1
|
Kim D, Cooper JA, Helfman DM. Loss of myosin light chain kinase induces the cellular senescence associated secretory phenotype to promote breast epithelial cell migration. Sci Rep 2024; 14:25786. [PMID: 39468273 PMCID: PMC11519378 DOI: 10.1038/s41598-024-76868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Overexpression or activation of oncogenes or loss of tumor-suppressor genes can induce cellular senescence as a defense mechanism against tumor development, thereby maintaining cellular homeostasis. However, cancer cells can circumvent this senescent state and continue to spread. Myosin light chain kinase (MLCK) is downregulated in many breast cancers. Here we report that downregulation of MLCK in normal breast epithelial cells induces a senescence-associated secretory phenotype and stimulates migration. The reduction of MLCK results in increased p21Cip1 expression, dependent on p53 and the AKT-mammalian target of rapamycin pathway. Subsequently, p21Cip1 promotes the secretion of soluble ICAM-1, IL-1α, IL-6 and IL-8, thereby enhancing collective cell migration in a non-cell-autonomous manner. These findings provide new mechanistic insights into the role of MLCK in cellular senescence and cancer progression.
Collapse
Affiliation(s)
- Dayoung Kim
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| | - Jonathan A Cooper
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - David M Helfman
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
2
|
Kim D, Yoon MS, Lee J, Park SY, Han JS. Effects of phospholipase D1-inhibitory peptide on the growth and metastasis of gastric cancer cells. Mol Cells 2024; 47:100128. [PMID: 39426685 DOI: 10.1016/j.mocell.2024.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
Phospholipase D1 (PLD1) contributes to cancer development and progression through its effects on cell proliferation, survival, invasion, metastasis, angiogenesis, drug resistance, and modulation of the tumor microenvironment. Its central role in these processes makes it a promising target for novel cancer treatments aimed at inhibiting its activity and disrupting the signaling pathways it regulates. In this study, we aimed to investigate the effect of PLD1 inhibition on gastric cancer cell growth using a novel peptide inhibitor, TAT-TVTSP. PLD1, which plays a role in cancer progression, catalyzes the conversion of phosphatidylcholine into choline and phosphatidic acid through hydrolysis. To effectively target PLD1 in cells, we engineered TAT-TVTSP by fusing a PLD1-inhibitory peptide (TVTSP) with a cell-penetrating peptide (TAT). We observed that TAT-TVTSP effectively inhibited PLD1 activity in AGS gastric cancer cells. Moreover, TAT-TVTSP significantly inhibited the mammalian target of the rapamycin signaling pathway, including the phosphorylation of key downstream targets such as S6K1, AKT, S473, glycogen synthase kinase-3b, and forkhead box O1. TAT-TVTSP did not induce cell death, but it triggered cell cycle arrest by activating p21 and p27 via AKT phosphorylation. Functional assays revealed that TAT-TVTSP significantly impaired the colony-forming ability of AGS cells, thus inhibiting cell proliferation. Transwell and wound-healing assays revealed that this peptide disrupted the cellular behaviors critical to cancer progression, such as migration and invasion. In vivo, TAT-TVTSP significantly reduced tumor growth in the xenograft model of gastric cancer without any toxicity. Overall, our results suggest that TAT-TVTSP is a novel therapeutic agent for PLD1-mediated cancers.
Collapse
Affiliation(s)
- Dongju Kim
- Department of Biomedical Sciences, Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Mee-Sup Yoon
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Junwon Lee
- Department of Biotechnology, Pai Chai University, Daejeon 35345, Republic of Korea
| | - Shin-Young Park
- Department of Biotechnology, Pai Chai University, Daejeon 35345, Republic of Korea.
| | - Joong-Soo Han
- Department of Biomedical Sciences, Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul 04763, Republic of Korea; Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Hu M, Luo R, Yang K, Yu Y, Pan Q, Yuan M, Chen R, Wang H, Qin Q, Ma T, Wang H. Genomic landscape defines peritoneal metastatic pattern and related target of peritoneal metastasis in colorectal cancer. Int J Cancer 2024; 155:1327-1339. [PMID: 38738976 DOI: 10.1002/ijc.35005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
The primary objective of this study is to develop a prediction model for peritoneal metastasis (PM) in colorectal cancer by integrating the genomic features of primary colorectal cancer, along with clinicopathological features. Concurrently, we aim to identify potential target implicated in the peritoneal dissemination of colorectal cancer through bioinformatics exploration and experimental validation. By analyzing the genomic landscape of primary colorectal cancer and clinicopathological features from 363 metastatic colorectal cancer patients, we identified 22 differently distributed variables, which were used for subsequent LASSO regression to construct a PM prediction model. The integrated model established by LASSO regression, which incorporated two clinicopathological variables and seven genomic variables, precisely discriminated PM cases (AUC 0.899; 95% CI 0.860-0.937) with good calibration (Hosmer-Lemeshow test p = .147). Model validation yielded AUCs of 0.898 (95% CI 0.896-0.899) and 0.704 (95% CI 0.622-0.787) internally and externally, respectively. Additionally, the peritoneal metastasis-related genomic signature (PGS), which was composed of the seven genes in the integrated model, has prognostic stratification capability for colorectal cancer. The divergent genomic landscape drives the driver genes of PM. Bioinformatic analysis concerning these driver genes indicated SERINC1 may be associated with PM. Subsequent experiments indicate that knocking down of SERINC1 functionally suppresses peritoneal dissemination, emphasizing its importance in CRCPM. In summary, the genomic landscape of primary cancer in colorectal cancer defines peritoneal metastatic pattern and reveals the potential target of SERINC1 for PM in colorectal cancer.
Collapse
Affiliation(s)
- Minhui Hu
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Luo
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Keli Yang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Yu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiwen Pan
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mingming Yuan
- Geneplus-Beijing, Medical Park Road, Zhongguancun Life Science Park, Beijing, China
| | - Rongrong Chen
- Geneplus-Beijing, Medical Park Road, Zhongguancun Life Science Park, Beijing, China
| | - Hui Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiyuan Qin
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tenghui Ma
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huaiming Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Zhang P, Luo W, Zhang Z, Lv M, Sang L, Wen Y, Wang L, Ding C, Wu K, Li F, Nie Y, Zhu J, Liu X, Yi Y, Ding X, Zeng Y, Liu Z. A Lipid-Sensitive Spider Peptide Toxin Exhibits Selective Anti-Leukemia Efficacy through Multimodal Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404937. [PMID: 38962935 PMCID: PMC11348133 DOI: 10.1002/advs.202404937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Anti-cancer peptides (ACPs) represent a promising potential for cancer treatment, although their mechanisms need to be further elucidated to improve their application in cancer therapy. Lycosin-I, a linear amphipathic peptide isolated from the venom of Lycosa singorensis, shows significant anticancer potential. Herein, it is found that Lycosin-I, which can self-assemble into a nanosphere structure, has a multimodal mechanism of action involving lipid binding for the selective and effective treatment of leukemia. Mechanistically, Lycosin-I selectively binds to the K562 cell membrane, likely due to its preferential interaction with negatively charged phosphatidylserine, and rapidly triggers membrane lysis, particularly at high concentrations. In addition, Lycosin-I induces apoptosis, cell cycle arrest in the G1 phase and ferroptosis in K562 cells by suppressing the PI3K-AKT-mTOR signaling pathway and activating cell autophagy at low concentrations. Furthermore, intraperitoneal injection of Lycosin-I inhibits tumor growth of K562 cells in a nude mouse xenograft model without causing side effects. Collectively, the multimodal effect of Lycosin-I can provide new insights into the mechanism of ACPs, and Lycosin-I, which is characterized by high potency and specificity, can be a promising lead for the development of anti-leukemia drugs.
Collapse
Affiliation(s)
- Peng Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Wu Luo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- College of BiologyHunan UniversityChangshaHunan410082China
| | - Zixin Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Mingchong Lv
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Longkang Sang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Yuhan Wen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Lingxiang Wang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Changhao Ding
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Kun Wu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Fengjiao Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Yueqi Nie
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Jiaoyue Zhu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Xiaofeng Liu
- Department of HematologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
| | - Yan Yi
- Department of HematologyThe Third Affiliated Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhou510630China
| | - Xiaofeng Ding
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Youlin Zeng
- The National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of ResourcesHunan Normal UniversityChangshaHunan410081China
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| |
Collapse
|
5
|
Simonsen S, Søgaard CK, Olsen JG, Otterlei M, Kragelund BB. The bacterial DNA sliding clamp, β-clamp: structure, interactions, dynamics and drug discovery. Cell Mol Life Sci 2024; 81:245. [PMID: 38814467 PMCID: PMC11139829 DOI: 10.1007/s00018-024-05252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
DNA replication is a tightly coordinated event carried out by a multiprotein replication complex. An essential factor in the bacterial replication complex is the ring-shaped DNA sliding clamp, β-clamp, ensuring processive DNA replication and DNA repair through tethering of polymerases and DNA repair proteins to DNA. β -clamp is a hub protein with multiple interaction partners all binding through a conserved clamp binding sequence motif. Due to its central role as a DNA scaffold protein, β-clamp is an interesting target for antimicrobial drugs, yet little effort has been put into understanding the functional interactions of β-clamp. In this review, we scrutinize the β-clamp structure and dynamics, examine how its interactions with a plethora of binding partners are regulated through short linear binding motifs and discuss how contexts play into selection. We describe the dynamic process of clamp loading onto DNA and cover the recent advances in drug development targeting β-clamp. Despite decades of research in β-clamps and recent landmark structural insight, much remains undisclosed fostering an increased focus on this very central protein.
Collapse
Affiliation(s)
- Signe Simonsen
- Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Caroline K Søgaard
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Johan G Olsen
- Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
- Department of Biology, REPIN, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Birthe B Kragelund
- Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
- Department of Biology, REPIN, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
6
|
Neuwahl J, Neumann CA, Fitz AC, Biermann AD, Magel M, Friedrich A, Sellin L, Stork B, Piekorz RP, Proksch P, Budach W, Jänicke RU, Sohn D. Combined inhibition of class 1-PI3K-alpha and delta isoforms causes senolysis by inducing p21 WAF1/CIP1 proteasomal degradation in senescent cells. Cell Death Dis 2024; 15:373. [PMID: 38811535 PMCID: PMC11136996 DOI: 10.1038/s41419-024-06755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
The targeted elimination of radio- or chemotherapy-induced senescent cells by so-called senolytic substances represents a promising approach to reduce tumor relapse as well as therapeutic side effects such as fibrosis. We screened an in-house library of 178 substances derived from marine sponges, endophytic fungi, and higher plants, and determined their senolytic activities towards DNA damage-induced senescent HCT116 colon carcinoma cells. The Pan-PI3K-inhibitor wortmannin and its clinical derivative, PX-866, were identified to act as senolytics. PX-866 potently induced apoptotic cell death in senescent HCT116, MCF-7 mammary carcinoma, and A549 lung carcinoma cells, independently of whether senescence was induced by ionizing radiation or by chemotherapeutics, but not in proliferating cells. Other Pan-PI3K inhibitors, such as the FDA-approved drug BAY80-6946 (Copanlisib, Aliqopa®), also efficiently and specifically eliminated senescent cells. Interestingly, only the simultaneous inhibition of both PI3K class I alpha (with BYL-719 (Alpelisib, Piqray®)) and delta (with CAL-101 (Idelalisib, Zydelig®)) isoforms was sufficient to induce senolysis, whereas single application of these inhibitors had no effect. On the molecular level, inhibition of PI3Ks resulted in an increased proteasomal degradation of the CDK inhibitor p21WAF1/CIP1 in all tumor cell lines analyzed. This led to a timely induction of apoptosis in senescent tumor cells. Taken together, the senolytic properties of PI3K-inhibitors reveal a novel dimension of these promising compounds, which holds particular potential when employed alongside DNA damaging agents in combination tumor therapies.
