1
|
GPVI expression is linked to platelet size, age, and reactivity. Blood Adv 2022; 6:4162-4173. [PMID: 35561312 PMCID: PMC9327529 DOI: 10.1182/bloodadvances.2021006904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/03/2022] [Indexed: 01/19/2023] Open
Abstract
Juvenile platelets show increased GPVI expression. These platelets are highly responsive and more abundant among large platelets.
Platelets within one individual display heterogeneity in reactivity, size, age, and expression of surface receptors. To investigate the combined intraindividual contribution of platelet size, platelet age, and receptor expression levels on the reactivity of platelets, we studied fractions of large and small platelets from healthy donors separated by using differential centrifugation. Size-separated platelet fractions were perfused over a collagen-coated surface to assess thrombus formation. Multicolor flow cytometry was used to characterize resting and stimulated platelet subpopulations, and platelet age was determined based on RNA and HLA-I labeling. Signal transduction was analyzed by measuring consecutive phosphorylation of serine/threonine-protein kinase Akt. Compared with small platelets, large platelets adhered faster to collagen under flow and formed larger thrombi. Among the large platelets, a highly reactive juvenile platelet subpopulation was identified with high glycoprotein VI (GPVI) expression. Elevated GPVI expression correlated with high HLA-I expression, RNA content, and increased platelet reactivity. There was a stronger difference in Akt phosphorylation and activation upon collagen stimulation between juvenile and older platelets than between large and small platelets. GPVI expression and platelet reactivity decreased throughout platelet storage at 22°C and was better maintained throughout cold storage at 4°C. We further detected higher GPVI expression in platelets of patients with immune thrombocytopenia. Our findings show that high GPVI expression is a feature of highly reactive juvenile platelets, which are predominantly found among the large platelet population, explaining the better performance of large platelets during thrombus formation. These data are important for studies of thrombus formation, platelet storage, and immune thrombocytopenia.
Collapse
|
2
|
Aiolfi R, Sitia G, Iannacone M, Brunetta I, Guidotti LG, Ruggeri ZM. Arenaviral infection causes bleeding in mice due to reduced serotonin release from platelets. Sci Signal 2022; 15:eabb0384. [PMID: 35192415 PMCID: PMC11583808 DOI: 10.1126/scisignal.abb0384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bleeding correlates with disease severity in viral hemorrhagic fevers. We found that the increase in type I interferon (IFN-I) in mice caused by infection with the Armstrong strain of lymphocytic choriomeningitis virus (LCMV; an arenavirus) reduced the megakaryocytic expression of genes encoding enzymes involved in lipid biosynthesis (cyclooxygenase 1 and thromboxane A synthase 1) and a thrombopoietic transcription factor (Nf-e2). The decreased expression of these genes was associated with reduced numbers of circulating platelets and defects in the arachidonic acid synthetic pathway, thereby suppressing serotonin release from δ-granules in platelets. Bleeding resulted when severe thrombocytopenia and altered platelet function reduced the amount of platelet-derived serotonin below a critical threshold. Bleeding was facilitated by the absence of the activity of the kinase Lyn or the administration of aspirin, an inhibitor of arachidonic acid synthesis. Mouse platelets were not directly affected by IFN-I because they lack the receptor for the cytokine (IFNAR1), suggesting that transfusion of normal platelets into LCMV-infected mice could increase the amount of platelet-released serotonin and help to control hemorrhage.
Collapse
Affiliation(s)
- Roberto Aiolfi
- Department of Molecular Medicine, MERU-Roon Research Center for Vascular Biology, Scripps Research, La Jolla, CA 92037, USA
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Sitia
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Ivan Brunetta
- Department of Molecular Medicine, MERU-Roon Research Center for Vascular Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Luca G. Guidotti
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Zaverio M. Ruggeri
- Department of Molecular Medicine, MERU-Roon Research Center for Vascular Biology, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Hosseini E, Solouki A, Haghshenas M, Ghasemzadeh M, Schoenwaelder SM. Agitation-dependent biomechanical forces modulate GPVI receptor expression and platelet adhesion capacity during storage. Thromb J 2022; 20:3. [PMID: 35022046 PMCID: PMC8756730 DOI: 10.1186/s12959-021-00359-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/09/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Continuous agitation during storage slows down the platelet storage lesions. However, in special circumstances, manual-mixing can be alternatively used to store products for short time periods without compromising platelet quality. Based on this finding, and given the role of shear stress in modulating receptor expression, we were interested in comparing the levels of platelet adhesion receptor, GPVI and platelet adhesion capacity under each storage condition. METHODS Platelet concentrates (PCs) were divided into three groups: continuously-agitated PCs (CAG-PCs) with or without PP2 (Src kinase inhibitor) and manually-mixed PCs (MM-PCs). Platelet count/MPV, swirling, GPVI and P-selectin expression, GPVI shedding, platelet adhesion/spreading to collagen were examined during 5 days of storage. RESULTS While MM- and CAG-PCs showed similar levels of P-selectin expression, GPVI expression was significantly elevated in MM-PCs with lower GPVI shedding/expression ratios, enhanced platelet adhesion/spreading and swirling in manually-mixed PCs. Of note, CAG-PCs treated with PP2 also demonstrated lower P-selectin expression and GPVI shedding, higher GPVI expression and attenuated swirling and spreading capability. CONCLUSION Given the comparable platelet activation state in MM and CAG-PCs as indicated by P-selectin expression, enhanced platelet adhesion/spreading in MM-PCs, along with relatively higher GPVI expression here, supports previous studies demonstrating a role for biomechanical forces in modulating GPVI-dependent function. Thus, lower GPVI expression in CAG-PCs may be due to shear forces induced by agitation, which keeps this receptor down-regulated while also attenuating platelet adhesion/spreading capacities during storage. Low platelet function in PP2-CAG-PCs also highlights the importance of Src-kinases threshold activity in maintaining platelets quality.
