1
|
El-Mahrouk SR, El-Ghiaty MA, El-Kadi AOS. The role of nuclear factor erythroid 2-related factor 2 (NRF2) in arsenic toxicity. J Environ Sci (China) 2025; 150:632-644. [PMID: 39306435 DOI: 10.1016/j.jes.2024.02.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 09/25/2024]
Abstract
Arsenic, a naturally occurring toxic element, manifests in various chemical forms and is widespread in the environment. Exposure to arsenic is a well-established risk factor for an elevated incidence of various cancers and chronic diseases. The crux of arsenic-mediated toxicity lies in its ability to induce oxidative stress, characterized by an unsettling imbalance between oxidants and antioxidants, accompanied by the rampant generation of reactive oxygen species and free radicals. In response to this oxidative turmoil, cells deploy their defense mechanisms, prominently featuring the redox-sensitive transcription factor known as nuclear factor erythroid 2-related factor 2 (NRF2). NRF2 stands as a primary guardian against the oxidative harm wrought by arsenic. When oxidative stress activates NRF2, it orchestrates a symphony of downstream antioxidant genes, leading to the activation of pivotal antioxidant enzymes like glutathione-S-transferase, heme oxygenase-1, and NAD(P)H: quinone oxidoreductase 1. This comprehensive review embarks on the intricate and diverse ways by which various arsenicals influence the NRF2 antioxidant pathway and its downstream targets, shedding light on their roles in defending against arsenic exposure toxic effects. It offers valuable insights into targeting NRF2 as a strategy for safeguarding against or treating the harmful and carcinogenic consequences of arsenic exposure.
Collapse
Affiliation(s)
- Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; Faculty of Pharmacy, Tanta University, Tanta, Gharbia, Egypt
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.
| |
Collapse
|
2
|
Glorieux C, Enríquez C, González C, Aguirre-Martínez G, Buc Calderon P. The Multifaceted Roles of NRF2 in Cancer: Friend or Foe? Antioxidants (Basel) 2024; 13:70. [PMID: 38247494 PMCID: PMC10812565 DOI: 10.3390/antiox13010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Physiological concentrations of reactive oxygen species (ROS) play vital roles in various normal cellular processes, whereas excessive ROS generation is central to disease pathogenesis. The nuclear factor erythroid 2-related factor 2 (NRF2) is a critical transcription factor that regulates the cellular antioxidant systems in response to oxidative stress by governing the expression of genes encoding antioxidant enzymes that shield cells from diverse oxidative alterations. NRF2 and its negative regulator Kelch-like ECH-associated protein 1 (KEAP1) have been the focus of numerous investigations in elucidating whether NRF2 suppresses tumor promotion or conversely exerts pro-oncogenic effects. NRF2 has been found to participate in various pathological processes, including dysregulated cell proliferation, metabolic remodeling, and resistance to apoptosis. Herein, this review article will examine the intriguing role of phase separation in activating the NRF2 transcriptional activity and explore the NRF2 dual impacts on tumor immunology, cancer stem cells, metastasis, and long non-coding RNAs (LncRNAs). Taken together, this review aims to discuss the NRF2 multifaceted roles in both cancer prevention and promotion while also addressing the advantages, disadvantages, and limitations associated with modulating NRF2 therapeutically in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Cinthya Enríquez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Programa de Magister en Ciencias Químicas y Farmacéuticas, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile
| | - Constanza González
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
| | - Gabriela Aguirre-Martínez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Instituto de Química Medicinal, Universidad Arturo Prat, Iquique 1100000, Chile
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Instituto de Química Medicinal, Universidad Arturo Prat, Iquique 1100000, Chile
- Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
3
|
Lin DW, Hsu YC, Chang CC, Hsieh CC, Lin CL. Insights into the Molecular Mechanisms of NRF2 in Kidney Injury and Diseases. Int J Mol Sci 2023; 24:ijms24076053. [PMID: 37047024 PMCID: PMC10094034 DOI: 10.3390/ijms24076053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Redox is a constant phenomenon in organisms. From the signaling pathway transduction to the oxidative stress during the inflammation and disease process, all are related to reduction-oxidation (redox). Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor targeting many antioxidant genes. In non-stressed conditions, NRF2 maintains the hemostasis of redox with housekeeping work. It expresses constitutively with basal activity, maintained by Kelch-like-ECH-associated protein 1 (KEAP1)-associated ubiquitination and degradation. When encountering stress, it can be up-regulated by several mechanisms to exert its anti-oxidative ability in diseases or inflammatory processes to protect tissues and organs from further damage. From acute kidney injury to chronic kidney diseases, such as diabetic nephropathy or glomerular disease, many results of studies have suggested that, as a master of regulating redox, NRF2 is a therapeutic option. It was not until the early termination of the clinical phase 3 trial of diabetic nephropathy due to heart failure as an unexpected side effect that we renewed our understanding of NRF2. NRF2 is not just a simple antioxidant capacity but has pleiotropic activities, harmful or helpful, depending on the conditions and backgrounds.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Internal Medicine, St. Martin de Porres Hospital, Chiayi 600, Taiwan
| | - Yung-Chien Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Cheng-Chih Chang
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Ching-Chuan Hsieh
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
4
|
Silvestro S, Mazzon E. Nrf2 Activation: Involvement in Central Nervous System Traumatic Injuries. A Promising Therapeutic Target of Natural Compounds. Int J Mol Sci 2022; 24:199. [PMID: 36613649 PMCID: PMC9820431 DOI: 10.3390/ijms24010199] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Central nervous system (CNS) trauma, such as traumatic brain injury (TBI) and spinal cord injury (SCI), represents an increasingly important health burden in view of the preventability of most injuries and the complex and expensive medical care that they necessitate. These injuries are characterized by different signs of neurodegeneration, such as oxidative stress, mitochondrial dysfunction, and neuronal apoptosis. Cumulative evidence suggests that the transcriptional factor nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial defensive role in regulating the antioxidant response. It has been demonstrated that several natural compounds are able to activate Nrf2, mediating its antioxidant response. Some of these compounds have been tested in experimental models of SCI and TBI, showing different neuroprotective properties. In this review, an overview of the preclinical studies that highlight the positive effects of natural bioactive compounds in SCI and TBI experimental models through the activation of the Nrf2 pathway has been provided. Interestingly, several natural compounds can activate Nrf2 through multiple pathways, inducing a strong antioxidant response against CNS trauma. Therefore, some of these compounds could represent promising therapeutic strategies for these pathological conditions.
Collapse
Affiliation(s)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
5
|
Dodson M, Shakya A, Anandhan A, Chen J, Garcia JG, Zhang DD. NRF2 and Diabetes: The Good, the Bad, and the Complex. Diabetes 2022; 71:2463-2476. [PMID: 36409792 PMCID: PMC9750950 DOI: 10.2337/db22-0623] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
Despite decades of scientific effort, diabetes continues to represent an incredibly complex and difficult disease to treat. This is due in large part to the multifactorial nature of disease onset and progression and the multiple organ systems affected. An increasing body of scientific evidence indicates that a key mediator of diabetes progression is NRF2, a critical transcription factor that regulates redox, protein, and metabolic homeostasis. Importantly, while experimental studies have confirmed the critical nature of proper NRF2 function in preventing the onset of diabetic outcomes, we have only just begun to scratch the surface of understanding the mechanisms by which NRF2 modulates diabetes progression, particularly across different causative contexts. One reason for this is the contradictory nature of the current literature, which can often be accredited to model discrepancies, as well as whether NRF2 is activated in an acute or chronic manner. Furthermore, despite therapeutic promise, there are no current NRF2 activators in clinical trials for the treatment of patients with diabetes. In this review, we briefly introduce the transcriptional programs regulated by NRF2 as well as how NRF2 itself is regulated. We also review the current literature regarding NRF2 modulation of diabetic phenotypes across the different diabetes subtypes, including a brief discussion of contradictory results, as well as what is needed to progress the NRF2 diabetes field forward.
Collapse
Affiliation(s)
- Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Aryatara Shakya
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Annadurai Anandhan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Jinjing Chen
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Joe G.N. Garcia
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
- Arizona Cancer Center, University of Arizona, Tucson, AZ
| |
Collapse
|
6
|
Bai G, Zhou R, Jiang X, Zou Y, Shi B. Glyphosate-based herbicides induces autophagy in IPEC-J2 cells and the intervention of N-acetylcysteine. ENVIRONMENTAL TOXICOLOGY 2022; 37:1878-1890. [PMID: 35388968 DOI: 10.1002/tox.23534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most widely used pesticide in the world, and its extensive use has increased pressures on environmental safety and potential human and livestock health risks. This study investigated the effects of GBHs on antioxidant capacity, inflammatory cytokines, and autophagy of porcine intestinal epithelial cells (IPEC-J2) and its molecular mechanism. Also, the protective effects of N-acetylcysteine (NAC) against the toxicity of GBHs were evaluated. Our results showed that the activities of antioxidant enzymes (SOD, GSH-Px) were decreased by GBHs. GBHs increased inflammatory factors (IL-1β, IL-6, TNF-α) and the mRNA expression of iNOS and COX-2. GBHs induced the up-regulation of Nrf2/HO-1 pathway and the phosphorylation of IκB-α and NFκB p65, up-regulation of LC3-II/LC3-I, and down-regulation of P62, and NFκB inhibitor decreased the mRNA expression of inflammatory cytokines (IL-1β, IL-6, IL-8). Moreover, NAC reduced the cytotoxicity by suppressing ROS levels, and changed the autophagy-related proteins such as the suppression of LC3-II conversion and up-regulation of P62. Our findings unveil a novel mechanism of GBHs effects on IPEC-J2 cells and NAC can reverse cytotoxicity to some extent.
Collapse
Affiliation(s)
- Guangdong Bai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Ruiying Zhou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xu Jiang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yingbin Zou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
7
|
Park JS, Yang S, Hwang SH, Choi J, Kwok SK, Kong YY, Youn J, Cho ML, Park SH. B cell-specific deletion of Crif1 drives lupus-like autoimmunity by activation of IL-17, IL-6, and pathogenic Tfh cells. Arthritis Rheumatol 2022; 74:1211-1222. [PMID: 35166061 DOI: 10.1002/art.42091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/30/2021] [Accepted: 02/09/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE CR6-interacting factor 1 (Crif1) is a nuclear transcriptional regulator and a mitochondrial inner membrane protein; however, its functions in B lymphocytes have been poorly defined. In this study, we investigated the effects of Crif1 on B-cell metabolic regulation, cell function, and autoimmune diseases. METHODS Using mice with B cell-specific deletion of Crif1 (Crif1ΔCD19 ), we assessed the relevance of Crif1 function for lupus disease parameters including anti-double-stranded DNA, cytokines, and kidney pathology. RNA sequencing was performed on B cells from Crif1ΔCD19 mice. The phenotypic and metabolic changes in immune cells were evaluated in Crif1ΔCD19 mice. Roquinsan/+ mice crossed with Crif1ΔCD19 mice were monitored to assess the functionality of Crif1-deficient B cells in lupus development. RESULTS Crif1ΔCD19 mice showed an autoimmune lupus-like phenotype, including high levels of autoantibodies to double-stranded DNA and severe lupus nephritis with increased mesangial hypercellularity. While loss of Crif1 in B cells showed impaired mitochondrial oxidative function, Crif1-deficient B cells promoted the production of IL-17 and IL-6 and was more potent in helping T cells develop into T follicular helper cells. In an autoimmune lupus mouse model, depletion of Crif1 in B cells exacerbated lupus severity and Crif1 overexpression prevented lupus development in Roquinsan/san mice. CONCLUSION These results showed that Crif1 was negatively correlated with disease severity, and overexpression of Crif1 ameliorated disease development. Our findings suggest that Crif1 is essential for preventing lupus development by maintaining B cell self-tolerance.