Collapse
Affiliation(s)
- Judith Neuwahl
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Chantal A Neumann
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Annika C Fitz
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anica D Biermann
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Experimental Nephrology, Clinic for Nephrology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Maja Magel
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH, Aachen, Germany
| | - Annabelle Friedrich
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Lorenz Sellin
- Experimental Nephrology, Clinic for Nephrology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Wilfried Budach
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Reiner U Jänicke
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dennis Sohn
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
7
|
Csergeová L, Krbušek D, Janoštiak R. CIP/KIP and INK4 families as hostages of oncogenic signaling. Cell Div 2024; 19:11. [PMID: 38561743 PMCID: PMC10985988 DOI: 10.1186/s13008-024-00115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
CIP/KIP and INK4 families of Cyclin-dependent kinase inhibitors (CKIs) are well-established cell cycle regulatory proteins whose canonical function is binding to Cyclin-CDK complexes and altering their function. Initial experiments showed that these proteins negatively regulate cell cycle progression and thus are tumor suppressors in the context of molecular oncology. However, expanded research into the functions of these proteins showed that most of them have non-canonical functions, both cell cycle-dependent and independent, and can even act as tumor enhancers depending on their posttranslational modifications, subcellular localization, and cell state context. This review aims to provide an overview of canonical as well as non-canonical functions of CIP/KIP and INK4 families of CKIs, discuss the potential avenues to promote their tumor suppressor functions instead of tumor enhancing ones, and how they could be utilized to design improved treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Lucia Csergeová
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | - David Krbušek
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | | |
Collapse
|
8
|
Yip HYK, Shin SY, Chee A, Ang CS, Rossello FJ, Wong LH, Nguyen LK, Papa A. Integrative modeling uncovers p21-driven drug resistance and prioritizes therapies for PIK3CA-mutant breast cancer. NPJ Precis Oncol 2024; 8:20. [PMID: 38273040 PMCID: PMC10810864 DOI: 10.1038/s41698-024-00496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Utility of PI3Kα inhibitors like BYL719 is limited by the acquisition of genetic and non-genetic mechanisms of resistance which cause disease recurrence. Several combination therapies based on PI3K inhibition have been proposed, but a way to systematically prioritize them for breast cancer treatment is still missing. By integrating published and in-house studies, we have developed in silico models that quantitatively capture dynamics of PI3K signaling at the network-level under a BYL719-sensitive versus BYL719 resistant-cell state. Computational predictions show that signal rewiring to alternative components of the PI3K pathway promote resistance to BYL719 and identify PDK1 as the most effective co-target with PI3Kα rescuing sensitivity of resistant cells to BYL719. To explore whether PI3K pathway-independent mechanisms further contribute to BYL719 resistance, we performed phosphoproteomics and found that selection of high levels of the cell cycle regulator p21 unexpectedly promoted drug resistance in T47D cells. Functionally, high p21 levels favored repair of BYL719-induced DNA damage and bypass of the associated cellular senescence. Importantly, targeted inhibition of the check-point inhibitor CHK1 with MK-8776 effectively caused death of p21-high T47D cells, thus establishing a new vulnerability of BYL719-resistant breast cancer cells. Together, our integrated studies uncover hidden molecular mediators causing resistance to PI3Kα inhibition and provide a framework to prioritize combination therapies for PI3K-mutant breast cancer.
Collapse
Affiliation(s)
- Hon Yan Kelvin Yip
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Sung-Young Shin
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Annabel Chee
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Fernando J Rossello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Lee Hwa Wong
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Lan K Nguyen
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| | - Antonella Papa
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
9
|
Chengcheng L, Raza SHA, Zhimei Y, Sihu W, Shengchen Y, Aloufi BH, Bingzhi L, Zan L. Bta-miR-181d and Bta-miR-196a mediated proliferation, differentiation, and apoptosis in Bovine Myogenic Cells. J Anim Sci 2024; 102:skae142. [PMID: 38766769 PMCID: PMC11161902 DOI: 10.1093/jas/skae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/17/2024] [Indexed: 05/22/2024] Open
Abstract
Skeletal muscle is an important component of livestock and poultry organisms. The proliferation and differentiation of myoblasts are highly coordinated processes, which rely on the regulation of miRNA. MiRNAs are widely present in organisms and play roles in various biological processes, including cell proliferation, differentiation, and apoptosis. MiR-181d and miR-196a, identified as tumor suppressors, have been found to be involved in cell proliferation, apoptosis, directed differentiation, and cancer cell invasion. However, their role in beef cattle skeletal muscle metabolism remains unclear. In this study, we discovered that overexpression of bta-miR-181d and bta-miR-196a in Qinchuan cattle myoblasts inhibited proliferation and apoptosis while promoting myogenic differentiation through EDU staining, flow cytometry analysis, immunofluorescence staining, and Western blotting. RNA-seq analysis of differential gene expression revealed that after overexpression of bta-miR-181d and bta-miR-196a, the differentially expressed genes were mainly enriched in the PI3K-Akt and MAPK signaling pathways. Furthermore, the phosphorylation levels of key proteins p-AKT in the PI3K signaling pathway and p-MAPK in the MAPK signaling pathway were significantly decreased after overexpression of bta-miR-181d and bta-miR-196a. Overall, this study provides preliminary evidence that bta-miR-181d and bta-miR-196a may regulate proliferation, apoptosis, and differentiation processes in Qinchuan cattle myoblasts by affecting the phosphorylation status of key proteins in PI3K-Akt and MAPK-ERK signaling pathways.
Collapse
Affiliation(s)
- Liang Chengcheng
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, P.R. China
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Yang Zhimei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Wang Sihu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Yu Shengchen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Bandar Hamad Aloufi
- Biology Department, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Li Bingzhi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
10
|
Manousakis E, Miralles CM, Esquerda MG, Wright RHG. CDKN1A/p21 in Breast Cancer: Part of the Problem, or Part of the Solution? Int J Mol Sci 2023; 24:17488. [PMID: 38139316 PMCID: PMC10743848 DOI: 10.3390/ijms242417488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cyclin-dependent kinase inhibitor 1A (Cip1/Waf1/CDKN1A/p21) is a well-established protein, primarily recognised for its pivotal role in the cell cycle, where it induces cell cycle arrest by inhibiting the activity of cyclin-dependent kinases (CDKs). Over the years, extensive research has shed light on various additional mechanisms involving CDKN1A/p21, implicating it in processes such as apoptosis, DNA damage response (DDR), and the regulation of stem cell fate. Interestingly, p21 can function either as an oncogene or as a tumour suppressor in these contexts. Complicating matters further, the expression of CDKN1A/p21 is elevated in certain tumour types while downregulated in others. In this comprehensive review, we provide an overview of the multifaceted functions of CDKN1A/p21, present clinical data pertaining to cancer patients, and delve into potential strategies for targeting CDKN1A/p21 as a therapeutic approach to cancer. Manipulating CDKN1A/p21 shows great promise for therapy given its involvement in multiple cancer hallmarks, such as sustained cell proliferation, the renewal of cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cell migration, and resistance to chemotherapy. Given the dual role of CDKN1A/p21 in these processes, a more in-depth understanding of its specific mechanisms of action and its regulatory network is imperative to establishing successful therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Roni H. G. Wright
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| |
Collapse
|
11
|
Laschuk Herlinger A, Lovatto Michaelsen G, Sinigaglia M, Fratini L, Nogueira Debom G, Braganhol E, Brunetto de Farias C, Lunardi Brunetto A, Tesainer Brunetto A, da Cunha Jaeger M, Roesler R. Modulation of Viability, Proliferation, and Stemness by Rosmarinic Acid in Medulloblastoma Cells: Involvement of HDACs and EGFR. Neuromolecular Med 2023; 25:573-585. [PMID: 37740824 DOI: 10.1007/s12017-023-08758-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/30/2023] [Indexed: 09/25/2023]
Abstract
Medulloblastoma (MB) is a heterogeneous group of malignant pediatric brain tumors, divided into molecular groups with distinct biological features and prognoses. Currently available therapy often results in poor long-term quality of life for patients, which will be afflicted by neurological, neuropsychiatric, and emotional sequelae. Identifying novel therapeutic agents capable of targeting the tumors without jeopardizing patients' quality of life is imperative. Rosmarinic acid (RA) is a plant-derived compound whose action against a series of diseases including cancer has been investigated, with no side effects reported so far. Previous studies have not examined whether RA has effects in MB. Here, we show RA is cytotoxic against human Daoy (IC50 = 168 μM) and D283 (IC50 = 334 μM) MB cells. Exposure to RA for 48 h reduced histone deacetylase 1 (HDAC1) expression while increasing H3K9 hyperacetylation, reduced epidermal growth factor (EGFR) expression, and inhibited EGFR downstream targets extracellular-regulated kinase (ERK)1/2 and AKT in Daoy cells. These modifications were accompanied by increased expression of CDKN1A/p21, reduced expression of SOX2, and a decrease in proliferative rate. Treatment with RA also reduced cancer stem cell markers expression and neurosphere size. Taken together, our findings indicate that RA can reduce cell proliferation and stemness and induce cell cycle arrest in MB cells. Mechanisms mediating these effects may include targeting HDAC1, EGFR, and ERK signaling, and promoting p21 expression, possibly through an increase in H3K9ac and AKT deactivation. RA should be further investigated as a potential anticancer agent in experimental MB.
Collapse
Affiliation(s)
- Alice Laschuk Herlinger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, 90035-003, Brazil.
| | - Gustavo Lovatto Michaelsen
- Graduate Program in Bioinformatics, Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-400, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Marialva Sinigaglia
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, 90035-003, Brazil
- Graduate Program in Bioinformatics, Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-400, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Lívia Fratini
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Gabriela Nogueira Debom
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, 90050-170, Brazil
| | - Elizandra Braganhol
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, 90050-170, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Algemir Lunardi Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - André Tesainer Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Mariane da Cunha Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, 90035-003, Brazil.
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
12
|
Pei H, Yang J, Li W, Luo X, Xu Y, Sun X, Chen Q, Zhao Q, Hou L, Tan G, Ji D. Solanum nigrum Linn.: Advances in anti-cancer activity and mechanism in digestive system tumors. Med Oncol 2023; 40:311. [PMID: 37775552 DOI: 10.1007/s12032-023-02167-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/18/2023] [Indexed: 10/01/2023]
Abstract
Cancer has currently become a serious public health issue in many countries worldwide, and tumors of the digestive system have attracted an increasing number of researchers' due to their numerous types, high proportion and wide area of occurrence. While tumors of the digestive system suffer from high mortality rates, leading to untimely diagnosis and a poor prognosis, making it necessary to update current treatment approaches such as surgery, radiation therapy, and chemotherapy. This highlights the importance of exploring novel therapeutic ideas and targets. Traditional Chinese medicine has a long history of clinical use due to its low toxicity and multi-factor targeting of multiple pathways. As a kind of traditional Chinese herb, S. nigrum Linn. is highly regarded for its proven antitumor activity. The aim of this study was to comprehensively recapitulate and analyze the anti-cancer effects and molecular mechanisms of treatment of gastrointestinal tumors with S. nigrum Linn. extracts and related compounds, including classical signaling pathways mediated by them as well as noncoding RNA pathways associated with tumor suppression. Components that have been found to be responsible for the anti-cancer activity of S. nigrum Linn. include solanine, solasonine, solamargine, a-L-rhhamnopyranose, uttroside B, degalactotigonin, glycoprotein, and other compounds. The underlying mechanisms of anti-cancer activity reflected in this study include apoptosis, cell cycle arrest, autophagy, anti-angiogenesis, suppression of metastasis and invasion, immune escape, and increased sensitivity to radiotherapy. S. nigrum Linn. has great potential in the treatment of tumors of the digestive system, and through further clinical trials and pharmacological mechanisms it has the potential to become a uniform and standardized anti-tumor drug.
Collapse
Affiliation(s)
- Hongyu Pei
- Department of Hepatopancreatobiliary Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Jing Yang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wang Li
- Department of Thyroid and Breast Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xing Luo
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xueying Sun
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Qian Chen
- Department of Hepatopancreatobiliary Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Qi Zhao
- Department of Hepatopancreatobiliary Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Li Hou
- Department of Hepatopancreatobiliary Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Gang Tan
- Department of Hepatopancreatobiliary Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.
| | - Daolin Ji
- Department of Hepatopancreatobiliary Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China.
| |
Collapse
|
13
|
Wińska P, Wielechowska M, Koronkiewicz M, Borowiecki P. Synthesis and Anticancer Activity of Novel Dual Inhibitors of Human Protein Kinases CK2 and PIM-1. Pharmaceutics 2023; 15:1991. [PMID: 37514177 PMCID: PMC10385865 DOI: 10.3390/pharmaceutics15071991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
CK2 and PIM-1 are serine/threonine kinases involved in the regulation of many essential processes, such as proliferation, differentiation, and apoptosis. Inhibition of CK2 and PIM-1 kinase activity has been shown to significantly reduce the viability of cancer cells by inducing apoptosis. A series of novel amino alcohol derivatives of parental DMAT were designed and synthesized as potent dual CK2/PIM-1 inhibitors. Concomitantly with the inhibition studies toward recombinant CK2 and PIM-1, the influence of the obtained compounds on the viability of three human carcinoma cell lines, i.e., acute lymphoblastic leukemia (CCRF-CEM), human chronic myelogenous leukemia (K-562), and breast cancer (MCF-7), as well as non-cancerous cells (Vero), was evaluated using an MTT assay. Induction of apoptosis and cell cycle progression after treatment with the most active compound and a lead compound were studied by flow-cytometry-based assay. Additionally, autophagy induction in K-562 cells and intracellular inhibition of CK2 and PIM-1 in all the tested cell lines were evaluated by qualitative/quantitative fluorescence-based assay and Western blot method, respectively. Among the newly developed inhibitors, 1,1,1-trifluoro-3-[(4,5,6,7-tetrabromo-1H-benzimidazol-2-yl)amino]propan-2-ol demonstrates the highest selectivity and the most prominent proapoptotic properties towards the studied cancer cells, especially towards acute lymphoblastic leukemia, in addition to inducing autophagy in K-562 cells.
