1
|
Ye Y, Leng M, Chai S, Yang L, Ren L, Wan W, Wang H, Li L, Li C, Meng Z. Antiplatelet effects of the CEACAM1-derived peptide QDTT. Platelets 2024; 35:2308635. [PMID: 38345065 DOI: 10.1080/09537104.2024.2308635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) restricts platelet activation via platelet collagen receptor GPVI/FcRγ-chain. In this study, screening against collagen-induced platelet aggregation was performed to identify functional CEACAM1 extracellular domain fragments. CEACAM1 fragments, including Ala-substituted peptides, were synthesized. Platelet assays were conducted on healthy donor samples for aggregation, cytotoxicity, adhesion, spreading, and secretion. Mice were used for tail bleeding and FeCl3-induced thrombosis experiments. Clot retraction was assessed using platelet-rich plasma. Extracellular segments of CEACAM1 and A1 domain-derived peptide QDTT were identified, while N, A2, and B domains showed no involvement. QDTT inhibited platelet aggregation. Ala substitution for essential amino acids (Asp139, Thr141, Tyr142, Trp144, and Trp145) in the QDTT sequence abrogated collagen-induced aggregation inhibition. QDTT also suppressed platelet secretion and "inside-out" GP IIb/IIIa activation by convulxin, along with inhibiting PI3K/Akt pathways. QDTT curtailed FeCl3-induced mesenteric thrombosis without significantly prolonging bleeding time, implying the potential of CEACAM1 A1 domain against platelet activation without raising bleeding risk, thus paving the way for novel antiplatelet drugs.
Collapse
Affiliation(s)
- Yujia Ye
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Min Leng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Shengjie Chai
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lihong Yang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Longcheng Ren
- Cardiovascular Department, Tengchong Hospital of Traditional Chinese Medicine, Tengchong, PR China
| | - Wen Wan
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Huawei Wang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Longjun Li
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Chaozhong Li
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Zhaohui Meng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| |
Collapse
|
2
|
Yi E, Go J, Yun SH, Lee SE, Kwak J, Kim SW, Kim HS. CEACAM1-engineered MSCs have a broad spectrum of immunomodulatory functions and therapeutic potential via cell-to-cell interaction. Biomaterials 2024; 311:122667. [PMID: 38878480 DOI: 10.1016/j.biomaterials.2024.122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/22/2024] [Accepted: 06/12/2024] [Indexed: 08/06/2024]
Abstract
Mesenchymal stem cells (MSCs) have garnered attention for their regenerative and immunomodulatory capabilities in clinical trials for various diseases. However, the effectiveness of MSC-based therapies, especially for conditions like graft-versus-host disease (GvHD), remains uncertain. The cytokine interferon (IFN)-γ has been known to enhance the immunosuppressive properties of MSCs through cell-to-cell interactions and soluble factors. In this study, we observed that IFN-γ-treated MSCs upregulated the expression of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), associated with immune evasion through the inhibition of natural killer (NK) cell cytotoxicity. To co-opt this immunomodulatory function, we generated MSCs overexpressing CEACAM1 and found that CEACAM1-engineered MSCs significantly reduced NK cell activation and cytotoxicity via cell-to-cell interaction, independent of NKG2D ligand regulation. Furthermore, CEACAM1-engineered MSCs effectively inhibited the proliferation and activation of T cells along with the inflammatory responses of monocytes. In a humanized GvHD mouse model, CEACAM1-MSCs, particularly CEACAM1-4S-MSCs, demonstrated therapeutic potential by improving survival and alleviating symptoms. These findings suggest that CEACAM1 expression on MSCs contributes to MSC-mediated regulation of immune responses and that CEACAM1-engineered MSC could have therapeutic potential in conditions involving immune dysregulation.
Collapse
Affiliation(s)
- Eunbi Yi
- Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea; Stem Cell Immunomodulation Research Center (SCIRC), University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jinyoung Go
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea; Stem Cell Immunomodulation Research Center (SCIRC), University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - So Hyeon Yun
- Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Sang Eun Lee
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea; Stem Cell Immunomodulation Research Center (SCIRC), University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jihye Kwak
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam, Republic of Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea; Stem Cell Immunomodulation Research Center (SCIRC), University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Hun Sik Kim
- Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea; Stem Cell Immunomodulation Research Center (SCIRC), University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
3
|
CEACAMS 1, 5, and 6 in disease and cancer: interactions with pathogens. Genes Cancer 2023; 14:12-29. [PMID: 36741860 PMCID: PMC9891707 DOI: 10.18632/genesandcancer.230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The CEA family comprises 18 genes and 11 pseudogenes located at chromosome 19q13.2 and is divided into two main groups: cell surface anchored CEA-related cell adhesion molecules (CEACAMs) and the secreted pregnancy-specific glycoproteins (PSGs). CEACAMs are highly glycosylated cell surface anchored, intracellular, and intercellular signaling molecules with diverse functions, from cell differentiation and transformation to modulating immune responses associated with infection, inflammation, and cancer. In this review, we explore current knowledge surrounding CEACAM1, CEACAM5, and CEACAM6, highlight their pathological significance in the areas of cancer biology, immunology, and inflammatory disease, and describe the utility of murine models in exploring questions related to these proteins.
Collapse
|
4
|
Chean J, Chen CJ, Gugiu G, Wong P, Cha S, Li H, Nguyen T, Bhatticharya S, Shively JE. Human CEACAM1-LF regulates lipid storage in HepG2 cells via fatty acid transporter CD36. J Biol Chem 2021; 297:101311. [PMID: 34666041 PMCID: PMC8577156 DOI: 10.1016/j.jbc.2021.101311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is expressed in the liver and secreted as biliary glycoprotein 1 (BGP1) via bile canaliculi (BCs). CEACAM1-LF is a 72 amino acid cytoplasmic domain mRNA splice isoform with two immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Ceacam1−/− or Ser503Ala transgenic mice have been shown to develop insulin resistance and nonalcoholic fatty liver disease; however, the role of the human equivalent residue, Ser508, in lipid dysregulation is unknown. Human HepG2 hepatocytes that express CEACAM1 and form BC in vitro were compared with CEACAM1−/− cells and CEACAM1−/− cells expressing Ser508Ala null or Ser508Asp phosphorylation mimic mutations or to phosphorylation null mutations in the tyrosine ITIMs known to be phosphorylated by the tyrosine kinase Src. CEACAM1−/− cells and the Ser508Asp and Tyr520Phe mutants strongly retained lipids, while Ser508Ala and Tyr493Phe mutants had low lipid levels compared with wild-type cells, indicating that the ITIM mutants phenocopied the Ser508 mutants. We found that the fatty acid transporter CD36 was upregulated in the S508A mutant, coexpressed in BCs with CEACAM1, co-IPed with CEACAM1 and Src, and when downregulated via RNAi, an increase in lipid droplet content was observed. Nuclear translocation of CD36 associated kinase LKB1 was increased sevenfold in the S508A mutant versus CEACAM1−/− cells and correlated with increased activation of CD36-associated kinase AMPK in CEACAM1−/− cells. Thus, while CEACAM1−/− HepG2 cells upregulate lipid storage similar to Ceacam1−/− in murine liver, the null mutation Ser508Ala led to decreased lipid storage, emphasizing evolutionary changes between the CEACAM1 genes in mouse and humans.
Collapse
Affiliation(s)
- Jennifer Chean
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Charng-Jui Chen
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Gabriel Gugiu
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Patty Wong
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Seung Cha
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Harry Li
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Tung Nguyen
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Supriyo Bhatticharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - John E Shively
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA.
| |
Collapse
|
5
|
Hu W, Bhattacharya S, Hong T, Wong P, Li L, Vaidehi N, Kalkum M, Shively JE. Structural characterization of a dimeric complex between the short cytoplasmic domain of CEACAM1 and the pseudo tetramer of S100A10-Annexin A2 using NMR and molecular dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183451. [PMID: 32835655 DOI: 10.1016/j.bbamem.2020.183451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/09/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
Abstract
AIIt, a heterotetramer of S100A10 (P11) and Annexin A2, plays a key role in calcium dependent, membrane associations with a variety of proteins. We previously showed that AIIt interacts with the short cytoplasmic domain (12 amino acids) of CEACAM1 (CEACAM1-SF). Since the cytoplasmic domains of CEACAM1 help regulate the formation of cis- or trans-dimers at the cell membrane, we investigated the possible role of their association with AIIt in this process. Using NMR and molecular dynamics, we show that AIIt and its pseudoheterodimer interacts with two molecules of short cytoplasmic domain isoform peptides, and that interaction depends on the binding motif 454-Phe-Gly-Lys-Thr-457 where Phe-454 binds in a hydrophobic pocket of AIIt, the null mutation Phe454Ala reduces binding by 2.5 fold, and the pseudophosphorylation mutant Thr457Glu reduces binding by three fold. Since these two residues in CEACAM1-SF were also found to play a role in the binding of calmodulin and G-actin at the membrane, we hypothesize a sequential set of three interactions are responsible for regulation of cis- to trans-dimerization of CEACAM1. The hydrophobic binding pocket in AIIt corresponds to a previously identified binding pocket for a peptide found in SMARCA3 and AHNAK, suggesting a conserved functional motif in AIIt allowing multiple proteins to reversibly interact with integral membrane proteins in a calcium dependent manner.
Collapse
Affiliation(s)
- Weidong Hu
- Department of Molecular Imaging and Therapy, , Beckman Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America
| | - Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America
| | - Teresa Hong
- Department of Molecular Imaging and Therapy, , Beckman Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America
| | - Patty Wong
- Department of Molecular Imaging and Therapy, , Beckman Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America
| | - Lin Li
- Department of Molecular Imaging and Therapy, , Beckman Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, , Beckman Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America
| | - John E Shively
- Department of Molecular Imaging and Therapy, , Beckman Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America.
| |
Collapse
|
6
|
Huang SC, Liang JY, Vu LV, Yu FH, Ou AC, Ou JP, Zhang HS, Burnett KM, Benz EJ. Epithelial-specific isoforms of protein 4.1R promote adherens junction assembly in maturing epithelia. J Biol Chem 2020; 295:191-211. [PMID: 31776189 PMCID: PMC6952607 DOI: 10.1074/jbc.ra119.009650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/20/2019] [Indexed: 01/13/2023] Open
Abstract
Epithelial adherens junctions (AJs) and tight junctions (TJs) undergo disassembly and reassembly during morphogenesis and pathological states. The membrane-cytoskeleton interface plays a crucial role in junctional reorganization. Protein 4.1R (4.1R), expressed as a diverse array of spliceoforms, has been implicated in linking the AJ and TJ complex to the cytoskeleton. However, which specific 4.1 isoform(s) participate and the mechanisms involved in junctional stability or remodeling remain unclear. We now describe a role for epithelial-specific isoforms containing exon 17b and excluding exon 16 4.1R (4.1R+17b) in AJs. 4.1R+17b is exclusively co-localized with the AJs. 4.1R+17b binds to the armadillo repeats 1-2 of β-catenin via its membrane-binding domain. This complex is linked to the actin cytoskeleton via a bispecific interaction with an exon 17b-encoded peptide. Exon 17b peptides also promote fodrin-actin complex formation. Expression of 4.1R+17b forms does not disrupt the junctional cytoskeleton and AJs during the steady-state or calcium-dependent AJ reassembly. Overexpression of 4.1R-17b forms, which displace the endogenous 4.1R+17b forms at the AJs, as well as depletion of the 4.1R+17b forms both decrease junctional actin and attenuate the recruitment of spectrin to the AJs and also reduce E-cadherin during the initial junctional formation of the AJ reassembly process. Expressing 4.1R+17b forms in depleted cells rescues junctional localization of actin, spectrin, and E-cadherin assembly at the AJs. Together, our results identify a critical role for 4.1R+17b forms in AJ assembly and offer additional insights into the spectrin-actin-4.1R-based membrane skeleton as an emerging regulator of epithelial integrity and remodeling.