Collapse
Affiliation(s)
- Jin-Sil Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - SeungCheon Yang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun-Hee Hwang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - JeongWon Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Ki Kwok
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Divison of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jeehee Youn
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, 04763, Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Divison of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
8
|
Mata A, Cadenas S. The Antioxidant Transcription Factor Nrf2 in Cardiac Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 22:11939. [PMID: 34769371 PMCID: PMC8585042 DOI: 10.3390/ijms222111939] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 12/25/2022] Open
Abstract
Nuclear factor erythroid-2 related factor 2 (Nrf2) is a transcription factor that controls cellular defense responses against toxic and oxidative stress by modulating the expression of genes involved in antioxidant response and drug detoxification. In addition to maintaining redox homeostasis, Nrf2 is also involved in various cellular processes including metabolism and inflammation. Nrf2 activity is tightly regulated at the transcriptional, post-transcriptional and post-translational levels, which allows cells to quickly respond to pathological stress. In the present review, we describe the molecular mechanisms underlying the transcriptional regulation of Nrf2. We also focus on the impact of Nrf2 in cardiac ischemia-reperfusion injury, a condition that stimulates the overproduction of reactive oxygen species. Finally, we analyze the protective effect of several natural and synthetic compounds that induce Nrf2 activation and protect against ischemia-reperfusion injury in the heart and other organs, and their potential clinical application.
Collapse
Affiliation(s)
- Ana Mata
- Centro de Biología Molecular “Severo Ochoa” (CSIC/UAM), 28049 Madrid, Spain;
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Susana Cadenas
- Centro de Biología Molecular “Severo Ochoa” (CSIC/UAM), 28049 Madrid, Spain;
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| |
Collapse
|
9
|
Bono S, Feligioni M, Corbo M. Impaired antioxidant KEAP1-NRF2 system in amyotrophic lateral sclerosis: NRF2 activation as a potential therapeutic strategy. Mol Neurodegener 2021; 16:71. [PMID: 34663413 PMCID: PMC8521937 DOI: 10.1186/s13024-021-00479-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Oxidative stress (OS) is an imbalance between oxidant and antioxidant species and, together with other numerous pathological mechanisms, leads to the degeneration and death of motor neurons (MNs) in amyotrophic lateral sclerosis (ALS). MAIN BODY Two of the main players in the molecular and cellular response to OS are NRF2, the transcription nuclear factor erythroid 2-related factor 2, and its principal negative regulator, KEAP1, Kelch-like ECH (erythroid cell-derived protein with CNC homology)-associated protein 1. Here we first provide an overview of the structural organization, regulation, and critical role of the KEAP1-NRF2 system in counteracting OS, with a focus on its alteration in ALS. We then examine several compounds capable of promoting NRF2 activity thereby inducing cytoprotective effects, and which are currently in different stages of clinical development for many pathologies, including neurodegenerative diseases. CONCLUSIONS Although challenges associated with some of these compounds remain, important advances have been made in the development of safer and more effective drugs that could actually represent a breakthrough for fatal degenerative diseases such as ALS.
Collapse
Affiliation(s)
- Silvia Bono
- Need Institute, Laboratory of Neurobiology for Translational Medicine, c/o Casa di Cura del Policlinico (CCP), Via Dezza 48, 20144 Milan, Italy
| | - Marco Feligioni
- Need Institute, Laboratory of Neurobiology for Translational Medicine, c/o Casa di Cura del Policlinico (CCP), Via Dezza 48, 20144 Milan, Italy
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, 00161 Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico (CCP), Via Dezza 48, 20144 Milan, Italy
| |
Collapse
|
10
|
Nagar H, Kim S, Lee I, Choi SJ, Piao S, Jeon BH, Shong M, Kim CS. CRIF1 deficiency suppresses endothelial cell migration via upregulation of RhoGDI2. PLoS One 2021; 16:e0256646. [PMID: 34437633 PMCID: PMC8389428 DOI: 10.1371/journal.pone.0256646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/11/2021] [Indexed: 11/22/2022] Open
Abstract
Rho GDP-dissociation inhibitor (RhoGDI), a downregulator of Rho family GTPases, prevents nucleotide exchange and membrane association. It is responsible for the activation of Rho GTPases, which regulate a variety of cellular processes, such as migration. Although RhoGDI2 has been identified as a tumor suppressor gene involved in cellular migration and invasion, little is known about its role in vascular endothelial cell (EC) migration. CR6-interacting factor 1 (CRIF1) is a CR6/GADD45-interacting protein with important mitochondrial functions and regulation of cell growth. We examined the expression of RhoGDI2 in CRIF1-deficient human umbilical vein endothelial cells (HUVECs) and its role in cell migration. Expression of RhoGDI2 was found to be considerably higher in CRIF1-deficient HUVECs along with suppression of cell migration. Moreover, the phosphorylation levels of Akt and CREB were decreased in CRIF1-silenced cells. The Akt-CREB signaling pathway was implicated in the changes in endothelial cell migration caused by CRIF1 downregulation. In addition to RhoGDI2, we identified another factor that promotes migration and invasion of ECs. Adrenomedullin2 (ADM2) is an autocrine/paracrine factor that regulates vascular tone and other vascular functions. Endogenous ADM2 levels were elevated in CRIF1-silenced HUVECs with no effect on cell migration. However, siRNA-mediated depletion of RhoGDI2 or exogenous ADM2 administration significantly restored cell migration via the Akt-CREB signaling pathway. In conclusion, RhoGDI2 and ADM2 play important roles in the migration of CRIF1-deficient endothelial cells.
Collapse
Affiliation(s)
- Harsha Nagar
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seonhee Kim
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of BK21 Plus CNU Integrative Biomedical Education Initiative, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ikjun Lee
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of BK21 Plus CNU Integrative Biomedical Education Initiative, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Su-Jeong Choi
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Shuyu Piao
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Byeong Hwa Jeon
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Cuk-Seong Kim
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
11
|
Wang J, Zhai Y, Ou M, Bian Y, Tang C, Zhang W, Cheng Y, Li G. Protective Effect of Lemon Peel Extract on Oxidative Stress in H9c2 Rat Heart Cell Injury. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2047-2058. [PMID: 34017169 PMCID: PMC8131012 DOI: 10.2147/dddt.s304624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/21/2021] [Indexed: 01/27/2023]
Abstract
Aim Lemon peel, a traditional Chinese medicine, was tested in this study for its novel application in inhibiting cellular oxidative stress, and the effect of lemon peel extract (LPE) on protecting H9c2 rat heart cells from oxidative stress was investigated. Methods The scavenging effects of LPE on 1,1-diphenyl-2-picryhydrazyl (DPPH) and 2,2’-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) free radicals were measured in extracellular experiments. The 3-(4,5-dimethyl-2-thiazolinyl)-2,5-diphenyl-2-h-tetrazolylammonium bromide (MTT) assay was used to detect the cell survival rate. The cell supernatant and intracellular oxidation-related indicators were detected by a kit, and the mRNA expression in H9c2 cells was detected by quantitative polymerase chain reaction (qPCR). The chemical substances of LPE were analyzed by high-performance liquid chromatography (HPLC). Results The results showed that LPE exhibited better DPPH and ABTS free radical scavenging abilities than vitamin C. Compared with the cells in the normal state (control group), the cell survival rate in the model group decreased, and the level of lactate dehydrogenase (LDH) increased, the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) decreased, and the content of malondialdehyde (MDA) increased. Compared with the control group, the expression of Bcl-2-related X protein (Bax), caspase-3, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in the model group was increased, and the expression of B-cell lymphoma-2 (Bcl-2) was reduced. Compared with the model group, LPE treatment improved the cell survival rate, reduced the levels of LDH and MDA, increased the levels of SOD, CAT, and GSH, downregulated the expression of Bax, caspase-3, Nrf2 and HO-1, and upregulated the expression of Bcl-2. The composition analysis showed that LPE contained catechin, rutin, naringin, quercetin, and hesperidin. Conclusion The results indicated that LPE could protect H9c2 cells from oxidative stress through five active components. LPE has the potential to be developed into natural medicine or health food for the inhibition of cell oxidative damage.
Collapse
Affiliation(s)
- Jun Wang
- Citrus Research Institute, Southwest University, Chongqing, People's Republic of China.,National Citrus Engineering Research Center, Chongqing, People's Republic of China
| | - Yulin Zhai
- Citrus Research Institute, Southwest University, Chongqing, People's Republic of China
| | - Mingguang Ou
- Guang'an Nongfeng Agricultural Development Co., Ltd, Sichuan, People's Republic of China
| | - Yunfeng Bian
- Guang'an Zheng Wang Agriculture Co., Ltd, Sichuan, People's Republic of China
| | - Chenglong Tang
- Yuanyang Hongtu Grapefruit Agricultural Technology Development Co., Ltd, Yunnan, People's Republic of China
| | - Wanchao Zhang
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, People's Republic of China.,National Patent Navigation Project (Chongqing) Research and Promotion Center, Chongqing, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Yujiao Cheng
- Citrus Research Institute, Southwest University, Chongqing, People's Republic of China.,National Citrus Engineering Research Center, Chongqing, People's Republic of China
| | - Guijie Li
- Citrus Research Institute, Southwest University, Chongqing, People's Republic of China.,National Citrus Engineering Research Center, Chongqing, People's Republic of China
| |
Collapse
|
12
|
Qu Z, Sun J, Zhang W, Yu J, Zhuang C. Transcription factor NRF2 as a promising therapeutic target for Alzheimer's disease. Free Radic Biol Med 2020; 159:87-102. [PMID: 32730855 DOI: 10.1016/j.freeradbiomed.2020.06.028] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress is considered as one of the pathogenesis of Alzheimer's disease (AD) and plays an important role in the occurrence and development of AD. Nuclear factor erythroid 2 related factor 2 (NRF2) is a key regulatory of oxidative stress defence. There is growing evidence indicating the relationship between NRF2 and AD. NRF2 activation mitigates multiple pathogenic processes involved in AD by upregulating antioxidative defense, inhibiting neuroinflammation, improving mitochondrial function, maintaining proteostasis, and inhibiting ferroptosis. In addition, several NRF2 activators are currently being evaluated as AD therapeutic agents in clinical trials. Thus, targeting NRF2 has been the focus of a new strategy for prevention and treatment of AD. In this review, the role of NRF2 in AD and the NRF2 activators advanced into clinical and preclinical studies will be summarized.
Collapse
Affiliation(s)
- Zhuo Qu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Jiachen Sun
- School of Biotechnology and Food Science, Tianjin University of Commerce, 409 Guangrong Road, Tianjin, 300134, China
| | - Wannian Zhang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Jianqiang Yu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Chunlin Zhuang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
13
|
He F, Antonucci L, Karin M. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis 2020; 41:405-416. [PMID: 32347301 DOI: 10.1093/carcin/bgaa039] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/11/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a master transcriptional regulator of genes whose products defend our cells for toxic and oxidative insults. Although NRF2 activation may reduce cancer risk by suppressing oxidative stress and tumor-promoting inflammation, many cancers exhibit elevated NRF2 activity either due to mutations that disrupt the negative control of NRF2 activity or other factors. Importantly, NRF2 activation is associated with poor prognosis and NRF2 has turned out to be a key activator of cancer-supportive anabolic metabolism. In this review, we summarize the diverse roles played by NRF2 in cancer focusing on metabolic reprogramming and tumor-promoting inflammation.
Collapse
Affiliation(s)
- Feng He
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, San Diego, La Jolla, CA, USA
| | - Laura Antonucci
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, San Diego, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, San Diego, La Jolla, CA, USA.,Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
14
|
Jasmer KJ, Hou J, Mannino P, Cheng J, Hannink M. Heme oxygenase promotes B-Raf-dependent melanosphere formation. Pigment Cell Melanoma Res 2020; 33:850-868. [PMID: 32558263 DOI: 10.1111/pcmr.12905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/09/2020] [Accepted: 06/07/2020] [Indexed: 12/22/2022]
Abstract
Biosynthesis and degradation of heme, an iron-bound protoporphyrin molecule utilized by a wide variety of metabolic processes, are tightly regulated. Two closely related enzymes, heme oxygenase 1 (HMOX1) and heme oxygenase 2 (HMOX2), degrade free heme to produce carbon monoxide, Fe2+ , and biliverdin. HMOX1 expression is controlled via the transcriptional activator, NFE2L2, and the transcriptional repressor, Bach1. Transcription of HMOX1 and other NFE2L2-dependent genes is increased in response to electrophilic and reactive oxygen species. Many tumor-derived cell lines have elevated levels of NFE2L2. Elevated expression of NFE2L2-dependent genes contributes to tumor growth and acquired resistance to therapies. Here, we report a novel role for heme oxygenase activity in melanosphere formation by human melanoma-derived cell lines. Transcriptional induction of HMOX1 through derepression of Bach1 or transcriptional activation of HMOX2 by oncogenic B-RafV600E results in increased melanosphere formation. Genetic ablation of HMOX1 diminishes melanosphere formation. Further, inhibition of heme oxygenase activity with tin protoporphyrin markedly reduces melanosphere formation driven by either Bach1 derepression or B-RafV600E expression. Global transcriptome analyses implicate genes involved in focal adhesion and extracellular matrix interactions in melanosphere formation.