Collapse
Affiliation(s)
- Patrycja Wińska
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Monika Wielechowska
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | | | - Paweł Borowiecki
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| |
Collapse
|
14
|
Tóthová Z, Šemeláková M, Bhide K, Bhide M, Kováč A, Majerová P, Kvaková M, Štofilová J, Solárová Z, Solár P. Differentially Expressed Genes Induced by Erythropoietin Receptor Overexpression in Rat Mammary Adenocarcinoma RAMA 37-28 Cells. Int J Mol Sci 2023; 24:ijms24108482. [PMID: 37239828 DOI: 10.3390/ijms24108482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The erythropoietin receptor (EPOR) is a transmembrane type I receptor with an essential role in the proliferation and differentiation of erythroid progenitors. Besides its function during erythropoiesis, EPOR is expressed and has protective effect in various non-hematopoietic tissues, including tumors. Currently, the advantageous aspect of EPOR related to different cellular events is still under scientific investigation. Besides its well-known effect on cell proliferation, apoptosis and differentiation, our integrative functional study revealed its possible associations with metabolic processes, transport of small molecules, signal transduction and tumorigenesis. Comparative transcriptome analysis (RNA-seq) identified 233 differentially expressed genes (DEGs) in EPOR overexpressed RAMA 37-28 cells compared to parental RAMA 37 cells, whereas 145 genes were downregulated and 88 upregulated. Of these, for example, GPC4, RAP2C, STK26, ZFP955A, KIT, GAS6, PTPRF and CXCR4 were downregulated and CDH13, NR0B1, OCM2, GPM6B, TM7SF3, PARVB, VEGFD and STAT5A were upregulated. Surprisingly, two ephrin receptors, EPHA4 and EPHB3, and EFNB1 ligand were found to be upregulated as well. Our study is the first demonstrating robust differentially expressed genes evoked by simple EPOR overexpression without the addition of erythropoietin ligand in a manner which remains to be elucidated.
Collapse
Affiliation(s)
- Zuzana Tóthová
- Department of Medical Biology, Faculty of Medicine, P.J. Šafárik University in Košice, 04001 Košice, Slovakia
| | - Martina Šemeláková
- Department of Medical Biology, Faculty of Medicine, P.J. Šafárik University in Košice, 04001 Košice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, 04001 Košice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, 04001 Košice, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Petra Majerová
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Monika Kvaková
- Department of Experimental Medicine, Faculty of Medicine, P.J. Šafárik University in Košice, 04001 Košice, Slovakia
| | - Jana Štofilová
- Department of Experimental Medicine, Faculty of Medicine, P.J. Šafárik University in Košice, 04001 Košice, Slovakia
| | - Zuzana Solárová
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University in Košice, 04001 Košice, Slovakia
| | - Peter Solár
- Department of Medical Biology, Faculty of Medicine, P.J. Šafárik University in Košice, 04001 Košice, Slovakia
| |
Collapse
|
15
|
Zhang X, Wang Y, Zhang X, Shen Y, Yang K, Ma Q, Qiao Y, Shi J, Wang Y, Xu L, Yang B, Ge G, Hu L, Kong X, Yang C, Chen Y, Ding J, Meng L. Intact regulation of G1/S transition renders esophageal squamous cell carcinoma sensitive to PI3Kα inhibitors. Signal Transduct Target Ther 2023; 8:153. [PMID: 37041169 PMCID: PMC10090078 DOI: 10.1038/s41392-023-01359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/20/2022] [Accepted: 02/05/2023] [Indexed: 04/13/2023] Open
Abstract
Phosphatidylinositol 3-kinase alpha (PI3Kα) inhibitors are currently evaluated for the therapy of esophageal squamous cell carcinoma (ESCC). It is of great importance to identify potential biomarkers to predict or monitor the efficacy of PI3Kα inhibitors in an aim to improve the clinical responsive rate in ESCC. Here, ESCC PDXs with CCND1 amplification were found to be more sensitive to CYH33, a novel PI3Kα-selective inhibitor currently in clinical trials for the treatment of advanced solid tumors including ESCC. Elevated level of cyclin D1, p21 and Rb was found in CYH33-sensitive ESCC cells compared to those in resistant cells. CYH33 significantly arrested sensitive cells but not resistant cells at G1 phase, which was associated with accumulation of p21 and suppression of Rb phosphorylation by CDK4/6 and CDK2. Hypo-phosphorylation of Rb attenuated the transcriptional activation of SKP2 by E2F1, which in turn hindered SKP2-mediated degradation of p21 and reinforced accumulation of p21. Moreover, CDK4/6 inhibitors sensitized resistant ESCC cells and PDXs to CYH33. These findings provided mechanistic rationale to evaluate PI3Kα inhibitors in ESCC patients harboring amplified CCND1 and the combined regimen with CDK4/6 inhibitors in ESCC with proficient Rb.
Collapse
Affiliation(s)
- Xu Zhang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxiang Wang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xi Zhang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yanyan Shen
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kang Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qingyang Ma
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuemei Qiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiajie Shi
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Wang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lan Xu
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Biyu Yang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Gaoxiang Ge
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Landian Hu
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiangyin Kong
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chunhao Yang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yi Chen
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian Ding
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Linghua Meng
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
16
|
Friedman B, Larranaga-Vera A, Castro CM, Corciulo C, Rabbani P, Cronstein BN. Adenosine A2A receptor activation reduces chondrocyte senescence. FASEB J 2023; 37:e22838. [PMID: 36884388 DOI: 10.1096/fj.202201212rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023]
Abstract
Osteoarthritis (OA) pathogenesis is associated with reduced chondrocyte homeostasis and increased levels of cartilage cellular senescence. Chondrosenescence is the development of cartilage senescence that increases with aging joints and disrupts chondrocyte homeostasis and is associated with OA. Adenosine A2A receptor (A2AR) activation in cartilage via intra-articular injection of liposomal A2AR agonist, liposomal-CGS21680, leads to cartilage regeneration in vivo and chondrocyte homeostasis. A2AR knockout mice develop early OA isolated chondrocytes demonstrate upregulated expression of cellular senescence and aging-associated genes. Based on these observations, we hypothesized that A2AR activation would ameliorate cartilage senescence. We found that A2AR stimulation of chondrocytes reduced beta-galactosidase staining and regulated levels and cell localization of common senescence mediators p21 and p16 in vitro in the human TC28a2 chondrocyte cell line. In vivo analysis similarly showed A2AR activation reduced nuclear p21 and p16 in obesity-induced OA mice injected with liposomal-CGS21680 and increased nuclear p21 and p16 in A2AR knockout mouse chondrocytes compared to wild-type mice. A2AR agonism also increased activity of the chondrocyte Sirt1/AMPK energy-sensing pathway by enhancing nuclear Sirt1 localization and upregulating T172-phosphorylated (active) AMPK protein levels. Lastly, A2AR activation in TC28a2 and primary human chondrocytes reduced wild-type p53 and concomitantly increased p53 alternative splicing leading to increase in an anti-senescent p53 variant, Δ133p53α. The results reported here indicate that A2AR signaling promotes chondrocyte homeostasis in vitro and reduces OA cartilage development in vivo by reducing chondrocyte senescence.
Collapse
Affiliation(s)
- Benjamin Friedman
- Division of Rheumatology, New York University Grossman School of Medicine, New York, New York, USA.,Division of Translational Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Ane Larranaga-Vera
- Division of Translational Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Cristina M Castro
- Division of Translational Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Carmen Corciulo
- Division of Translational Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Piul Rabbani
- Division of Rheumatology, New York University Grossman School of Medicine, New York, New York, USA.,Hansjorg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Bruce N Cronstein
- Division of Rheumatology, New York University Grossman School of Medicine, New York, New York, USA.,Division of Translational Medicine, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
17
|
Ji L, Moghal N, Zou X, Fang Y, Hu S, Wang Y, Tsao MS. The NRF2 antagonist ML385 inhibits PI3K-mTOR signaling and growth of lung squamous cell carcinoma cells. Cancer Med 2023; 12:5688-5702. [PMID: 36305267 PMCID: PMC10028163 DOI: 10.1002/cam4.5311] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) currently has limited therapeutic options because of the relatively few validated targets and the lack of clinical drugs for some of these targets. Although NRF2/NFE2L2 pathway activation commonly occurs in LUSC, NRF2 has predominantly been studied in other cancer models. Here, we investigated the function of NRF2 in LUSC, including in organoid models, and we explored the activity of a small molecule NRF2 inhibitor ML385, which has not previously been investigated in LUSC. METHODS We first explored the role of NRF2 signaling in LUSC cancer cell line and organoid proliferation through NRF2 knockdown or ML385 treatment, both in vivo and in vitro. Next, we performed Western blot and immunofluorescence assays to determine the effect of NRF2 inhibition on PI3K-mTOR signaling. Finally, we used cell viability and clonogenic assays to explore whether ML385 could sensitize LUSC cancer cells to PI3K inhibitors. RESULTS We find that downregulation of NRF2 signaling inhibited proliferation of LUSC cancer cell lines and organoids, both in vivo and in vitro. We also demonstrate that inhibition of NRF2 reduces PI3K-mTOR signaling, with two potential mechanisms being involved. Although NRF2 promotes AKT phosphorylation, it also acts downstream of AKT to increase RagD protein expression and recruitment of mTOR to lysosomes after amino acid stimulation. We also find that ML385 potentiates LUSC growth inhibition by a pan-PI3K inhibitor, which correlates with stronger inhibition of PI3K-mTOR signaling. CONCLUSIONS Our data provide additional support for NRF2 promoting LUSC growth through PI3K-mTOR activation and support development of NRF2 inhibitors for the treatment of LUSC.
Collapse
Affiliation(s)
- Lili Ji
- Department of Pathology, Key Laboratory of Microenvironment and Translational Cancer Research, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Nadeem Moghal
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Xinru Zou
- Department of Pathology, Key Laboratory of Microenvironment and Translational Cancer Research, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yixuan Fang
- Department of Pathology, Key Laboratory of Microenvironment and Translational Cancer Research, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Shuning Hu
- Department of Pathology, Key Laboratory of Microenvironment and Translational Cancer Research, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yuhui Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ming Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Characterization of Glioblastoma Cells Response to Regorafenib. Cancers (Basel) 2022; 14:cancers14246193. [PMID: 36551679 PMCID: PMC9777191 DOI: 10.3390/cancers14246193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma (GBM), the most malignant primary brain tumor in adults. Although not frequent, it has a relevant social impact because the peak incidence coincides with the age of professional maturity. A number of novel treatments have been proposed, yet clinical trials have been disappointing. Recently, a phase II clinical trial (REGOMA) demonstrated that the multikinase inhibitor regorafenib significantly increased the median overall survival (OS) of GBM patients when compared to lomustine-treated patients. On this basis, the National Comprehensive Cancer Network (NCCN) 2020 Guidelines included regorafenib as a preferred regimen in relapsed GBM treatment. Despite the use in GBM patients' therapy, little is known about the molecular mechanisms governing regorafenib effectiveness on the GBM tumor. Here we report an in vitro characterization of GBM tumor cells' response to regorafenib, performed both on cell lines and on patient-derived glioma stem cells (GSCs). Overall, regorafenib significantly reduced cell growth of 2D tumor cell cultures and of 3D tumor spheroids. Strikingly, this effect was accompanied by transcriptional regulation of epithelial to mesenchymal transition (EMT) genes and by an increased ability of surviving tumor cells to invade the surrounding matrix. Taken together, our data suggest that regorafenib limits cell growth, however, it might induce an invasive phenotype.