Collapse
Affiliation(s)
- Ehteramolsadat Hosseini
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Amin Solouki
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Masood Haghshenas
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mehran Ghasemzadeh
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Simone M Schoenwaelder
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.,Heart Research Institute, Newtown, NSW, Australia
| |
Collapse
|
4
|
Severe Trauma and Hemorrhage Leads to Platelet Dysfunction and Changes in Cyclic Nucleotides in The Rat. Shock 2021; 53:468-475. [PMID: 31090681 DOI: 10.1097/shk.0000000000001379] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Rats subjected to polytrauma and hemorrhage develop a coagulopathy that is similar to acute coagulopathy of trauma in humans, and is associated with a rise in prothrombin time and a fall in clot strength. Because platelet aggregation accounts for a major proportion of clot strength, we set out to characterize the effects of polytrauma on platelet function. METHODS Sprague-Dawley rats were anesthetized with isoflurane. Polytrauma included laparotomy and damage to 10 cm of the small intestines, right and medial liver lobes, right leg skeletal muscle, femur fracture, and hemorrhage (40% of blood volume). No resuscitation was given. Blood samples were taken before and after trauma for the measurement of impedance electrode aggregometry, and intracellular levels of cyclic adenosine and guanosine monophosphate (cAMP, cGMP), inositol trisphosphate (IP3), and adenosine and guanosine triphosphates (ATP, GTP). RESULTS Polytrauma significantly increased the response of collagen (24%) and thrombin (12%) to stimulate platelet aggregation. However, aggregation to adenosine diphosphate (ADP) or arachidonic acid (AA) was significantly decreased at 2 (52% and 46%, respectively) and 4 h (45% and 39%). Polytrauma and hemorrhage also led to a significant early rise in cAMP (101 ± 11 to 202 ± 29 pg/mL per 1,000 platelets), mirrored by a decrease in cGMP (7.8 ± 0.9 to 0.6 ± 0.5). In addition, there was a late fall in ATP (8.1 ± 0.7 to 2.2 ± 0.6 ng/mL per 1,000 platelets) and GTP (1.5 ± 0.2 to 0.3 ± 0.1). IP3 rose initially, and then fell back to baseline. CONCLUSIONS Polytrauma and hemorrhage led to a deficit in the platelet aggregation response to ADP and AA after trauma, likely due to the early rise in cAMP, and a later fall in energy substrates, and may explain the decrease in clot strength and impaired hemostasis observed after severe trauma.
Collapse
|
5
|
Belcher A, Zulfiker AHM, Li OQ, Yue H, Gupta AS, Li W. Targeting Thymidine Phosphorylase With Tipiracil Hydrochloride Attenuates Thrombosis Without Increasing Risk of Bleeding in Mice. Arterioscler Thromb Vasc Biol 2021; 41:668-682. [PMID: 33297751 PMCID: PMC8105268 DOI: 10.1161/atvbaha.120.315109] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Current antiplatelet medications increase the risk of bleeding, which leads to a clear clinical need in developing novel mechanism-based antiplatelet drugs. TYMP (Thymidine phosphorylase), a cytoplasm protein that is highly expressed in platelets, facilitates multiple agonist-induced platelet activation, and enhances thrombosis. Tipiracil hydrochloride (TPI), a selective TYMP inhibitor, has been approved by the Food and Drug Administration for clinical use. We tested the hypothesis that TPI is a safe antithrombotic medication. Approach and Results: By coexpression of TYMP and Lyn, GST (glutathione S-transferase) tagged Lyn-SH3 domain or Lyn-SH2 domain, we showed the direct evidence that TYMP binds to Lyn through both SH3 and SH2 domains, and TPI diminished the binding. TYMP deficiency significantly inhibits thrombosis in vivo in both sexes. Pretreatment of platelets with TPI rapidly inhibited collagen- and ADP-induced platelet aggregation. Under either normal or hyperlipidemic conditions, treating wild-type mice with TPI via intraperitoneal injection, intravenous injection, or gavage feeding dramatically inhibited thrombosis without inducing significant bleeding. Even at high doses, TPI has a lower bleeding side effect compared with aspirin and clopidogrel. Intravenous delivery of TPI alone or combined with tissue plasminogen activator dramatically inhibited thrombosis. Dual administration of a very low dose of aspirin and TPI, which had no antithrombotic effects when used alone, significantly inhibited thrombosis without disturbing hemostasis. CONCLUSIONS This study demonstrated that inhibition of TYMP, a cytoplasmic protein, attenuated multiple signaling pathways that mediate platelet activation, aggregation, and thrombosis. TPI can be used as a novel antithrombotic medication without the increase in risk of bleeding.
Collapse
Affiliation(s)
- Adam Belcher
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine of Marshall University, Huntington, WV, 25755, USA
| | - Abu Hasanat Md Zulfiker
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine of Marshall University, Huntington, WV, 25755, USA
| | - Oliver Qiyue Li
- Marshall Institute for Interdisciplinary Research; Huntington, WV, 25701, USA
| | - Hong Yue
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine of Marshall University, Huntington, WV, 25755, USA
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland OH 44106, USA
| | - Wei Li
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine of Marshall University, Huntington, WV, 25755, USA
| |
Collapse
|
6
|
Beristain-Covarrubias N, Perez-Toledo M, Thomas MR, Henderson IR, Watson SP, Cunningham AF. Understanding Infection-Induced Thrombosis: Lessons Learned From Animal Models. Front Immunol 2019; 10:2569. [PMID: 31749809 PMCID: PMC6848062 DOI: 10.3389/fimmu.2019.02569] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/16/2019] [Indexed: 12/25/2022] Open
Abstract
Thrombosis is a common consequence of infection that is associated with poor patient outcome. Nevertheless, the mechanisms by which infection-associated thrombosis is induced, maintained and resolved are poorly understood, as is the contribution thrombosis makes to host control of infection and pathogen spread. The key difference between infection-associated thrombosis and thrombosis in other circumstances is a stronger inflammation-mediated component caused by the presence of the pathogen and its products. This inflammation triggers the activation of platelets, which may accompany damage to the endothelium, resulting in fibrin deposition and thrombus formation. This process is often referred to as thrombo-inflammation. Strikingly, despite its clinical importance and despite thrombi being induced to many different pathogens, it is still unclear whether the mechanisms underlying this process are conserved and how we can best understand this process. This review summarizes thrombosis in a variety of models, including single antigen models such as LPS, and infection models using viruses and bacteria. We provide a specific focus on Salmonella Typhimurium infection as a useful model to address all stages of thrombosis during infection. We highlight how this model has helped us identify how thrombosis can appear in different organs at different times and thrombi be detected for weeks after infection in one site, yet largely be resolved within 24 h in another. Furthermore, we discuss the observation that thrombi induced to Salmonella Typhimurium are largely devoid of bacteria. Finally, we discuss the value of different therapeutic approaches to target thrombosis, the potential importance of timing in their administration and the necessity to maintain normal hemostasis after treatment. Improvements in our understanding of these processes can be used to better target infection-mediated mechanisms of thrombosis.