Collapse
Affiliation(s)
- Kimberly J Jasmer
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA.,Christopher Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Jie Hou
- Computer Science Department, University of Missouri, Columbia, Missouri, USA
| | - Philip Mannino
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Jianlin Cheng
- Computer Science Department, University of Missouri, Columbia, Missouri, USA
| | - Mark Hannink
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
15
|
NRF2, a Transcription Factor for Stress Response and Beyond. Int J Mol Sci 2020; 21:ijms21134777. [PMID: 32640524 PMCID: PMC7369905 DOI: 10.3390/ijms21134777] [Citation(s) in RCA: 767] [Impact Index Per Article: 191.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the cellular defense against toxic and oxidative insults through the expression of genes involved in oxidative stress response and drug detoxification. NRF2 activation renders cells resistant to chemical carcinogens and inflammatory challenges. In addition to antioxidant responses, NRF2 is involved in many other cellular processes, including metabolism and inflammation, and its functions are beyond the originally envisioned. NRF2 activity is tightly regulated through a complex transcriptional and post-translational network that enables it to orchestrate the cell’s response and adaptation to various pathological stressors for the homeostasis maintenance. Elevated or decreased NRF2 activity by pharmacological and genetic manipulations of NRF2 activation is associated with many metabolism- or inflammation-related diseases. Emerging evidence shows that NRF2 lies at the center of a complex regulatory network and establishes NRF2 as a truly pleiotropic transcription factor. Here we summarize the complex regulatory network of NRF2 activity and its roles in metabolic reprogramming, unfolded protein response, proteostasis, autophagy, mitochondrial biogenesis, inflammation, and immunity.
Collapse
|
16
|
Progressive Rotavirus Infection Downregulates Redox-Sensitive Transcription Factor Nrf2 and Nrf2-Driven Transcription Units. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7289120. [PMID: 32322337 PMCID: PMC7165344 DOI: 10.1155/2020/7289120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Eukaryotic cells adopt highly tuned stress response physiology under threats of exogenous stressors including viruses to maintain cellular homeostasis. Not surprisingly, avoidance of cellular stress response pathways is an essential facet of virus-induced obligatory host reprogramming to invoke a cellular environment conducive to viral perpetuation. Adaptive cellular responses to oxidative and electrophilic stress are usually taken care of by an antioxidant defense system, core to which lies the redox-responsive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2-driven transcriptional cascade. Deregulation of host redox balance and redox stress-sensitive Nrf2 antioxidant defense have been reported for many viruses. In the current study, we aimed to study the modulation of the Nrf2-based host cellular redox defense system in response to Rotavirus (RV) infection in vitro. Interestingly, we found that Nrf2 protein levels decline sharply with progression of RV infection beyond an initial upsurge. Moreover, Nrf2 decrease as a whole was found to be accompanied by active nuclear vacuity of Nrf2, resulting in lowered expression of stress-responsive Nrf2 target genes heme oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase 1, and superoxide dismutase 1 both in the presence and absence of Nrf2-driven transcriptional inducers. Initial induction of Nrf2 concurred with RV-induced early burst of oxidative stress and therefore was sensitive to treatments with antioxidants. Reduction of Nrf2 levels beyond initial hours, however, was found to be independent of the cellular redox status. Furthermore, increasing the half-life of Nrf2 through inhibition of the Kelch-like erythroid cell-derived protein with CNC homology- (ECH-) associated protein 1/Cullin3-RING Box1-based canonical Nrf2 turnover pathway could not restore Nrf2 levels post RV-SA11 infection. Depletion of the Nrf2/HO-1 axis was subsequently found to be sensitive to proteasome inhibition with concurrent observation of increased K48-linked ubiquitination associated with Nrf2. Together, the present study describes robust downregulation of Nrf2-dependent cellular redox defense beyond initial hours of RV infection, justifying our previous observation of potent antirotaviral implications of Nrf2 agonists.
Collapse
|
17
|
Kim S, Piao S, Lee I, Nagar H, Choi SJ, Shin N, Kim DW, Shong M, Jeon BH, Kim CS. CR6 interacting factor 1 deficiency induces premature senescence via SIRT3 inhibition in endothelial cells. Free Radic Biol Med 2020; 150:161-171. [PMID: 32109515 DOI: 10.1016/j.freeradbiomed.2020.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/13/2022]
Abstract
Vascular endothelial cell senescence is an important cause of cardiac-related diseases. Mitochondrial reactive oxygen species (mtROS) have been implicated in cellular senescence and multiple cardiovascular disorders. CR6 interacting factor 1 (CRIF1) deficiency has been shown to increase mtROS via the inhibition of mitochondrial oxidative phosphorylation; however, the mechanisms by which mtROS regulates vascular endothelial senescence have not been thoroughly explored. The goal of this study was to investigate the effects of CRIF1 deficiency on endothelial senescence and to elucidate the underlying mechanisms. CRIF1 deficiency was shown to increase the activity of senescence-associated β-galactosidase along with increased expression of phosphorylated p53, p21, and p16 proteins. Cell cycle arrested in the G0/G1 phase were identified in CRIF1-deficient cells using the flow cytometry. Furthermore, CRIF1 deficiency was also shown to increase cellular senescence by reducing the expression of Sirtuin 3 (SIRT3) via ubiquitin-mediated degradation of transcription factors PGC1α and NRF2. Downregulation of CRIF1 also attenuated the function of mitochondrial antioxidant enzymes including manganese superoxide dismutase (MnSOD), Foxo3a, nicotinamide-adenine dinucleotide phosphate, and glutathione via the suppression of SIRT3. Interestingly, overexpression of SIRT3 in CRIF1-deficient endothelial cells not only reduced mtROS levels by elevating expression of the antioxidant enzyme MnSOD but also decreased the expression of cell senescence markers. Taken together, these results suggest that CRIF1 deficiency induces vascular endothelial cell senescence via ubiquitin-mediated degradation of the transcription coactivators PGC1α and NRF2, resulting in decreased expression of SIRT3.
Collapse
Affiliation(s)
- Seonhee Kim
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 301-747, Republic of Korea
| | - Shuyu Piao
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 301-747, Republic of Korea
| | - Ikjun Lee
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 301-747, Republic of Korea
| | - Harsha Nagar
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 301-747, Republic of Korea
| | - Su-Jeong Choi
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 301-747, Republic of Korea
| | - Nara Shin
- Department of Anatomy & Medical Science, Chungnam National University College of Medicine, Daejeon, 301-747, Republic of Korea
| | - Dong Woon Kim
- Department of Anatomy & Medical Science, Chungnam National University College of Medicine, Daejeon, 301-747, Republic of Korea
| | - Minho Shong
- Department of Endocrinology, Chungnam National University Hospital, Daejeon, 301-721, Republic of Korea
| | - Byeong Hwa Jeon
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 301-747, Republic of Korea
| | - Cuk-Seong Kim
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 301-747, Republic of Korea.
| |
Collapse
|
18
|
Xiang LX, Ran Q, Chen L, Xiang Y, Li FJ, Zhang XM, Xiao YN, Zou LY, Zhong JF, Li SC, Li ZJ. CR6-interacting factor-1 contributes to osteoclastogenesis by inducing receptor activator of nuclear factor κB ligand after radiation. World J Stem Cells 2020; 12:222-240. [PMID: 32266053 PMCID: PMC7118287 DOI: 10.4252/wjsc.v12.i3.222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/29/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Radiation induces rapid bone loss and enhances bone resorption and adipogenesis, leading to an increased risk of bone fracture. There is still a lack of effective preventive or therapeutic method for irradiation-induced bone injury. Receptor activator of nuclear factor κB ligand (RANKL) provides the crucial signal to induce osteoclast differentiation and plays an important role in bone resorption. However, the mechanisms of radiation-induced osteoporosis are not fully understood.
AIM To investigate the role of CR6-interacting factor-1 (Crif1) in osteoclastogenesis after radiation and its possible mechanism.
METHODS C57BL/6 mice were exposed to Co-60 gamma rays and received 5 Gy of whole-body sublethal irradiation at a rate of 0.69 Gy/min. For in vitro study, mouse bone marrow mesenchymal stem/stromal cells (BM-MSCs) were irradiated with Co-60 at a single dose of 9 Gy. For osteoclast induction, monocyte-macrophage RAW264.7 cells were cocultured with mouse BM-MSCs for 7 d. ClusPro and InterProSurf were used to investigate the interaction interface in Crif1 and protein kinase cyclic adenosine monophosphate (cAMP)-activited catalytic subunit alpha complex. Virtual screening using 462608 compounds from the Life Chemicals database around His120 of Crif1 was carried out using the program Autodock_vina. A tetrazolium salt (WST-8) assay was carried out to study the toxicity of compounds to different cells, including human BM-MSCs, mouse BM-MSCs, and Vero cells.
RESULTS Crif1 expression increased in bone marrow cells after radiation in mice. Overexpression of Crif1 in mouse BM-MSCs and radiation exposure could increase RANKL secretion and promote osteoclastogenesis in vitro. Deletion of Crif1 in BM-MSCs could reduce both adipogenesis and RANKL expression, resulting in the inhibition of osteoclastogenesis. Deletion of Crif1 in RAW264.7 cells did not affect the receptor activator of nuclear factor κB expression or osteoclast differentiation. Following treatment with protein kinase A (PKA) agonist (forskolin) and inhibitor (H-89) in mouse BM-MSCs, Crif1 induced RANKL secretion via the cAMP/PKA pathway. Moreover, we identified the Crif1-protein kinase cyclic adenosine monophosphate-activited catalytic subunit alpha interaction interface by in silico studies and shortlisted interface inhibitors through virtual screening on Crif1. Five compounds dramatically suppressed RANKL secretion and adipogenesis by inhibiting the cAMP/PKA pathway.
CONCLUSION Crif1 promotes RANKL expression via the cAMP/PKA pathway, which induces osteoclastogenesis by binding to receptor activator of nuclear factor κB on monocytes-macrophages in the mouse model. These results suggest a role for Crif1 in modulating osteoclastogenesis and provide insights into potential therapeutic strategies targeting the balance between osteogenesis and adipogenesis for radiation-induced bone injury.