Collapse
|
19
|
Sun X, Zhang B, Luo L, Yang Y, He B, Zhang Q, Wang L, Xu S, Zheng P, Zhu W. Design, synthesis and pharmacological evaluation of 2-arylurea-1,3,5-triazine derivative (XIN-9): A novel potent dual PI3K/mTOR inhibitor for cancer therapy. Bioorg Chem 2022; 129:106157. [PMID: 36209563 DOI: 10.1016/j.bioorg.2022.106157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/25/2022] [Accepted: 09/12/2022] [Indexed: 01/03/2023]
Abstract
Blocking the PI3K/AKT/mTOR pathway has been widely recognized as an attractive cancer therapeutic strategy because of its crucial role in cell growth and survival. In this study, a novel series of 2-arylurea-1,3,5-triazine derivatives had been synthesized and evaluated as highly potent PI3K and mTOR inhibitors. The new compounds exhibited cytotoxic activities against MCF-7, Hela and A549 cancer cell lines (IC50 = 0.03-36.54 μM). The most promising compound XIN-9 exhibited potent inhibition against PI3K and mTOR kinase (IC50 = 23.8 and 10.9 nM). Mechanistic study using real-time PCR revealed the ability of XIN-9 to inhibit PI3K and mTOR. In addition, compound XIN-9 arrested the cell cycle of MCF-7 cells at the G0/G1 phase. XIN-9 also caused a significant dose-dependent increase of early and late apoptotic events. Molecular docking analysis revealed a high binding affinity for XIN-9 toward PI3K and mTOR. Following in vitro studies, XIN-9 was further evaluated in MCF-7 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 41.67% (po, 75 mg/kg). Overall, this work indicated that compound XIN-9 represents a potential anticancer targeting PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Xin Sun
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Binliang Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510000, China
| | - Leixuan Luo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Yang Yang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Bin He
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Qian Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510000, China
| | - Linxiao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China.
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China.
| |
Collapse
|
20
|
Blessing WA, Digesu CS, Liu R, Mahvi DA, Tal-Mason A, Kumar A, Hachey KJ, Colby AH, Korunes-Miller JT, Agar N, Regan MS, Shih A, Raut CP, Grinstaff MW, Colson YL. Sustained Supratherapeutic Paclitaxel Delivery Enhances Irreversible Sarcoma Cell Death. Mol Cancer Ther 2022; 21:1663-1673. [PMID: 36031342 PMCID: PMC9633561 DOI: 10.1158/1535-7163.mct-21-0750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 05/26/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022]
Abstract
Risk of locoregional recurrence after sarcoma resection is high, increasing both morbidity and mortality. Intraoperative implantation of paclitaxel (PTX)-eluting polymer films locally delivers sustained, supratherapeutic PTX concentrations to the tumor bed that are not clinically feasible with systemic therapy, thereby reducing recurrence and improving survival in a murine model of recurrent sarcoma. However, the biology underlying increased efficacy of PTX-eluting films is unknown and provides the impetus for this work. In vitro PTX efficacy is time and dose dependent with prolonged exposure significantly decreasing PTX IC50 values for human chondrosarcoma (CS-1) cells (153.9 nmol/L at 4 hours vs. 14.2 nmol/L at 30 hours, P = 0.0001). High-dose PTX significantly inhibits proliferation with in vivo PTX films delivering a dose >130 μmol/L directly to the tumor thereby irreversibly arresting cell cycle and inducing apoptosis in CS-1 as well as patient-derived liposarcoma (LP6) and leiomyosarcoma (LMS20). Supratherapeutic PTX upregulates the expression of p21 in G2-M arrested cells, and irreversibly induces apoptosis followed by cell death, within 4 hours of exposure. Microarray analyses corroborate the finding of poor DNA integrity commonly observed as a final step of apoptosis in CS-1 cells and tumor. Unlike low PTX concentrations at the tumor bed during systemic delivery, supratherapeutic concentrations achieved with PTX-eluting films markedly decrease sarcoma lethality in vivo and offer an alternative paradigm to prevent recurrence.
Collapse
Affiliation(s)
- William A. Blessing
- Division of Thoracic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Christopher S. Digesu
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Rong Liu
- Division of Thoracic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - David A. Mahvi
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Aya Tal-Mason
- Division of Thoracic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Anil Kumar
- Division of Thoracic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Aaron H. Colby
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA
| | - Jenny T. Korunes-Miller
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA
| | - Natalie Agar
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Michael S. Regan
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Angela Shih
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Chandrajit P. Raut
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA
| | - Yolonda L. Colson
- Division of Thoracic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
21
|
Sorteberg AL, Halipi V, Wickström M, Shirazi Fard S. The cyclin dependent kinase inhibitor p21Cip1/Waf1 is a therapeutic target in high-risk neuroblastoma. Front Oncol 2022; 12:906194. [PMID: 36147919 PMCID: PMC9486206 DOI: 10.3389/fonc.2022.906194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Platinum-based chemotherapies such as cisplatin are used as first-line treatment for the paediatric tumour neuroblastoma. Although the majority of neuroblastoma tumours respond to therapy, there is a high fraction of high-risk neuroblastoma patients that eventually relapse with increased resistance. Here, we show that one key determinant of cisplatin sensitivity is phosphorylation of the cyclin-dependent kinase inhibitor p21Cip1/Waf1. A panel of eight neuroblastoma cell lines and a TH-MYCN mouse model were investigated for the expression of p21Cip1/Waf1 using RT-qPCR, Western blot, and immunofluorescence. This was followed by investigation of sensitivity towards cisplatin and the p21Cip1/Waf1 inhibitor UC2288. Whereas the cell lines and the mouse model showed low levels of un-phosphorylated p21Cip1/Waf1, the phosphorylated p21Cip1/Waf1 (Thr145) was highly expressed, which in the cell lines correlated to cisplatin resistance. Furthermore, the neuroblastoma cell lines showed high sensitivity to UC2288, and combination treatment with cisplatin resulted in considerably decreased cell viability and delay in regrowth in the two most resistant cell lines, SK-N-DZ and BE(2)-C. Thus, targeting p21Cip1/Waf1 can offer new treatment strategies and subsequently lead to the design of more efficient combination treatments for high-risk neuroblastoma.
Collapse
|
22
|
Firnau MB, Brieger A. CK2 and the Hallmarks of Cancer. Biomedicines 2022; 10:1987. [PMID: 36009534 PMCID: PMC9405757 DOI: 10.3390/biomedicines10081987] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Casein kinase 2 (CK2) is commonly dysregulated in cancer, impacting diverse molecular pathways. CK2 is a highly conserved serine/threonine kinase, constitutively active and ubiquitously expressed in eukaryotes. With over 500 known substrates and being estimated to be responsible for up to 10% of the human phosphoproteome, it is of significant importance. A broad spectrum of diverse types of cancer cells has been already shown to rely on disturbed CK2 levels for their survival. The hallmarks of cancer provide a rationale for understanding cancer's common traits. They constitute the maintenance of proliferative signaling, evasion of growth suppressors, resisting cell death, enabling of replicative immortality, induction of angiogenesis, the activation of invasion and metastasis, as well as avoidance of immune destruction and dysregulation of cellular energetics. In this work, we have compiled evidence from the literature suggesting that CK2 modulates all hallmarks of cancer, thereby promoting oncogenesis and operating as a cancer driver by creating a cellular environment favorable to neoplasia.
Collapse
Affiliation(s)
| | - Angela Brieger
- Department of Internal Medicine I, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
23
|
Broestl L, Warrington NM, Grandison L, Abou-Antoun T, Tung O, Shenoy S, Tallman MM, Rhee G, Yang W, Sponagel J, Yang L, Kfoury-Beaumont N, Hill CM, Qanni SA, Mao DD, Kim AH, Stewart SA, Venere M, Luo J, Rubin JB. Gonadal sex patterns p21-induced cellular senescence in mouse and human glioblastoma. Commun Biol 2022; 5:781. [PMID: 35918603 PMCID: PMC9345919 DOI: 10.1038/s42003-022-03743-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/20/2022] [Indexed: 01/10/2023] Open
Abstract
Males exhibit higher incidence and worse prognosis for the majority of cancers, including glioblastoma (GBM). Disparate survival may be related to sex-biased responses to treatment, including radiation. Using a mouse model of GBM, we show that female cells are more sensitive to radiation, and that senescence represents a major component of the radiation therapeutic response in both sexes. Correlation analyses revealed that the CDK inhibitor p21 and irradiation induced senescence were differentially regulated between male and female cells. Indeed, female cellular senescence was more sensitive to changes in p21 levels, a finding that was observed in wildtype and transformed murine astrocytes, as well as patient-derived GBM cell lines. Using a novel Four Core Genotypes model of GBM, we further show that sex differences in p21-induced senescence are patterned during early development by gonadal sex. These data provide a rationale for the further study of sex differences in radiation response and how senescence might be enhanced for radiation sensitization. The determination that p21 and gonadal sex are required for sex differences in radiation response will serve as a foundation for these future mechanistic studies.
Collapse
Affiliation(s)
- Lauren Broestl
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicole M Warrington
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Lucia Grandison
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Tamara Abou-Antoun
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Olivia Tung
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Saraswati Shenoy
- Brown School, Washington University in St. Louis, St. Louis, MO, USA
| | - Miranda M Tallman
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University Wexner School of Medicine, Columbus, OH, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Gina Rhee
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jasmin Sponagel
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Lihua Yang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Najla Kfoury-Beaumont
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurological Surgery, University of California San Diego, La Jolla, CA, USA
| | - Cameron M Hill
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Sulaiman A Qanni
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Diane D Mao
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Albert H Kim
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Sheila A Stewart
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- ICCE Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Monica Venere
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University Wexner School of Medicine, Columbus, OH, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
24
|
Zhou H, Wang L, Liu S, Wang W. The role of phosphoinositide 3-kinases in immune-inflammatory responses: potential therapeutic targets for abdominal aortic aneurysm. Cell Cycle 2022; 21:2339-2364. [PMID: 35792922 DOI: 10.1080/15384101.2022.2094577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of abdominal aortic aneurysm (AAA) includes inflammatory responses, matrix metalloproteinases (MMPs) degradation, VSMC apoptosis, oxidative stress, and angiogenesis, among which the inflammatory response plays a key role. At present, surgery is the only curing treatment, and no effective drug can delay AAA progression in clinical practice. Therefore, searching for a signaling pathway related to the immune-inflammatory response is an essential direction for developing drugs targeting AAA. Recent studies have confirmed that the PI3K family plays an important role in many inflammatory diseases and is involved in regulating various cellular functions, especially in the immune-inflammatory response. This review focuses on the role of each isoform of PI3K in each stage of AAA immune-inflammatory response, making available explorations for a deeper understanding of the mechanism of inflammation and immune response during the formation and development of AAA.
Collapse
Affiliation(s)
- Haiyang Zhou
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Liu
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Tsai ML, Lee CH, Huang LC, Chen YH, Liu WN, Lin CY, Hsu KW, Lee AW, Lin CL. CRISPR-mediated knockout of VEGFR2/KDR inhibits cell growth in a squamous thyroid cancer cell line. FEBS Open Bio 2022; 12:993-1005. [PMID: 35313079 PMCID: PMC9063427 DOI: 10.1002/2211-5463.13399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/17/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022] Open
Abstract
Squamous and anaplastic thyroid cancers are the most aggressive and life‐threatening cancer types in humans, with the involvement of lymph nodes in 59% of cases and distant metastases in 26% of cases of all thyroid cancers. The median survival of squamous thyroid cancer patients is < 8 months and therefore is of high clinical concern. Here, we show that both VEGFC and VEGFR2/KDR are overexpressed in thyroid cancers, indicating that VEGF/VEGFR signaling plays a carcinogenic role in thyroid cancer development. Using CRISPR/Cas9, we established a KDR knockout (KO) SW579 squamous thyroid cancer cell line that exhibited dramatically decreased colony formation and invasion abilities (30% and 60% reduction, respectively) when compared to scrambled control cells. To validate the potential of KDR as a therapeutic target for thyroid cancers, we used the KDR RTK inhibitor sunitinib. Protein analysis and live/dead assay were performed to demonstrate that sunitinib significantly inhibited cell growth signal transduction and induced cell apoptosis of SW579 cells. These results suggest that selective targeting of KDR may have potential for development into novel anti‐cancer therapies to suppress VEGF/VEGFR‐mediated cancer development in patients with clinical advanced thyroid cancer.