Collapse
Affiliation(s)
- Shu-Ching Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115.
| | - Jia Y Liang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Long V Vu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Faye H Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Alexander C Ou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Jennie Park Ou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Henry S Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Kimberly M Burnett
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Edward J Benz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115; Department of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts 02115; Dana-Farber/Harvard Cancer Center, Boston, Massachusetts 02115
| |
Collapse
|
7
|
Size Matters: The Functional Role of the CEACAM1 Isoform Signature and Its Impact for NK Cell-Mediated Killing in Melanoma. Cancers (Basel) 2019; 11:cancers11030356. [PMID: 30871206 PMCID: PMC6468645 DOI: 10.3390/cancers11030356] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/21/2019] [Accepted: 03/09/2019] [Indexed: 12/22/2022] Open
Abstract
Malignant melanoma is the most aggressive and treatment resistant type of skin cancer. It is characterized by continuously rising incidence and high mortality rate due to its high metastatic potential. Various types of cell adhesion molecules have been implicated in tumor progression in melanoma. One of these, the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), is a multi-functional receptor protein potentially expressed in epithelia, endothelia, and leukocytes. CEACAM1 often appears in four isoforms differing in the length of their extracellular and intracellular domains. Both the CEACAM1 expression in general, and the ratio of the expressed CEACAM1 splice variants appear very dynamic. They depend on both the cell activation stage and the cell growth phase. Interestingly, normal melanocytes are negative for CEACAM1, while melanomas often show high expression. As a cell–cell communication molecule, CEACAM1 mediates the direct interaction between tumor and immune cells. In the tumor cell this interaction leads to functional inhibitions, and indirectly to decreased cancer cell immunogenicity by down-regulation of ligands of the NKG2D receptor. On natural killer (NK) cells it inhibits NKG2D-mediated cytolysis and signaling. This review focuses on novel mechanistic insights into CEACAM1 isoforms for NK cell-mediated immune escape mechanisms in melanoma, and their clinical relevance in patients suffering from malignant melanoma.
Collapse
|
8
|
Ghazarian H, Hu W, Mao A, Nguyen T, Vaidehi N, Sligar S, Shively JE. NMR analysis of free and lipid nanodisc anchored CEACAM1 membrane proximal peptides with Ca 2+/CaM. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:787-797. [PMID: 30639287 DOI: 10.1016/j.bbamem.2019.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/16/2018] [Accepted: 01/08/2019] [Indexed: 11/28/2022]
Abstract
CEACAM1, a homotypic transmembrane receptor with 12 or 72 amino acid cytosolic domain isoforms, is converted from inactive cis-dimers to active trans-dimers by calcium-calmodulin (Ca2+/CaM). Previously, the weak binding of Ca2+/CaM to the human 12 AA cytosolic domain was studied using C-terminal anchored peptides. We now show the binding of 15N labeled Phe-454 cytosolic domain peptides in solution or membrane anchored using NMR demonstrates a significant role for the lipid bilayer. Although binding is increased by the mutation Phe454Ala, this mutation was previously shown to abrogate actin binding. On the other hand, Ca2+/CaM binding is abrogated by phosphorylation of nearby Thr-457, a post-translation modification required for actin binding and subsequent in vitro lumen formation. Binding of Ca2+/CaM to a membrane proximal peptide from the long 72 AA cytosolic domain anchored to lipid nanodiscs was very weak compared to lipid free conditions, suggesting membrane specific effects between the two isoforms. NMR analysis of 15N labeled Ca2+/CaM with unlabeled peptides showed the C-lobe of Ca2+/CaM is involved in peptide interactions, and hydrophobic residues such as Met-109, Val-142 and Met-144 play important roles in binding peptide. This information was incorporated into transmembrane models of CEACAM1 binding to Ca2+/CaM. The lack of Ca2+/CaM binding to phosphorylated Thr-457, a residue we have previously shown to be phosphorylated by CaMK2D, also dependent on Ca2+/CaM, suggests stepwise binding of the cytosolic domain first to Ca2+/CaM and then to actin.
Collapse
Affiliation(s)
- Haike Ghazarian
- Department of Molecular Imaging and Therapy, Diabetes, Metabolism and Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America; City of Hope Irell and Manella Graduate School of Biological Sciences, 1450 East Duarte road, Duarte, CA 91010, United States of America
| | - Weidong Hu
- Department of Molecular Imaging and Therapy, Diabetes, Metabolism and Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America
| | - Allen Mao
- Department of Molecular Imaging and Therapy, Diabetes, Metabolism and Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America
| | - Tung Nguyen
- Department of Molecular Imaging and Therapy, Diabetes, Metabolism and Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America
| | - Nagarajan Vaidehi
- Department of Molecular Imaging and Therapy, Diabetes, Metabolism and Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America
| | - Stephen Sligar
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, United States of America
| | - John E Shively
- Department of Molecular Imaging and Therapy, Diabetes, Metabolism and Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America.
| |
Collapse
|
9
|
Horst AK, Najjar SM, Wagener C, Tiegs G. CEACAM1 in Liver Injury, Metabolic and Immune Regulation. Int J Mol Sci 2018; 19:ijms19103110. [PMID: 30314283 PMCID: PMC6213298 DOI: 10.3390/ijms19103110] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a transmembrane glycoprotein that is expressed on epithelial, endothelial and immune cells. CEACAM1 is a differentiation antigen involved in the maintenance of epithelial polarity that is induced during hepatocyte differentiation and liver regeneration. CEACAM1 regulates insulin sensitivity by promoting hepatic insulin clearance, and controls liver tolerance and mucosal immunity. Obese insulin-resistant humans with non-alcoholic fatty liver disease manifest loss of hepatic CEACAM1. In mice, deletion or functional inactivation of CEACAM1 impairs insulin clearance and compromises metabolic homeostasis which initiates the development of obesity and hepatic steatosis and fibrosis with other features of non-alcoholic steatohepatitis, and adipogenesis in white adipose depot. This is followed by inflammation and endothelial and cardiovascular dysfunctions. In obstructive and inflammatory liver diseases, soluble CEACAM1 is shed into human bile where it can serve as an indicator of liver disease. On immune cells, CEACAM1 acts as an immune checkpoint regulator, and deletion of Ceacam1 gene in mice causes exacerbation of inflammation and hyperactivation of myeloid cells and lymphocytes. Hence, hepatic CEACAM1 resides at the central hub of immune and metabolic homeostasis in both humans and mice. This review focuses on the regulatory role of CEACAM1 in liver and biliary tract architecture in health and disease, and on its metabolic role and function as an immune checkpoint regulator of hepatic inflammation.
Collapse
Affiliation(s)
- Andrea Kristina Horst
- Institute of Experimental Immunology and Hepatology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Irvine Hall, 1 Ohio University, Athens, OH 45701-2979, USA.
- The Diabetes Institute, Heritage College of Osteopathic Medicine, Irvine Hall, 1 Ohio University, Athens, OH 45701-2979, USA.
| | - Christoph Wagener
- University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| |
Collapse
|
10
|
Chean J, Chen CJ, Shively JE. ETS transcription factor ELF5 induces lumen formation in a 3D model of mammary morphogenesis and its expression is inhibited by Jak2 inhibitor TG101348. Exp Cell Res 2017; 359:62-75. [PMID: 28800960 DOI: 10.1016/j.yexcr.2017.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/02/2017] [Accepted: 08/05/2017] [Indexed: 02/06/2023]
Abstract
The loss of expression of a single gene can revert normal tissue to a malignant phenotype. For example, while normal breast has high lumenal expression of CEACAM1, the majority of breast cancers exhibit the early loss of this gene with the concurrent loss of their lumenal phenotype. MCF7 cells that lack CEACAM1 expression and fail to form lumena in 3D culture, regain the normal phenotype when transfected with CEACAM1. In order to probe the mechanism of this gain of function, we treated these cells with the clinically relevant Jak2 inhibitor TG101348 (TG), expecting that disruption of the prolactin receptor signaling pathway would interfere with the positive effects of transfection of MCF7 cells with CEACAM1. Indeed, lumen formation was inhibited, resulting in the down regulation of a set of genes, likely involved in the complex process of lumen formation. As expected, inhibition of the expression of many of these genes also inhibited lumen formation, confirming their involvement in a single pathway. Among the genes identified by the inhibition assay, ETS transcription factor ELF5 stood out, since it has been identified as a master regulator of mammary morphogenesis, and is associated with prolactin receptor signaling. When ELF5 was transfected into the parental MCF7 cells that lack CEACAM1, lumen formation was restored, indicating that ELF5 can replace CEACAM1 in this model system of lumenogenesis. We conclude that the event(s) that led to the loss of expression of CEACAM1 is epistatic in that multiple genes associated with a critical pathway were affected, but that restoration of the normal phenotype can be achieved with reactivation of certain genes at various nodal points in tissue morphogenesis.
Collapse
Affiliation(s)
- Jennifer Chean
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, 1450 E. Duarte Road, Duarte, CA 91010, USA
| | - Charng-Jui Chen
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, 1450 E. Duarte Road, Duarte, CA 91010, USA
| | - John E Shively
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, 1450 E. Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
11
|
Zhou M, Jin Z, Liu Y, He Y, Du Y, Yang C, Wang Y, Hu J, Cui L, Gao F, Cao M. Up-regulation of carcinoembryonic antigen-related cell adhesion molecule 1 in gastrointestinal cancer and its clinical relevance. Acta Biochim Biophys Sin (Shanghai) 2017; 49:737-743. [PMID: 28655144 PMCID: PMC7109844 DOI: 10.1093/abbs/gmx060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Indexed: 11/24/2022] Open
Abstract
Serum carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is dysregulated in various malignant tumors and has been associated with tumor progression. However, the expression and regulatory mechanisms of serum CEACAM1 in gastrointestinal cancer are still unclear. The expression ratio of the CEACAM1-L and CEACAM1-S isoforms has seldom been investigated in gastrointestinal cancer. In this study, we intended to explore the expression and diagnostic value of CEACAM1 in gastrointestinal cancer. Serum CEACAM1 levels were measured by enzyme-linked immunosorbent assay. The protein expression and distribution of CEACAM1 in tumors were examined by immunohistochemical staining. The expression patterns and ratio of CEACAM1-L/S were analyzed by reverse transcription-polymerase chain reaction. The results showed that serum CEACAM1 levels were significantly higher in cancer patients than in healthy controls. CEACAM1 was found in secreted forms within the neoplastic glands, and its expression was more intense at the tumor invasion front. The CEACAM1-L/S (L:S) ratios were up-regulated during tumorigenesis. Our data suggest that the serum level of CEACAM1 may be used to discriminate gastrointestinal cancer patients from health controls.