Collapse
Affiliation(s)
- Li-Xin Xiang
- Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Qian Ran
- Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Li Chen
- Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yang Xiang
- Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Feng-Jie Li
- Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Xiao-Mei Zhang
- Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yan-Ni Xiao
- Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Ling-Yun Zou
- Bioinformatics Center, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Jiang F Zhong
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Shengwen Calvin Li
- CHOC Children’s Research Institute, Children’s Hospital of Orange County, University of California, Irvine, CA 92868, United States
| | - Zhong-Jun Li
- Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| |
Collapse
|
19
|
Cheng Q, Jiang S, Huang L, Wang Y, Yang W, Yang Z, Ge J. Effects of zearalenone-induced oxidative stress and Keap1-Nrf2 signaling pathway-related gene expression in the ileum and mesenteric lymph nodes of post-weaning gilts. Toxicology 2019; 429:152337. [PMID: 31760079 DOI: 10.1016/j.tox.2019.152337] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 12/29/2022]
Abstract
Zearalenone (ZEA) contamination of feed affects animal husbandry and the human health. Currently, the molecular mechanism underlying small intestine-related diseases caused by ZEA-induced oxidative stress is not well understood. In this study, we aimed to identify the mechanisms involved in ZEA (0.5-1.5 mg/kg)-induced oxidative stress in the ileum and mesenteric lymph nodes (MLNs) and the role of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in post-weaning gilts. Forty post-weaning gilts (Landrace × Yorkshire × Duroc) with an average body weight of 14.01 ± 0.86 kg were randomly allocated to four groups and fed a corn-soybean meal basal diet supplemented with < 0.1, 0.5, 1.0, or 1.5 mg/kg ZEA. The results showed that the activity of total superoxide dismutase and glutathione peroxidase decreased (p < 0.05) linearly and quadratically and that the content of malondialdehyde increased (p < 0.05) quadratically in the ileum and MLNs with increasing ZEA in the diet. Immunohistochemical analysis showed that the expression of Nrf2 and glutathione peroxidase 1 (Gpx1) immunoreactive proteins in the ileum and MLNs were significantly enhanced with increasing ZEA. The relative mRNA and protein expression of Nrf2, Gpx1, quinone oxidoreductase 1 (Nqo1), hemeoxygenase 1 (Ho1), modifier subunit of glutamate-cysteine ligase (Gclm), and catalytic subunit of glutamate-cysteine ligase (Gclc) increased (p < 0.05) linearly and quadratically, and the relative mRNA and protein expression of Keap1 decreased (p < 0.05) linearly and quadratically in the ileum with increasing ZEA concentrations in the diet. Further, the relative mRNA and protein expression of Nrf2 and Gpx1 increased (p < 0.05) linearly and quadratically, and the relative mRNA and protein expression of Nqo1, Ho1, and Gclm decreased (p < 0.05) quadratically in the MLNs as ZEA concentrations increased in the diet. Our results provide valuable genetic information on ZEA-induced oxidative stress in the ileum and MLNs of post-weaning gilts and have elucidated the key regulatory genes involved in the Keap1-Nrf2 signaling pathway. Results indicated that the Keap1-Nrf2 signaling pathway might be a key target to further prevent and treat ZEA-induced injury to the ileum in post-weaning gilts.
Collapse
Affiliation(s)
- Qun Cheng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Sciences and Technology, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Shuzhen Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Sciences and Technology, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Libo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Sciences and Technology, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yuxi Wang
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, PO Box 3000, Lethbridge, Alberta, T1J 4B1, Canada
| | - Weiren Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Sciences and Technology, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Zaibin Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Sciences and Technology, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Jinshan Ge
- Shandong Zhongcheng Feed Technology Co., Ltd, No. 226 Gongye 2 Road, Feicheng City, Shandong,271600, China
| |
Collapse
|
20
|
CRIF1 as a potential target to improve the radiosensitivity of osteosarcoma. Proc Natl Acad Sci U S A 2019; 116:20511-20516. [PMID: 31548420 DOI: 10.1073/pnas.1906578116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Resistance to ionizing radiation (IR), which is a conventional treatment for osteosarcoma that cannot be resected, undermines the efficacy of this therapy. However, the mechanism by which IR induces radioresistance in osteosarcoma is not defined. Here, we report that CR6-interacting factor-1 (CRIF1) is highly expressed in osteosarcoma and undergoes nuclear-cytoplasmic shuttling of cyclin-dependent kinase 2 (CDK2) after IR. Osteosarcoma cells lacking CRIF1 show increased sensitivity to IR, which is associated with delayed DNA damage repair, inactivated G1/S checkpoint, and mitochondrial dysfunction. CRIF1 interacts with the DNA damage checkpoint regulator CDK2, and CRIF1 and CDK2 colocalize in the nucleus after IR. Nuclear localization of CDK2 is associated with phosphorylation changes that promote DNA repair and activation of the G1/S checkpoint. CRIF1 knockdown synergized with IR in an in vivo osteosarcoma model, leading to tumor regression. Based on these findings, we identify CRIF1 as a potential therapeutic target in osteosarcoma that can increase the efficacy of radiotherapy. More broadly, our findings may provide insights into the mechanism for other types of radioresistant cancers and be exploited for therapeutic ends.
Collapse
|
21
|
Fürstenau CR, de Souza ICC, de Oliveira MR. Tanshinone I Induces Mitochondrial Protection by a Mechanism Involving the Nrf2/GSH Axis in the Human Neuroblastoma SH-SY5Y Cells Exposed to Methylglyoxal. Neurotox Res 2019; 36:491-502. [DOI: 10.1007/s12640-019-00091-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/02/2019] [Accepted: 07/18/2019] [Indexed: 12/30/2022]
|
22
|
Park J, Choi S, Hwang S, Kim S, Choi J, Jung K, Kwon JY, Kong Y, Cho M, Park S. CR6-interacting factor 1 controls autoimmune arthritis by regulation of signal transducer and activator of transcription 3 pathway and T helper type 17 cells. Immunology 2019; 156:413-421. [PMID: 30585643 PMCID: PMC6418438 DOI: 10.1111/imm.13042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/31/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
CR6-interacting factor 1 (CRIF1) is a nuclear protein that interacts with other nuclear factors and androgen receptors, and is implicated in the regulation of cell cycle progression and cell growth. In this study, we examined whether CRIF1 exerts an immunoregulatory effect by modulating the differentiation and function of pathogenic T cells. To this end, the role of CRIF1 in rheumatoid arthritis, a systemic autoimmune disease characterized by hyperplasia of synovial tissue and progressive destruction of articular cartilage structure by pathogenic immune cells [such as T helper type 17 (Th17) cells], was investigated. p3XFLAG-CMV-10-CRIF1 was administered to mice with collagen-induced arthritis 8 days after collagen type II immunization and the disease severity and histologic evaluation, and osteoclastogenesis were assessed. CRIF1 over-expression in mice with collagen-induced arthritis attenuated the clinical and histological signs of inflammatory arthritis. Furthermore, over-expression of CRIF1 in mice with arthritis significantly reduced the number of signal transducer and activator of transcription 3-mediated Th17 cells in the spleen as well as osteoclast differentiation from bone marrow cells. To investigate the impact of loss of CRIF1 in T cells, we generated a conditional CRIF1 gene ablation model using CD4-cre transgenic mice and examined the frequency of Th17 cells and regulatory T cells. Deficiency of CRIF1 in CD4+ cells promoted the production of interleukin-17 and reduced the frequency of regulatory T cells. These results suggest a role for CRIF1 in modulating the activities of Th17 cells and osteoclasts in rheumatoid arthritis.
Collapse
Affiliation(s)
- Jin‐Sil Park
- The Rheumatism Research CenterCatholic Research Institute of Medical ScienceThe Catholic University of KoreaSeoulSouth Korea
| | - Si‐Young Choi
- The Rheumatism Research CenterCatholic Research Institute of Medical ScienceThe Catholic University of KoreaSeoulSouth Korea
| | - Sun‐Hee Hwang
- The Rheumatism Research CenterCatholic Research Institute of Medical ScienceThe Catholic University of KoreaSeoulSouth Korea
| | - Sung‐Min Kim
- The Rheumatism Research CenterCatholic Research Institute of Medical ScienceThe Catholic University of KoreaSeoulSouth Korea
| | - JeongWon Choi
- The Rheumatism Research CenterCatholic Research Institute of Medical ScienceThe Catholic University of KoreaSeoulSouth Korea
| | - Kyung‐Ah Jung
- The Rheumatism Research CenterCatholic Research Institute of Medical ScienceThe Catholic University of KoreaSeoulSouth Korea
| | - Ji Ye Kwon
- The Rheumatism Research CenterCatholic Research Institute of Medical ScienceThe Catholic University of KoreaSeoulSouth Korea
| | - Young‐Yun Kong
- School of Biological SciencesSeoul National UniversitySeoulSouth Korea
| | - Mi‐La Cho
- The Rheumatism Research CenterCatholic Research Institute of Medical ScienceThe Catholic University of KoreaSeoulSouth Korea
- Department of Medical Life ScienceCollege of MedicineThe Catholic University of KoreaSeoulKorea
- Department of Biomedicine & Health Sciences, College of MedicineThe Catholic University of KoreaSeoulKorea
| | - Sung‐Hwan Park
- The Rheumatism Research CenterCatholic Research Institute of Medical ScienceThe Catholic University of KoreaSeoulSouth Korea
- Divison of RheumatologyDepartment of Internal MedicineThe Catholic University of KoreaSeoulSouth Korea
| |
Collapse
|
23
|
Liu L, Locascio LM, Doré S. Critical Role of Nrf2 in Experimental Ischemic Stroke. Front Pharmacol 2019; 10:153. [PMID: 30890934 PMCID: PMC6411824 DOI: 10.3389/fphar.2019.00153] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/08/2019] [Indexed: 12/28/2022] Open
Abstract
Ischemic stroke is one of the leading causes of death and long-term disability worldwide; however, effective clinical approaches are still limited. The transcriptional factor Nrf2 is a master regulator in cellular and organismal defense against endogenous and exogenous stressors by coordinating basal and stress-inducible activation of multiple cytoprotective genes. The Nrf2 network not only tightly controls redox homeostasis but also regulates multiple intermediary metabolic processes. Therefore, targeting Nrf2 has emerged as an attractive therapeutic strategy for the prevention and treatment of CNS diseases including stroke. Here, the current understanding of the Nrf2 regulatory network is critically examined to present evidence for the contribution of Nrf2 pathway in rodent ischemic stroke models. This review outlines the literature for Nrf2 studies in preclinical stroke and focuses on the in vivo evidence for the role of Nrf2 in primary and secondary brain injuries. The dynamic change and functional importance of Nrf2 signaling, as well as Nrf2 targeted intervention, are revealed in permanent, transient, and global cerebral ischemia models. In addition, key considerations, pitfalls, and future potentials for Nrf2 studies in preclinical stroke investigation are discussed.
Collapse
Affiliation(s)
- Lei Liu
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Logan M Locascio
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Departments of Neurology, Psychiatry, Pharmaceutics, and Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
24
|
Huang Y, Huang L, Zhu G, Pei Z, Zhang W. Downregulated microRNA-27b attenuates lipopolysaccharide-induced acute lung injury via activation of NF-E2-related factor 2 and inhibition of nuclear factor κB signaling pathway. J Cell Physiol 2018; 234:6023-6032. [PMID: 30584668 DOI: 10.1002/jcp.27187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022]
Abstract
Acute lung injury (ALI) is a life-threatening, diffuse heterogeneous lung injury characterized by acute onset, pulmonary edema, and respiratory failure. Lipopolysaccharide (LPS) is a leading cause for ALI and when administered to a mouse it induces a lung phenotype exhibiting some of the clinical characteristics of human ALI. This study focused on investigating whether microRNA-27b (miR-27b) affects ALI in a mouse model established by LPS-induction and to further explore the underlying mechanism. After model establishment, the mice were treated with miR-27b agomir, miR-27b antagomir, or D-ribofuranosylbenzimidazole (an inhibitor of nuclear factor-E2-related factor 2 [Nrf2]) to determine levels of miR-27b, Nrf2, nuclear factor kappa-light-chain-enhancer of activated B cells nuclear factor κB (NF-κB), p-NF-κB, and heme oxygenase-1 (HO-1). The levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) in bronchoalveolar lavage fluid (BALF) were determined. The results of luciferase activity suggested that Nrf2 was a target gene of miR-27b. It was indicated that the Nrf2 level decreased in lung tissues from ALI mice. The downregulation of miR-27b decreased the levels of IL-1β, IL-6, and TNF-α in BALF of ALI mice. Downregulated miR-27b increased Nrf2 level, thus enhancing HO-1 level along with reduction of NF-κB level as well as the extent of NF-κB phosphorylation in the lung tissues of the transfected mice. Pathological changes were ameliorated in LPS-reduced mice elicited by miR-27b inhibition. The results of this study demonstrate that downregulated miR-27b couldenhance Nrf2 and HO-1 expressions, inhibit NF-κB signaling pathway, which exerts a protective effect on LPS-induced ALI in mice.