Collapse
Affiliation(s)
- Ming-Lin Tsai
- Department of General Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program in Medicine Biotechnology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li-Chi Huang
- Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan.,Department of Endocrinology and Metabolism, Cathay General Hospital, Taipei, Taiwan
| | - Yu-Hsin Chen
- Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan.,Department of Endocrinology and Metabolism, Cathay General Hospital, Taipei, Taiwan.,Department of cytology, Cathay General Hospital, Taipei, Taiwan
| | - Wei-Ni Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chun-Yu Lin
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Kai-Wen Hsu
- Institute of New Drug Development, China Medical University, Taichung City, Taiwan.,Research Center for Cancer Biology, China Medical University, Taichung City, Taiwan
| | - Ai-Wei Lee
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Ling Lin
- Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan.,Department of Endocrinology and Metabolism, Cathay General Hospital, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
26
|
Punpai S, Saenkham A, Jarintanan F, Jongrungruangchok S, Choowongkomon K, Suksamrarn S, Tanechpongtamb W. HDAC inhibitor cowanin extracted from G. fusca induces apoptosis and autophagy via inhibition of the PI3K/Akt/mTOR pathways in Jurkat cells. Biomed Pharmacother 2022; 147:112577. [PMID: 35078092 DOI: 10.1016/j.biopha.2021.112577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
Cowanin, a xanthone derivative extracted from the Garcinia fusca plant, has been recognized for various biological activities including, antimicrobial, anti-inflammatory, and anticancer activities. However, the mechanism to induce cancer cell death in cancer cells remains to be fully elucidated. Our previous report showed that other xanthones from these plants could act as histone deacetylase inhibitors (HDACi), so we deeply analyzed the role of cowanin, a major compound of G.fusca, and investigated through the mode of cell death both apoptosis and autophagy that have never been reported. As a result, it was demonstrated that cowanin indicated the role of HDACi as other xanthones. The molecular docking analysis showed that cowanin could interact within the catalytic pocket region of HDAC class I (HDAC2, 8) and II (HDAC4, 7) proteins and inhibit their activity. Also, the level of protein expression of HDAC2, 4, 7, and 8 was distinctly decreased, and the level of histone H3 and H4 acetylation increased in cowanin treated cells. For the mode of cell death, cowanin demonstrated both apoptosis and autophagy activation in Jurkat cells. Besides, cowanin significantly suppressed phosphorylation of PI3K, Akt, and mTOR signaling. Therefore, these findings revealed that cowanin represents a new promising candidate for development as an anticancer agent by inducing apoptosis and autophagy via PI3K/AKT/mTOR pathway and effectively inhibiting HDAC activity.
Collapse
Affiliation(s)
- Sakdiphong Punpai
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Audchara Saenkham
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | | | | | - Kiattawee Choowongkomon
- Departmentof Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand
| | - Sunit Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Wanlaya Tanechpongtamb
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand.
| |
Collapse
|
27
|
Muraki N, Yamada M, Doki H, Nakai R, Komeda K, Goto D, Kawabe N, Matsuoka K, Matsushima M, Kawabe T, Tanaka I, Morise M, Shay JW, Minna JD, Sato M. Resistance to mutant KRAS V12-induced senescence in a hTERT/Cdk4-immortalized normal human bronchial epithelial cell line. Exp Cell Res 2022; 414:113053. [PMID: 35149086 DOI: 10.1016/j.yexcr.2022.113053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022]
Abstract
Mutant KRAS, the most frequently occurring (∼30%) driver oncogene in lung adenocarcinoma, induces normal epithelial cells to undergo senescence. This phenomenon, called "oncogene-induced senescence (OIS)", prevents mutant KRAS-induced malignant transformation. We have previously reported that mutant KRASV12 induces OIS in a subset of normal human bronchial epithelial cell line immortalized with hTERT and Cdk4. Understanding the mechanism and efficacy of this important cancer prevention mechanism is a key knowledge gap. Therefore, this study investigates mutant KRASV12-induced OIS in upregulated telomerase combined with the p16/RB pathway inactivation in normal bronchial epithelial cells. The normal (non-transformed and non-tumorigenic) human bronchial epithelial cell line HBEC3 (also called "HBEC3KT"), immortalized with hTERT ("T") and Cdk4 ("K"), was used in this study. HBEC3 that expressed mutant KRASV12 in a doxycycline-regulated manner was established (designated as HBEC3-RIN2). Controlled induction of mutant KRASV12 expression induced partial epithelial-to-mesenchymal transition in HBEC3-RIN2 cells, which was associated with upregulated expression of ZEB1 and SNAIL. Mutant KRASV12 caused the majority of HBEC3-RIN2 to undergo morphological changes; suggestive of senescence, which was associated with enhanced autophagic flux, evaluated by LC-3 Western blot and CYTO-ID, an autophagosome-specific staining kit. Upon mutant KRASV12 expression, only a small HBEC3-RIN2 cell subset underwent senescence, as shown by a senescence-associated β-galactosidase staining (SA-βG) method. Furthermore, mutant KRASV12 enhanced cell growth, evaluated by colorimetric proliferation assay, and liquid and soft agar colony formation assays, partially through increased phosphorylated AKT and ERK expression but did not affect cell division, or cell cycle status. Intriguingly, mutant KRASV12 reduced p53 protein expression but increased p21 protein expression by prolonging its half-life. These results indicate that a hTERT/Cdk4 -immortalized normal bronchial epithelial cell line is partially resistant to mutant KRASV12-induced senescence. This suggests that OIS does not efficiently suppress KRASV12-induced transformation in the context of the simultaneous occurrence of telomerase upregulation and inactivation of the p16/Rb pathway.
Collapse
Affiliation(s)
- Nao Muraki
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan
| | - Mizuki Yamada
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan
| | - Hinako Doki
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan
| | - Riho Nakai
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan
| | - Kazuki Komeda
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan; Dept. of Respiratory Medicine, Nagoya University Graduate School of Medicine, Japan
| | - Daiki Goto
- Dept. of Respiratory Medicine, Nagoya University Graduate School of Medicine, Japan
| | - Nozomi Kawabe
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan
| | - Kohei Matsuoka
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan
| | - Miyoko Matsushima
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan
| | - Tsutomu Kawabe
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan
| | - Ichidai Tanaka
- Dept. of Respiratory Medicine, Nagoya University Graduate School of Medicine, Japan
| | - Masahiro Morise
- Dept. of Respiratory Medicine, Nagoya University Graduate School of Medicine, Japan
| | - Jerry W Shay
- Dept. of Cell Biology and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mitsuo Sato
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan.
| |
Collapse
|
28
|
Haronikova L, Bonczek O, Zatloukalova P, Kokas-Zavadil F, Kucerikova M, Coates PJ, Fahraeus R, Vojtesek B. Resistance mechanisms to inhibitors of p53-MDM2 interactions in cancer therapy: can we overcome them? Cell Mol Biol Lett 2021; 26:53. [PMID: 34911439 PMCID: PMC8903693 DOI: 10.1186/s11658-021-00293-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the first MDM2 inhibitors, we have gained deeper insights into the cellular roles of MDM2 and p53. In this review, we focus on MDM2 inhibitors that bind to the p53-binding domain of MDM2 and aim to disrupt the binding of MDM2 to p53. We describe the basic mechanism of action of these MDM2 inhibitors, such as nutlin-3a, summarise the determinants of sensitivity to MDM2 inhibition from p53-dependent and p53-independent points of view and discuss the problems with innate and acquired resistance to MDM2 inhibition. Despite progress in MDM2 inhibitor design and ongoing clinical trials, their broad use in cancer treatment is not fulfilling expectations in heterogenous human cancers. We assess the MDM2 inhibitor types in clinical trials and provide an overview of possible sources of resistance to MDM2 inhibition, underlining the need for patient stratification based on these aspects to gain better clinical responses, including the use of combination therapies for personalised medicine.
Collapse
Affiliation(s)
- Lucia Haronikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| | - Ondrej Bonczek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 901 87, Umea, Vasterbotten, Sweden
| | - Pavlina Zatloukalova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Filip Kokas-Zavadil
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Martina Kucerikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Robin Fahraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 901 87, Umea, Vasterbotten, Sweden
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, 75010, Paris, France
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
29
|
Targeted Protein Profiling of In Vivo NIPP-Treated Tissues Using DigiWest Technology. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Non-invasive physical plasma (NIPP) is a novel therapeutic tool, currently being evaluated for the treatment of cancer and precancerous lesions in gynecology and other disciplines. Additionally, patients with cervical intraepithelial neoplasia (CIN) may benefit from NIPP treatment due to its non-invasive, side-effect-free, and tissue-sparing character. However, the molecular impact of in vivo NIPP treatment needs to be further investigated. For this purpose, usually only very small tissue biopsies are available after NIPP treatment. Here, we adapted DigiWest technology, a high-throughput bead-based Western blot, for the analysis of formalin-fixed paraffin-embedded (FFPE) cervical punch biopsies with a minimal sample amount. We investigated the molecular effects of NIPP treatment directly after (0 h) and 24 h after in vivo application. Results were compared to in vitro NIPP-treated human malignant cervical cells. NIPP effects were primarily based on an inhibitory impact on the cell cycle and cell growth factors. DigiWest technology was suitable for detailed protein profiling of small, primary FFPE biopsies.
Collapse
|
30
|
Regulation of Cell Cycle Progression by Growth Factor-Induced Cell Signaling. Cells 2021; 10:cells10123327. [PMID: 34943835 PMCID: PMC8699227 DOI: 10.3390/cells10123327] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
The cell cycle is the series of events that take place in a cell, which drives it to divide and produce two new daughter cells. The typical cell cycle in eukaryotes is composed of the following phases: G1, S, G2, and M phase. Cell cycle progression is mediated by cyclin-dependent kinases (Cdks) and their regulatory cyclin subunits. However, the driving force of cell cycle progression is growth factor-initiated signaling pathways that control the activity of various Cdk–cyclin complexes. While the mechanism underlying the role of growth factor signaling in G1 phase of cell cycle progression has been largely revealed due to early extensive research, little is known regarding the function and mechanism of growth factor signaling in regulating other phases of the cell cycle, including S, G2, and M phase. In this review, we briefly discuss the process of cell cycle progression through various phases, and we focus on the role of signaling pathways activated by growth factors and their receptor (mostly receptor tyrosine kinases) in regulating cell cycle progression through various phases.
Collapse
|
31
|
Akt Isoforms: A Family Affair in Breast Cancer. Cancers (Basel) 2021; 13:cancers13143445. [PMID: 34298660 PMCID: PMC8306188 DOI: 10.3390/cancers13143445] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Breast cancer is the second leading cause of cancer-related death in women in the United States. The Akt signaling pathway is deregulated in approximately 70% of patients with breast cancer. While targeting Akt is an effective therapeutic strategy for the treatment of breast cancer, there are several members in the Akt family that play distinct roles in breast cancer. However, the function of Akt isoforms depends on many factors. This review analyzes current progress on the isoform-specific functions of Akt isoforms in breast cancer. Abstract Akt, also known as protein kinase B (PKB), belongs to the AGC family of protein kinases. It acts downstream of the phosphatidylinositol 3-kinase (PI3K) and regulates diverse cellular processes, including cell proliferation, cell survival, metabolism, tumor growth and metastasis. The PI3K/Akt signaling pathway is frequently deregulated in breast cancer and plays an important role in the development and progression of breast cancer. There are three closely related members in the Akt family, namely Akt1(PKBα), Akt2(PKBβ) and Akt3(PKBγ). Although Akt isoforms share similar structures, they exhibit redundant, distinct as well as opposite functions. While the Akt signaling pathway is an important target for cancer therapy, an understanding of the isoform-specific function of Akt is critical to effectively target this pathway. However, our perception regarding how Akt isoforms contribute to the genesis and progression of breast cancer changes as we gain new knowledge. The purpose of this review article is to analyze current literatures on distinct functions of Akt isoforms in breast cancer.
Collapse
|
32
|
Lai W, Zhu W, Xiao C, Li X, Wang Y, Han Y, Zheng J, Li Y, Li M, Wen X. HJURP promotes proliferation in prostate cancer cells through increasing CDKN1A degradation via the GSK3β/JNK signaling pathway. Cell Death Dis 2021; 12:583. [PMID: 34099634 PMCID: PMC8184824 DOI: 10.1038/s41419-021-03870-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022]
Abstract
Genes with cross-cancer aberrations are most likely to be functional genes or potential therapeutic targets. Here, we found a total of 137 genes were ectopically expressed in eight cancer types, of which Holliday junction recognition protein (HJURP ) was significantly upregulated in prostate cancer (PCa). Moreover, patients with higher HJURP mRNA and protein levels had poorer outcomes, and the protein levels served as an independent prognosis factor for the overall survival of PCa patients. Functionally, ectopic HJURP expression promoted PCa cells proliferation in vitro and in vivo. Mechanistically, HJURP increased the ubiquitination of cyclin-dependent kinase inhibitor 1 (CDKN1A) via the GSK3β/JNK signaling pathway and decreased its stability. This study investigated the role of HJURP in PCa proliferation and may provide a novel prognostic and therapeutic target for PCa.