Collapse
Affiliation(s)
- Muqing Zhou
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhiming Jin
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yiwen Liu
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yiqing He
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yan Du
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Cuixia Yang
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yingzhi Wang
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jiajie Hu
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Lian Cui
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Feng Gao
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- Correspondence address. Tel: +86-21-64369181; E-mail: (F.G.)/Tel: +86-21-64368564; E-mail: (M.C.)
| | - Manlin Cao
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- Correspondence address. Tel: +86-21-64369181; E-mail: (F.G.)/Tel: +86-21-64368564; E-mail: (M.C.)
| |
Collapse
|
12
|
The human antibody fragment DIATHIS1 specific for CEACAM1 enhances natural killer cell cytotoxicity against melanoma cell lines in vitro. J Immunother 2016; 38:357-70. [PMID: 26448580 PMCID: PMC4605278 DOI: 10.1097/cji.0000000000000100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Supplemental Digital Content is available in the text. Several lines of evidence show that de novo expression of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is strongly associated with reduced disease-free survival of patients affected by metastatic melanoma. Previously published investigations report that homophilic interactions between CEACAM1 expressed on natural killer (NK) cells and tumors inhibit the NK cell-mediated killing independently of major histocompatibility complex class I recognition. This biological property can be physiologically relevant in metastatic melanoma because of the increased CEACAM1 expression observed on NK cells from some patients. Moreover, this inhibitory mechanism in many cases might hinder the efficacy of immunotherapeutic treatments of CEACAM1+ malignancies because of tumor evasion by activated effector cells. In the present study, we designed an in vitro experimental model showing that the human single-chain variable fragment (scFv) DIATHIS1 specific for CEACAM1 is able to enhance the lytic machinery of NK cells against CEACAM1+ melanoma cells. The coincubation of the scFv DIATHIS1 with CEACAM1+ melanoma cells and NK-92 cell line significantly increases the cell-mediated cytotoxicity. Moreover, pretreatment of melanoma cells with scFv DIATHIS1 promotes the activation and the degranulation capacity of in vitro–expanded NK cells from healthy donors. It is interesting to note that the melanoma cell line MelC and the primary melanoma cells STA that respond better to DIATHIS1 treatment, express higher relative levels of CEACAM1-3L and CEACAM1-3S splice variants isoforms compared with Mel501 cells that are less responsive to DIATHIS1-induced NK cell–mediated cytotoxicity. Taken together, our results suggest that the fully human antibody fragment DIATHIS1 originated by biopanning approach from a phage antibody library may represent a relevant biotechnological platform to design and develop completely human antimelanoma therapeutics of biological origin.
Collapse
|
13
|
Nguyen T, Shively JE. Induction of Lumen Formation in a Three-dimensional Model of Mammary Morphogenesis by Transcriptional Regulator ID4: ROLE OF CaMK2D IN THE EPIGENETIC REGULATION OF ID4 GENE EXPRESSION. J Biol Chem 2016; 291:16766-76. [PMID: 27302061 DOI: 10.1074/jbc.m115.710160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Indexed: 01/19/2023] Open
Abstract
Concomitant loss of lumen formation and cell adhesion protein CEACAM1 is a hallmark feature of breast cancer. In a three-dimensional culture model, transfection of CEACAM1 into MCF7 breast cells can restore lumen formation by an unknown mechanism. ID4, a transcriptional regulator lacking a DNA binding domain, is highly up-regulated in CEACAM1-transfected MCF7 cells, and when down-regulated with RNAi, abrogates lumen formation. Conversely, when MCF7 cells, which fail to form lumena in a three-dimensional culture, are transfected with ID4, lumen formation is restored, demonstrating that ID4 may substitute for CEACAM1. After showing the ID4 promoter is hypermethylated in MCF7 cells but hypomethylated in MCF/CEACAM1 cells, ID4 expression was induced in MCF7 cells by agents affecting chromatin remodeling and methylation. Mechanistically, CaMK2D was up-regulated in CEACAM1-transfected cells, effecting phosphorylation of HDAC4 and its sequestration in the cytoplasm by the adaptor protein 14-3-3. CaMK2D also phosphorylates CEACAM1 on its cytoplasmic domain and mutation of these phosphorylation sites abrogates lumen formation. Thus, CEACAM1 is able to maintain the active transcription of ID4 by an epigenetic mechanism involving HDAC4 and CaMK2D, and the same kinase enables lumen formation by CEACAM1. Because ID4 can replace CEACAM1 in parental MCF7 cells, it must act downstream from CEACAM1 by inhibiting the activity of other transcription factors that would otherwise prevent lumen formation. This overall mechanism may be operative in other cancers, such as colon and prostate, where the down-regulation of CEACAM1 is observed.
Collapse
Affiliation(s)
- Tung Nguyen
- From the Department of Immunology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - John E Shively
- From the Department of Immunology, Beckman Research Institute of City of Hope, Duarte, California 91010
| |
Collapse
|
14
|
Kaposi's Sarcoma-Associated Herpesvirus Interleukin-6 Modulates Endothelial Cell Movement by Upregulating Cellular Genes Involved in Migration. mBio 2015; 6:e01499-15. [PMID: 26646010 PMCID: PMC4676281 DOI: 10.1128/mbio.01499-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of human Kaposi’s sarcoma, a tumor that arises from endothelial cells, as well as two B cell lymphoproliferative diseases, primary effusion lymphoma and multicentric Castleman’s disease. KSHV utilizes a variety of mechanisms to evade host immune responses and promote cellular transformation and growth in order to persist for the life of the host. A viral homolog of human interleukin-6 (hIL-6) named viral interleukin-6 (vIL-6) is encoded by KSHV and expressed in KSHV-associated cancers. Similar to hIL-6, vIL-6 is secreted, but the majority of vIL-6 is retained within the endoplasmic reticulum, where it can initiate functional signaling through part of the interleukin-6 receptor complex. We sought to determine how intracellular vIL-6 modulates the host endothelial cell environment by analyzing vIL-6’s impact on the endothelial cell transcriptome. vIL-6 significantly altered the expression of many cellular genes associated with cell migration. In particular, vIL-6 upregulated the host factor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) at the protein and message levels. CEACAM1 has been implicated in tumor invasion and metastasis and promotes migration and vascular remodeling in endothelial cells. We report that vIL-6 upregulates CEACAM1 by a STAT3-dependent mechanism and that CEACAM1 promotes vIL-6-mediated migration. Furthermore, latent and de novo KSHV infections of endothelial cells also induce CEACAM1 expression. Collectively, our data suggest that vIL-6 modulates endothelial cell migration by upregulating the expression of cellular factors, including CEACAM1. Kaposi’s sarcoma-associated herpesvirus (KSHV) is linked with the development of three human malignancies, Kaposi’s sarcoma, multicentric Castleman’s disease, and primary effusion lymphoma. KSHV expresses many factors that enable the virus to manipulate the host environment in order to persist and induce disease. The viral interleukin-6 (vIL-6) produced by KSHV is structurally and functionally homologous to the human cytokine interleukin-6, except that vIL-6 is secreted slowly and functions primarily from inside the host cell. To investigate the unique intracellular role of vIL-6, we analyzed the impact of vIL-6 on endothelial cell gene expression. We report that vIL-6 significantly alters the expression of genes associated with cell movement, including that for CEACAM1. The gene for CEACAM1 was upregulated by vIL-6 and by latent and primary KSHV infection and promotes vIL-6-mediated endothelial cell migration. This work advances the field’s understanding of vIL-6 function and its contribution to KSHV pathogenesis.
Collapse
|
15
|
Stein DC, LeVan A, Hardy B, Wang LC, Zimmerman L, Song W. Expression of Opacity Proteins Interferes with the Transmigration of Neisseria gonorrhoeae across Polarized Epithelial Cells. PLoS One 2015; 10:e0134342. [PMID: 26244560 PMCID: PMC4526573 DOI: 10.1371/journal.pone.0134342] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 07/08/2015] [Indexed: 11/18/2022] Open
Abstract
Neisseria gonorrhoeae (GC) establishes infection at the mucosal surface of the human genital tract, most of which is lined with polarized epithelial cells. GC can cause localized as well as disseminated infections, leading to various complications. GC constantly change their surface structures via phase and antigenic variation, which has been implicated as a means for GC to establish infection at various anatomic locations of male and female genital tracks. However, the exact contribution of each surface molecule to bacterial infectivity remains elusive due to their phase variation. Using a GC derivative that is genetically devoid of all opa genes (MS11∆Opa), this study shows that Opa expression interferes with GC transmigration across polarized human epithelial cells. MS11∆Opa transmigrates across polarized epithelial cells much faster and to a greater extent than MS11Opa+, while adhering at a similar level as MS11Opa+. When MS11Opa+, able to phase vary Opa expression, was inoculated, only those bacteria that turn off Opa expression transmigrate across the polarized epithelial monolayer. Similar to bacteria alone or co-cultured with non-polarized epithelial cells, MS11∆Opa fails to form large microcolonies at the apical surface of polarized epithelial cells. Apical inoculation of MS11Opa+, but not MS11∆Opa, induces the recruitment of the Opa host-cell receptor carcinoembryonic antigen–related cell adhesion molecules (CEACAMs) to the apical junction and the vicinity of bacterial adherent sites. Our results suggest that Opa expression limits gonococcal ability to invade into subepithelial tissues by forming tight interactions with neighboring bacteria and by inducing CEACAM redistribution to cell junctions.
Collapse
Affiliation(s)
- Daniel C. Stein
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (DCS); (WS)
| | - Adriana LeVan
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Britney Hardy
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Liang-Chun Wang
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Lindsey Zimmerman
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (DCS); (WS)
| |
Collapse
|
16
|
Ullrich N, Heinemann A, Nilewski E, Scheffrahn I, Klode J, Scherag A, Schadendorf D, Singer BB, Helfrich I. CEACAM1-3S Drives Melanoma Cells into NK Cell-Mediated Cytolysis and Enhances Patient Survival. Cancer Res 2015; 75:1897-907. [PMID: 25744717 DOI: 10.1158/0008-5472.can-14-1752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 02/17/2015] [Indexed: 11/16/2022]
Abstract
CEACAM1 is a widely expressed multifunctional cell-cell adhesion protein reported to serve as a poor prognosis marker in melanoma patients. In this study, we examine the functional and clinical contributions of the four splice isoforms of CEACAM1. Specifically, we present in vitro and in vivo evidence that they affect melanoma progression and immune surveillance in a negative or positive manner that is isoform specific in action. In contrast with isoforms CEACAM1-4S and CEACAM1-4L, expression of isoforms CEACAM1-3S and CEACAM1-3L is induced during disease progression shown to correlate with clinical stage. Unexpectedly, overall survival was prolonged in patients with advanced melanomas expressing CEACAM1-3S. The favorable effects of CEACAM1-3S related to enhanced immunogenicity, which was mediated by cell surface upregulation of NKG2D receptor ligands, thereby sensitizing melanoma cells to lysis by natural killer cells. Conversely, CEACAM1-4L downregulated cell surface levels of the NKG2D ligands MICA and ULBP2 by enhanced shedding, thereby promoting malignant character. Overall, our results define the splice isoform-specific immunomodulatory and cell biologic functions of CEACAM1 in melanoma pathogenesis.
