1
|
Lin W, Phatarphekar A, Zhong Y, Liu L, Kwon HB, Gerwick WH, Wang Y, Mehta S, Zhang J. Light-gated integrator for highlighting kinase activity in living cells. Nat Commun 2024; 15:7804. [PMID: 39242543 PMCID: PMC11379911 DOI: 10.1038/s41467-024-51270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 08/02/2024] [Indexed: 09/09/2024] Open
Abstract
Protein kinases are key signaling nodes that regulate fundamental biological and disease processes. Illuminating kinase signaling from multiple angles can provide deeper insights into disease mechanisms and improve therapeutic targeting. While fluorescent biosensors are powerful tools for visualizing live-cell kinase activity dynamics in real time, new molecular tools are needed that enable recording of transient signaling activities for post hoc analysis and targeted manipulation. Here, we develop a light-gated kinase activity coupled transcriptional integrator (KINACT) that converts dynamic kinase signals into "permanent" fluorescent marks. KINACT enables robust monitoring of kinase activity across scales, accurately recording subcellular PKA activity, highlighting PKA activity distribution in 3D cultures, and identifying PKA activators and inhibitors in high-throughput screens. We further leverage the ability of KINACT to drive signaling effector expression to allow feedback manipulation of the balance of GαsR201C-induced PKA and ERK activation and dissect the mechanisms of oncogenic G protein signaling.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| | | | - Yanghao Zhong
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Lin W, Phatarphekar A, Zhong Y, Liu L, Kwon HB, Gerwick WH, Wang Y, Mehta S, Zhang J. Light-gated Integrator for Highlighting Kinase Activity in Living Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585554. [PMID: 38562887 PMCID: PMC10983958 DOI: 10.1101/2024.03.18.585554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Protein kinases are key signaling nodes that regulate fundamental biological and disease processes. Illuminating kinase signaling from multiple angles can provide deeper insights into disease mechanisms and improve therapeutic targeting. While fluorescent biosensors are powerful tools for visualizing live-cell kinase activity dynamics in real time, new molecular tools are needed that enable recording of transient signaling activities for post hoc analysis and targeted manipulation. Here, we develop a light-gated kinase activity coupled transcriptional integrator (KINACT) that converts dynamic kinase signals into "permanent" fluorescent marks. KINACT enables robust monitoring of kinase activity across scales, accurately recording subcellular PKA activity, highlighting PKA signaling heterogeneity in 3D cultures, and identifying PKA activators and inhibitors in high-throughput screens. We further leverage the ability of KINACT to drive signaling effector expression to allow feedback manipulation of the balance of GαsR201C-induced PKA and ERK activation and dissect the mechanisms of oncogenic G protein signaling.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | | | - Yanghao Zhong
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Occhipinti C, La Russa R, Iacoponi N, Lazzari J, Costantino A, Di Fazio N, Del Duca F, Maiese A, Fineschi V. miRNAs and Substances Abuse: Clinical and Forensic Pathological Implications: A Systematic Review. Int J Mol Sci 2023; 24:17122. [PMID: 38069445 PMCID: PMC10707252 DOI: 10.3390/ijms242317122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Substance addiction is a chronic and relapsing brain disorder characterized by compulsive seeking and continued substance use, despite adverse consequences. The high prevalence and social burden of addiction are indisputable; however, the available intervention is insufficient. The modulation of gene expression and aberrant adaptation of neural networks are attributed to the changes in brain functions under repeated exposure to addictive substances. Considerable studies have demonstrated that miRNAs are strong modulators of post-transcriptional gene expression in substance addiction. The emerging role of microRNA (miRNA) provides new insights into many biological and pathological processes in the central nervous system: their variable expression in different regions of the brain and tissues may play a key role in regulating the pathophysiological events of addiction. This work provides an overview of the current literature on miRNAs involved in addiction, evaluating their impaired expression and regulatory role in neuroadaptation and synaptic plasticity. Clinical implications of such modulatory capacities will be estimated. Specifically, it will evaluate the potential diagnostic role of miRNAs in the various stages of drug and substance addiction. Future perspectives about miRNAs as potential novel therapeutic targets for substance addiction and abuse will also be provided.
Collapse
Affiliation(s)
- Carla Occhipinti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Raffaele La Russa
- Department of Clinical Medicine, Public Health, Life Sciences, and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Naomi Iacoponi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Julia Lazzari
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Andrea Costantino
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Nicola Di Fazio
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (N.D.F.); (F.D.D.); (V.F.)
| | - Fabio Del Duca
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (N.D.F.); (F.D.D.); (V.F.)
| | - Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (N.D.F.); (F.D.D.); (V.F.)