Collapse
Affiliation(s)
- Yan Huang
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Lixue Huang
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Guangfa Zhu
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Zhenye Pei
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Wenmei Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
25
|
Peng L, Zhao Y, Li Y, Zhou Y, Li L, Lei S, Yu S, Zhao Y. Effect of DJ-1 on the neuroprotection of astrocytes subjected to cerebral ischemia/reperfusion injury. J Mol Med (Berl) 2018; 97:189-199. [PMID: 30506316 PMCID: PMC6348070 DOI: 10.1007/s00109-018-1719-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 11/14/2022]
Abstract
Abstract Astrocytes are involved in neuroprotection, and DJ-1 is an important antioxidant protein that is abundantly expressed in reactive astrocytes. However, the role of DJ-1 in astrocytes’ neuroprotection in cerebral ischemia/reperfusion injury and its potential mechanism is unclear. Thus, to explore effects and mechanisms of DJ-1 on the neuroprotection of astrocytes, we used primary co-cultures of neurons and astrocytes under oxygen and glucose deprivation/reoxygenation in vitro and transient middle cerebral artery occlusion/reperfusion in vivo to mimic ischemic reperfusion insult. Lentiviral was used to inhibit and upregulate DJ-1 expression in astrocytes, and DJ-1 siRNA blocked DJ-1 expression in rats. Inhibiting DJ-1 expression led to decreases in neuronal viability. DJ-1 knockdown also attenuated total and nuclear Nrf2 and glutathione (GSH) levels in vitro and vivo. Similarly, loss of DJ-1 decreased Nrf2/ARE-binding activity and expression of Nrf2/ARE pathway-driven genes. Overexpression of DJ-1 yielded opposite results. This suggests that the mechanism of action of DJ-1 in astrocyte-mediated neuroprotection may involve regulation of the Nrf2/ARE pathway to increase GSH after cerebral ischemia/reperfusion injury. Thus, DJ-1 may be a new therapeutic target for treating ischemia/reperfusion injury. Key Messages Astrocytes protect neurons in co-culture after OGD/R DJ-1 is upregulated in astrocytes and plays an important physiological roles in neuronal protection under ischemic conditions DJ-1 protects neuron by the Nrf2/ARE pathway which upregulates GSH
Collapse
Affiliation(s)
- Li Peng
- Department of Pathology, Chongqing Medical University, Yixueyuan Road 1, 400016, Chongqing, People's Republic of China.,Molecular Medical Laboratory, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Institute of Neuroscience, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Key Laboratory of Neurobiology, Chongqing Medical University, 400016, Chongqing, People's Republic of China
| | - Yipeng Zhao
- Department of Pathology, Chongqing Medical University, Yixueyuan Road 1, 400016, Chongqing, People's Republic of China.,Molecular Medical Laboratory, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Institute of Neuroscience, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Key Laboratory of Neurobiology, Chongqing Medical University, 400016, Chongqing, People's Republic of China
| | - Yixin Li
- Department of Pathology, Chongqing Medical University, Yixueyuan Road 1, 400016, Chongqing, People's Republic of China.,Molecular Medical Laboratory, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Institute of Neuroscience, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Key Laboratory of Neurobiology, Chongqing Medical University, 400016, Chongqing, People's Republic of China
| | - Yang Zhou
- Department of Pathology, Chongqing Medical University, Yixueyuan Road 1, 400016, Chongqing, People's Republic of China.,Molecular Medical Laboratory, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Institute of Neuroscience, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Key Laboratory of Neurobiology, Chongqing Medical University, 400016, Chongqing, People's Republic of China
| | - Linyu Li
- Department of Pathology, Chongqing Medical University, Yixueyuan Road 1, 400016, Chongqing, People's Republic of China.,Molecular Medical Laboratory, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Institute of Neuroscience, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Key Laboratory of Neurobiology, Chongqing Medical University, 400016, Chongqing, People's Republic of China
| | - Shipeng Lei
- Department of Respiratory Medicine, Jiangjin Center Hospital, Chongqing, China
| | - Shanshan Yu
- Department of Pathology, Chongqing Medical University, Yixueyuan Road 1, 400016, Chongqing, People's Republic of China. .,Molecular Medical Laboratory, Chongqing Medical University, 400016, Chongqing, People's Republic of China. .,Institute of Neuroscience, Chongqing Medical University, 400016, Chongqing, People's Republic of China. .,Key Laboratory of Neurobiology, Chongqing Medical University, 400016, Chongqing, People's Republic of China.
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University, Yixueyuan Road 1, 400016, Chongqing, People's Republic of China. .,Molecular Medical Laboratory, Chongqing Medical University, 400016, Chongqing, People's Republic of China. .,Institute of Neuroscience, Chongqing Medical University, 400016, Chongqing, People's Republic of China. .,Key Laboratory of Neurobiology, Chongqing Medical University, 400016, Chongqing, People's Republic of China.
| |
Collapse
|
26
|
Silva-Islas CA, Maldonado PD. Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol Res 2018; 134:92-99. [PMID: 29913224 DOI: 10.1016/j.phrs.2018.06.013] [Citation(s) in RCA: 257] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 12/30/2022]
Abstract
Nuclear Factor Erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates the expression of genes involved in the metabolism, immune response, cellular proliferation, and other processes; however, the attention has been focused on the study of its ability to induce the expression of proteins involved in the antioxidant defense. Nrf2 is mainly regulated by Kelch-like ECH-associated protein 1 (Keap1), an adapter substrate of Cullin 3 (Cul3) ubiquitin E3 ligase complex. Keap1 represses Nrf2 activity in the cytoplasm by its sequestering, ubiquitination and proteosomal degradation. Nrf2 activation, through the canonical mechanism, is carried out by electrophilic compounds and oxidative stress where some cysteine residues in Keap1 are oxidized, resulting in a decrease in Nrf2 ubiquitination and an increase in its nuclear translocation and activation. In the nucleus, Nrf2 induces a variety of genes involved in the antioxidant defense. Recently a new mechanism of Nrf2 activation has been described, called the non-canonical pathway, where proteins such as p62, p21, dipeptidyl peptidase III (DPP3), wilms tumor gene on X chromosome (WTX) and others are able to disrupt the Nrf2-Keap1 complex, by direct interaction with Keap1 decreasing Nrf2 ubiquitination and increasing its nuclear translocation and activation. In this review, the regulatory mechanisms involved in both canonical and non-canonical Nrf2 activation are discussed.
Collapse
Affiliation(s)
- Carlos Alfredo Silva-Islas
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, Tlalpan, 14269, CDMX, Mexico
| | - Perla D Maldonado
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, Tlalpan, 14269, CDMX, Mexico.
| |
Collapse
|
27
|
Burroughs AF, Eluhu S, Whalen D, Goodwin JS, Sakwe AM, Arinze IJ. PML-Nuclear Bodies Regulate the Stability of the Fusion Protein Dendra2-Nrf2 in the Nucleus. Cell Physiol Biochem 2018; 47:800-816. [PMID: 29807365 PMCID: PMC6503657 DOI: 10.1159/000490033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/11/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND/AIMS Nuclear factor erythroid 2-related factor 2 (Nrf2) is a basic leucine-zipper transcription factor essential for cellular responses to oxidative stress. Degradation of Nrf2 in the cytoplasm, mediated by Keap1-Cullin3/RING box1 (Cul3-Rbx1) E3 ubiquitin ligase and the proteasome, is considered the primary pathway controlling the cellular abundance of Nrf2. Although the nucleus has been implicated in the degradation of Nrf2, little information is available on how this compartment participates in degrading Nrf2. METHODS Here, we fused the photoconvertible fluorescent protein Dendra2 to Nrf2 and capitalized on the irreversible change in color (green to red) that occurs when Dendra2 undergoes photoconversion to study degradation of Dendra2-Nrf2 in single live cells. RESULTS Using this approach, we show that the half-life (t1/2) of Dendra2-Nrf2 in the whole cell, under homeostatic conditions, is 35 min. Inhibition of the proteasome with MG-132 or induction of oxidative stress with tert-butylhydroquinone (tBHQ) extended the half-life of Dendra2-Nrf2 by 6- and 28-fold, respectively. By inhibiting nuclear export using Leptomycin B, we provide direct evidence that degradation of Nrf2 also occurs in the nucleus and involves PML-NBs (Promyelocytic Leukemia-nuclear bodies). We further demonstrate that co-expression of Dendra2-Nrf2 and Crimson-PML-I lacking two PML-I sumoylation sites (K65R and K490R) changed the decay rate of Dendra2-Nrf2 in the nucleus and stabilized the nuclear derived Nrf2 levels in whole cells. CONCLUSION Altogether, our findings provide direct evidence for degradation of Nrf2 in the nucleus and suggest that modification of Nrf2 in PML nuclear bodies contributes to its degradation in intact cells.
Collapse
Affiliation(s)
| | - Sylvia Eluhu
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Diva Whalen
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - J. Shawn Goodwin
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Amos M. Sakwe
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Ifeanyi J. Arinze
- Department of Physiology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
28
|
Nrf2 as regulator of innate immunity: A molecular Swiss army knife! Biotechnol Adv 2018; 36:358-370. [DOI: 10.1016/j.biotechadv.2017.12.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022]
|
29
|
The Role of Nrf2 in Cardiovascular Function and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9237263. [PMID: 29104732 PMCID: PMC5618775 DOI: 10.1155/2017/9237263] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Free radicals, reactive oxygen/nitrogen species (ROS/RNS), hydrogen sulphide, and hydrogen peroxide play an important role in both intracellular and intercellular signaling; however, their production and quenching need to be closely regulated to prevent cellular damage. An imbalance, due to exogenous sources of free radicals and chronic upregulation of endogenous production, contributes to many pathological conditions including cardiovascular disease and also more general processes involved in aging. Nuclear factor erythroid 2-like 2 (NFE2L2; commonly known as Nrf2) is a transcription factor that plays a major role in the dynamic regulation of a network of antioxidant and cytoprotective genes, through binding to and activating expression of promoters containing the antioxidant response element (ARE). Nrf2 activity is regulated by many mechanisms, suggesting that tight control is necessary for normal cell function and both hypoactivation and hyperactivation of Nrf2 are indicated in playing a role in different aspects of cardiovascular disease. Targeted activation of Nrf2 or downstream genes may prove to be a useful avenue in developing therapeutics to reduce the impact of cardiovascular disease. We will review the current status of Nrf2 and related signaling in cardiovascular disease and its relevance to current and potential treatment strategies.
Collapse
|
30
|
Chen L, Ran Q, Xiang Y, Xiang L, Chen L, Li F, Wu J, Wu C, Li Z. Co-Activation of PKC-δ by CRIF1 Modulates Oxidative Stress in Bone Marrow Multipotent Mesenchymal Stromal Cells after Irradiation by Phosphorylating NRF2 Ser40. Theranostics 2017; 7:2634-2648. [PMID: 28819452 PMCID: PMC5558558 DOI: 10.7150/thno.17853] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 04/19/2017] [Indexed: 12/26/2022] Open
Abstract
The high mortality associated with pancytopenia and multi-organ failure resulting from hematopoietic disorders of acute radiation syndrome (h-ARS) creates an urgent need for developing more effective treatment strategies. Here, we showed that bone marrow multipotent mesenchymal stromal cells (BMMSCs) effectively regulate oxidative stress following radiative injury, which might be on account of irradiation-induced elevation of protein levels of CR6-interacting factor 1(CRIF1) and nuclear factor E2-related factor 2(NRF2). Crif1-knockdown BMMSCs presented increased oxidative stress and apoptosis after irradiation, which were partially due to a suppressed antioxidant response mediated by decreased NRF2 nuclear translocation. Co-immunoprecipitation (Co-IP) experiments indicated that CRIF1 interacted with protein kinase C-δ (PKC-δ). NRF2 Ser40 phosphorylation was inhibited in Crif1-deficient BMMSCs even in the presence of three kinds of PKC agonists, suggesting that CRIF1 might co-activate PKC-δ to phosphorylate NRF2 Ser40. After radiative injury, the supporting effect of BMMSCs for the colony forming ability of HSCs in vitro was reduced, and the deficiency of CRIF1 aggravated such damage. Thus, CRIF1 plays an essential role in PKC-δ/NRF2 pathway modulation to alleviate oxidative stress in BMMSCs after irradiative injury, and at some level it may maintain the HSCs-supporting effect of BMMSCs after radiative injuries.