Collapse
Affiliation(s)
- Nico Ullrich
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany. German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Anja Heinemann
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany. German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Elena Nilewski
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Inka Scheffrahn
- Institute for Gastroenterology and Hepatology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Joachim Klode
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany. German Cancer Consortium (DKTK), Heidelberg, Germany
| | - André Scherag
- Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Dirk Schadendorf
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany. German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Bernhard B Singer
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Essen, Germany.
| | - Iris Helfrich
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany. German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
17
|
Khairnar V, Duhan V, Maney SK, Honke N, Shaabani N, Pandyra AA, Seifert M, Pozdeev V, Xu HC, Sharma P, Baldin F, Marquardsen F, Merches K, Lang E, Kirschning C, Westendorf AM, Häussinger D, Lang F, Dittmer U, Küppers R, Recher M, Hardt C, Scheffrahn I, Beauchemin N, Göthert JR, Singer BB, Lang PA, Lang KS. CEACAM1 induces B-cell survival and is essential for protective antiviral antibody production. Nat Commun 2015; 6:6217. [PMID: 25692415 PMCID: PMC4346637 DOI: 10.1038/ncomms7217] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/07/2015] [Indexed: 01/03/2023] Open
Abstract
B cells are essential for antiviral immune defence because they produce neutralizing antibodies, present antigen and maintain the lymphoid architecture. Here we show that intrinsic signalling of CEACAM1 is essential for generating efficient B-cell responses. Although CEACAM1 exerts limited influence on the proliferation of B cells, expression of CEACAM1 induces survival of proliferating B cells via the BTK/Syk/NF-κB-axis. The absence of this signalling cascade in naive Ceacam1−/− mice limits the survival of B cells. During systemic infection with cytopathic vesicular stomatitis virus, Ceacam1−/− mice can barely induce neutralizing antibody responses and die early after infection. We find, therefore, that CEACAM1 is a crucial regulator of B-cell survival, influencing B-cell numbers and protective antiviral antibody responses. Antibody responses are regulated by selective survival of B cells with proper antigen specificity. Here the authors show that CEACAM1 is critical for B-cell survival during homeostasis and antiviral responses.
Collapse
Affiliation(s)
- Vishal Khairnar
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Vikas Duhan
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Sathish Kumar Maney
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Nadine Honke
- 1] Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany [2] Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Namir Shaabani
- 1] Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany [2] Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Aleksandra A Pandyra
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Marc Seifert
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Virchowstrasse 173, Essen 45122, Germany
| | - Vitaly Pozdeev
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Haifeng C Xu
- 1] Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany [2] Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Piyush Sharma
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Fabian Baldin
- Clinic for Primary Immunodeficiency, Medical Outpatient Unit and Immunodeficiency Laboratory, Department of Biomedicine, University Hospital, Basel 4031, Switzerland
| | - Florian Marquardsen
- Clinic for Primary Immunodeficiency, Medical Outpatient Unit and Immunodeficiency Laboratory, Department of Biomedicine, University Hospital, Basel 4031, Switzerland
| | - Katja Merches
- 1] Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany [2] Department of Physiology I, University of Tuebingen, Gmelinstrasse 5, Tuebingen 72076, Germany
| | - Elisabeth Lang
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Carsten Kirschning
- Institute of Medical Microbiology, Faculty of Medicine, University Hospital Essen, Hufelandstrasse 55, Essen 45122, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, Faculty of Medicine, University Hospital Essen, Hufelandstrasse 55, Essen 45122, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Florian Lang
- Department of Physiology I, University of Tuebingen, Gmelinstrasse 5, Tuebingen 72076, Germany
| | - Ulf Dittmer
- Institute of Virology, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Virchowstrasse 173, Essen 45122, Germany
| | - Mike Recher
- Clinic for Primary Immunodeficiency, Medical Outpatient Unit and Immunodeficiency Laboratory, Department of Biomedicine, University Hospital, Basel 4031, Switzerland
| | - Cornelia Hardt
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Inka Scheffrahn
- Clinic of Gastroenterology and Hepatology, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Nicole Beauchemin
- Rosalind and Morris Goodman Cancer Centre, Departments of Biochemistry, Medicine and Oncology, McIntyre Medical Science Building, Montreal, Quebec, Canada H3G 1Y6
| | - Joachim R Göthert
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Bernhard B Singer
- Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Philipp A Lang
- 1] Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany [2] Department of Molecular Medicine II, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, Düsseldorf 40225, Germany
| | - Karl S Lang
- 1] Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany [2] Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| |
Collapse
|
18
|
Yamamoto N, Yokoyama S, Ieda J, Mitani Y, Yamaguchi S, Takifuji K, Hotta T, Matsuda K, Watanabe T, Shively JE, Yamaue H. CEACAM1 and hollow spheroid formation modulate the chemosensitivity of colorectal cancer to 5-fluorouracil. Cancer Chemother Pharmacol 2014; 75:421-30. [DOI: 10.1007/s00280-014-2662-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 12/22/2014] [Indexed: 01/18/2023]
|
19
|
Kiriyama S, Yokoyama S, Ueno M, Hayami S, Ieda J, Yamamoto N, Yamaguchi S, Mitani Y, Nakamura Y, Tani M, Mishra L, Shively JE, Yamaue H. CEACAM1 long cytoplasmic domain isoform is associated with invasion and recurrence of hepatocellular carcinoma. Ann Surg Oncol 2014; 21 Suppl 4:S505-14. [PMID: 24390710 DOI: 10.1245/s10434-013-3460-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND The two isoforms of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), 1 with a long cytoplasmic domain (CEACAM1-L) and 1 with a short (CEACAM1-S), are involved in different signaling pathways. β2-spectrin (β2SP) is an adaptor protein that plays critical roles in the proper control of Smad access to activate receptors involved in regulation of TGF-β signaling. In this study, we examined the association between CEACAM1 isoform balance and hepatocellular carcinoma (HCC) malignant potential and investigated the possibility of a molecular interaction between CEACAM1 and β2SP. METHODS Immunohistochemical analysis was carried out with CEACAM1-L or CEACAM1-S antibodies on 154 HCC tissues to correlate with the factors of malignancy. Invasion assay was performed for the effect of CEACAM1 expression on HCC cell lines. Moreover, immunohistochemical analysis and immunoprecipitation analysis were performed to investigate the association between CEACAM1 isoform balance and β2SP. RESULTS In immunohistochemical analysis, CEACAM1-L expression dominance was a risk factor for HCC recurrence (p = 0.04) and was significantly associated with a shorter survival compared with CEACAM1-S expression dominance. Invasion assay indicated that CEACAM1-4L-transfected HLF and PLC/PRF/5 cells showed significantly increased invasion (p < 0.0001) and CEACAM1-4S-transfected HLF cells showed significantly decreased invasion. Immunohistochemical analysis of β2SP suggested that the HCCs with CEACAM1-L-dominant expression were more strongly stained with β2SP than the HCCs with CEACAM1-S-dominant expression (p = 0.013), and coprecipitation assays indicated that CEACAM1-L could bind to β2SP. CONCLUSIONS CEACAM1-L may enhance the HCC invasiveness through an interaction with β2SP and subsequent effects on TGF-β signaling.
Collapse
Affiliation(s)
- Shigehisa Kiriyama
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nguyen T, Chen CJ, Shively JE. Phosphorylation of CEACAM1 molecule by calmodulin kinase IID in a three-dimensional model of mammary gland lumen formation. J Biol Chem 2013; 289:2934-45. [PMID: 24302721 DOI: 10.1074/jbc.m113.496992] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1), a transmembrane protein, expressed on normal breast epithelial cells is down-regulated in breast cancer. Phosphorylation of Thr-457 on the short cytoplasmic domain isoform (CEACAM1-SF) that is predominant in normal epithelial cells is required for lumen formation in a three-dimensional model that involves apoptosis of the central acinar cells. Calmodulin kinase IID (CaMKIID) was selected as a candidate for the kinase required for Thr-457 phosphorylation from a gene chip analysis comparing genes up-regulated in MCF7 cells expressing wild type CEACAM1-SF compared with the T457A-mutated gene (Chen, C. J., Kirshner, J., Sherman, M. A., Hu, W., Nguyen, T., and Shively, J. E. (2007) J. Biol. Chem. 282, 5749-5760). Up-regulation of CaMKIID during lumen formation was confirmed by analysis of mRNA and protein levels. CaMKIID was able to phosphorylate a synthetic peptide corresponding to the cytoplasmic domain of CEACAM1-SF and was covalently bound to biotinylated and T457C-modified peptide in the presence of a kinase trap previously described by Shokat and co-workers (Maly, D. J., Allen, J. A., and Shokat, K. M. (2004) J. Am. Chem. Soc. 126, 9160-9161). When cell lysates from wild type-transfected MCF7 cells undergoing lumen formation were incubated with the peptide and kinase trap, a cross-linked band corresponding to CaMKIID was observed. When these cells were treated with an RNAi that inhibits CaMKIID expression, lumen formation was blocked by over 90%. We conclude that CaMKIID specifically phosphorylates Thr-457 on CEACAM1-SF, which in turn regulates the process of lumen formation via apoptosis of the central acinar cells.
Collapse
Affiliation(s)
- Tung Nguyen
- From the Department of Immunology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | | | | |
Collapse
|
21
|
Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev 2013; 32:643-71. [DOI: 10.1007/s10555-013-9444-6] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Chen L, Chen Z, Baker K, Halvorsen EM, da Cunha AP, Flak MB, Gerber G, Huang YH, Hosomi S, Arthur JC, Dery KJ, Nagaishi T, Beauchemin N, Holmes KV, Ho JWK, Shively JE, Jobin C, Onderdonk AB, Bry L, Weiner HL, Higgins DE, Blumberg RS. The short isoform of the CEACAM1 receptor in intestinal T cells regulates mucosal immunity and homeostasis via Tfh cell induction. Immunity 2012; 37:930-46. [PMID: 23123061 DOI: 10.1016/j.immuni.2012.07.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 07/30/2012] [Indexed: 12/11/2022]
Abstract
Carcinoembryonic antigen cell adhesion molecule like I (CEACAM1) is expressed on activated T cells and signals through either a long (L) cytoplasmic tail containing immune receptor tyrosine based inhibitory motifs, which provide inhibitory function, or a short (S) cytoplasmic tail with an unknown role. Previous studies on peripheral T cells show that CEACAM1-L isoforms predominate with little to no detectable CEACAM1-S isoforms in mouse and human. We show here that this was not the case in tissue resident T cells of intestines and gut associated lymphoid tissues, which demonstrated predominant expression of CEACAM1-S isoforms relative to CEACAM1-L isoforms in human and mouse. This tissue resident predominance of CEACAM1-S expression was determined by the intestinal environment where it served a stimulatory function leading to the regulation of T cell subsets associated with the generation of secretory IgA immunity, the regulation of mucosal commensalism, and defense of the barrier against enteropathogens.
Collapse
Affiliation(s)
- Lanfen Chen
- Gastroenterology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The carcinoembryonic antigen (CEA) family comprises a large number of cellular surface molecules, the CEA-related cell adhesion molecules (CEACAMs), which belong to the Ig superfamily. CEACAMs exhibit a complex expression pattern in normal and malignant tissues. The majority of the CEACAMs are cellular adhesion molecules that are involved in a great variety of distinct cellular processes, for example in the integration of cellular responses through homo- and heterophilic adhesion and interaction with a broad selection of signal regulatory proteins, i.e., integrins or cytoskeletal components and tyrosine kinases. Moreover, expression of CEACAMs affects tumor growth, angiogenesis, cellular differentiation, immune responses, and they serve as receptors for commensal and pathogenic microbes. Recently, new insights into CEACAM structure and function became available, providing further elucidation of their kaleidoscopic functions.