Collapse
Affiliation(s)
- Wenjie Lai
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weian Zhu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chutian Xiao
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojuan Li
- Department of Health Care, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yu Wang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuefu Han
- Department of Urology, Yue Bei People’s Hospital, Shaoguan, China
| | - Jiayu Zheng
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingqiu Li
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xingqiao Wen
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Chang JG, Tien N, Chang YC, Lin ML, Chen SS. Oxidative Stress-Induced Unscheduled CDK1-Cyclin B1 Activity Impairs ER-Mitochondria-Mediated Bioenergetic Metabolism. Cells 2021; 10:cells10061280. [PMID: 34064109 PMCID: PMC8224302 DOI: 10.3390/cells10061280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/04/2023] Open
Abstract
Targeting the activities of endoplasmic reticulum (ER)-mitochondrial-dependent metabolic reprogramming is considered one of the most promising strategies for cancer treatment. Here, we present biochemical subcellular fractionation, coimmunoprecipitation, gene manipulation, and pharmacologic evidence that induction of mitochondria-localized phospho (p)-cyclin dependent kinase 1 (CDK1) (Thr 161)-cyclin B1 complexes by apigenin in nasopharyngeal carcinoma (NPC) cells impairs the ER-mitochondrial bioenergetics and redox regulation of calcium (Ca++) homeostasis through suppressing the B cell lymphoma 2 (BCL-2)/BCL-2/B-cell lymphoma-extra large (BCL-xL)-modulated anti-apoptotic and metabolic functions. Using a specific inducer, inhibitor, or short hairpin RNA for acid sphingomyelinase (ASM) demonstrated that enhanced lipid raft-associated ASM activity confers alteration of the lipid composition of lipid raft membranes, which leads to perturbation of protein trafficking, and induces formation of p110α free p85α-unphosphorylated phosphatase and tensin homolog deleted from chromosome 10 complexes in the lipid raft membranes, causing disruption of phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-GTP-ras-related C3 botulinum toxin substrate 1 (Rac1)-mediated signaling, thus triggering the p-CDK1 (Thr 161))-cyclin B1-mediated BCL-2 (Thr 69/Ser 87)/BCL-xL (Ser 62) phosphorylation and accompanying impairment of ER-mitochondria-regulated bioenergetic, redox, and Ca++ homeostasis. Inhibition of apigenin-induced reactive oxygen species (ROS) generation by a ROS scavenger N-acetyl-L-cysteine blocked the lipid raft membrane localization and activation of ASM and formation of ceramide-enriched lipid raft membranes, returned PI3K-Akt-GTP-Rac1-modulated CDK1-cyclin B1 activity, and subsequently restored the BCL-2/BCL-xL-regulated ER-mitochondrial bioenergetic activity. Thus, this study reveals a novel molecular mechanism of the pro-apoptotic activity of ASM controlled by oxidative stress to modulate the ER-mitochondrial bioenergetic metabolism, as well as suggests the disruption of CDK1-cyclin B1-mediated BCL-2/BCL-xL oncogenic activity by triggering oxidative stress-ASM-induced PI3K-Akt-GTP-Rac1 inactivation as a therapeutic approach for NPC.
Collapse
Affiliation(s)
- Jan-Gowth Chang
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 404394, Taiwan; (J.-G.C.); (N.T.)
| | - Ni Tien
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 404394, Taiwan; (J.-G.C.); (N.T.)
| | - Yi-Chih Chang
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan;
| | - Meng-Liang Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan
- Correspondence: (M.-L.L.); (S.-S.C.); Tel.: +886-42-205-3366 (ext. 7211) (M.-L.L.); +886-42-239-1647 (ext. 7057) (S.-S.C.)
| | - Shih-Shun Chen
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan
- Correspondence: (M.-L.L.); (S.-S.C.); Tel.: +886-42-205-3366 (ext. 7211) (M.-L.L.); +886-42-239-1647 (ext. 7057) (S.-S.C.)
| |
Collapse
|
34
|
Kashyap D, Garg VK, Sandberg EN, Goel N, Bishayee A. Oncogenic and Tumor Suppressive Components of the Cell Cycle in Breast Cancer Progression and Prognosis. Pharmaceutics 2021; 13:pharmaceutics13040569. [PMID: 33920506 PMCID: PMC8072616 DOI: 10.3390/pharmaceutics13040569] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer, a disease of inappropriate cell proliferation, is strongly interconnected with the cell cycle. All cancers consist of an abnormal accumulation of neoplastic cells, which are propagated toward uncontrolled cell division and proliferation in response to mitogenic signals. Mitogenic stimuli include genetic and epigenetic changes in cell cycle regulatory genes and other genes which regulate the cell cycle. This suggests that multiple, distinct pathways of genetic alterations lead to cancer development. Products of both oncogenes (including cyclin-dependent kinase (CDKs) and cyclins) and tumor suppressor genes (including cyclin-dependent kinase inhibitors) regulate cell cycle machinery and promote or suppress cell cycle progression, respectively. The identification of cyclins and CDKs help to explain and understand the molecular mechanisms of cell cycle machinery. During breast cancer tumorigenesis, cyclins A, B, C, D1, and E; cyclin-dependent kinase (CDKs); and CDK-inhibitor proteins p16, p21, p27, and p53 are known to play significant roles in cell cycle control and are tightly regulated in normal breast epithelial cells. Following mitogenic stimuli, these components are deregulated, which promotes neoplastic transformation of breast epithelial cells. Multiple studies implicate the roles of both types of components-oncogenic CDKs and cyclins, along with tumor-suppressing cyclin-dependent inhibitors-in breast cancer initiation and progression. Numerous clinical studies have confirmed that there is a prognostic significance for screening for these described components, regarding patient outcomes and their responses to therapy. The aim of this review article is to summarize the roles of oncogenic and tumor-suppressive components of the cell cycle in breast cancer progression and prognosis.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160 012, Punjab, India;
| | | | - Elise N. Sandberg
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Neelam Goel
- University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, Punjab, India
- Correspondence: (N.G.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (N.G.); or (A.B.)
| |
Collapse
|
35
|
Huang G, Boesze-Battaglia K, Walker LP, Zekavat A, Schaefer ZP, Blanke SR, Shenker BJ. The Active Subunit of the Cytolethal Distending Toxin, CdtB, Derived From Both Haemophilus ducreyi and Campylobacter jejuni Exhibits Potent Phosphatidylinositol-3,4,5-Triphosphate Phosphatase Activity. Front Cell Infect Microbiol 2021; 11:664221. [PMID: 33854985 PMCID: PMC8039388 DOI: 10.3389/fcimb.2021.664221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
Human lymphocytes exposed to Aggregatibacter actinomycetemcomitans (Aa) cytolethal distending toxin (Cdt) undergo cell cycle arrest and apoptosis. In previous studies, we demonstrated that the active Cdt subunit, CdtB, is a potent phosphatidylinositol (PI) 3,4,5-triphosphate phosphatase. Moreover, AaCdt-treated cells exhibit evidence of PI-3-kinase (PI-3K) signaling blockade characterized by reduced levels of PIP3, pAkt, and pGSK3β. We have also demonstrated that PI-3K blockade is a requisite of AaCdt-induced toxicity in lymphocytes. In this study, we extended our observations to include assessment of Cdts from Haemophilus ducreyi (HdCdt) and Campylobacter jejuni (CjCdt). We now report that the CdtB subunit from HdCdt and CjCdt, similar to that of AaCdt, exhibit potent PIP3 phosphatase activity and that Jurkat cells treated with these Cdts exhibit PI-3K signaling blockade: reduced levels of pAkt and pGSK3β. Since non-phosphorylated GSK3β is the active form of this kinase, we compared Cdts for dependence on GSK3β activity. Two GSK3β inhibitors were employed, LY2090314 and CHIR99021; both inhibitors blocked the ability of Cdts to induce cell cycle arrest. We have previously demonstrated that AaCdt induces increases in the CDK inhibitor, p21CIP1/WAF1, and, further, that this was a requisite for toxin-induced cell death via apoptosis. We now demonstrate that HdCdt and CjCdt also share this requirement. It is also noteworthy that p21CIP1/WAF1 was not involved in the ability of the three Cdts to induce cell cycle arrest. Finally, we demonstrate that, like AaCdt, HdCdt is dependent upon the host cell protein, cellugyrin, for its toxicity (and presumably internalization of CdtB); CjCdt was not dependent upon this protein. The implications of these findings as they relate to Cdt’s molecular mode of action are discussed.
Collapse
Affiliation(s)
- Grace Huang
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| | - Lisa P Walker
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| | - Ali Zekavat
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| | - Zachary P Schaefer
- Department of Microbiology, University of Illinois, Urbana, IL, United States
| | - Steven R Blanke
- Department of Microbiology, University of Illinois, Urbana, IL, United States.,Pathobiology Department, University of Illinois, Urbana, IL, United States.,Biomedical and Translational Sciences Department, University of Illinois, Urbana, IL, United States
| | - Bruce J Shenker
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| |
Collapse
|
36
|
Hu K, Li J, Wu G, Zhou L, Wang X, Yan Y, Xu Z. The novel roles of virus infection-associated gene CDKN1A in chemoresistance and immune infiltration of glioblastoma. Aging (Albany NY) 2021; 13:6662-6680. [PMID: 33621203 PMCID: PMC7993694 DOI: 10.18632/aging.202519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/29/2020] [Indexed: 02/05/2023]
Abstract
Chemoresistance is a common limitation for successful treatment of glioblastoma multiforme (GBM). Recently, virus infections have been demonstrated to be associated with tumorigenesis and chemoresistance in tumors. However, the role of infection-related genes in GBM haven’t been clearly demonstrated. Here, we explored the roles and mechanisms of human T-lymphotropic virus type-1 (HTLV-1) infections in tumorigenesis and chemoresistance in GBM. Four candidate genes, CDKN1A, MSX1, MYC and CHEK2, were identified to be the codifferentially expressed genes between three temozolomide (TMZ) chemotherapy datasets and one HTLV-1 infection gene set. Next, comprehensive bioinformatics data from several databases indicated that only CDKN1A was significantly upregulated in both GBM tissues and cells and showed the greatest prognostic value in GBM patients. Clinical data identified the correlations between CDKN1A expression and clinicopathological parameters of GBM patients. Moreover, CDKN1A was found to be involved in AKT-mediated TMZ resistance of glioma cells. In addition, KEGG analysis of CDKN1A-associated coexpression genes showed that CDKN1A was potentially involved in complement and coagulation cascades pathways in GBM. Finally, TISIDB database was used to investigate the role of CDKN1A in tumor-immune system interactions in GBM. These findings enhanced our understanding of the roles of CDKN1A in tumorigenesis and therapy response in GBM.
Collapse
Affiliation(s)
- Kuan Hu
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Juanni Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Geting Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Lei Zhou
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha 410008, Hunan, China
| | - Xiang Wang
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
37
|
Kuang Y, Kang J, Li H, Liu B, Zhao X, Li L, Jin X, Li Q. Multiple functions of p21 in cancer radiotherapy. J Cancer Res Clin Oncol 2021; 147:987-1006. [PMID: 33547489 DOI: 10.1007/s00432-021-03529-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Greater than half of cancer patients experience radiation therapy, for both radical and palliative objectives. It is well known that researches on radiation response mechanisms are conducive to improve the efficacy of cancer radiotherapy. p21 was initially identified as a widespread inhibitor of cyclin-dependent kinases, transcriptionally modulated by p53 and a marker of cellular senescence. It was once considered that p21 acts as a tumour suppressor mainly to restrain cell cycle progression, thereby resulting in growth suppression. With the deepening researches on p21, p21 has been found to regulate radiation responses via participating in multiple cellular processes, including cell cycle arrest, apoptosis, DNA repair, senescence and autophagy. Hence, a comprehensive summary of the p21's functions in radiation response will provide a new perspective for radiotherapy against cancer. METHODS We summarize the recent pertinent literature from various electronic databases, including PubMed and analyzed several datasets from Gene Expression Omnibus database. This review discusses how p21 influences the effect of cancer radiotherapy via involving in multiple signaling pathways and expounds the feasibility, barrier and risks of using p21 as a biomarker as well as a therapeutic target of radiotherapy. CONCLUSION p21's complicated and important functions in cancer radiotherapy make it a promising therapeutic target. Besides, more thorough insights of p21 are needed to make it a safe therapeutic target.