Collapse
Affiliation(s)
- Nonantzin Beristain-Covarrubias
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Marisol Perez-Toledo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mark R Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Midlands, United Kingdom
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
7
|
Betanin-enriched red beet extract attenuated platelet activation and aggregation by suppressing Akt and P38 Mitogen-activated protein kinases phosphorylation. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
8
|
Huang J, Li X, Shi X, Zhu M, Wang J, Huang S, Huang X, Wang H, Li L, Deng H, Zhou Y, Mao J, Long Z, Ma Z, Ye W, Pan J, Xi X, Jin J. Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting. J Hematol Oncol 2019; 12:26. [PMID: 30845955 PMCID: PMC6407232 DOI: 10.1186/s13045-019-0709-6] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Integrins are a family of transmembrane glycoprotein signaling receptors that can transmit bioinformation bidirectionally across the plasma membrane. Integrin αIIbβ3 is expressed at a high level in platelets and their progenitors, where it plays a central role in platelet functions, hemostasis, and arterial thrombosis. Integrin αIIbβ3 also participates in cancer progression, such as tumor cell proliferation and metastasis. In resting platelets, integrin αIIbβ3 adopts an inactive conformation. Upon agonist stimulation, the transduction of inside-out signals leads integrin αIIbβ3 to switch from a low- to high-affinity state for fibrinogen and other ligands. Ligand binding causes integrin clustering and subsequently promotes outside-in signaling, which initiates and amplifies a range of cellular events to drive essential platelet functions such as spreading, aggregation, clot retraction, and thrombus consolidation. Regulation of the bidirectional signaling of integrin αIIbβ3 requires the involvement of numerous interacting proteins, which associate with the cytoplasmic tails of αIIbβ3 in particular. Integrin αIIbβ3 and its signaling pathways are considered promising targets for antithrombotic therapy. This review describes the bidirectional signal transduction of integrin αIIbβ3 in platelets, as well as the proteins responsible for its regulation and therapeutic agents that target integrin αIIbβ3 and its signaling pathways.
Collapse
Affiliation(s)
- Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofeng Shi
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mark Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yulan Zhou
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhangbiao Long
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhixin Ma
- Clinical Prenatal Diagnosis Center, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China. .,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Minuz P, Meneguzzi A, Fumagalli L, Degan M, Calabria S, Ferraro R, Ricci M, Veneri D, Berton G. Calcium-Dependent Src Phosphorylation and Reactive Oxygen Species Generation Are Implicated in the Activation of Human Platelet Induced by Thromboxane A2 Analogs. Front Pharmacol 2018; 9:1081. [PMID: 30319416 PMCID: PMC6169403 DOI: 10.3389/fphar.2018.01081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/06/2018] [Indexed: 11/19/2022] Open
Abstract
The thromboxane (TX) A2 elicits TP-dependent different platelet responses. Low amounts activate Src kinases and the Rho–Rho kinase pathway independently of integrin αIIbβ3 and ADP secretion and synergize with epinephrine to induce aggregation. Aim of the present study was to investigate the role Src kinases and the interplay with calcium signals in reactive oxygen species (ROS) generation in the activatory pathways engaged by TXA2 in human platelets. All the experiments were performed in vitro or ex vivo. Washed platelets were stimulated with 50–1000 nM U46619 and/or 10 μM epinephrine in the presence of acetylsalicylic acid and the ADP scavenger apyrase. The effects of the ROS scavenger EUK-134, NADPH oxidase (NOX) inhibitor apocynin, Src kinase inhibitor PP2 and calcium chelator BAPTA were tested. Intracellular calcium and ROS generation were measured. Platelet rich plasma from patients treated with dasatinib was used to confirm the data obtained in vitro. We observed that 50 nM U46619 plus epinephrine increase intracellular calcium similarly to 1000 nM U46619. ROS generation was blunted by the NOX inhibitor apocynin. BAPTA inhibited ROS generation in resting and activated platelets. Phosphorylation of Src and MLC proteins were not significantly affected by antioxidants agents. BAPTA and antioxidants reduced P-Selectin expression, activation of integrin αIIbβ3and platelet aggregation. TXA2-induced increase in intracellular calcium is required for Src phosphorylation and ROS generation. NADPH oxidase is the source of ROS in TX stimulated platelets. The proposed model helps explain why an incomplete inhibition of TP receptor results in residual platelet activation, and define new targets for antiplatelet treatment.
Collapse
Affiliation(s)
- Pietro Minuz
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Alessandra Meneguzzi
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Laura Fumagalli
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Maurizio Degan
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Stefano Calabria
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Roberta Ferraro
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Marco Ricci
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Dino Veneri
- Section of Haematology, Department of Medicine, University of Verona, Verona, Italy
| | - Giorgio Berton
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
10
|
14-3-3 proteins in platelet biology and glycoprotein Ib-IX signaling. Blood 2018; 131:2436-2448. [PMID: 29622550 DOI: 10.1182/blood-2017-09-742650] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/25/2018] [Indexed: 12/16/2022] Open
Abstract
Members of the 14-3-3 family of proteins function as adapters/modulators that recognize phosphoserine/phosphothreonine-based binding motifs in many intracellular proteins and play fundamental roles in signal transduction pathways of eukaryotic cells. In platelets, 14-3-3 plays a wide range of regulatory roles in phosphorylation-dependent signaling pathways, including G-protein signaling, cAMP signaling, agonist-induced phosphatidylserine exposure, and regulation of mitochondrial function. In particular, 14-3-3 interacts with several phosphoserine-dependent binding sites in the major platelet adhesion receptor, the glycoprotein Ib-IX complex (GPIb-IX), regulating its interaction with von Willebrand factor (VWF) and mediating VWF/GPIb-IX-dependent mechanosignal transduction, leading to platelet activation. The interaction of 14-3-3 with GPIb-IX also plays a critical role in enabling the platelet response to low concentrations of thrombin through cooperative signaling mediated by protease-activated receptors and GPIb-IX. The various functions of 14-3-3 in platelets suggest that it is a possible target for the treatment of thrombosis and inflammation.