Collapse
|
24
|
Carcinoembryonic antigen (CEA) and its receptor hnRNP M are mediators of metastasis and the inflammatory response in the liver. Clin Exp Metastasis 2011; 28:923-32. [PMID: 21901530 DOI: 10.1007/s10585-011-9419-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 08/15/2011] [Indexed: 12/14/2022]
|
25
|
Tamura K, Yokoyama S, Ieda J, Takifuji K, Hotta T, Matsuda K, Oku Y, Watanabe T, Nasu T, Kiriyama S, Yamamoto N, Nakamura Y, Shively JE, Yamaue H. Hollow spheroids beyond the invasive margin indicate the malignant potential of colorectal cancer. BMJ Open 2011; 1:e000179. [PMID: 22021784 PMCID: PMC3191579 DOI: 10.1136/bmjopen-2011-000179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective Tumour budding formed by histologically undifferentiated cancer cells beyond the border of the tumour margin is associated with lymph node metastasis. However, hollow tumour nests, a possible histologically advanced phenotype of tumour budding, have not been discussed. We examined whether hollow spheroids exist beyond the border of the invasive margin and are associated with metastasis and prognosis. Moreover, we suggest that carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) isoform balance is associated with hollow spheroid formation. Methods Immunohistochemical analyses with CEACAM1 and M30 as an apoptosis marker were performed to examine the importance of hollow spheroid CEACAM1 expression and central cell apoptosis in hollow spheroid formation. The correlations between the presence of hollow spheroids beyond the invasive margin and the clinicopathological characteristics of 314 patients with colorectal cancer were retrospectively evaluated. A 3D culture with colorectal cancer cells transfected with CEACAM1 cDNA or shRNA was used to determine whether CEACAM1 isoform balance controls colorectal hollow spheroid formation. Results Hollow spheroid formation accompanying central cell apoptosis was confirmed by M30 staining and serial section with CEACAM1 staining. Of the 314 patients, 96 (30.4%) were classified as having hollow spheroids. The presence of hollow spheroids is an independent risk factor for metastases and shorter survival. In 3D culture, CEACAM1 isoform balance modulated hollow spheroid formation of colorectal cancer cells. Conclusions Hollow spheroid formation beyond the border of the tumour margin in colorectal cancer is more important than tumour budding for the prediction of malignant potential.
Collapse
Affiliation(s)
- Koichi Tamura
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Shozo Yokoyama
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Junji Ieda
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Katsunari Takifuji
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Tsukasa Hotta
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Kenji Matsuda
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Yoshimasa Oku
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Takashi Watanabe
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Toru Nasu
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Shigehisa Kiriyama
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Naoyuki Yamamoto
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Yasushi Nakamura
- Department of Clinical Laboratory Medicine, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - John E Shively
- Department of Immunology, Beckman Research Institute at City of Hope, Duarte, California, USA
| | - Hiroki Yamaue
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| |
Collapse
|
26
|
Ieda J, Yokoyama S, Tamura K, Takifuji K, Hotta T, Matsuda K, Oku Y, Nasu T, Kiriyama S, Yamamoto N, Nakamura Y, Shively JE, Yamaue H. Re-expression of CEACAM1 long cytoplasmic domain isoform is associated with invasion and migration of colorectal cancer. Int J Cancer 2011; 129:1351-61. [DOI: 10.1002/ijc.26072] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 02/15/2011] [Indexed: 11/10/2022]
|
27
|
Dery KJ, Gaur S, Gencheva M, Yen Y, Shively JE, Gaur RK. Mechanistic control of carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) splice isoforms by the heterogeneous nuclear ribonuclear proteins hnRNP L, hnRNP A1, and hnRNP M. J Biol Chem 2011; 286:16039-51. [PMID: 21398516 PMCID: PMC3091213 DOI: 10.1074/jbc.m110.204057] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 02/14/2011] [Indexed: 11/06/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) is expressed in a variety of cell types and is implicated in carcinogenesis. Alternative splicing of CEACAM1 pre-mRNA generates two cytoplasmic domain splice variants characterized by the inclusion (L-isoform) or exclusion (S-isoform) of exon 7. Here we show that the alternative splicing of CEACAM1 pre-mRNA is regulated by novel cis elements residing in exon 7. We report the presence of three exon regulatory elements that lead to the inclusion or exclusion of exon 7 CEACAM1 mRNA in ZR75 breast cancer cells. Heterologous splicing reporter assays demonstrated that the maintenance of authentic alternative splicing mechanisms were independent of the CEACAM1 intron sequence context. We show that forced expression of these exon regulatory elements could alter CEACAM1 splicing in HEK-293 cells. Using RNA affinity chromatography, three members of the heterogeneous nuclear ribonucleoprotein family (hnRNP L, hnRNP A1, and hnRNP M) were identified. RNA immunoprecipitation of hnRNP L and hnRNP A1 revealed a binding motif located central and 3' to exon 7, respectively. Depletion of hnRNP A1 or L by RNAi in HEK-293 cells promoted exon 7 inclusion, whereas overexpression led to exclusion of the variable exon. By contrast, overexpression of hnRNP M showed exon 7 inclusion and production of CEACAM1-L mRNA. Finally, stress-induced cytoplasmic accumulation of hnRNP A1 in MDA-MB-468 cells dynamically alters the CEACAM1-S:CEACAM1:L ratio in favor of the l-isoform. Thus, we have elucidated the molecular factors that control the mechanism of splice-site recognition in the alternative splicing regulation of CEACAM1.
Collapse
Affiliation(s)
| | - Shikha Gaur
- Clinical and Molecular Pharmacology Beckman Research Institute of the City of Hope, Duarte, California 91010
| | | | - Yun Yen
- Clinical and Molecular Pharmacology Beckman Research Institute of the City of Hope, Duarte, California 91010
| | | | | |
Collapse
|
28
|
Generation of human CEACAM1 transgenic mice and binding of Neisseria Opa protein to their neutrophils. PLoS One 2010; 5:e10067. [PMID: 20404914 PMCID: PMC2852402 DOI: 10.1371/journal.pone.0010067] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/12/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Human CEACAM1 is a cell-cell adhesion molecule with multiple functions including insulin clearance in the liver, vasculogenesis in endothelial cells, lumen formation in the mammary gland, and binding of certain human pathogens. PRINCIPAL FINDINGS Three genomic BAC clones containing the human CEACAM1 gene were microinjected into pronuclei of fertilized FVB mouse oocytes. The embryos were implanted in the oviducts of pseudopregnant females and allowed to develop to term. DNA from newborn mice was evaluated by PCR for the presence of the human CEACAM1 gene. Feces of the PCR positive offspring screened for expression of human CEACAM1. Using this assay, one out of five PCR positive lines was positive for human CEACAM1 expression and showed stable transmission to the F1 generation with the expected transmission frequency (0.5) for heterozygotes. Liver, lung, intestine, kidney, mammary gland, and prostate were strongly positive for the dual expression of both murine and human CEACAM1 and mimic that seen in human tissue. Peripheral blood and bone marrow granulocytes stained strongly for human CEACAM1 and bound Neisseria Opa proteins similar to that in human neutrophils. CONCLUSION These transgenic animals may serve as a model for the binding of human pathogens to human CEACAM1.
Collapse
|
29
|
Lobo EO, Zhang Z, Shively JE. Pivotal advance: CEACAM1 is a negative coreceptor for the B cell receptor and promotes CD19-mediated adhesion of B cells in a PI3K-dependent manner. J Leukoc Biol 2009; 86:205-18. [PMID: 19454653 DOI: 10.1189/jlb.0109037] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Upon antigen binding, the BCR transduces a signal culminating in proliferation or in AICD of the B cell. Coreceptor engagement and subsequent modification of the BCR signal pathway are mechanisms that guide the B cell to its appropriate fate. For example, in the absence of coreceptor engagement, anti-sIgM antibodies induce apoptosis in the human Daudi B cell lymphoma cell line. ITIM-bearing B cell coreceptors that potentially may act as negative coreceptors include FcRgammaIIb, CD22, CD72, and CEACAM1 (CD66a). Although the role of CEACAM1 as an inhibitory coreceptor in T cells has been established, its role in B cells is poorly defined. We show that anti-sIgM antibody and PI3K inhibitor LY294002-induced apoptosis are reduced significantly in CEACAM1 knock-down clones compared with WT Daudi cells and that anti-sIgM treatment induced CEACAM1 tyrosine phosphorylation and association with SHP-1 in WT cells. In contrast, treatment of WT Daudi cells with anti-CD19 antibodies does not induce apoptosis and has reduced tyrosine phosphorylation and SHP-1 recruitment to CEACAM1. Thus, similar to its function in T cells, CEACAM1 may act as an inhibitory B cell coreceptor, most likely through recruitment of SHP-1 and inhibition of a PI3K-promoted activation pathway. Activation of B cells by anti-sIgM or anti-CD19 antibodies also leads to cell aggregation that is promoted by CEACAM1, also in a PI3K-dependent manner.
Collapse
Affiliation(s)
- Elizabeth O Lobo
- Division of Immunology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | | | | |
Collapse
|
30
|
Wang J, Fang S, Xiao H, Chen B, Tam JP, Liu DX. Interaction of the coronavirus infectious bronchitis virus membrane protein with beta-actin and its implication in virion assembly and budding. PLoS One 2009; 4:e4908. [PMID: 19287488 PMCID: PMC2653722 DOI: 10.1371/journal.pone.0004908] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 02/02/2009] [Indexed: 02/05/2023] Open
Abstract
Coronavirus M protein is an essential component of virion and plays pivotal roles in virion assembly, budding and maturation. The M protein is integrated into the viral envelope with three transmembrane domains flanked by a short amino-terminal ectodomain and a large carboxy-terminal endodomain. In this study, we showed co-purification of the M protein from coronavirus infectious bronchitis virus (IBV) with actin. To understand the cellular factors that may be involved in virion assembly, budding and maturation processes, IBV M was used as the bait in a yeast two-hybrid screen, resulting in the identification of β-actin as a potentially interacting partner. This interaction was subsequently confirmed by coimmunoprecipitation and immunofluorescence microscopy in mammalian cells, and mutation of amino acids A159 and K160 on the M protein abolished the interaction. Introduction of the A159-K160 mutation into an infectious IBV clone system blocks the infectivity of the clone, although viral RNA replication and subgenomic mRNA transcription were actively detected. Disruption of actin filaments with cell-permeable agent cytochalasin D at early stages of the infection cycle led to the detection of viral protein synthesis in infected cells but not release of virus particles to the cultured media. However, the same treatment at late stages of the infection cycle did not affect the release of virus particles to the media, suggesting that disruption of the actin filaments might block virion assembly and budding, but not release of the virus particles. This study reveals an essential function of actin in the replication cycle of coronavirus.
Collapse
Affiliation(s)
- Jibin Wang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Shouguo Fang
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Han Xiao
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Bo Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
- * E-mail:
| |
Collapse
|
31
|
Moh MC, Tian Q, Zhang T, Lee LH, Shen S. The immunoglobulin-like cell adhesion molecule hepaCAM modulates cell adhesion and motility through direct interaction with the actin cytoskeleton. J Cell Physiol 2009; 219:382-91. [PMID: 19142852 DOI: 10.1002/jcp.21685] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previously, we reported the identification of a novel immunoglobulin-like cell adhesion molecule hepaCAM that promotes cell-extracellular matrix (ECM) interactions including cell adhesion and motility. Cell-ECM interactions are known to be directed by the actin cytoskeleton. In this study, we examined the association of hepaCAM with the actin cytoskeleton. We found that hepaCAM was partially insoluble in Triton X-100 and colocalized with the actin cytoskeleton on the plasma membrane. Disruption of F-actin decreased the detergent insolubility and disturbed the subcellular localization of hepaCAM. Coimmunoprecipitation and F-actin cosedimentation assays revealed that hepaCAM directly bound to F-actin. In addition, we constructed three N- and C-terminal domain-deleted mutants of hepaCAM to determine the actin-binding region as well as to evaluate the effect of the domains on the biological function of hepaCAM. Detergent solubility assays showed that the cytoplasmic domain of hepaCAM might be required for actin association. However, deletion of either the extracellular or the cytoplasmic domain of hepaCAM abolished actin coprecipitation as well as delayed cell-ECM adhesion and cell motility. The data suggest that an intact hepaCAM protein is critical for establishing a stable physical association with the actin cytoskeleton; and such association is important for modulating hepaCAM-mediated cell adhesion and motility.
