration in a variety of C-MYC-driven cancers.
Collapse
Affiliation(s)
- Lesley A. Rakowski
- Division of Hematology-Oncology, Department of Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | - Derek D. Garagiola
- Division of Hematology-Oncology, Department of Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | - Choi M. Li
- Division of Hematology-Oncology, Department of Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | - Margaret Decker
- Division of Hematology-Oncology, Department of Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | - Sarah Caruso
- Division of Hematology-Oncology, Department of Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | | | - Rork Kuick
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, University of Michigan School of Medicine, Ann Arbor, MI
- Life Sciences Institute, Ann Arbor, MI
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Mark Y. Chiang
- Division of Hematology-Oncology, Department of Medicine, University of Michigan School of Medicine, Ann Arbor, MI
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| |
Collapse
|
16
|
Johnson DT, Luong R, Lee SH, Peng Y, Shaltouki A, Lee JT, Lin D, Wang Y, Sun Z. Deletion of leucine zipper tumor suppressor 2 (Lzts2) increases susceptibility to tumor development. J Biol Chem 2012; 288:3727-38. [PMID: 23275340 DOI: 10.1074/jbc.m112.417568] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Using an Lzts2 knock-out mouse model, we characterized the biological role of Lzts2 in tumorigenesis. Both heterozygous and homozygous deletion of the Lzts2-targeted allele in mice shows an increased incidence in spontaneous tumor development, although Lzts2 homozygous knock-out mice show significantly higher incidences than heterozygous mice. Treatment of Lzts2-deficient mice with a carcinogen, N-butyl-N-(4-hydroxybutyl) nitrosamine, increases the susceptibility to N-butyl-N-(4-hydroxybutyl) nitrosamine-induced bladder carcinoma development. Examination of human prostate cancer tissue specimens shows a reduction of LZTS2 protein expression in prostate cancer cells. Further analyses of mouse embryonic fibroblasts isolated from Lzts2 knock-out embryos show that loss of Lzts2 enhances cell growth. These data provide the first line of evidence demonstrating that deletion of Lzts2 increases susceptibility to spontaneous and carcinogen-induced tumor development.
Collapse
Affiliation(s)
- Daniel T Johnson
- Department of Urology, Stanford University School of Medicine, Stanford, California 94305-5328, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zheng Y, Sheng S, Wang H, Jia X, Hu Y, Qian Y, Zhu Y, Wang J. Identification of Pold2 as a novel interaction partner of protein inhibitor of activated STAT2. Int J Mol Med 2012; 30:884-8. [PMID: 22824807 DOI: 10.3892/ijmm.2012.1065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 06/20/2012] [Indexed: 11/06/2022] Open
Abstract
Pold2 is a subunit of the DNA polymerase δ complex, encoding a protein involved in DNA replication and repair. In this study, using a yeast two-hybrid screening technique and the common cDNA fragment of the mouse PIAS2 as a bait, Pold2 was found to interact with PIAS2. A direct interaction between Pold2 and PIAS2 was confirmed by direct yeast two-hybrid. In vivo evidence of Pold2 association with PIAS2 was obtained by co-immunoprecipitation using HEK-293 cells. Subcellular localization studies demonstrated that Pold2 and PIAS2 were partially co-localized in mammalian cells. Collectively, our results suggest that Pold2 interacts under physiological conditions with PIAS2.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Histology and Embryology, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zheng Y, Zhang L, Jia X, Wang H, Hu Y. Interaction of protein inhibitor of activated STAT 2 (PIAS2) with receptor of activated C kinase 1, RACK1. FEBS Lett 2011; 586:122-6. [PMID: 22210188 DOI: 10.1016/j.febslet.2011.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 11/30/2011] [Accepted: 12/07/2011] [Indexed: 12/11/2022]
Abstract
In this study, the evolutionarily conserved intracellular adaptor protein, receptor of activated C kinase 1 (RACK1) was identified as a novel interaction partner of protein inhibitor of activated STAT 2 (PIAS2) using a yeast two-hybrid screening system. The direct interaction and co-localization of RACK1 with PIAS2 was confirmed by immunoprecipitation and immunofluorescence staining analysis, respectively. The 5th to 7th Trp-Asp 40 (5-7 WD40) repeats of RACK1 were identified as the minimal domain required for interaction with PIAS2 by deletion analysis. Furthermore, multiple PIAS2-domains, particularly the 'PINIT' and RLD domains, bind the RACK1 5-7 WD40 domain.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Histology and Embryology, Medical College, Yangzhou University, Yangzhou 225001, China.