Collapse
|
11
|
Maintenance of murine platelet homeostasis by the kinase Csk and phosphatase CD148. Blood 2018; 131:1122-1144. [PMID: 29301754 DOI: 10.1182/blood-2017-02-768077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 12/23/2017] [Indexed: 12/14/2022] Open
Abstract
Src family kinases (SFKs) coordinate the initiating and propagating activation signals in platelets, but it remains unclear how they are regulated. Here, we show that ablation of C-terminal Src kinase (Csk) and receptor-like protein tyrosine-phosphatase CD148 in mice results in a dramatic increase in platelet SFK activity, demonstrating that these proteins are essential regulators of platelet reactivity. Paradoxically, Csk/CD148-deficient mice exhibit reduced in vivo and ex vivo thrombus formation and increased bleeding following injury rather than a prothrombotic phenotype. This is a consequence of multiple negative feedback mechanisms, including downregulation of the immunoreceptor tyrosine-based activation motif (ITAM)- and hemi-ITAM-containing receptors glycoprotein VI (GPVI)-Fc receptor (FcR) γ-chain and CLEC-2, respectively and upregulation of the immunoreceptor tyrosine-based inhibition motif (ITIM)-containing receptor G6b-B and its interaction with the tyrosine phosphatases Shp1 and Shp2. Results from an analog-sensitive Csk mouse model demonstrate the unconventional role of SFKs in activating ITIM signaling. This study establishes Csk and CD148 as critical molecular switches controlling the thrombotic and hemostatic capacity of platelets and reveals cell-intrinsic mechanisms that prevent pathological thrombosis from occurring.
Collapse
|
12
|
Estevez B, Du X. New Concepts and Mechanisms of Platelet Activation Signaling. Physiology (Bethesda) 2017; 32:162-177. [PMID: 28228483 DOI: 10.1152/physiol.00020.2016] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Upon blood vessel injury, platelets are exposed to adhesive proteins in the vascular wall and soluble agonists, which initiate platelet activation, leading to formation of hemostatic thrombi. Pathological activation of platelets can induce occlusive thrombosis, resulting in ischemic events such as heart attack and stroke, which are leading causes of death globally. Platelet activation requires intracellular signal transduction initiated by platelet receptors for adhesion proteins and soluble agonists. Whereas many platelet activation signaling pathways have been established for many years, significant recent progress reveals much more complex and sophisticated signaling and amplification networks. With the discovery of new receptor signaling pathways and regulatory networks, some of the long-standing concepts of platelet signaling have been challenged. This review provides an overview of the new developments and concepts in platelet activation signaling.
Collapse
Affiliation(s)
- Brian Estevez
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
13
|
|
14
|
Hiratsuka T, Sano T, Kato H, Komatsu N, Imajo M, Kamioka Y, Sumiyama K, Banno F, Miyata T, Matsuda M. Live imaging of extracellular signal-regulated kinase and protein kinase A activities during thrombus formation in mice expressing biosensors based on Förster resonance energy transfer. J Thromb Haemost 2017; 15:1487-1499. [PMID: 28453888 DOI: 10.1111/jth.13723] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Indexed: 01/22/2023]
Abstract
Essentials Spatiotemporal regulation of protein kinases during thrombus formation remains elusive in vivo. Activities of protein kinases were live imaged in mouse platelets at laser-ablated arterioles. Protein kinase A was activated in the dislodging platelets at the downstream side of the thrombus. Extracellular signal-regulated kinase was activated at the core of contracting platelet aggregates. SUMMARY Background The dynamic features of thrombus formation have been visualized by conventional video widefield microscopy or confocal microscopy in live mice. However, owing to technical limitations, the precise spatiotemporal regulation of intracellular signaling molecule activities, which have been extensively studied in vitro, remains elusive in vivo. Objectives To visualize, by the use of two-photon excitation microscopy of transgenic mice expressing Förster resonance energy transfer (FRET) biosensors for extracellular signal-regulated kinase (ERK) and protein kinase A (PKA), ERK and PKA activities during thrombus formation in laser-injured subcutaneous arterioles. Results When a core of densely packed platelets had developed, ERK activity was increased from the basal region close to the injured arterioles. PKA was activated at the downstream side of an unstable shell overlaying the core of platelets. Intravenous administration of a MEK inhibitor, PD0325901, suppressed platelet tethering and dislodged platelet aggregates, indicating that ERK activity is indispensable for both initiation and maintenance of the thrombus. A cAMP analog, dbcAMP, inhibited platelet tethering but failed to dislodge the preformed platelet aggregates, suggesting that PKA can antagonize thrombus formation only in the early phase. Conclusion In vivo imaging of transgenic mice expressing FRET biosensors will open a new opportunity to visualize the spatiotemporal changes in signaling molecule activities not only during thrombus formation but also in other hematologic disorders.
Collapse
Affiliation(s)
- T Hiratsuka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - T Sano
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - H Kato
- Department of Hematology-Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - N Komatsu
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - M Imajo
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y Kamioka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - K Sumiyama
- Laboratory for Mouse Genetic Engineering, Quantitative Biology Center, RIKEN, Suita, Osaka, Japan
| | - F Banno
- Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - T Miyata
- Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - M Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Poulter NS, Pollitt AY, Owen DM, Gardiner EE, Andrews RK, Shimizu H, Ishikawa D, Bihan D, Farndale RW, Moroi M, Watson SP, Jung SM. Clustering of glycoprotein VI (GPVI) dimers upon adhesion to collagen as a mechanism to regulate GPVI signaling in platelets. J Thromb Haemost 2017; 15:549-564. [PMID: 28058806 PMCID: PMC5347898 DOI: 10.1111/jth.13613] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Indexed: 01/01/2023]
Abstract
Essentials Dimeric high-affinity collagen receptor glycoprotein VI (GPVI) is present on resting platelets. Spatio-temporal organization of platelet GPVI-dimers was evaluated using advanced microscopy. Upon platelet adhesion to collagenous substrates, GPVI-dimers coalesce to form clusters. Clustering of GPVI-dimers may increase avidity and facilitate platelet activation SUMMARY: Background Platelet glycoprotein VI (GPVI) binding to subendothelial collagen exposed upon blood vessel injury initiates thrombus formation. Dimeric GPVI has high affinity for collagen, and occurs constitutively on resting platelets. Objective To identify higher-order oligomerization (clustering) of pre-existing GPVI dimers upon interaction with collagen as a mechanism to initiate GPVI-mediated signaling. Methods GPVI was located by use of fluorophore-conjugated GPVI dimer-specific Fab (antigen-binding fragment). The tested substrates include Horm collagen I fibers, soluble collagen III, GPVI-specific collagen peptides, and fibrinogen. GPVI dimer clusters on the platelet surface interacting with these substrates were visualized with complementary imaging techniques: total internal reflection fluorescence microscopy to monitor real-time interactions, and direct stochastic optical reconstruction microscopy (dSTORM), providing relative quantification of GPVI cluster size and density. Confocal microscopy was used to locate GPVI dimer clusters, glycoprotein Ib, integrin α2 β1 , and phosphotyrosine. Results Upon platelet adhesion to all collagenous substrates, GPVI dimers coalesced to form clusters; notably clusters formed along the fibers of Horm collagen. dSTORM revealed that GPVI density within clusters depended on the substrate, collagen III being the most effective. Clusters on fibrinogen-adhered platelets were much smaller and more numerous; whether these are pre-existing oligomers of GPVI dimers or fibrinogen-induced is not clear. Some GPVI dimer clusters colocalized with areas of phosphotyrosine, indicative of signaling activity. Integrin α2 β1 was localized to collagen fibers close to GPVI dimer clusters. GPVI clustering depends on a dynamic actin cytoskeleton. Conclusions Platelet adhesion to collagen induces GPVI dimer clustering. GPVI clustering increases both avidity for collagen and the proximity of GPVI-associated signaling molecules, which may be crucial for the initiation and persistence of signaling.