Collapse
Affiliation(s)
- Mei Chung Moh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | | | |
Collapse
|
32
|
Gu A, Tsark W, Holmes KV, Shively JE. Role of Ceacam1 in VEGF induced vasculogenesis of murine embryonic stem cell-derived embryoid bodies in 3D culture. Exp Cell Res 2009; 315:1668-82. [PMID: 19285068 DOI: 10.1016/j.yexcr.2009.02.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 02/11/2009] [Accepted: 02/25/2009] [Indexed: 01/12/2023]
Abstract
CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a type I transmembrane glycoprotein involved in cell-cell adhesion has been shown to act as an angiogenic factor for mouse and human endothelial cells. Based on the ability of CEACAM1 to initiate lumen formation in human mammary epithelial cells grown in 3D culture (Matrigel), we hypothesized that murine CEACAM1 may play a similar role in vasculogenesis. In order to test this hypothesis, murine embryonic stem (ES) cells stimulated with VEGF were differentiated into embryoid bodies (EB) for 8 days (-8-0 d) and transferred to Matrigel in the presence or absence of anti-CEACAM1 antibody for an additional 12 days (0-12 d). In the absence of anti-CEACAM1 antibody or in the presence of an isotype control antibody, the EB in Matrigel underwent extensive sprouting, generating lengthy vascular structures with well-defined lumina as demonstrated by confocal microscopy, electron microscopy, and immunohistochemical analysis. Both the length and architecture of the vascular tubes were inhibited by anti-CEACAM1 mAb CC1, a mAb that blocks the cell-cell adhesion functions of CEACAM1, thus demonstrating a critical role for this cell-cell adhesion molecule in generating and maintaining vasculogenesis. QRT-PCR analysis of the VEGF treated ES cells grown under conditions that convert them to EB revealed expression of Ceacam1 as early as -5 to -3 d reaching a maximum at day 0 at which time EBs were transferred to Matrigel, thereafter levels at first declined and then increased over time. Other markers of vasculogenesis including Pecam1, VE-Cad, and Tie-1 were not detected until day 0 when EBs were transferred to Matrigel followed by a steady increase in levels, indicating later roles in vasculogenesis. In contrast, Tie-2 and Flk-1 (VEGFR2) were detected on day five of EB formation reaching a maximum at day 0 on transfer to Matrigel, similar to Ceacam1, but after which Tie-2 declined over time, while Flk-1 increased over time. QRT-PCR analysis of the anti-CEACAM1 treated ES cells revealed a significant decrease in the expression of Ceacam1, Pecam1, Tie-1, and Flk-1, while VE-Cad and Tie-2 expression were unaffected. These results suggest that the expression and signaling of CEACAM1 may affect the expression of other factors known to play critical roles in vasculogenesis. Furthermore this 3D model of vasculogenesis in an environment of extracellular matrix may be a useful model for comparison to existing models of angiogenesis.
Collapse
Affiliation(s)
- Angel Gu
- Department of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
33
|
Li C, Chen CJ, Shively JE. Mutational analysis of the cytoplasmic domain of CEACAM1-4L in humanized mammary glands reveals key residues involved in lumen formation: stimulation by Thr-457 and inhibition by Ser-461. Exp Cell Res 2008; 315:1225-33. [PMID: 19146852 DOI: 10.1016/j.yexcr.2008.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 12/13/2008] [Accepted: 12/15/2008] [Indexed: 12/19/2022]
Abstract
CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a type I transmembrane glycoprotein involved in cell-cell adhesion, undergoes extensive alternative splicing, resulting in isoforms with 1-4 Ig-like extracellular domains (ECDs) with either long or short cytoplasmic tails. We have previously shown that CEACAM1-4L (4 ECDs with a long cytoplasmic domain) formed glands with lumena in humanized mammary mouse fat pads in NOD/SCID mice. In order to identify the key residues of CEACAM1-4L that play essential roles in lumen formation, we introduced phosphorylation mimic (e.g., Thr-457 or Ser-461 to Asp) or null mutations (Thr-457 or Ser-461 to Ala) into the cytoplasmic domain of CEACAM1-4L and tested them in both the in vivo mouse model and in vitro Matrigel model of mammary morphogenesis. MCF7 cells stably expressing CEACAM1-4L with the single mutation T457D or the double mutant T457D+S461D, but not the null mutants induced central lumen formation in 3D Matrigel and in humanized mammary fat pads. However, the single phosphorylation mimic mutation S461D, but not the null mutation blocked lumen formation in both models, suggesting that S461 has inhibitory function in glandular lumen formation. Compared to our results for the -4S isoform (Chen et al., J. Biol. Chem, 282: 5749-5760, 2008), the T457A null mutation blocks lumen formation for the -4L but not for the -4S isoform. This difference is likely due to the fact that phosphorylation of S459 (absent in the -4L isoform) positively compensates for loss of T457 in the -4S isoform, while S461 (absent in the -4S isoform) negatively regulates lumen formation in the -4L isoform. Thus, phosphorylation of these key residues may exert a fine control over the role of the -4L isoform (compared to the -4S isoform) in lumen formation.
Collapse
Affiliation(s)
- Chunxia Li
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | |
Collapse
|
34
|
Ackerman ME, Chalouni C, Schmidt MM, Raman VV, Ritter G, Old LJ, Mellman I, Wittrup KD. A33 antigen displays persistent surface expression. Cancer Immunol Immunother 2008; 57:1017-27. [PMID: 18236042 DOI: 10.1007/s00262-007-0433-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 11/26/2007] [Indexed: 11/30/2022]
Abstract
The A33 antigen is a cell surface glycoprotein of the small intestine and colonic epithelium with homology to tight junction-associated proteins of the immunoglobulin superfamily, including CAR and JAM. Its restricted tissue localization and high level of expression have led to its use as a target in colon cancer immunotherapy. Although the antigen is also present in normal intestine, radiolabeled antibodies against A33 are selectively retained by tumors in the gut as well as in metastatic lesions for as long as 6 weeks. Accordingly, we have studied the trafficking and kinetic properties of the antigen to determine its promise in two-step, pretargeted therapies. The localization, mobility, and persistence of the antigen were investigated, and this work has demonstrated that the antigen is both highly immobile and extremely persistent-retaining its surface localization for a turnover halflife of greater than 2 days. In order to explain these unusual properties, we explored the possibility that A33 is a component of the tight junction. The simple property of surface persistence, described here, may contribute to the prolonged retention of the clinically administered antibodies, and their uncommon ability to penetrate solid tumors.
Collapse
Affiliation(s)
- Margaret E Ackerman
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Paper W, Kroeber M, Heersink S, Stephan DA, Fuchshofer R, Russell P, Tamm ER. Elevated amounts of myocilin in the aqueous humor of transgenic mice cause significant changes in ocular gene expression. Exp Eye Res 2008; 87:257-67. [PMID: 18602390 DOI: 10.1016/j.exer.2008.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/11/2008] [Accepted: 06/08/2008] [Indexed: 11/18/2022]
Abstract
Myocilin is a 55-57kDa secreted glycoprotein and member of the olfactomedin family, which is mutated in some forms of primary open-angle glaucoma. To assess the effects of elevated amounts of myocilin on aqueous humor outflow dynamics in an in vivo system, transgenic betaB1-crystallin-MYOC mice have been developed that strongly overexpress myocilin in their eyes. The transgenic overexpression of myocilin results in an almost five-fold increase of secreted normal myocilin in the aqueous humor of betaB1-crystallin-MYOC mice. In the present study, we wanted to use betaB1-crystallin-MYOC as a tool to identify the response of ocular tissues to the presence of higher than normal amounts of myocilin, and to identify changes in gene expression that could help to shed light on the functional in vivo properties of myocilin. RNA was isolated from ocular tissues of betaB1-crystallin-MYOC mice and wild-type littermates. Changes in gene expression were determined by hybridization of gene microarrays and confirmed by real time RT-PCR and Western blotting. The expression of genes that had been found to be differentially regulated in betaB1-crystallin-MYOC mice was further analyzed in cultured human trabecular meshwork (HTM) cells treated with recombinant myocilin. Although betaB1-crystallin-MYOC mice do not have an obvious phenotype, a statistically significant up- and downregulation of several distinct genes was found when compared to gene expression in wild-type littermates. Among the genes that were found to be differentially regulated were Wasl, Ceacam1, and Spon2, which are involved in cell adhesion and cell-matrix interactions. Differences in expression were also found for Six1 which encodes for a transcription factor, and for Pftk1 whose gene product is a cdc2-related protein kinase. The expression of these genes was also found to be regulated in vitro in HTM cells treated with recombinant myocilin. Substantially higher amounts in ocular tissues of betaB1-crystallin-MYOC mice were found for connexin 46 and alphaB-crystallin. In addition, several genes that encode for olfactomedin proteins showed distinct changes in expression. Olfml3 was significantly downregulated, while Lphn1, Lphn2, and Lphn3 were significantly upregulated. Our findings support a role for myocilin in modulating cellular adhesion, and suggest functional processes that involve other proteins of the olfactomedin family.
Collapse
Affiliation(s)
- Walter Paper
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Gaur S, Shively JE, Yen Y, Gaur RK. Altered splicing of CEACAM1 in breast cancer: identification of regulatory sequences that control splicing of CEACAM1 into long or short cytoplasmic domain isoforms. Mol Cancer 2008; 7:46. [PMID: 18507857 PMCID: PMC2490704 DOI: 10.1186/1476-4598-7-46] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 05/28/2008] [Indexed: 01/28/2023] Open
Abstract
Background Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a cell adhesion molecule expressed in a variety of cell types is a putative tumor suppressor gene. Alternative splicing of CEACAM1 generates 11 different splice variants, which include 1–4 ectodomains with either short or long cytoplasmic domain generated by the exclusion (CEACAM1-S) or inclusion (CEACAM1-L) of exon 7. Studies in rodents indicate that optimal ratios of CEACAM1 splice variants are required to inhibit colonic tumor cell growth. Results We show that CEACAM1 is expressed in a tissue specific manner with significant differences in the ratios of its short (CEACAM1-S) and long (CEACAM1-L) cytoplasmic domain splice variants. Importantly, we find dramatic differences between the ratios of S:L isoforms in normal breast tissues versus breast cancer specimens, suggesting that altered splicing of CEACAM1 may play an important role in tumorogenesis. Furthermore, we have identified two regulatory cis-acting elements required for the alternative splicing of CEACAM1. Replacement of these regulatory elements by human β-globin exon sequences resulted in exon 7-skipped mRNA as the predominant product. Interestingly, while insertion of exon 7 in a β-globin reporter gene resulted in its skipping, exon 7 along with the flanking intron sequences recapitulated the alternative splicing of CEACAM1. Conclusion Our results indicate that a network of regulatory elements control the alternative splicing of CEACAM1. These findings may have important implications in therapeutic modalities of CEACAM1 linked human diseases.