Collapse
Affiliation(s)
- Yanbei Kuang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Kang
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Bingtao Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueshan Zhao
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Linying Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
38
|
Krishnan R, Murugiah M, Lakshmi, NP, Mahalingam S. Guanine nucleotide binding protein like-1 (GNL1) promotes cancer cell proliferation and survival through AKT/p21 CIP1 signaling cascade. Mol Biol Cell 2020; 31:2904-2919. [PMID: 33147101 PMCID: PMC7927199 DOI: 10.1091/mbc.e20-04-0267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/03/2022] Open
Abstract
Human guanine nucleotide binding protein like 1 (GNL1) is an evolutionary conserved putative nucleolar GTPase belonging to the HSR1_MMR1 subfamily of GTPases. GNL1 was found to be highly up-regulated in various cancers. Here, we report for the first time that GNL1 inhibits apoptosis by modulating the expression of Bcl2 family of proteins and the cleavage of caspases 7 and 8. Furthermore, GNL1 protects colon cancer cells from chemo-drug-induced apoptosis. Interestingly, GNL1 up-regulates the expression of p53 and its transcriptional target, p21 but the up-regulation of p21 was found to be p53 dependent as well as independent mechanisms. Our results further demonstrate that GNL1 promotes cell growth and survival by inducing cytoplasmic retention and stabilization of p21 through AKT-mediated phosphorylation. In addition, GNL1 failed to inhibit apoptosis under p21 knockdown conditions which suggests the critical role of p21 in GNL1-mediated cell survival. Finally, an inverse correlation of GNL1, p21, and AKT expression in primary colon and breast cancer with patient survival suggests their critical role in tumorigenesis. Collectively, our study reveals that GNL1 executes its antiapoptotic function by a novel mechanism and suggests that it may function as a regulatory component of the PI3K/AKT/p21 signaling network to promote cell proliferation and survival in cancers.
Collapse
Affiliation(s)
- Rehna Krishnan
- Laboratory of Molecular Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Mariappan Murugiah
- Laboratory of Molecular Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Naga Padma Lakshmi,
- Laboratory of Molecular Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Sundarasamy Mahalingam
- Laboratory of Molecular Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| |
Collapse
|
39
|
Akinloye OA, Akinloye DI, Lawal MA, Shittu MT, Metibemu DS. Terpenoids from Azadirachta indica are potent inhibitors of Akt: Validation of the anticancer potentials in hepatocellular carcinoma in male Wistar rats. J Food Biochem 2020; 45:e13559. [PMID: 33190241 DOI: 10.1111/jfbc.13559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is the commonest primary malignancy with poor patient prognosis and a high mortality rate. In this study, phytochemicals characterized from Azadirachta indica were screened against the catalytic site of Akt, and the anticancer potentials of the extracted leads (terpenoids) were determined in hepatocellular carcinoma in male Wistar rats. The lead compounds are terpenoids; hence, the extraction of terpenoids from A. indica. Gas chromatography-mass spectrometry (GCMS) was employed for the characterization of the extract. Diethylnitrosamine (DEN)-induced hepatocellular carcinoma in male Wistar rats were treated with the terpenoids extract. The hit, lupeol demonstrates inhibition of Akt and is a potential drug candidate. The terpenoids extract downregulate Akt mRNA and demonstrated anti-Akt downstream signaling effects; anti-inflammatory, anti-angiogenesis, pro-apoptotic, and cell cycle arrest, it also demonstrated cellular regeneration, hepatoprotection, antioxidant potentials, and cellular repairs in hepatocellular carcinoma in male Wistar rats. PRACTICAL APPLICATIONS: Hepatocellular Carcinoma (HCC) is the most common primary malignancy with poor patient prognosis and a high mortality rate. Akt, a serine/threonine kinase is at the crossroad of cell survival, the progression of the cell cycle, cell signaling, cell growth, cell division, and inactivation of pro-apoptotic factors. The inhibition of Akt is an effective therapeutic strategy against HCC. In this study, terpenoids from Azadirachta indica are potent inhibitors of Akt and hitherto demonstrate anticancer potentials. A. indica leaves are readily available globally and more also it is readily cultivated in African and Asia, continents with the highest prevalence of HCC. A. indica terpenoids extract demonstrate anti-HCC potentials and hence should be exploited in this regard.
Collapse
Affiliation(s)
- Oluseyi A Akinloye
- Department of Biochemistry, Phytomedicine, Phyto-chemistry and Bio-computing Research Laboratory, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Dorcas I Akinloye
- Department of Biochemistry, Phytomedicine, Phyto-chemistry and Bio-computing Research Laboratory, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Mariam A Lawal
- Department of Biochemistry, Phytomedicine, Phyto-chemistry and Bio-computing Research Laboratory, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Mujidat T Shittu
- Department of Biochemistry, Phytomedicine, Phyto-chemistry and Bio-computing Research Laboratory, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Damilohun S Metibemu
- Department of Biochemistry, Phytomedicine, Phyto-chemistry and Bio-computing Research Laboratory, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.,Department of Biochemistry, Faculty of Science, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| |
Collapse
|
40
|
(-)-Kusunokinin inhibits breast cancer in N-nitrosomethylurea-induced mammary tumor rats. Eur J Pharmacol 2020; 882:173311. [PMID: 32619673 DOI: 10.1016/j.ejphar.2020.173311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 01/10/2023]
Abstract
Natural and synthetic (-)-kusunokinin inhibited breast cancer, colon cancer and cholangiocarcinoma cells at the G2/M phase and induced apoptosis. However, there is no report on the action and adverse effects of (-)-kusunokinin in animal models. In this study, we investigated the cytotoxic effect of (-)-kusunokinin from Piper nigrum on cancer cells. NMU-induced rat mammary tumors, an ER positive breast cancer model, were treated with (-)-kusunokinin. Proteins of interest related to cell cycle, angiogenesis, migration and signaling proteins were detected in tumor tissues. Results showed that (-)-kusunokinin exhibited strong cytotoxicity against breast, colon and lung cancer cells and caused low toxicity against normal fibroblast cells. For in vivo study, 7.0 mg/kg and 14.0 mg/kg of (-)-kusunokinin reduced tumor growth without side effects on body weight, internal organs and bone marrow. Combination of (-)-kusunokinin with a low effective dose of doxorubicin significantly inhibited tumor growth and provoked cell death in cancer tissues. Mechanistically, 14.0 mg/kg of (-)-kusunokinin decreased cell proliferation (c-Src, PI3K, Akt, p-Erk1/2 and c-Myc), cell cycle (E2f-1, cyclin B1 and CDK1), and metastasis (E-cadherin, MMP-2 and MMP-9) proteins in tumor tissues, which supports its anticancer effect. We further confirmed the antimigration effect of (-)-kusunokinin; the results show that this compound inhibited breast cancer cell (MCF-7) migration in a dose-dependent manner. In conclusion, the results suggest that 14 mg/kg of (-)-kusunokinin inhibited tumors through the reduction of signaling proteins and their downstream molecules. Therefore, (-)-kusunokinin becomes an intriguing candidate for cancer treatment as it provides a strong potency in cancer inhibition.
Collapse
|
41
|
Hao WC, Zhong QL, Pang WQ, Dian MJ, Li J, Han LX, Zhao WT, Zhang XL, Xiao SJ, Xiao D, Lin XL, Jia JS. MST4 inhibits human hepatocellular carcinoma cell proliferation and induces cell cycle arrest via suppression of PI3K/AKT pathway. J Cancer 2020; 11:5106-5117. [PMID: 32742458 PMCID: PMC7378920 DOI: 10.7150/jca.45822] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/29/2020] [Indexed: 01/13/2023] Open
Abstract
Objective: MST4 has exhibited functions in regulating cell polarity, Golgi apparatus, cell migration, and cancer. Mechanistically, it affects the activity of p-ERK, Hippo-YAP pathway and autophagy. The aim of this study is to further examine the functions of MST4 in hepatocellular carcinoma (HCC) and the underlying mechanism. Methods: The expression level of MST4 in HCC and noncancer adjacent liver tissues was determined by qRT-PCR and immunohistochemistry staining. Wild-type MST4 (MST4) and a dominant-negative mutant of MST4 (dnMST4) were overexpressed in HCC cell lines, respectively. CCK-8 assay, EdU incorporation assay, and soft agar assay were used to determine cell proliferation in vitro. The xenograft mouse model was employed to determine HCC cell growth in vivo. Cell cycle analysis was performed by PI staining and flow cytometry. The expression of key members in PI3K/AKT pathway was detected by Western blot analysis. Results: In our study, we reported new evidence that MST4 was frequently down-regulated in HCC tissues. Gain-of-function and loss-of-function experiments demonstrated that MST4 negatively regulated in vitro HCC cell proliferation. Additionally, MST4 overexpression suppressed Bel-7404 cell tumor growth in nude mice. Further experiments revealed that the growth-inhibitory effect of MST4 overexpression was partly due to a G1-phase cell cycle arrest. Importantly, mechanistic investigations suggested that dnMST4 significantly elevated the phosphorylation levels of key members of PI3K/AKT pathway, and the selective PI3K inhibitor LY294002 can reverse the proliferation-promoting effect of dnMST4. Conclusions: Overall, our results provide a new insight into the clinical significance, functions and molecular mechanism of MST4 in HCC, suggesting that MST4 might have a potential therapeutic value in the HCC clinical treatment.
Collapse
Affiliation(s)
- Wei-Chao Hao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Qiu-Ling Zhong
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wen-Qian Pang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mei-Juan Dian
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Radiotherapy Center, the First People's Hospital of Chenzhou, Chenzhou 423000, China
| | - Liu-Xin Han
- The third people's hospital of Kunming, Kunming 650041, China
| | - Wen-Tao Zhao
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumour Hospital of Yunnan Province), Kunming 650118, China
| | - Xiao-Ling Zhang
- Department of Physiology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China
| | - Sheng-Jun Xiao
- Department of Pathology, the Second Affiliated Hospital, Guilin Medical University, Guilin 541199, China
| | - Dong Xiao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Lin Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jun-Shuang Jia
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
42
|
Chen W, Chen Z, Zhang M, Tian Y, Liu L, Lan R, Zeng G, Fu X, Ru G, Liu W, Chen L, Fan Z. GATA6 Exerts Potent Lung Cancer Suppressive Function by Inducing Cell Senescence. Front Oncol 2020; 10:824. [PMID: 32596145 PMCID: PMC7304445 DOI: 10.3389/fonc.2020.00824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/28/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Tumor suppressor genes (TSGs) play a critical role in restricting tumorigenesis and impact the therapeutic effect of various treatments. However, TSGs remain to be systemically determined in lung cancer. Here, we identified GATA6 as a potent lung cancer TSG. GATA6 inhibited lung cancer cell growth in vitro and tumorigenesis in vivo. Mechanistically, GATA6 upregulated p53 and p21 mRNA while it inhibited AKT activation to stabilize p21 protein, thus inducing lung cancer cell senescence. Furthermore, we showed that ectopic expression of GATA6 led to dramatic slowdown of growth rate of established lung tumor xenograft in vivo.
Collapse
Affiliation(s)
- Wensheng Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhipeng Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Miaomiao Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yahui Tian
- Key Laboratory of Functional Protein Research of Guangdong Higher Education, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lu Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ruirui Lan
- International Department, The Affiliated High School of SCNU, Guangzhou, China
| | - Guandi Zeng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaolong Fu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Guoqing Ru
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Wanting Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Liang Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhenzhen Fan
- Key Laboratory of Functional Protein Research of Guangdong Higher Education, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
43
|
Herbener VJ, Burster T, Goreth A, Pruss M, von Bandemer H, Baisch T, Fitzel R, Siegelin MD, Karpel-Massler G, Debatin KM, Westhoff MA, Strobel H. Considering the Experimental use of Temozolomide in Glioblastoma Research. Biomedicines 2020; 8:E151. [PMID: 32512726 PMCID: PMC7344626 DOI: 10.3390/biomedicines8060151] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022] Open
Abstract
Temozolomide (TMZ) currently remains the only chemotherapeutic component in the approved treatment scheme for Glioblastoma (GB), the most common primary brain tumour with a dismal patient's survival prognosis of only ~15 months. While frequently described as an alkylating agent that causes DNA damage and thus-ultimately-cell death, a recent debate has been initiated to re-evaluate the therapeutic role of TMZ in GB. Here, we discuss the experimental use of TMZ and highlight how it differs from its clinical role. Four areas could be identified in which the experimental data is particularly limited in its translational potential: 1. transferring clinical dosing and scheduling to an experimental system and vice versa; 2. the different use of (non-inert) solvent in clinic and laboratory; 3. the limitations of established GB cell lines which only poorly mimic GB tumours; and 4. the limitations of animal models lacking an immune response. Discussing these limitations in a broader biomedical context, we offer suggestions as to how to improve transferability of data. Finally, we highlight an underexplored function of TMZ in modulating the immune system, as an example of where the aforementioned limitations impede the progression of our knowledge.