Collapse
Affiliation(s)
- N. S. Poulter
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Centre for Membrane Proteins and Receptors (COMPARE)College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - A. Y. Pollitt
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Present address: Institute for Cardiovascular and Metabolic ResearchSchool of Biological SciencesUniversity of ReadingReadingRG6 6ASUK
| | - D. M. Owen
- Department of Physics and Randall Division of Cell and Molecular BiophysicsKing's College LondonLondonUK
| | - E. E. Gardiner
- Department of Cancer Biology and TherapeuticsJohn Curtin School of Medical ResearchAustralian National UniversityCanberraACTAustralia
| | - R. K. Andrews
- Australian Centre for Blood DiseasesMonash UniversityMelbourneVictoriaAustralia
| | - H. Shimizu
- Research DepartmentChemo‐Sero‐Therapeutic Research InstituteKaketsukenKumamotoJapan
| | - D. Ishikawa
- Research DepartmentChemo‐Sero‐Therapeutic Research InstituteKaketsukenKumamotoJapan
| | - D. Bihan
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - R. W. Farndale
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - M. Moroi
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - S. P. Watson
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Centre for Membrane Proteins and Receptors (COMPARE)College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - S. M. Jung
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
16
|
Novel phosphatidylethanolamine derivatives accumulate in circulation in hyperlipidemic ApoE-/- mice and activate platelets via TLR2. Blood 2016; 127:2618-29. [PMID: 27015965 DOI: 10.1182/blood-2015-08-664300] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 03/17/2016] [Indexed: 02/07/2023] Open
Abstract
A prothrombotic state and increased platelet reactivity are common in dyslipidemia and oxidative stress. Lipid peroxidation, a major consequence of oxidative stress, generates highly reactive products, including hydroxy-ω-oxoalkenoic acids that modify autologous proteins generating biologically active derivatives. Phosphatidylethanolamine, the second most abundant eukaryotic phospholipid, can also be modified by hydroxy-ω-oxoalkenoic acids. However, the conditions leading to accumulation of such derivatives in circulation and their biological activities remain poorly understood. We now show that carboxyalkylpyrrole-phosphatidylethanolamine derivatives (CAP-PEs) are present in the plasma of hyperlipidemic ApoE(-/-) mice. CAP-PEs directly bind to TLR2 and induces platelet integrin αIIbβ3 activation and P-selectin expression in a Toll-like receptor 2 (TLR2)-dependent manner. Platelet activation by CAP-PEs includes assembly of TLR2/TLR1 receptor complex, induction of downstream signaling via MyD88/TIRAP, phosphorylation of IRAK4, and subsequent activation of tumor necrosis factor receptor-associated factor 6. This in turn activates the Src family kinases, spleen tyrosine kinase and PLCγ2, and platelet integrins. Murine intravital thrombosis studies demonstrated that CAP-PEs accelerate thrombosis in TLR2-dependent manner and that TLR2 contributes to accelerate thrombosis in mice in the settings of hyperlipidemia. Our study identified the novel end-products of lipid peroxidation, accumulating in circulation in hyperlipidemia and inducing platelet activation by promoting cross-talk between innate immunity and integrin activation signaling pathways.
Collapse
|
17
|
Platelet Activation and Thrombus Formation over IgG Immune Complexes Requires Integrin αIIbβ3 and Lyn Kinase. PLoS One 2015; 10:e0135738. [PMID: 26291522 PMCID: PMC4546160 DOI: 10.1371/journal.pone.0135738] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/25/2015] [Indexed: 12/15/2022] Open
Abstract
IgG immune complexes contribute to the etiology and pathogenesis of numerous autoimmune disorders, including heparin-induced thrombocytopenia, systemic lupus erythematosus, rheumatoid- and collagen-induced arthritis, and chronic glomerulonephritis. Patients suffering from immune complex-related disorders are known to be susceptible to platelet-mediated thrombotic events. Though the role of the Fc receptor, FcγRIIa, in initiating platelet activation is well understood, the role of the major platelet adhesion receptor, integrin αIIbβ3, in amplifying platelet activation and mediating adhesion and aggregation downstream of encountering IgG immune complexes is poorly understood. The goal of this investigation was to gain a better understanding of the relative roles of these two receptor systems in immune complex-mediated thrombotic complications. Human platelets, and mouse platelets genetically engineered to differentially express FcγRIIa and αIIbβ3, were allowed to interact with IgG-coated surfaces under both static and flow conditions, and their ability to spread and form thrombi evaluated in the presence and absence of clinically-used fibrinogen receptor antagonists. Although binding of IgG immune complexes to FcγRIIa was sufficient for platelet adhesion and initial signal transduction events, platelet spreading and thrombus formation over IgG-coated surfaces showed an absolute requirement for αIIbβ3 and its ligands. Tyrosine kinases Lyn and Syk were found to play key roles in IgG-induced platelet activation events. Taken together, our data suggest a complex functional interplay between FcγRIIa, Lyn, and αIIbβ3 in immune complex-induced platelet activation. Future studies may be warranted to determine whether patients suffering from immune complex disorders might benefit from treatment with anti-αIIbβ3-directed therapeutics.
Collapse
|
18
|
The focal adhesion kinase Pyk2 links Ca2+ signalling to Src family kinase activation and protein tyrosine phosphorylation in thrombin-stimulated platelets. Biochem J 2015; 469:199-210. [DOI: 10.1042/bj20150048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/13/2015] [Indexed: 01/08/2023]
Abstract
We address the mechanism for Src family kinases activation downstream of G-protein-coupled receptors (GPCRs) in thrombin-stimulated blood platelets and we describe a novel interplay between Pyk2 and the Src kinases Fyn and Lyn in the regulation of Ca2+-dependent protein-tyrosine phosphorylation.