Collapse
Affiliation(s)
- Shikha Gaur
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | | | | | |
Collapse
|
37
|
Jin L, Li Y, Chen CJ, Sherman MA, Le K, Shively JE. Direct interaction of tumor suppressor CEACAM1 with beta catenin: identification of key residues in the long cytoplasmic domain. Exp Biol Med (Maywood) 2008; 233:849-59. [PMID: 18445773 DOI: 10.3181/0712-rm-352] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CEACAM1-4L (carcinoembryonic antigen cell adhesion molecule 1, with 4 extracellular Ig-like domains and a long, 71 amino acid cytoplasmic domain) is expressed in epithelial cells and activated T-cells, but is down-regulated in most epithelial cell cancers and T-cell leukemias. A highly conserved sequence within the cytoplasmic domain has ca 50% sequence homology with Tcf-3 and -4, transcription factors that bind beta-catenin, and to a lesser extent (32% homology), with E-cadherin that also binds beta-catenin. We show by quantitative yeast two-hybrid, BIAcore, GST-pull down, and confocal analyses that this domain directly interacts with beta-catenin, and that H-469 and K-470 are key residues that interact with the armadillo repeats of beta-catenin. Jurkat cells transfected with CEACAM1-4L have 2-fold less activity in the TOPFLASH reporter assay, and in MCF7 breast cancer cells that fail to express CEACAM1, transfection with CEACAM1 and growth in Ca2+ media causes redistribution of beta-catenin from the cytoplasm to the cell membrane, demonstrating a functional role for the long cytoplasmic domain of CEACAM1 in regulation of beta-catenin activity.
Collapse
Affiliation(s)
- Lan Jin
- Division of Immunology, Beckman Research Institute of the City of Hope, 1450 E. Duarte Rd., Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
38
|
Muenzner P, Bachmann V, Kuespert K, Hauck CR. The CEACAM1 transmembrane domain, but not the cytoplasmic domain, directs internalization of human pathogens via membrane microdomains. Cell Microbiol 2007; 10:1074-92. [PMID: 18081725 DOI: 10.1111/j.1462-5822.2007.01106.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Several bacterial pathogens exploit carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) to promote attachment and uptake into eukaryotic host cells. The widely expressed isoform CEACAM1 is involved in cell-cell adhesion, regulation of cell proliferation, insulin homeostasis, and neo-angiogenesis, processes that depend on the cytoplasmic domain of CEACAM1. By analysing the molecular requirements for CEACAM1-mediated internalization of bacteria, we surprisingly find that the CEACAM1 cytoplasmic domain is completely obsolete for bacterial uptake. Accordingly, CEACAM1-4L as well as a CEACAM1 mutant with a complete deletion of the cytoplasmic domain (CEACAM1 DeltaCT) promote equivalent internalization of several human pathogens. CEACAM1-4L- and CEACAM1 DeltaCT-mediated uptake proceeds in the presence of inhibitors of actin microfilament dynamics, which is in contrast to CEACAM3-mediated internalization. Bacteria-engaged CEACAM1-4L and CEACAM1 DeltaCT, but not CEACAM3, localize to a gangliosid GM1- and GPI-anchored protein-containing portion of the plasma membrane. In addition, interference with cholesterol-rich membrane microdomains severely blocks bacterial uptake via CEACAM1-4L and CEACAM1 DeltaCT, but not CEACAM3. Similar to GPI-anchored CEACAM6, both CEACAM1-4L as well as CEACAM1 DeltaCT partition into a low-density, Triton-insoluble membrane fraction upon receptor clustering, whereas CEACAM3 is not detected in this fraction. Bacterial uptake by truncated CEACAM1 or chimeric CEACAM1/CEACAM3 molecules reveals that the transmembrane domain of CEACAM1 is responsible for its association with membrane microdomains. Together, these data argue for a functional role of lipid rafts in CEACAM1-mediated endocytosis that is promoted by the transmembrane domain of the receptor and that might be relevant for CEACAM1 function in physiologic settings.
Collapse
Affiliation(s)
- Petra Muenzner
- Lehrstuhl für Zellbiologie, Universität Konstanz, Postfach X908, D-78457 Konstanz, Germany
| | | | | | | |
Collapse
|
39
|
Yokoyama S, Chen CJ, Nguyen T, Shively JE. Role of CEACAM1 isoforms in an in vivo model of mammary morphogenesis: mutational analysis of the cytoplasmic domain of CEACAM1-4S reveals key residues involved in lumen formation. Oncogene 2007; 26:7637-46. [PMID: 17546042 DOI: 10.1038/sj.onc.1210577] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1) is a type I transmembrane glycoprotein expressed in epithelial cells with three or four extracellular domains (ECDs) and either long or short cytoplasmic domain isoforms. We have previously shown that the four extracellular domains, short cytoplasmic domain isoform, CEACAM1-4S, plays an essential role in lumen formation in an in vitro model of mammary morphogenesis. In this study, we transfected MCF-7 cells with either the long or short cytoplasmic domain isoforms of CEACAM1, and grew the cells in humanized mammary mouse fat pads in NOD/SCID mice. In this in vivo model, only the long cytoplasmic domain isoform, CEACAM1-4L, formed glands with lumen. On the basis of other studies that revealed phosphorylation of key Thr and Ser residues in the short cytoplasmic domain, we introduced phosphorylation mimic (for example, Thr or Ser to Asp) or null (Thr or Ser to Ala) mutations into the cytoplasmic domain of CEACAM1-4S and tested them in the in vivo model. Mutation of either Thr or Ser to Asp or the double mutant Thr+Ser to Asp, but not the null mutants, induced gland formation with a central lumen-containing apoptotic cells. Moreover, the phosphorylation mimic mutants of CEACAM1-4S induced downregulation of beta1-integrin, overexpression of beta2-integrin, inhibited phosphorylation of focal adhesion kinase (pTyr-397) and resulted in myofibroblast differentiation as characterized by expression of vimentin, alpha-smooth muscle actin and beta2-integrin, as well as the production of abundant extracellular matrix.
Collapse
Affiliation(s)
- S Yokoyama
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
40
|
Simeone DM, Ji B, Banerjee M, Arumugam T, Li D, Anderson MA, Bamberger AM, Greenson J, Brand RE, Ramachandran V, Logsdon CD. CEACAM1, a novel serum biomarker for pancreatic cancer. Pancreas 2007; 34:436-43. [PMID: 17446843 DOI: 10.1097/mpa.0b013e3180333ae3] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Serum biomarkers for early diagnosis of pancreatic adenocarcinoma are not currently available. We recently observed elevated expression of CEACAM1 in pancreatic adenocarcinomas and sought to determine whether serum CEACAM1 levels were elevated in pancreatic cancer patients. METHODS CEACAM1 messenger RNA levels were measured in pancreatic tissue samples using quantitative reverse transcription-polymerase chain reaction. CEACAM1 was localized by immunohistochemistry in adenocarcinomas and in pancreatic intraductal neoplasia lesions. CEACAM1 serum levels were assessed by a double determinant enzyme-linked immunosorbent assay and compared with serum levels of CA19-9. RESULTS CEACAM1 had higher expression levels in pancreatic adenocarcinomas compared with noncancerous pancreas (P < 0.0001) and was localized to neoplastic cells (95% (45/47) of adenocarcinomas and 85% (17/20) of pancreatic intraductal neoplasia 3 lesions. CEACAM1 was expressed in the sera of 91% (74/81) of pancreatic cancer patients, 24% (15/61) of normal patients, and 66% (35/53) of patients with chronic pancreatitis, with a sensitivity and specificity superior to CA19-9. The combination of CEACAM1 and CA19-9 had significantly higher diagnostic accuracy than CA19-9. CONCLUSIONS CEACAM1 is expressed in pancreatic adenocarcinoma, and serum levels of CEACAM1 serve as a useful indicator for the presence of pancreatic cancer. Additional validation studies on the use of serum CEACAM1 as a diagnostic marker in pancreatic cancer are warranted.
Collapse
Affiliation(s)
- Diane M Simeone
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chen CJ, Kirshner J, Sherman MA, Hu W, Nguyen T, Shively JE. Mutation Analysis of the Short Cytoplasmic Domain of the Cell-Cell Adhesion Molecule CEACAM1 Identifies Residues That Orchestrate Actin Binding and Lumen Formation. J Biol Chem 2007; 282:5749-60. [PMID: 17192268 DOI: 10.1074/jbc.m610903200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
CEACAM1-4S (carcinoembryonic antigen cell adhesion molecule 1, with 4 ectodomains and a short, 12-14 amino acid cytoplasmic domain) mediates lumen formation via an apoptotic and cytoskeletal reorganization mechanism when mammary epithelial cells are grown in a three-dimensional model of mammary morphogenesis. We show by quantitative yeast two-hybrid, BIAcore, NMR HSQC and STD, and confocal analyses that amino acids phenylalanine (Phe(454)) and lysine (Lys(456)) are key residues that interact with actin orchestrating the cytoskeletal reorganization. A CEACAM1 membrane model based on vitamin D-binding protein that predicts an interaction of Phe(454) at subdomain 3 of actin was supported by inhibition of binding of actin to vitamin D-binding protein by the cytoplasmic domain peptide. We also show that residues Thr(457) and/or Ser(459) are phosphorylated in CEACAM1-transfected cells grown in three-dimensional culture and that mutation analysis of these residues (T457A/S459A) or F454A blocks lumen formation. These studies demonstrate that a short cytoplasmic domain membrane receptor can directly mediate substantial intracellular signaling.
Collapse
Affiliation(s)
- Charng-Jui Chen
- Divisions of Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | | | | | |
Collapse
|
42
|
Yu Q, Chow EMC, Wong H, Gu J, Mandelboim O, Gray-Owen SD, Ostrowski MA. CEACAM1 (CD66a) promotes human monocyte survival via a phosphatidylinositol 3-kinase- and AKT-dependent pathway. J Biol Chem 2006; 281:39179-93. [PMID: 17071610 DOI: 10.1074/jbc.m608864200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CEACAM1 (also known as CD66a) is a transmembrane glycoprotein that mediates homophilic intercellular interactions that influence cellular growth, immune cell activation, and tissue morphogenesis. Various studies have suggested a link between CEACAM1 and cellular apoptosis, including a recent demonstration that ERK1/2 signaling is triggered downstream of CEACAM1. In this study, we reveal that CEACAM1-long binding confers survival signals to human peripheral blood mononuclear cells. CEACAM-specific antibodies effectively protected peripheral blood mononuclear cells from apoptosis, with this effect being particularly dramatic for primary monocytes that undergo spontaneous apoptosis during in vitro culture. This protective effect was reiterated when using soluble CEACAM1, which binds to cell-surface CEACAM1 via homophilic interactions. Monocyte survival correlated with a CEACAM1-dependent up-regulation of the cellular inhibitor of apoptosis Bcl-2 and the abrogation of caspase-3 activation. CEACAM1 binding triggered a phosphatidylinositol 3-kinase-dependent activation of the protein kinase Akt without influencing the activity of extracellular signal-related kinase ERK, whereas the phosphatidylinositol 3-kinase-specific inhibitor LY294002 effectively blocked the protective effect of CEACAM1. Together, this work indicates that CEACAM1 confers a phosphatidylinositol 3-kinase- and Akt-dependent survival signal that inhibits mitochondrion-dependent apoptosis of monocytes. By controlling both ERK/MEK and PI3K/Akt pathways, CEACAM1 functions as a key regulator of contact-dependent control of cell survival, differentiation, and growth.