| | | | | | | | | |
Collapse
|
19
|
Peng Y, Clark C, Luong R, Tu WH, Lee J, Johnson DT, Das A, Carroll TJ, Sun Z. The leucine zipper putative tumor suppressor 2 protein LZTS2 regulates kidney development. J Biol Chem 2011; 286:40331-42. [PMID: 21949185 DOI: 10.1074/jbc.m111.302059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Members of the leucine zipper putative tumor suppressor (LZTS) family play crucial roles in transcription modulation and cell cycle control. We previously demonstrated that LZTS2 functions as a novel β-catenin-interacting protein and represses β-catenin-mediated transcription on T-cell factor/lymphoid enhancing factor. Here, we investigate the biological role of LZTS2 using newly established Lzts2 KO mice. Homozygosity for loss-of-function of the Lzts2-targeted allele resulted in severe kidney and urinary tract developmental defects, including renal/ureteral duplication, hydroureter, and hydronephrosis, which were visible prenatally. Altered ureteric bud outgrowth was identified in Lzts2 null embryos. Further analysis indicated that β-catenin subcellular localization was altered in fibroblasts isolated from Lzts2 null embryos. In addition, Wnt growth factor-induced β-catenin-mediated transcriptional activity was increased in Lzts2 null fibroblasts, suggesting a direct role for Lzts2 in the Wnt signaling pathway. These data demonstrate a critical role of LZTS2 in renal development and implicate LZTS2 as a critical regulator of β-catenin-mediated nephrogenesis.
Collapse
Affiliation(s)
- Yue Peng
- Department of Urology, Stanford University School of Medicine, Stanford, California 94305-5328, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhuo M, Zhu C, Sun J, Weis WI, Sun Z. The beta-catenin binding protein ICAT modulates androgen receptor activity. Mol Endocrinol 2011; 25:1677-88. [PMID: 21885566 DOI: 10.1210/me.2011-1023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Androgens have important roles in the development of the prostate gland and in prostate cancer. Since the finding that β-catenin is a cofactor of the androgen receptor (AR) and can augment AR signaling, several proteins have been found to affect AR signaling through their interaction with β-catenin. Here, we investigated inhibitor of β-catenin and T-cell factor (ICAT), a β-catenin binding protein that inhibits the canonical Wnt/β-catenin signaling pathway, in AR signaling. We demonstrated that expression of ICAT in two AR positive prostate cancer cell lines, LNCaP and LAPC4, augments ligand-dependent AR-mediated transcription. In contrast, short hairpin RNA knockdown of ICAT and β-catenin specifically blocks enhanced AR-mediated transcription by ICAT. Using both stable expression of ICAT and short hairpin RNA knockdown of ICAT expression approaches, we further showed that ICAT enhances expression of endogenous PSA and KLK2, two androgen response genes, and ligand-induced cell growth. In addition, we identified that ICAT and AR can form a ternary complex with β-catenin using in vitro glutathione S-transferase protein pulldown assays. Moreover, we detected the endogenous protein complex containing ICAT, AR, and β-catenin in prostate cancer cells using immunoprecipitation assays. Recruitment of endogenous ICAT onto the promoter region of the human PSA gene, an AR downstream target promoter, was also identified in LNCaP cells. Finally, using in vitro protein binding assays, we examined the effect of full-length and truncated ICAT on the AR-β-catenin interaction and observed that addition of full-length ICAT retained the interaction between β-catenin and AR proteins. Intriguingly, the truncated ICAT comprising the N-terminal helical domain showed a more pronounced effect on β-catenin binding to AR proteins. Our findings suggest a novel molecular mechanism underlying the cross talk between androgen and Wnt signaling pathways.
Collapse
Affiliation(s)
- Ming Zhuo
- Department of Urology, Stanford University School of Medicine, Stanford, California 94305-5328, USA
| | | | | | | | | |
Collapse
|