Collapse
|
19
|
Li W, Gigante A, Perez-Perez MJ, Yue H, Hirano M, McIntyre TM, Silverstein RL. Thymidine phosphorylase participates in platelet signaling and promotes thrombosis. Circ Res 2014; 115:997-1006. [PMID: 25287063 DOI: 10.1161/circresaha.115.304591] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Platelets contain abundant thymidine phosphorylase (TYMP), which is highly expressed in diseases with high risk of thrombosis, such as atherosclerosis and type II diabetes mellitus. OBJECTIVE To test the hypothesis that TYMP participates in platelet signaling and promotes thrombosis. METHODS AND RESULTS By using a ferric chloride (FeCl3)-induced carotid artery injury thrombosis model, we found time to blood flow cessation was significantly prolonged in Tymp(-/-) and Tymp(+/-) mice compared with wild-type mice. Bone marrow transplantation and platelet transfusion studies demonstrated that platelet TYMP was responsible for the antithrombotic phenomenon in the TYMP-deficient mice. Collagen-, collagen-related peptide-, adenosine diphosphate-, or thrombin-induced platelet aggregation were significantly attenuated in Tymp(+/-) and Tymp(-/-) platelets, and in wild type or human platelets pretreated with TYMP inhibitor KIN59. Tymp deficiency also significantly decreased agonist-induced P-selectin expression. TYMP contains an N-terminal SH3 domain-binding proline-rich motif and forms a complex with the tyrosine kinases Lyn, Fyn, and Yes in platelets. TYMP-associated Lyn was inactive in resting platelets, and TYMP trapped and diminished active Lyn after collagen stimulation. Tymp/Lyn double haploinsufficiency diminished the antithrombotic phenotype of Tymp(+/-) mice. TYMP deletion or inhibition of TYMP with KIN59 dramatically increased platelet-endothelial cell adhesion molecule 1 tyrosine phosphorylation and diminished collagen-related peptide- or collagen-induced AKT phosphorylation. In vivo administration of KIN59 significantly inhibited FeCl3-induced carotid artery thrombosis without affecting hemostasis. CONCLUSIONS TYMP participates in multiple platelet signaling pathways and regulates platelet activation and thrombosis. Targeting TYMP might be a novel antiplatelet and antithrombosis therapy.
Collapse
Affiliation(s)
- Wei Li
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Alba Gigante
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Maria-Jesus Perez-Perez
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Hong Yue
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Michio Hirano
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Thomas M McIntyre
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Roy L Silverstein
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| |
Collapse
|
20
|
Abstract
Src family kinases (SFKs) play a central role in mediating the rapid response of platelets to vascular injury. They transmit activation signals from a diverse repertoire of platelet surface receptors, including the integrin αIIbβ3, the immunoreceptor tyrosine-based activation motif-containing collagen receptor complex GPVI-FcR γ-chain, and the von Willebrand factor receptor complex GPIb-IX-V, which are essential for thrombus growth and stability. Ligand-mediated clustering of these receptors triggers an increase in SFK activity and downstream tyrosine phosphorylation of enzymes, adaptors, and cytoskeletal proteins that collectively propagate the signal and coordinate platelet activation. A growing body of evidence has established that SFKs also contribute to Gq- and Gi-coupled receptor signaling that synergizes with primary activation signals to maximally activate platelets and render them prothrombotic. Interestingly, SFKs concomitantly activate inhibitory pathways that limit platelet activation and thrombus size. In this review, we discuss past discoveries that laid the foundation for this fundamental area of platelet signal transduction, recent progress in our understanding of the distinct and overlapping functions of SFKs in platelets, and new avenues of research into mechanisms of SFK regulation. We also highlight the thrombotic and hemostatic consequences of targeting platelet SFKs.
Collapse
|
21
|
Kindlin-2 regulates hemostasis by controlling endothelial cell-surface expression of ADP/AMP catabolic enzymes via a clathrin-dependent mechanism. Blood 2013; 122:2491-9. [PMID: 23896409 DOI: 10.1182/blood-2013-04-497669] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Kindlin-2, a widely distributed cytoskeletal protein, has been implicated in integrin activation, and its absence is embryonically lethal in mice. In the present study, we tested whether hemostasis might be perturbed in kindlin-2(+/-) mice. Bleeding time and carotid artery occlusion time were significantly prolonged in kindlin-2(+/-) mice. Whereas plasma concentrations/activities of key coagulation/fibrinolytic proteins and platelet counts and aggregation were similar in wild-type and kindlin-2(+/-) mice, kindlin-2(+/-) endothelial cells (ECs) showed enhanced inhibition of platelet aggregation induced by adenosine 5'-diphosphate (ADP) or low concentrations of other agonists. Cell-surface expression of 2 enzymes involved in ADP/adenosine 5'-monophosphate (AMP) degradation, adenosine triphosphate (ATP) diphosphohydrolase (CD39) and ecto-5'-nucleotidase (CD73) were increased twofold to threefold on kindlin-2(+/-) ECs, leading to enhanced ATP/ADP catabolism and production of adenosine, an inhibitor of platelet aggregation. Trafficking of CD39 and CD73 at the EC surface was altered in kindlin-2(+/-) mice. Mechanistically, this was attributed to direct interaction of kindlin-2 with clathrin heavy chain, thereby controlling endocytosis and recycling of CD39 and CD73. The interaction of kindlin-2 with clathrin was independent of its integrin binding site but still dependent on a site within its F3 subdomain. Thus, kindlin-2 regulates trafficking of EC surface enzymes that control platelet responses and hemostasis.
Collapse
|
22
|
Parimon T, Li Z, Bolz DD, McIndoo ER, Bayer CR, Stevens DL, Bryant AE. Staphylococcus aureus α-hemolysin promotes platelet-neutrophil aggregate formation. J Infect Dis 2013; 208:761-70. [PMID: 23698812 DOI: 10.1093/infdis/jit235] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) causes severe hemorrhagic necrotizing pneumonia associated with high mortality. Exotoxins have been implicated in the pathogenesis of this infection; however, the cellular mechanisms responsible remain largely undefined. Because platelet-neutrophil aggregates (PNAs) can dysregulate inflammatory responses and contribute to tissue destruction, we investigated whether exotoxins from MRSA could stimulate formation of PNAs in human whole blood. Strong PNA formation was stimulated by toxins from stationary phase but not log phase CA-MRSA, and α-hemolysin was singularly identified as the mediator of this activity. MRSA exotoxins also caused neutrophil (polymorphonuclear leukocyte) activation, as measured by increased CD11b expression, although platelet binding was not driven by this mechanism; rather, α-hemolysin-induced PNA formation was solely platelet P-selectin dependent. These findings suggest a role for S. aureus α-hemolysin-induced PNA formation in alveolar capillary destruction in hemorrhagic/necrotizing pneumonia caused by CA-MRSA and offer novel targets for intervention.