Collapse
|
31
|
Zenkov NK, Kozhin PM, Chechushkov AV, Martinovich GG, Kandalintseva NV, Menshchikova EB. Mazes of Nrf2 regulation. BIOCHEMISTRY (MOSCOW) 2017; 82:556-564. [DOI: 10.1134/s0006297917050030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
32
|
Yan HX, Zhang YJ, Zhang Y, Ren X, Shen YF, Cheng MB, Zhang Y. CRIF1 enhances p53 activity via the chromatin remodeler SNF5 in the HCT116 colon cancer cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:516-522. [DOI: 10.1016/j.bbagrm.2017.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 12/28/2022]
|
33
|
Kang SG, Yi HS, Choi MJ, Ryu MJ, Jung S, Chung HK, Chang JY, Kim YK, Lee SE, Kim HW, Choi H, Kim DS, Lee JH, Kim KS, Kim HJ, Lee CH, Oike Y, Shong M. ANGPTL6 expression is coupled with mitochondrial OXPHOS function to regulate adipose FGF21. J Endocrinol 2017; 233:105-118. [PMID: 28184000 DOI: 10.1530/joe-16-0549] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022]
Abstract
Recent studies revealed that the inhibition of mitochondrial oxidative phosphorylation (OXPHOS) is coupled with the mitochondrial unfolded protein response, thereby stimulating the secretion of non-cell autonomous factors, which may control systemic energy metabolism and longevity. However, the nature and roles of non-cell autonomous factors induced in adipose tissue in response to reduced OXPHOS function remain to be clarified in mammals. CR6-interacting factor 1 (CRIF1) is an essential mitoribosomal protein for the intramitochondrial production of mtDNA-encoded OXPHOS subunits. Deficiency of CRIF1 impairs the proper formation of the OXPHOS complex, resulting in reduced function. To determine which secretory factors are induced in response to reduced mitochondrial OXPHOS function, we analyzed gene expression datasets in Crif1-depleted mouse embryonic fibroblasts. Crif1 deficiency preferentially increased the expression of angiopoietin-like 6 (Angptl6) and did not affect other members of the ANGPTL family. Moreover, treatment with mitochondrial OXPHOS inhibitors increased the expression of Angptl6 in cultured adipocytes. To confirm Angptl6 induction in vivo, we generated a murine model of reduced mitochondrial OXPHOS function using adipose tissue-specific Crif1-deficient mice and verified the upregulation of Angptl6 and fibroblast growth factor 21 (Fgf21) in white adipose tissue. Treatment with recombinant ANGPTL6 protein increased oxygen consumption and Pparα expression through the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway in cultured adipocytes. Furthermore, the ANGPTL6-mediated increase in Pparα expression resulted in increased FGF21 expression, thereby promoting β-oxidation. In conclusion, mitochondrial OXPHOS function governs the expression of ANGPTL6, which is an essential factor for FGF21 production in adipose tissue and cultured adipocytes.
Collapse
Affiliation(s)
- Seul Gi Kang
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | | | - Saetbyel Jung
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Hyo Kyun Chung
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Seong Eun Lee
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | - Hyeon-Woo Kim
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | - Hoil Choi
- Department of BiochemistryChungnam National University School of Medicine, Daejeon, Korea
| | - Dong Seok Kim
- Department of BiochemistryChungnam National University School of Medicine, Daejeon, Korea
| | - Ju Hee Lee
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Hyun Jin Kim
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Chul-Ho Lee
- Animal Model CenterKorea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Yuichi Oike
- Department of Molecular GeneticsGraduate School of Medical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Minho Shong
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
34
|
|
35
|
Zhang X, Xiang L, Ran Q, Liu Y, Xiang Y, Xiao Y, Chen L, Li F, Zhong JF, Li Z. Crif1 Promotes Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells After Irradiation by Modulating the PKA/CREB Signaling Pathway. Stem Cells 2016; 33:1915-26. [PMID: 25847389 DOI: 10.1002/stem.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/12/2015] [Accepted: 02/28/2015] [Indexed: 12/22/2022]
Abstract
Dysfunction of the hematopoietic microenvironment is the main obstacle encountered during hematopoiesis reconstruction in patients with acute hematopoietic radiation syndrome. Bone marrow mesenchymal stem cells (BM-MSCs) play a crucial supporting role in hematopoiesis by maintaining the balance between adipogenic and osteogenic differentiation. In this study, we found that irradiation decreased the colony-forming efficiency of BM-MSCs and impaired the balance between adipogenic and osteogenic differentiation. Following irradiation, BM-MCSs became strongly predisposed to adipogenesis, as evidenced by increased oil red O staining and elevated mRNA and protein levels of the adipogenic markers and transcription factors PPARγ and AP2. Overexpression of the essential adipogenesis regulator Crif1 in BM-MSCs promoted adipogenesis after irradiation exposure by upregulating adipogenesis-related genes, including C/EBPβ, PPARγ, and AP2. We found that Crif1 promoted the phosphorylation of cAMP response element binding protein (CREB) through direct interaction with protein kinase A (PKA)-α. Phosphorylation of CREB was inhibited in Crif1-knockdown BM-MSCs even in the presence of a PKA agonist (db-cAMP) and could be suppressed in Crif1-overexpressing BM-MSCs by a PKAα inhibitor (H-89). These results suggest that Crif1 is an indispensable regulator of PKAα cat that modulates the PKA/CREB signaling pathway to promote adipogenic differentiation of BM-MSCs after irradiation.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Hematology and, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Lixin Xiang
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qian Ran
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yao Liu
- Department of Hematology and, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yang Xiang
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yanni Xiao
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Li Chen
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Fengjie Li
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Jiang F Zhong
- Department of Pathology, University of Southern California, Keck School of Medicine, California, USA
| | - Zhongjun Li
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
36
|
Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, Hayes JD. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med 2015; 88:108-146. [PMID: 26122708 PMCID: PMC4659505 DOI: 10.1016/j.freeradbiomed.2015.06.021] [Citation(s) in RCA: 616] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) regulates the basal and stress-inducible expression of a battery of genes encoding key components of the glutathione-based and thioredoxin-based antioxidant systems, as well as aldo-keto reductase, glutathione S-transferase, and NAD(P)H quinone oxidoreductase-1 drug-metabolizing isoenzymes along with multidrug-resistance-associated efflux pumps. It therefore plays a pivotal role in both intrinsic resistance and cellular adaptation to reactive oxygen species (ROS) and xenobiotics. Activation of Nrf2 can, however, serve as a double-edged sword because some of the genes it induces may contribute to chemical carcinogenesis by promoting futile redox cycling of polycyclic aromatic hydrocarbon metabolites or confer resistance to chemotherapeutic drugs by increasing the expression of efflux pumps, suggesting its cytoprotective effects will vary in a context-specific fashion. In addition to cytoprotection, Nrf2 also controls genes involved in intermediary metabolism, positively regulating those involved in NADPH generation, purine biosynthesis, and the β-oxidation of fatty acids, while suppressing those involved in lipogenesis and gluconeogenesis. Nrf2 is subject to regulation at multiple levels. Its ability to orchestrate adaptation to oxidants and electrophiles is due principally to stress-stimulated modification of thiols within one of its repressors, the Kelch-like ECH-associated protein 1 (Keap1), which is present in the cullin-3 RING ubiquitin ligase (CRL) complex CRLKeap1. Thus modification of Cys residues in Keap1 blocks CRLKeap1 activity, allowing newly translated Nrf2 to accumulate rapidly and induce its target genes. The ability of Keap1 to repress Nrf2 can be attenuated by p62/sequestosome-1 in a mechanistic target of rapamycin complex 1 (mTORC1)-dependent manner, thereby allowing refeeding after fasting to increase Nrf2-target gene expression. In parallel with repression by Keap1, Nrf2 is also repressed by β-transducin repeat-containing protein (β-TrCP), present in the Skp1-cullin-1-F-box protein (SCF) ubiquitin ligase complex SCFβ-TrCP. The ability of SCFβ-TrCP to suppress Nrf2 activity is itself enhanced by prior phosphorylation of the transcription factor by glycogen synthase kinase-3 (GSK-3) through formation of a DSGIS-containing phosphodegron. However, formation of the phosphodegron in Nrf2 by GSK-3 is inhibited by stimuli that activate protein kinase B (PKB)/Akt. In particular, PKB/Akt activity can be increased by phosphoinositide 3-kinase and mTORC2, thereby providing an explanation of why antioxidant-responsive element-driven genes are induced by growth factors and nutrients. Thus Nrf2 activity is tightly controlled via CRLKeap1 and SCFβ-TrCP by oxidative stress and energy-based signals, allowing it to mediate adaptive responses that restore redox homeostasis and modulate intermediary metabolism. Based on the fact that Nrf2 influences multiple biochemical pathways in both positive and negative ways, it is likely its dose-response curve, in terms of susceptibility to certain degenerative disease, is U-shaped. Specifically, too little Nrf2 activity will lead to loss of cytoprotection, diminished antioxidant capacity, and lowered β-oxidation of fatty acids, while conversely also exhibiting heightened sensitivity to ROS-based signaling that involves receptor tyrosine kinases and apoptosis signal-regulating kinase-1. By contrast, too much Nrf2 activity disturbs the homeostatic balance in favor of reduction, and so may have deleterious consequences including overproduction of reduced glutathione and NADPH, the blunting of ROS-based signal transduction, epithelial cell hyperplasia, and failure of certain cell types to differentiate correctly. We discuss the basis of a putative U-shaped Nrf2 dose-response curve in terms of potentially competing processes relevant to different stages of tumorigenesis.
Collapse
Affiliation(s)
- Lauren E Tebay
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Stephen T Durant
- AstraZeneca Oncology Innovative Medicines, Bioscience, 33F197 Mereside, Alderley Park, Cheshire SK10 4TG, UK
| | - Steven R Vitale
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| |
Collapse
|
37
|
Lim SJ, Scott A, Xiong XP, Vahidpour S, Karijolich J, Guo D, Pei S, Yu YT, Zhou R, Li WX. Requirement for CRIF1 in RNA interference and Dicer-2 stability. RNA Biol 2015; 11:1171-9. [PMID: 25483042 DOI: 10.4161/rna.34381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RNA interference (RNAi) is a eukaryotic gene-silencing system. Although the biochemistry of RNAi is relatively well defined, how this pathway is regulated remains incompletely understood. To identify genes involved in regulating the RNAi pathway, we screened for genetic mutations in Drosophila that alter the efficiency of RNAi. We identified the Drosophila homolog of the mammalian CR6-interacting factor 1 (CRIF1), also known as growth arrest and DNA-damage-inducible 45-gamma interacting protein (Gadd45GIP1), as a potential new regulator of the RNAi pathway. Loss-of-function mutants of Drosophila CRIF1 (dCRIF) are deficient in RNAi-mediated target gene knock-down, in the biogenesis of small interfering RNA (siRNA) molecules, and in antiviral immunity. Moreover, we show that dCRIF may function by interacting with, and stabilizing, the RNase III enzyme Dicer-2. Our results suggest that dCRIF may play an important role in regulating the RNAi pathway.