Collapse
Affiliation(s)
- Qigui Yu
- Clinical Sciences Division and Department of Medical Genetics and Microbiology, University of Toronto, Toronto, M5S 1A8 Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Nagaishi T, Iijima H, Nakajima A, Chen D, Blumberg RS. Role of CEACAM1 as a Regulator of T Cells. Ann N Y Acad Sci 2006; 1072:155-75. [PMID: 17057197 DOI: 10.1196/annals.1326.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A major immunological attribute of inflammatory bowel disease (IBD) is the presence of unrestrained activation of T cells that produce a variety of inflammatory cytokines and other mediators. Gaining an understanding of T cell regulation is therefore of major importance to IBD. Carcinoembryonic antigen-related cell adhesion molecule 1 CEACAM1) is a novel protein that has been recently recognized as being expressed by immune cells and T lymphocytes, in particular; this protein appears to function as a coinhibitory receptor after T cell activation. Ligation of CEACAM1 on T cells induces a signal cascade that leads inhibition of T cell cytokine production and IBD. CEACAM1 is thus a novel potential therapeutic target in the treatment of IBD.
Collapse
Affiliation(s)
- Takashi Nagaishi
- Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
The carcinoembryonic-antigen-related cell-adhesion molecule (CEACAM) family of proteins has been implicated in various intercellular-adhesion and intracellular-signalling-mediated effects that govern the growth and differentiation of normal and cancerous cells. Recent studies show that there is an important role for members of the CEACAM family in modulating the immune responses associated with infection, inflammation and cancer. In this Review, we consider the evidence for CEACAM involvement in immunity, with a particular emphasis on CEACAM1, which functions as a regulatory co-receptor for both lymphoid and myeloid cell types.
Collapse
Affiliation(s)
- Scott D Gray-Owen
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| | | |
Collapse
|
45
|
|
46
|
Klaile E, Müller MM, Kannicht C, Singer BB, Lucka L. CEACAM1 functionally interacts with filamin A and exerts a dual role in the regulation of cell migration. J Cell Sci 2005; 118:5513-24. [PMID: 16291724 DOI: 10.1242/jcs.02660] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The carcinoembryonic antigen-related cell adhesion molecule CEACAM1 (CD66a) and the scaffolding protein filamin A have both been implicated in tumor cell migration. In the present study we identified filamin A as a novel binding partner for the CEACAM1-L cytoplasmic domain in a yeast two-hybrid screen. Direct binding was shown by surface plasmon resonance analysis and by affinity precipitation assays. The association was shown for human and rodent CEACAM1-L in endogenous CEACAM1-L expressing cells. To address functional aspects of the interaction, we used a well-established melanoma cell system. We found in different migration studies that the interaction of CEACAM1-L and filamin A drastically reduced migration and cell scattering, whereas each of these proteins when expressed alone, acted promigratory. CEACAM1-L binding to filamin A reduced the interaction of the latter with RalA, a member of the Ras-family of GTPases. Furthermore, co-expression of CEACAM1-L and filamin A led to a reduced focal adhesion turnover. Independent of the presence of filamin A, the expression of CEACAM1-L led to an increased phosphorylation of focal adhesions and to altered cytoskeletal rearrangements during monolayer wound healing assays. Together, our data demonstrate a novel mechanism for how CEACAM1-L regulates cell migration via its interaction with filamin A.
Collapse
Affiliation(s)
- Esther Klaile
- Institut für Biochemie und Molekularbiologie, Charité, Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
47
|
Abstract
Over the last few years, dramatic increases in our knowledge about diffusely adhering Escherichia coli (DAEC) pathogenesis have taken place. The typical class of DAEC includes E. coli strains harboring AfaE-I, AfaE-II, AfaE-III, AfaE-V, Dr, Dr-II, F1845, and NFA-I adhesins (Afa/Dr DAEC); these strains (i) have an identical genetic organization and (ii) allow binding to human decay-accelerating factor (DAF) (Afa/Dr(DAF) subclass) or carcinoembryonic antigen (CEA) (Afa/Dr(CEA) subclass). The atypical class of DAEC includes two subclasses of strains; the atypical subclass 1 includes E. coli strains that express AfaE-VII, AfaE-VIII, AAF-I, AAF-II, and AAF-III adhesins, which (i) have an identical genetic organization and (ii) do not bind to human DAF, and the atypical subclass 2 includes E. coli strains that harbor Afa/Dr adhesins or others adhesins promoting diffuse adhesion, together with pathogenicity islands such as the LEE pathogenicity island (DA-EPEC). In this review, the focus is on Afa/Dr DAEC strains that have been found to be associated with urinary tract infections and with enteric infection. The review aims to provide a broad overview and update of the virulence aspects of these intriguing pathogens. Epidemiological studies, diagnostic techniques, characteristic molecular features of Afa/Dr operons, and the respective role of Afa/Dr adhesins and invasins in pathogenesis are described. Following the recognition of membrane-bound receptors, including type IV collagen, DAF, CEACAM1, CEA, and CEACAM6, by Afa/Dr adhesins, activation of signal transduction pathways leads to structural and functional injuries at brush border and junctional domains and to proinflammatory responses in polarized intestinal cells. In addition, uropathogenic Afa/Dr DAEC strains, following recognition of beta(1) integrin as a receptor, enter epithelial cells by a zipper-like, raft- and microtubule-dependent mechanism. Finally, the presence of other, unknown virulence factors and the way that an Afa/Dr DAEC strain emerges from the human intestinal microbiota as a "silent pathogen" are discussed.
Collapse
Affiliation(s)
- Alain L Servin
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Faculté de Pharmacie Paris XI, Châtenay-Malabry, France.
| |
Collapse
|
48
|
Müller MM, Singer BB, Klaile E, Obrink B, Lucka L. Transmembrane CEACAM1 affects integrin-dependent signaling and regulates extracellular matrix protein-specific morphology and migration of endothelial cells. Blood 2005; 105:3925-34. [PMID: 15687237 DOI: 10.1182/blood-2004-09-3618] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1/CD66a), expressed on leukocytes, epithelia, and endothelia mediates homophilic cell adhesion. It plays an important role in cell morphogenesis and, recently, soluble CEACAM1 isoforms have been implicated in angiogenesis. In the present study, we investigated the function of long transmembrane isoform of CEACAM1 (CEACAM1-L) in cultured rat brain endothelial cells. We observed that expression of CEACAM1-L promotes network formation on basement membrane Matrigel and increased cell motility after monolayer injury. During cell-matrix adhesion, CEACAM1-L translocated into the Triton X-100-insoluble cytoskeletal fraction and affected cell spreading and cell morphology on Matrigel and laminin-1 but not on fibronectin. On laminin-1, CEACAM1-L-expressing cells developed protrusions with lamellipodia, showed less stress fiber formation, reduced focal adhesion kinase (FAK) tyrosine phosphorylation, and decreased focal adhesion formation leading to high motility. CEACAM1-L-mediated morphologic alterations were sensitive to RhoA activation via lysophosphatidic acid (LPA) treatment and dependent on Rac1 activation. Furthermore, we demonstrate a matrix protein-dependent association of CEACAM1-L with talin, an important regulator of integrin function. Taken together, our results suggest that transmembrane CEACAM1-L expressed on endothelial cells is implicated in the activation phase of angiogenesis by affecting the cytoskeleton architecture and integrin-mediated signaling.
Collapse
Affiliation(s)
- Mario M Müller
- Institut für Biochemie und Molekularbiologie, Charité-Universitätsmedizin Berlin, Berlin-Dahlem, Germany
| | | | | | | | | |
Collapse
|
49
|
McCaw SE, Liao EH, Gray-Owen SD. Engulfment of Neisseria gonorrhoeae: revealing distinct processes of bacterial entry by individual carcinoembryonic antigen-related cellular adhesion molecule family receptors. Infect Immun 2004; 72:2742-52. [PMID: 15102784 PMCID: PMC387857 DOI: 10.1128/iai.72.5.2742-2752.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Individual Neisseria gonorrhoeae colony opacity-associated (Opa) protein variants can bind up to four different carcinoembryonic antigen-related cellular adhesion molecule (CEACAM) receptors. Most human cells encountered by gonococci express a combination of CEACAM receptors, thereby complicating the elucidation of intracellular signaling pathways triggered by individual receptors. Here, we compare the process of bacterial engulfment by a panel of stably transfected HeLa epithelial cell lines expressing each CEACAM receptor in isolation. CEACAM1 and CEACAM3 each contain proteinaceous transmembrane and cytoplasmic domains; however, the processes of neisserial uptake mediated by these receptors differ with respect to their susceptibilities to both tyrosine kinase inhibitors and the actin microfilament-disrupting agent cytochalasin D. Neisserial uptake mediated by glycosylphosphatidylinositol (GPI)-anchored CEACAM5 and CEACAM6 was not significantly affected by any of a broad spectrum of inhibitors tested. However, cleavage of the GPI anchor by phosphatidylinositol-specific phospholipase C reduced bacterial uptake by HeLa cells expressing CEACAM5, consistent with a single zipper-like mechanism of uptake mediated by this receptor. Regardless of the CEACAM receptor expressed, internalized gonococci were effectively killed by a microtubule-dependent process that required acidification of the bacterium-containing phagosome. Given the phase-variable nature of neisserial Opa proteins, these results indicate that the mechanism of bacterial engulfment and the cellular response to gonococcal infection depend on both the receptor specificities of the neisserial Opa protein variants expressed and the spectrum of CEACAM receptors present on target cells, each of which determines the combination of receptors ultimately engaged.
Collapse
Affiliation(s)
- Shannon E McCaw
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
50
|
Berger CN, Billker O, Meyer TF, Servin AL, Kansau I. Differential recognition of members of the carcinoembryonic antigen family by Afa/Dr adhesins of diffusely adhering Escherichia coli (Afa/Dr DAEC). Mol Microbiol 2004; 52:963-83. [PMID: 15130118 DOI: 10.1111/j.1365-2958.2004.04033.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Little is known about the molecular bases underlying the virulence of diffusely adhering Escherichia coli (DAEC) harbouring the Afa/Dr family of adhesins. These adhesins recognize as receptors the GPI-anchored proteins CD55 (decay-accelerating factor, DAF) and CD66e (carcinoembryonic antigen, CEA). CD66e is a member of the CEA-related cell adhesion molecules (CEACAM) family, comprising seven members. We analysed the interactions of Afa/Dr DAEC with the CEACAMs using CEACAM-expressing CHO and HeLa cells. The results demonstrate that only E. coli expressing a subfamily of Afa/Dr adhesins, named here Afa/Dr-I, including Dr, F1845 and AfaE-III adhesins, bound onto CHO cells expressing CEACAM1, CEA or CEACAM6. Whereas all the Afa/Dr adhesins elicit recruitment of CD55 around adhering bacteria, only the Afa/Dr-I subfamily elicits the recruitment of CEACAM1, CEA and CEACAM6. In addition, although CEACAM3 is not recognized as a receptor by the subfamily of Afa/Dr adhesins, it is recruited around bacteria in HeLa cells. The recruited CEACAM1, CEA and CEACAM6 around adhering bacteria resist totally or in part a detergent extraction, whereas the recruited CEACAM3 does not. Finally, the results show that recognition of CEA and CEACAM6, but not CEACAM1, is accompanied by tight attachment to bacteria of cell surface microvilli-like extensions, which are elongated. Moreover, recognition of CEA is accompanied by an activation of the Rho GTPase Cdc42 and by a phosphorylation of ERM, which in turn elicit the observed cell surface microvilli-like extensions.
Collapse
Affiliation(s)
- Cedric N Berger
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 510, Faculté de Pharmacie Paris XI, F-92296 Châtenay-Malabry, France
| | | | | | | | | |
Collapse
|