Collapse
Affiliation(s)
- Tanyalak Parimon
- Research and Development Service, Infectious Diseases Section, Veterans Affairs Medical Center, Boise, Idaho 83702, USA. (
| | | | | | | | | | | | | |
Collapse
|
23
|
Manne BK, Getz TM, Hughes CE, Alshehri O, Dangelmaier C, Naik UP, Watson SP, Kunapuli SP. Fucoidan is a novel platelet agonist for the C-type lectin-like receptor 2 (CLEC-2). J Biol Chem 2013; 288:7717-7726. [PMID: 23341451 DOI: 10.1074/jbc.m112.424473] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fucoidan, a sulfated polysaccharide from Fucus vesiculosus, decreases bleeding time and clotting time in hemophilia, possibly through inhibition of tissue factor pathway inhibitor. However, its effect on platelets and the receptor by which fucoidan induces cellular processes has not been elucidated. In this study, we demonstrate that fucoidan induces platelet activation in a concentration-dependent manner. Fucoidan-induced platelet activation was completely abolished by the pan-Src family kinase (SFK) inhibitor, PP2, or when Syk is inhibited. PP2 abolished phosphorylations of Syk and Phospholipase C-γ2. Fucoidan-induced platelet activation had a lag phase, which is reminiscent of platelet activation by collagen and CLEC-2 receptor agonists. Platelet activation by fucoidan was only slightly inhibited in FcRγ-chain null mice, indicating that fucoidan was not acting primarily through GPVI receptor. On the other hand, fucoidan-induced platelet activation was inhibited in platelet-specific CLEC-2 knock-out murine platelets revealing CLEC-2 as a physiological target of fucoidan. Thus, our data show fucoidan as a novel CLEC-2 receptor agonist that activates platelets through a SFK-dependent signaling pathway. Furthermore, the efficacy of fucoidan in hemophilia raises the possibility that decreased bleeding times could be achieved through activation of platelets.
Collapse
Affiliation(s)
- Bhanu Kanth Manne
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Todd M Getz
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Craig E Hughes
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, The College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Osama Alshehri
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, The College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Carol Dangelmaier
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Ulhas P Naik
- Cardiovascular Research Institute, University of Delaware, Newark, Delaware 19716
| | - Steve P Watson
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, The College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Satya P Kunapuli
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140.
| |
Collapse
|
24
|
|
25
|
Xiang B, Zhang G, Stefanini L, Bergmeier W, Gartner TK, Whiteheart SW, Li Z. The Src family kinases and protein kinase C synergize to mediate Gq-dependent platelet activation. J Biol Chem 2012; 287:41277-87. [PMID: 23066026 DOI: 10.1074/jbc.m112.393124] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Src family kinases (SFKs) play essential roles in collagen- and von Willebrand factor (VWF)-mediated platelet activation. However, the roles of SFKs in G protein-coupled receptor-mediated platelet activation and the molecular mechanisms whereby SFKs are activated by G protein-coupled receptor stimulation are not fully understood. Here we show that the thrombin receptor protease-activated receptor 4 agonist peptide AYPGKF elicited SFK phosphorylation in P2Y(12) deficient platelets but stimulated minimal SFK phosphorylation in platelets lacking G(q). We have previously shown that thrombin-induced SFK phosphorylation was inhibited by the calcium chelator 5,5'-dimethyl-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (dimethyl-BAPTA). The calcium ionophore A23187 induced SFK phosphorylation in both wild-type and G(q) deficient platelets. Together, these results indicate that SFK phosphorylation in response to thrombin receptor stimulation is downstream from G(q)/Ca(2+) signaling. Moreover, A23187-induced thromboxane A(2) synthesis, platelet aggregation, and secretion were inhibited by preincubation of platelets with a selective SFK inhibitor, PP2. AYPGKF-induced thromboxane A(2) production in wild-type and P2Y(12) deficient platelets was abolished by PP2, and AYPGKF-mediated P-selectin expression, integrin α(IIb)β(3) activation, and aggregation of P2Y(12) deficient platelets were partially inhibited by the PKC inhibitor Ro-31-8220, PP2, dimethyl-BAPTA, or LY294002, but were abolished by Ro-31-8220 plus PP2, dimethyl-BAPTA, or LY294002. These data indicate that Ca(2+)/SFKs/PI3K and PKC represent two alternative signaling pathways mediating G(q)-dependent platelet activation.
Collapse
Affiliation(s)
- Binggang Xiang
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Delaney MK, Liu J, Zheng Y, Berndt MC, Du X. The role of Rac1 in glycoprotein Ib-IX-mediated signal transduction and integrin activation. Arterioscler Thromb Vasc Biol 2012; 32:2761-8. [PMID: 22995516 DOI: 10.1161/atvbaha.112.254920] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The platelet receptor for von Willebrand factor, the glycoprotein Ib-IX (GPIb-IX) complex, mediates platelet adhesion at sites of vascular injury and transmits signals leading to platelet activation. von Willebrand factor/GPIb-IX interaction sequentially activates the Src family kinase Lyn (SFK), phosphoinositide 3-kinase (PI3K), and Akt, leading to activation of integrin α(IIb)β(3) and integrin-dependent stable platelet adhesion and aggregation. It remains unclear how Lyn activates the PI3K/Akt pathway after ligand binding to GPIb-IX. METHODS AND RESULTS Using platelet-specific Rac1(-/-) mice and the Rac1 inhibitor NSC23766, we examined the role of Rac1 in GPIb-IX-dependent platelet activation. Rac1(-/-) mouse platelets and NSC23766-treated human platelets were defective in GPIb-dependent stable adhesion to von Willebrand factor under shear stress, integrin activation, thromboxane A(2) synthesis, and platelet aggregation. Interestingly, GPIb-induced activation of Rac1 and the guanine nucleotide exchange factor for Rac1, Vav, was abolished in both Lyn(-/-) and SFK inhibitor-treated platelets but was unaffected by the PI3K inhibitor LY294002, indicating that Lyn mediates activation of Vav and Rac1 independently of PI3K. Furthermore, GPIb-induced activation of Akt was abolished in Rac1-deficient platelets, suggesting that Rac1 is upstream of the PI3K/Akt pathway. CONCLUSIONS A Lyn-Vav-Rac1-PI3K-Akt pathway mediates von Willebrand factor-induced activation of integrin α(IIb)β(3) to promote GPIb-IX-dependent platelet activation.