Collapse
Affiliation(s)
- Su Jun Lim
- a Department of Medicine ; University of California San Diego ; La Jolla , CA USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lymphocyte-specific protein tyrosine kinase (Lck) interacts with CR6-interacting factor 1 (CRIF1) in mitochondria to repress oxidative phosphorylation. BMC Cancer 2015. [PMID: 26210498 PMCID: PMC4515320 DOI: 10.1186/s12885-015-1520-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many cancer cells exhibit reduced mitochondrial respiration as part of metabolic reprogramming to support tumor growth. Mitochondrial localization of several protein tyrosine kinases is linked to this characteristic metabolic shift in solid tumors, but remains largely unknown in blood cancer. Lymphocyte-specific protein tyrosine kinase (Lck) is a key T-cell kinase and widely implicated in blood malignancies. The purpose of our study is to determine whether and how Lck contributes to metabolic shift in T-cell leukemia through mitochondrial localization. METHODS We compared the human leukemic T-cell line Jurkat with its Lck-deficient derivative Jcam cell line. Differences in mitochondrial respiration were measured by the levels of mitochondrial membrane potential, oxygen consumption, and mitochondrial superoxide. Detailed mitochondrial structure was visualized by transmission electron microscopy. Lck localization was evaluated by subcellular fractionation and confocal microscopy. Proteomic analysis was performed to identify proteins co-precipitated with Lck in leukemic T-cells. Protein interaction was validated by biochemical co-precipitation and confocal microscopy, followed by in situ proximity ligation assay microscopy to confirm close-range (<16 nm) interaction. RESULTS Jurkat cells have abnormal mitochondrial structure and reduced levels of mitochondrial respiration, which is associated with the presence of mitochondrial Lck and lower levels of mitochondrion-encoded electron transport chain proteins. Proteomics identified CR6-interacting factor 1 (CRIF1) as the novel Lck-interacting protein. Lck association with CRIF1 in Jurkat mitochondria was confirmed biochemically and by microscopy, but did not lead to CRIF1 tyrosine phosphorylation. Consistent with the role of CRIF1 in functional mitoribosome, shRNA-mediated silencing of CRIF1 in Jcam resulted in mitochondrial dysfunction similar to that observed in Jurkat. Reduced interaction between CRIF1 and Tid1, another key component of intramitochondrial translational machinery, in Jurkat further supports the role of mitochondrial Lck as a negative regulator of CRIF1 through competitive binding. CONCLUSIONS This is the first report demonstrating the role of mitochondrial Lck in metabolic reprogramming of leukemic cells. Mechanistically, it is distinct from other reported mitochondrial protein tyrosine kinases. In a kinase-independent manner, mitochondrial Lck interferes with mitochondrial translational machinery through competitive binding to CRIF1. These findings may reveal novel approaches in cancer therapy by targeting cancer cell metabolism.
Collapse
|
39
|
Ginsenoside Rb1 Treatment Attenuates Pulmonary Inflammatory Cytokine Release and Tissue Injury following Intestinal Ischemia Reperfusion Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:843721. [PMID: 26161243 PMCID: PMC4487341 DOI: 10.1155/2015/843721] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/22/2014] [Accepted: 12/27/2014] [Indexed: 12/19/2022]
Abstract
Objective. Intestinal ischemia reperfusion (II/R) injury plays a critical role in remote organ dysfunction, such as lung injury, which is associated with nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. In the present study, we tested whether ginsenoside Rb1 attenuated II/R induced lung injury by Nrf2/HO-1 pathway. Methods. II/R injury was induced in male C57BL/6J mice by 45 min of superior mesenteric artery (SMA) occlusion followed by 2 hours of reperfusion. Ginsenoside Rb1 was administrated prior to reperfusion with or without ATRA (all-transretinoic acid, the inhibitor of Nrf2/ARE signaling pathway) administration before II/R. Results. II/R induced lung histological injury, which is accompanied with increased levels of malondialdehyde (MDA), interleukin- (IL-) 6, and tumor necrosis factor- (TNF-) α but decreased levels of superoxide dismutase (SOD) and IL-10 in the lung tissues. Ginsenoside Rb1 reduced lung histological injury and the levels of TNF-α and MDA, as well as wet/dry weight ratio. Interestingly, the increased Nrf2 and HO-1 expression induced by II/R in the lung tissues was promoted by ginsenoside Rb1 treatment. All these changes could be inhibited or prevented by ATRA. Conclusion. Ginsenoside Rb1 is capable of ameliorating II/R induced lung injuries by activating Nrf2/HO-1 pathway.
Collapse
|
40
|
Lewis KN, Wason E, Edrey YH, Kristan DM, Nevo E, Buffenstein R. Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc Natl Acad Sci U S A 2015; 112:3722-7. [PMID: 25775529 PMCID: PMC4378420 DOI: 10.1073/pnas.1417566112] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The preternaturally long-lived naked mole-rat, like other long-lived species and experimental models of extended longevity, is resistant to both endogenous (e.g., reactive oxygen species) and environmental stressors and also resists age-related diseases such as cancer, cardiovascular disease, and neurodegeneration. The mechanisms behind the universal resilience of longer-lived organisms to stress, however, remain elusive. We hypothesize that this resilience is linked to the activity of a highly conserved transcription factor, nuclear factor erythroid 2-related factor (Nrf2). Nrf2 regulates the transcription of several hundred cytoprotective molecules, including antioxidants, detoxicants, and molecular chaperones (heat shock proteins). Nrf2 itself is tightly regulated by mechanisms that either promote its activity or increase its degradation. We used a comparative approach and examined Nrf2-signaling activity in naked mole-rats and nine other rodent species with varying maximum lifespan potential (MLSP). We found that constitutive Nrf2-signaling activity was positively correlated (P = 0.0285) with MLSP and that this activity was also manifested in high levels of downstream gene expression and activity. Surprisingly, we found that species longevity was not linked to the protein levels of Nrf2 itself, but rather showed a significant (P < 0.01) negative relationship with the regulators Kelch-like ECH-Associated Protein 1 (Keap1) and β-transducin repeat-containing protein (βTrCP), which target Nrf2 for degradation. These findings highlight the use of a comparative biology approach for the identification of evolved mechanisms that contribute to health span, aging, and longevity.
Collapse
Affiliation(s)
- Kaitlyn N Lewis
- Departments of Cellular and Structural Biology and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | | | - Yael H Edrey
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; Physiology and
| | - Deborah M Kristan
- Department of Biological Sciences, California State University, San Marcos, CA 92096; and
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa 31905, Israel
| | - Rochelle Buffenstein
- Departments of Cellular and Structural Biology and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; Physiology and
| |
Collapse
|
41
|
Yi YW, Kang HJ, Bae EJ, Oh S, Seong YS, Bae I. β-TrCP1 degradation is a novel action mechanism of PI3K/mTOR inhibitors in triple-negative breast cancer cells. Exp Mol Med 2015; 47:e143. [PMID: 25721419 PMCID: PMC4346488 DOI: 10.1038/emm.2014.127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 12/20/2022] Open
Abstract
An F-box protein, β-TrCP recognizes substrate proteins and destabilizes them through ubiquitin-dependent proteolysis. It regulates the stability of diverse proteins and functions as either a tumor suppressor or an oncogene. Although the regulation by β-TrCP has been widely studied, the regulation of β-TrCP itself is not well understood yet. In this study, we found that the level of β-TrCP1 is downregulated by various protein kinase inhibitors in triple-negative breast cancer (TNBC) cells. A PI3K/mTOR inhibitor PI-103 reduced the level of β-TrCP1 in a wide range of TNBC cells in a proteasome-dependent manner. Concomitantly, the levels of c-Myc and cyclin E were also downregulated by PI-103. PI-103 reduced the phosphorylation of β-TrCP1 prior to its degradation. In addition, knockdown of β-TrCP1 inhibited the proliferation of TNBC cells. We further identified that pharmacological inhibition of mTORC2 was sufficient to reduce the β-TrCP1 and c-Myc levels. These results suggest that mTORC2 regulates the stability of β-TrCP1 in TNBC cells and targeting β-TrCP1 is a potential approach to treat human TNBC.
Collapse
Affiliation(s)
- Yong Weon Yi
- 1] Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA [2] Department of Nanobiomedical Science & BK21 PLUS Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
| | - Hyo Jin Kang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Edward Jeong Bae
- 1] Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA [2] Department of Nursing and Health Studies, Georgetown University, Washington, DC, USA
| | - Seunghoon Oh
- Department of Physiology, College of Medicine, Dankook University, Cheonan, Korea
| | - Yeon-Sun Seong
- 1] Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA [2] Department of Nanobiomedical Science & BK21 PLUS Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
| | - Insoo Bae
- 1] Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA [2] Department of Nanobiomedical Science & BK21 PLUS Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
| |
Collapse
|
42
|
Yi YW, Oh S. Comparative analysis of NRF2-responsive gene expression in AcPC-1 pancreatic cancer cell line. Genes Genomics 2014; 37:97-109. [PMID: 25540678 PMCID: PMC4269820 DOI: 10.1007/s13258-014-0253-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/27/2014] [Indexed: 02/08/2023]
Abstract
NRF2 is a nuclear transcription factor activated in response to oxidative stress and related with metabolizing of xenotoxic materials and ABC transporter mediated drug resistance. We studied the expression of mRNAs under the siRNA-mediated knockdown of NRF2 and tBHQ-treated condition in AsPC-1 metastatic pancreatic cancer cell line to understand the AsPC-1 specific role(s) of NRF2 and further to investigate the relationship between drug resistance and metastatic plasticity and mobility of AsPc1. Here we show that the genes of aldo–keto reductases, cytochrome P450 family, aldehyde dehydrogenase, thioredoxin reductase, ABC transporter and epoxide hydrolase responsible for drug metabolism or oxidative stress concisely responded to NRF2 stabilization and knockdown of NRF2. In addition the expression of PIR, a candidate of oncogene and KISS1, a suppressor of metastasis were affected by NRF2 stabilization and knockdown. Our result provide comprehensive understanding of NRF2 target genes of drug response, oxidative stress response and metastasis in AsPc-1 metastatic pancreatic cancer cell line.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Nanobiomedical Science, Graduate School, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam 330-714 Republic of Korea
| | - Seunghoon Oh
- Department of Physiology, College of Medicine, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam 330-714 Republic of Korea
| |
Collapse
|
43
|
Kang HJ, Yi YW, Hong YB, Kim HJ, Jang YJ, Seong YS, Bae I. HER2 confers drug resistance of human breast cancer cells through activation of NRF2 by direct interaction. Sci Rep 2014; 4:7201. [PMID: 25467193 PMCID: PMC4252900 DOI: 10.1038/srep07201] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/06/2014] [Indexed: 02/01/2023] Open
Abstract
Overexpression and/or activation of HER2 confers resistance of cancer cells to chemotherapeutic drugs. NRF2 also gives drug resistance of cancer cells through induction of detoxification and/or drug efflux proteins. Although several upstream effectors of NRF2 overlapped with the downstream molecules of HER2 pathway, no direct link between HER2 and NRF2 has ever been established. Here, we identified that co-expression of a constitutively active HER2 (HER2CA) and NRF2 increased the levels of NRF2 target proteins, HO-1 and MRP5. We also identified HER2CA activated the DNA-binding of NRF2 and the antioxidant response element (ARE)-mediated transcription in an NRF2-dependent manner. In addition, NRF2 and HER2CA cooperatively up-regulated the mRNA expression of various drug-resistant and detoxifying enzymes including GSTA2, GSTP1, CYP3A4, HO-1, MRP1, and MRP5. We also demonstrated that NRF2 binds to HER2 not only in transiently transfected HEK293T cells but also in HER2-amplified breast cancer cells. Functionally, overexpression of HER2CA gave resistance of MCF7 breast cancer cells to either paraquat or doxorubicin. Overexpression of dominant negative NRF2 (DN-NRF2) reduced the HER2CA-induced resistance of MCF7 cells to these agents. Taken together, these results suggest that active HER2 binds and regulates the NRF2-dependent transcriptional activation and induces drug resistance of cancer cells.