Collapse
Affiliation(s)
- Verena J. Herbener
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Alicia Goreth
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Maximilian Pruss
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, D-40225 Duesseldorf, Germany;
- Department of Neurosurgery, University Medical Center Ulm, D-89081 Ulm, Germany;
| | - Hélène von Bandemer
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Tim Baisch
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Rahel Fitzel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Markus D. Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA;
| | - Georg Karpel-Massler
- Department of Neurosurgery, University Medical Center Ulm, D-89081 Ulm, Germany;
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| |
Collapse
|
44
|
Uko NE, Güner OF, Matesic DF, Bowen JP. Akt Pathway Inhibitors. Curr Top Med Chem 2020; 20:883-900. [DOI: 10.2174/1568026620666200224101808] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022]
Abstract
Cancer is a devastating disease that has plagued humans from ancient times to this day. After
decades of slow research progress, promising drug development, and the identification of new targets,
the war on cancer was launched, in 1972. The P13K/Akt pathway is a growth-regulating cellular signaling
pathway, which in many human cancers is over-activated. Studies have demonstrated that a decrease
in Akt activity by Akt inhibitors is associated with a reduction in tumor cell proliferation. There have
been several promising drug candidates that have been studied, including but not limited to ipatasertib
(RG7440), 1; afuresertib (GSK2110183), 2; uprosertib (GSK2141795), 3; capivasertib (AZD5363), 4;
which reportedly bind to the ATP active site and inhibit Akt activity, thus exerting cytotoxic and antiproliferative
activities against human cancer cells. For most of the compounds discussed in this review,
data from preclinical studies in various cancers suggest a mechanistic basis involving hyperactivated
Akt signaling. Allosteric inhibitors are also known to alter the activity of kinases. Perifosine (KRX-
0401), 5, an alkylphospholipid, is known as the first allosteric Akt inhibitor to enter clinical development
and is mechanistically characterized as a PH-domain dependent inhibitor, non-competitive with
ATP. This results in a reduction in Akt enzymatic and cellular activities. Other small molecule (MK-
2206, 6, PHT-427, Akti-1/2) inhibitors with a similar mechanism of action, alter Akt activity through the
suppression of cell growth mediated by the inhibition of Akt membrane localization and subsequent activation.
The natural product solenopsin has been identified as an inhibitor of Akt. A few promising solenopsin
derivatives have emerged through pharmacophore modeling, energy-based calculations, and
property predictions.
Collapse
Affiliation(s)
- Nne E. Uko
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| | - Osman F. Güner
- Department of Chemistry and Physics, Santa Rosa Junior College, Santa Rosa, CA, United States
| | - Diane F. Matesic
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| | - J. Phillip Bowen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| |
Collapse
|
45
|
Zamagni A, Pasini A, Pirini F, Ravaioli S, Giordano E, Tesei A, Calistri D, Ulivi P, Fabbri F, Foca F, Delmonte A, Molinari C. CDKN1A upregulation and cisplatin‑pemetrexed resistance in non‑small cell lung cancer cells. Int J Oncol 2020; 56:1574-1584. [PMID: 32236605 PMCID: PMC7170038 DOI: 10.3892/ijo.2020.5024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/27/2020] [Indexed: 01/10/2023] Open
Abstract
Cisplatin-pemetrexed is a frequently adopted first-line treatment for patients with advanced non-small cell lung cancer (NSCLC) ineligible for biological therapy, notwithstanding its limited efficacy. In the present study, the RAL cell line, an epidermal growth factor receptor (EGFR)-wild-type, p53- and KRAS-mutated model of NSCLC, was used to investigate novel biomarkers of resistance to this treatment. Cells were analyzed 96 h (96 h-post wo) and 21 days (21 days-post wo) after the combined treatment washout. Following an initial moderate sensitivity to the treatment, the cell growth proliferative capability had fully recovered. Gene expression analysis of the resistant surviving cells revealed a significant upregulation of CDKN1A expression in the cells at 96-h post-wo and, although to a lesser extent, in the cells at 21 days-post wo, accompanied by an enrichment of acetylated histone H3 in its promoter region. CDKN1A was also upregulated at the protein level, being mainly detected in the cytoplasm of the cells at 96 h-post wo. A marked increase in the number of apoptotic cells, together with a significant G1 phase block, were observed at 96-h post wo in the cells in which CDKN1A was knocked down, suggesting its involvement in the modulation of the response of RAL cells to the drug combination. On the whole, these data suggest that CDKN1A plays a role in the response to the cisplatin-pemetrexed combination in advanced KRAS-mutated NSCLC, thus suggesting that it may be used as a promising predictive marker.
Collapse
Affiliation(s)
- Alice Zamagni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Alice Pasini
- Laboratory of Cellular and Molecular Engineering 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'G. Marconi' (DEI), University of Bologna, Campus of Cesena, 47522 Cesena, Italy
| | - Francesca Pirini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Sara Ravaioli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Emanuele Giordano
- Laboratory of Cellular and Molecular Engineering 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'G. Marconi' (DEI), University of Bologna, Campus of Cesena, 47522 Cesena, Italy
| | - Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Daniele Calistri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Flavia Foca
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Angelo Delmonte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Chiara Molinari
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| |
Collapse
|
46
|
Russell MA. Synemin Redefined: Multiple Binding Partners Results in Multifunctionality. Front Cell Dev Biol 2020; 8:159. [PMID: 32258037 PMCID: PMC7090255 DOI: 10.3389/fcell.2020.00159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Historically synemin has been studied as an intermediate filament protein. However, synemin also binds the type II regulatory (R) subunit α of protein kinase A (PKA) and protein phosphatase type 2A, thus participating in the PKA and phosphoinositide 3-kinase (PI3K)-Akt and signaling pathways. In addition, recent studies using transgenic mice indicate that a significant function of synemin is its role in signaling pathways in various tissues, including the heart. Recent clinical reports have shown that synemin mutations led to multiple cases of dilated cardiomyopathy. Additionally, a single case of the rare condition ulnar-mammary-like syndrome with left ventricular tachycardia due to a mutation in the synemin gene (SYNM) has been reported. Therefore, this review uses these recent studies to provide a new framework for detailed discussions on synemin tissue distribution, binding partners and synemin in disease. Differences between α- and β-synemin are highlighted. The studies presented here indicate that while synemin does function as an intermediate filament protein, it is unique among this large family of proteins as it is also a regulator of signaling pathways and a crosslinker. Also evident is that the dominant function(s) are isoform-, developmental-, and tissue-specific.
Collapse
Affiliation(s)
- Mary A Russell
- Department of Biological Sciences, Kent State University at Trumbull, Warren, OH, United States
| |
Collapse
|
47
|
Hoxhaj G, Manning BD. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer 2020; 20:74-88. [PMID: 31686003 PMCID: PMC7314312 DOI: 10.1038/s41568-019-0216-7] [Citation(s) in RCA: 1114] [Impact Index Per Article: 278.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
The altered metabolic programme of cancer cells facilitates their cell-autonomous proliferation and survival. In normal cells, signal transduction pathways control core cellular functions, including metabolism, to couple the signals from exogenous growth factors, cytokines or hormones to adaptive changes in cell physiology. The ubiquitous, growth factor-regulated phosphoinositide 3-kinase (PI3K)-AKT signalling network has diverse downstream effects on cellular metabolism, through either direct regulation of nutrient transporters and metabolic enzymes or the control of transcription factors that regulate the expression of key components of metabolic pathways. Aberrant activation of this signalling network is one of the most frequent events in human cancer and serves to disconnect the control of cell growth, survival and metabolism from exogenous growth stimuli. Here we discuss our current understanding of the molecular events controlling cellular metabolism downstream of PI3K and AKT and of how these events couple two major hallmarks of cancer: growth factor independence through oncogenic signalling and metabolic reprogramming to support cell survival and proliferation.
Collapse
Affiliation(s)
- Gerta Hoxhaj
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Brendan D Manning
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
48
|
The Cell-Cycle Regulatory Protein p21 CIP1/WAF1 Is Required for Cytolethal Distending Toxin (Cdt)-Induced Apoptosis. Pathogens 2020; 9:pathogens9010038. [PMID: 31906446 PMCID: PMC7168616 DOI: 10.3390/pathogens9010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/22/2019] [Accepted: 12/28/2019] [Indexed: 12/27/2022] Open
Abstract
The Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) induces lymphocytes to undergo cell-cycle arrest and apoptosis; toxicity is dependent upon the active Cdt subunit, CdtB. We now demonstrate that p21CIP1/WAF1 is critical to Cdt-induced apoptosis. Cdt induces increases in the levels of p21CIP1/WAF1 in lymphoid cell lines, Jurkat and MyLa, and in primary human lymphocytes. These increases were dependent upon CdtB’s ability to function as a phosphatidylinositol (PI) 3,4,5-triphosphate (PIP3) phosphatase. It is noteworthy that Cdt-induced increases in the levels of p21CIP1/WAF1 were accompanied by a significant decline in the levels of phosphorylated p21CIP1/WAF1. The significance of Cdt-induced p21CIP1/WAF1 increase was assessed by preventing these changes with a two-pronged approach; pre-incubation with the novel p21CIP1/WAF1 inhibitor, UC2288, and development of a p21CIP1/WAF1-deficient cell line (Jurkatp21−) using clustered regularly interspaced short palindromic repeats (CRISPR)/cas9 gene editing. UC2288 blocked toxin-induced increases in p21CIP1/WAF1, and JurkatWT cells treated with this inhibitor exhibited reduced susceptibility to Cdt-induced apoptosis. Likewise, Jurkatp21− cells failed to undergo toxin-induced apoptosis. The linkage between Cdt, p21CIP1/WAF1, and apoptosis was further established by demonstrating that Cdt-induced increases in levels of the pro-apoptotic proteins Bid, Bax, and Bak were dependent upon p21CIP1/WAF1 as these changes were not observed in Jurkatp21− cells. Finally, we determined that the p21CIP1/WAF1 increases were dependent upon toxin-induced increases in the level and activity of the chaperone heat shock protein (HSP) 90. We propose that p21CIP1/WAF1 plays a key pro-apoptotic role in mediating Cdt-induced toxicity.
Collapse
|
49
|
Signaling Determinants of Glioma Cell Invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:129-149. [PMID: 32034712 DOI: 10.1007/978-3-030-30651-9_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tumor cell invasiveness is a critical challenge in the clinical management of glioma patients. In addition, there is accumulating evidence that current therapeutic modalities, including anti-angiogenic therapy and radiotherapy, can enhance glioma invasiveness. Glioma cell invasion is stimulated by both autocrine and paracrine factors that act on a large array of cell surface-bound receptors. Key signaling elements that mediate receptor-initiated signaling in the regulation of glioblastoma invasion are Rho family GTPases, including Rac, RhoA and Cdc42. These GTPases regulate cell morphology and actin dynamics and stimulate cell squeezing through the narrow extracellular spaces that are typical of the brain parenchyma. Transient attachment of cells to the extracellular matrix is also necessary for glioblastoma cell invasion. Interactions with extracellular matrix components are mediated by integrins that initiate diverse intracellular signalling pathways. Key signaling elements stimulated by integrins include PI3K, Akt, mTOR and MAP kinases. In order to detach from the tumor mass, glioma cells secrete proteolytic enzymes that cleave cell surface adhesion molecules, including CD44 and L1. Key proteases produced by glioma cells include uPA, ADAMs and MMPs. Increased understanding of the molecular mechanisms that control glioma cell invasion has led to the identification of molecular targets for therapeutic intervention in this devastating disease.
Collapse
|
50
|
Baruah T, Hauneihkim K, Kma L. Naringenin sensitizes lung cancer NCI-H23 cells to radiation by downregulation of akt expression and metastasis while promoting apoptosis. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_535_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|