Collapse
Affiliation(s)
- M Keegan Delaney
- Department of Pharmacology, University of Illinois College of Medicine, 835 South Wolcott Ave, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
27
|
O'Brien KA, Gartner TK, Hay N, Du X. ADP-stimulated activation of Akt during integrin outside-in signaling promotes platelet spreading by inhibiting glycogen synthase kinase-3β. Arterioscler Thromb Vasc Biol 2012; 32:2232-40. [PMID: 22814751 DOI: 10.1161/atvbaha.112.254680] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Integrins mediate platelet adhesion and transmit outside-in signals leading to platelet spreading. Phosphoinositide 3-kinases (PI3Ks) play a critical role in outside-in signaling and platelet spreading; however, the mechanisms of PI3K activation and function in outside-in signaling are unclear. We sought to determine the role of the Akt family of serine/threonine kinases and activation mechanisms of the PI3K/Akt pathway in outside-in signaling. METHODS AND RESULTS Akt inhibitors and Akt3 knockout inhibited platelet spreading on fibrinogen, indicating that Akt is important in integrin outside-in signaling. Akt inhibitors and Akt3 knockout also diminished integrin-dependent phosphorylation of glycogen synthase kinase-3β. Inhibition of glycogen synthase kinase-3β reversed the inhibitory effects of Akt3 knockout and inhibitors of Akt or PI3K on platelet spreading, indicating that glycogen synthase kinase-3β is a downstream target of Akt in outside-in signaling. Integrin-dependent activation of the PI3K-Akt pathway requires Src family kinase. Akt phosphorylation is also significantly inhibited in ADP receptor P2Y12 knockout platelets and further inhibited in P2Y12 knockout platelets treated with a P2Y1 antagonist. Consistently, P2Y12 knockout and P2Y1 inhibition together reduced platelet spreading. CONCLUSIONS These results demonstrate that integrin outside-in signaling and platelet spreading requires Src family kinase-dependent and ADP receptor-amplified activation of the PI3K-Akt-GSK-3β pathway.
Collapse
Affiliation(s)
- Kelly A O'Brien
- Department of Pharmacology, University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
28
|
Pennogenin tetraglycoside stimulates secretion-dependent activation of rat platelets: Evidence for critical roles of adenosine diphosphate receptor signal pathways. Thromb Res 2012; 129:e209-16. [DOI: 10.1016/j.thromres.2012.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 01/19/2012] [Accepted: 02/06/2012] [Indexed: 11/22/2022]
|
29
|
Kim S, Kunapuli SP. Negative regulation of Gq-mediated pathways in platelets by G(12/13) pathways through Fyn kinase. J Biol Chem 2011; 286:24170-9. [PMID: 21592972 DOI: 10.1074/jbc.m110.212274] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Platelets contain high levels of Src family kinases (SFKs), but their functional role downstream of G protein pathways has not been completely understood. We found that platelet shape change induced by selective G(12/13) stimulation was potentiated by SFK inhibitors, which was abolished by intracellular calcium chelation. Platelet aggregation, secretion, and intracellular Ca(2+) mobilization mediated by low concentrations of SFLLRN or YFLLRNP were potentiated by SFK inhibitors. However, 2-methylthio-ADP-induced intracellular Ca(2+) mobilization and platelet aggregation were not affected by PP2, suggesting the contribution of SFKs downstream of G(12/13), but not G(q)/G(i), as a negative regulator to platelet activation. Moreover, PP2 potentiated YFLLRNP- and AYPGKF-induced PKC activation, indicating that SFKs downstream of G(12/13) regulate platelet responses through the negative regulation of PKC activation as well as calcium response. SFK inhibitors failed to potentiate platelet responses in the presence of G(q)-selective inhibitor YM254890 or in G(q)-deficient platelets, indicating that SFKs negatively regulate platelet responses through modulation of G(q) pathways. Importantly, AYPGKF-induced platelet aggregation and PKC activation were potentiated in Fyn-deficient but not in Lyn-deficient mice compared with wild-type littermates. We conclude that SFKs, especially Fyn, activated downstream of G(12/13) negatively regulate platelet responses by inhibiting intracellular calcium mobilization and PKC activation through G(q) pathways.
Collapse
Affiliation(s)
- Soochong Kim
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | |
Collapse
|
30
|
Abstract
Inhibition of platelet responsiveness is important to control pathologic thrombus formation. Platelet-endothelial cell adhesion molecule-1 (PECAM-1) and the Src family kinase Lyn inhibit platelet activation by the glycoprotein VI (GPVI) collagen receptor; however, it is not known whether PECAM-1 and Lyn function in the same or different inhibitory pathways. In these studies, we found that, relative to wild-type platelets, platelets derived from PECAM-1-deficient, Lyn-deficient, or PECAM-1/Lyn double-deficient mice were equally hyperresponsive to stimulation with a GPVI-specific agonist, indicating that PECAM-1 and Lyn participate in the same inhibitory pathway. Lyn was required for PECAM-1 tyrosine phosphorylation and subsequent binding of the Src homology 2 domain-containing phosphatase-2, SHP-2. These results support a model in which PECAM-1/SHP-2 complexes, formed in a Lyn-dependent manner, suppress GPVI signaling.
Collapse
|
31
|
Abstract
Upon vascular injury, platelets are activated by adhesion to adhesive proteins, such as von Willebrand factor and collagen, or by soluble platelet agonists, such as ADP, thrombin, and thromboxane A(2). These adhesive proteins and soluble agonists induce signal transduction via their respective receptors. The various receptor-specific platelet activation signaling pathways converge into common signaling events that stimulate platelet shape change and granule secretion and ultimately induce the "inside-out" signaling process leading to activation of the ligand-binding function of integrin α(IIb)β(3). Ligand binding to integrin α(IIb)β(3) mediates platelet adhesion and aggregation and triggers "outside-in" signaling, resulting in platelet spreading, additional granule secretion, stabilization of platelet adhesion and aggregation, and clot retraction. It has become increasingly evident that agonist-induced platelet activation signals also cross talk with integrin outside-in signals to regulate platelet responses. Platelet activation involves a series of rapid positive feedback loops that greatly amplify initial activation signals and enable robust platelet recruitment and thrombus stabilization. Recent studies have provided novel insight into the molecular mechanisms of these processes.
Collapse
Affiliation(s)
- Zhenyu Li
- Department of Medicine, University of Kentucky
| | | | | | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago
| |
Collapse
|