Collapse
Affiliation(s)
- Hyo Jin Kang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20057, USA
| | - Yong Weon Yi
- 1] Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20057, USA [2] Department of Nanobiomedical Science and BK21 PLUS Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
| | - Young Bin Hong
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20057, USA
| | - Hee Jeong Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20057, USA
| | - Young-Joo Jang
- Department of Nanobiomedical Science and BK21 PLUS Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
| | - Yeon-Sun Seong
- 1] Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20057, USA [2] Department of Nanobiomedical Science and BK21 PLUS Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
| | - Insoo Bae
- 1] Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20057, USA [2] Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20057, USA [3] Department of Nanobiomedical Science and BK21 PLUS Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
| |
Collapse
|
44
|
Byun J, Son SM, Cha MY, Shong M, Hwang YJ, Kim Y, Ryu H, Moon M, Kim KS, Mook-Jung I. CR6-interacting factor 1 is a key regulator in Aβ-induced mitochondrial disruption and pathogenesis of Alzheimer's disease. Cell Death Differ 2014; 22:959-73. [PMID: 25361083 PMCID: PMC4423180 DOI: 10.1038/cdd.2014.184] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/25/2014] [Accepted: 09/25/2014] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction, often characterized by massive fission and other morphological abnormalities, is a well-known risk factor for Alzheimer's disease (AD). One causative mechanism underlying AD-associated mitochondrial dysfunction is thought to be amyloid-β (Aβ), yet the pathways between Aβ and mitochondrial dysfunction remain elusive. In this study, we report that CR6-interacting factor 1 (Crif1), a mitochondrial inner membrane protein, is a key player in Aβ-induced mitochondrial dysfunction. Specifically, we found that Crif1 levels were downregulated in the pathological regions of Tg6799 mice brains, wherein overexpressed Aβ undergoes self-aggregation. Downregulation of Crif1 was similarly observed in human AD brains as well as in SH-SY5Y cells treated with Aβ. In addition, knockdown of Crif1, using RNA interference, induced mitochondrial dysfunction with phenotypes similar to those observed in Aβ-treated cells. Conversely, Crif1 overexpression prevented Aβ-induced mitochondrial dysfunction and cell death. Finally, we show that Aβ-induced downregulation of Crif1 is mediated by enhanced reactive oxygen species (ROS) and ROS-dependent sumoylation of the transcription factor specificity protein 1 (Sp1). These results identify the ROS-Sp1-Crif1 pathway to be a new mechanism underlying Aβ-induced mitochondrial dysfunction and suggest that ROS-mediated downregulation of Crif1 is a crucial event in AD pathology. We propose that Crif1 may serve as a novel therapeutic target in the treatment of AD.
Collapse
Affiliation(s)
- J Byun
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - S M Son
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - M-Y Cha
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - M Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Y J Hwang
- Center for Neuro-Medicine, Brain Science Institute, KIST, Seoul, Korea
| | - Y Kim
- Center for Neuro-Medicine, Brain Science Institute, KIST, Seoul, Korea
| | - H Ryu
- 1] Center for Neuro-Medicine, Brain Science Institute, KIST, Seoul, Korea [2] Department of Neurology and Pathology, Boston University School of Medicine, Boston, MA, USA
| | - M Moon
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - K-S Kim
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - I Mook-Jung
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SHW, Ramakrishnan V. Structure of the large ribosomal subunit from human mitochondria. Science 2014; 346:718-722. [PMID: 25278503 DOI: 10.1126/science.1258026] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human mitochondrial ribosomes are highly divergent from all other known ribosomes and are specialized to exclusively translate membrane proteins. They are linked with hereditary mitochondrial diseases and are often the unintended targets of various clinically useful antibiotics. Using single-particle cryogenic electron microscopy, we have determined the structure of its large subunit to 3.4 angstrom resolution, revealing 48 proteins, 21 of which are specific to mitochondria. The structure unveils an adaptation of the exit tunnel for hydrophobic nascent peptides, extensive remodeling of the central protuberance, including recruitment of mitochondrial valine transfer RNA (tRNA(Val)) to play an integral structural role, and changes in the tRNA binding sites related to the unusual characteristics of mitochondrial tRNAs.
Collapse
Affiliation(s)
- Alan Brown
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Alexey Amunts
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Xiao-Chen Bai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Yoichiro Sugimoto
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Patricia C Edwards
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Garib Murshudov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Sjors H W Scheres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
46
|
Liu C, Chen Y, Kochevar IE, Jurkunas UV. Decreased DJ-1 leads to impaired Nrf2-regulated antioxidant defense and increased UV-A-induced apoptosis in corneal endothelial cells. Invest Ophthalmol Vis Sci 2014; 55:5551-60. [PMID: 25082883 DOI: 10.1167/iovs.14-14580] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To investigate the role of DJ-1 in Nrf2-regulated antioxidant defense in corneal endothelial cells (CECs) at baseline and in response to ultraviolet A (UV-A)-induced oxidative stress. METHODS DJ-1-deficient CECs were obtained by transfection of an immortalized normal human corneal endothelial cell line (HCECi) with DJ-1 small interfering RNA (siRNA) or by isolation of CECs from ex vivo corneas of DJ-1 knockout mice. Levels of reactive oxygen species (ROS), protein carbonyls, Nrf2 subcellular localization, Nrf2 target genes, and protein interaction between Keap1/Nrf2 and Cul3/Nrf2 were compared between normal and DJ-1-deficient CECs. Oxidative stress was induced by irradiating HCECi cells with UV-A, and cell death and levels of activated caspase3 and phospho-p53 were determined. RESULTS DJ-1 siRNA-treated cells exhibited increased levels of ROS production and protein carbonyls as well as a 2.2-fold decrease in nuclear Nrf2 protein when compared to controls. DJ-1 downregulation led to attenuated gene expression of Nrf2 and its target genes HO-1 and NQO1. Similar levels of Nrf2 inhibitor, Keap1, and Cul3/Nrf2 and Keap1/Nrf2 were observed in DJ-1 siRNA-treated cells as compared to controls. Ultraviolet A irradiation resulted in a 3.0-fold increase in cell death and elevated levels of activated caspase3 and phospho-p53 in DJ-1 siRNA-treated cells compared to controls. CONCLUSIONS Downregulation of DJ-1 impairs nuclear translocation of Nrf2, causing decreased antioxidant gene expression and increased oxidative damage. The decline in DJ-1 levels leads to heightened CEC susceptibility to UV-A light by activating p53-dependent apoptosis. Targeting the DJ-1-Nrf2 axis may provide a potential therapeutic approach for enhancing antioxidant defense in corneal endothelial disorders.
Collapse
Affiliation(s)
- Cailing Liu
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Yuming Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Irene E Kochevar
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Ula V Jurkunas
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
47
|
He C, Li B, Song W, Ding Z, Wang S, Shan Y. Sulforaphane attenuates homocysteine-induced endoplasmic reticulum stress through Nrf-2-driven enzymes in immortalized human hepatocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7477-7485. [PMID: 24970331 DOI: 10.1021/jf501944u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
UNLABELLED In the present study, we investigated the potential efficacy of cruciferous vegetable-derived sulforaphane (SFN) in improving homocysteine (HCY)-stressed cells. After human hepatocyte line HHL-5 was preincubated with SFN and subsequently with 10 mmol/L HCY, SFN improved the pathologic changes which are caused by HCY, including cell morphological abnormality, endoplasmic reticulum (ER) swelling, excessive generation of reactive oxygen species (ROS), the increased malondialdehyde (MDA) levels, as well as the increased activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Phase II enzymes, thioredoxin reductase-1 (TrxR-1) and NAD(P)H quinone oxidoreductase 1 (NQO1), were involved in the protective effect of SFN against injury by HCY. The ER stress-specific proteins, such as glucose-regulated protein-78 (GRP78) and protein kinase RNA (PKR)-like ER kinase (PERK), were strikingly abolished by SFN. Furthermore, Nrf-2 translocation was enhanced by SFN, which lead to the induction of TrxR-1and NQO1.
Collapse
Affiliation(s)
- Canxia He
- School of Food Science and Engineering, Harbin Institute of Technology , No. 73 Huanghe Road, Harbin 150090, China
| | | | | | | | | | | |
Collapse
|
48
|
Al-Furoukh N, Kardon JR, Krüger M, Szibor M, Baker TA, Braun T. NOA1, a novel ClpXP substrate, takes an unexpected nuclear detour prior to mitochondrial import. PLoS One 2014; 9:e103141. [PMID: 25072814 PMCID: PMC4114565 DOI: 10.1371/journal.pone.0103141] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/26/2014] [Indexed: 11/25/2022] Open
Abstract
The mitochondrial matrix GTPase NOA1 is a nuclear encoded protein, essential for mitochondrial protein synthesis, oxidative phosphorylation and ATP production. Here, we demonstrate that newly translated NOA1 protein is imported into the nucleus, where it localizes to the nucleolus and interacts with UBF1 before nuclear export and import into mitochondria. Mutation of the nuclear localization signal (NLS) prevented both nuclear and mitochondrial import while deletion of the N-terminal mitochondrial targeting sequence (MTS) or the C-terminal RNA binding domain of NOA1 impaired mitochondrial import. Absence of the MTS resulted in accumulation of NOA1 in the nucleus and increased caspase-dependent apoptosis. We also found that export of NOA1 from the nucleus requires a leptomycin-B sensitive, Crm1-dependent nuclear export signal (NES). Finally, we show that NOA1 is a new substrate of the mitochondrial matrix protease complex ClpXP. Our results uncovered an unexpected, mandatory detour of NOA1 through the nucleolus before uptake into mitochondria. We propose that nucleo-mitochondrial translocation of proteins is more widespread than previously anticipated providing additional means to control protein bioavailability as well as cellular communication between both compartments.
Collapse
Affiliation(s)
- Natalie Al-Furoukh
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Julia R. Kardon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Boston, Massachusetts, United States of America
| | - Marcus Krüger
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marten Szibor
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Tania A. Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Boston, Massachusetts, United States of America
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- * E-mail:
| |
Collapse
|
49
|
Qin S, Deng F, Wu W, Jiang L, Yamashiro T, Yano S, Hou DX. Baicalein modulates Nrf2/Keap1 system in both Keap1-dependent and Keap1-independent mechanisms. Arch Biochem Biophys 2014; 559:53-61. [PMID: 24704364 DOI: 10.1016/j.abb.2014.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 12/20/2022]
Abstract
Baicalein, a major component of Scutellaria baicalensis Georgi (Huang Qin), is widely used in the traditional Chinese medicine. However, the mechanisms underlying cancer chemoprevention are still not clear. The present study aimed to clarify how baicalein modulate Nrf2/Keap1 system to exert its cytoprotection and cancer chemoprevention. In the upstream cellular signaling, baicalein stimulated the phosphorylation of MEK1/2, AKT and JNK1/2, which were demonstrated to be essential for baicalein-induced Nrf2 expression by their inhibitors. Immunoprecipitation with Nrf2 found that baicalein increased the amount of phosphorylated MEK1/2, AKT and JNK1/2 bound to Nrf2, and also stabilized Nrf2 protein by inhibiting the ubiquitination and proteasomal turnover of Nrf2. Simultaneously, baicalein down-regulated Keap1 by stimulating modification and degradation of Keap1 without affecting the dissociation of Keap1-Nrf2. Silencing Nrf2 using Nrf2 siRNA markedly reduced the ARE activity under both baseline and baicalein-induced conditions. Thus, baicalein positively modulate Nrf2/Keap1 system through both Keap1-independent and -dependent pathways. These finding provide an insight to understand the mechanisms of baicalein in cytoprotection and cancer chemoprevention.
Collapse
Affiliation(s)
- Si Qin
- The Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, China; Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima, Japan
| | - Fangming Deng
- The Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Weiguo Wu
- The Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Liwen Jiang
- The Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Takaaki Yamashiro
- Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima, Japan
| | - Satoshi Yano
- Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima, Japan
| | - De-Xing Hou
- The Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, China; Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima, Japan; United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan.
| |
Collapse
|
50
|
Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 2014; 39:199-218. [PMID: 24647116 DOI: 10.1016/j.tibs.2014.02.002] [Citation(s) in RCA: 1503] [Impact Index Per Article: 150.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 02/08/2023]
Abstract
Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2, also called Nfe2l2) is a transcription factor that regulates the cellular redox status. Nrf2 is controlled through a complex transcriptional/epigenetic and post-translational network that ensures its activity increases during redox perturbation, inflammation, growth factor stimulation and nutrient/energy fluxes, thereby enabling the factor to orchestrate adaptive responses to diverse forms of stress. Besides mediating stress-stimulated induction of antioxidant and detoxification genes, Nrf2 contributes to adaptation by upregulating the repair and degradation of damaged macromolecules, and by modulating intermediary metabolism. In the latter case, Nrf2 inhibits lipogenesis, supports β-oxidation of fatty acids, facilitates flux through the pentose phosphate pathway, and increases NADPH regeneration and purine biosynthesis; these observations suggest Nrf2 directs metabolic reprogramming during stress.
Collapse
Affiliation(s)
- John D Hayes
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| |
Collapse
|