| |
Collapse
|
4
|
Drastichova Z, Trubacova R, Novotny J. Regulation of phosphosignaling pathways involved in transcription of cell cycle target genes by TRH receptor activation in GH1 cells. Biomed Pharmacother 2023; 168:115830. [PMID: 37931515 DOI: 10.1016/j.biopha.2023.115830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Thyrotropin-releasing hormone (TRH) is known to activate several cellular signaling pathway, but the activation of the TRH receptor (TRH-R) has not been reported to regulate gene transcription. The aim of this study was to identify phosphosignaling pathways and phosphoprotein complexes associated with gene transcription in GH1 pituitary cells treated with TRH or its analog, taltirelin (TAL), using label-free bottom-up mass spectrometry-based proteomics. Our detailed analysis provided insight into the mechanism through which TRH-R activation may regulate the transcription of genes related to the cell cycle and proliferation. It involves control of the signaling pathways for β-catenin/Tcf, Notch/RBPJ, p53/p21/Rbl2/E2F, Myc, and YY1/Rb1/E2F through phosphorylation and dephosphorylation of their key components. In many instances, the phosphorylation patterns of differentially phosphorylated phosphoproteins in TRH- or TAL-treated cells were identical or displayed a similar trend in phosphorylation. However, some phosphoproteins, especially components of the Wnt/β-catenin/Tcf and YY1/Rb1/E2F pathways, exhibited different phosphorylation patterns in TRH- and TAL-treated cells. This supports the notion that TRH and TAL may act, at least in part, as biased agonists. Additionally, the deficiency of β-arrestin2 resulted in a reduced number of alterations in phosphorylation, highlighting the critical role of β-arrestin2 in the signal transduction from TRH-R in the plasma membrane to transcription factors in the nucleus.
Collapse
Affiliation(s)
- Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia
| | - Radka Trubacova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia; Institute of Physiology, Czech Academy of Sciences, 142 20 Prague, Czechia
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia.
| |
Collapse
|
5
|
Reddy D, Wickman JR, Ajit SK. Epigenetic regulation in opioid induced hyperalgesia. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100146. [PMID: 38099284 PMCID: PMC10719581 DOI: 10.1016/j.ynpai.2023.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
About 25 million American adults experience pain daily and one of the most commonly prescribed drugs to treat pain are opioids. Prolonged opioid usage and dose escalations can cause a paradoxical response where patients experience enhanced pain sensitivity. This opioid induced hyperalgesia (OIH) is a major hurdle when treating pain in the clinic because its underlying mechanisms are still not fully understood. OIH is also commonly overlooked and lacks guidelines to prevent its onset. Research on pain disorders and opioid usage have recognized potential epigenetic drivers of disease including DNA methylation, histone modifications, miRNA regulation, but their involvement in OIH has not been well studied. This article discusses epigenetic changes that may contribute to pathogenesis, with an emphasis on miRNA alterations in OIH. There is a crucial gap in knowledge including how multiple epigenetic modulators contribute to OIH. Elucidating the epigenetic changes underlying OIH and the crosstalk among these mechanisms could lead to the development of novel targets for the prevention and treatment of this painful phenomena.
Collapse
Affiliation(s)
- Deepa Reddy
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Jason R. Wickman
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Seena K. Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| |
Collapse
|
6
|
Abdulmalek S, Hardiman G. Genetic and epigenetic studies of opioid abuse disorder - the potential for future diagnostics. Expert Rev Mol Diagn 2023; 23:361-373. [PMID: 37078260 PMCID: PMC10257799 DOI: 10.1080/14737159.2023.2190022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/08/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION Opioid use disorder (OUD) is a global problem that often begins with prescribed medications. The available treatment and maintenance plans offer solutions for the consumption rate by individuals leaving the outstanding problem of relapse, which is a major factor hindering the long-term efficacy of treatments. AREAS COVERED Understanding the neurobiology of addiction and relapse would help identifying the core causes of relapse and distinguish vulnerable from resilient individuals, which would lead to more targeted and effective treatment and provide diagnostics to screen individuals who have a propensity to OUD. In this review, we cover the neurobiology of the reward system highlighting the role of multiple brain regions and opioid receptors in the development of the disorder. We also review the current knowledge of the epigenetics of addiction and the available screening tools for aberrant use of opioids. EXPERT OPINION Relapse remains an anticipated limitation in the way of recovery even after long period of abstinence. This highlights the need for diagnostic tools that identify vulnerable patients and prevent the cycle of addiction. Finally, we discuss the limitations of the available screening tools and propose possible solutions for the discovery of addiction diagnostics.
Collapse
Affiliation(s)
- Sarah Abdulmalek
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen’s University Belfast, NI, UK
| | - Gary Hardiman
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen’s University Belfast, NI, UK
- Department of Medicine, Medical University of South Carolina (MUSC), 135 Cannon Street, Charleston, SC 29425
| |
Collapse
|
7
|
The Effects of Transcranial Focused Ultrasound Stimulation of Nucleus Accumbens on Neuronal Gene Expression and Brain Tissue in High Alcohol-Preferring Rats. Mol Neurobiol 2023; 60:1099-1116. [PMID: 36417101 DOI: 10.1007/s12035-022-03130-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022]
Abstract
We investigated the effect of low-intensity focused ultrasound (LIFU) on gene expression related to alcohol dependence and histological effects on brain tissue. We also aimed at determining the miRNA-mRNA relationship and their pathways in alcohol dependence-induced expression changes after focused ultrasound therapy. We designed a case-control study for 100 days of observation to investigate differences in gene expression in the short-term stimulation group (STS) and long-term stimulation group (LTS) compared with the control sham group (SG). The study was performed in our Experimental Research Laboratory. 24 male high alcohol-preferring rats 63 to 79 days old, weighing 270 to 300 g, were included in the experiment. LTS received 50-day LIFU and STS received 10-day LIFU and 40-day sham stimulation, while the SG received 50-day sham stimulation. In miRNA expression analysis, it was found that LIFU caused gene expression differences in NAc. Significant differences were found between the groups for gene expression. Compared to the SG, the expression of 454 genes in the NAc region was changed in the STS while the expression of 382 genes was changed in the LTS. In the LTS, the expression of 32 genes was changed in total compared to STS. Our data suggest that LIFU targeted on NAc may assist in the treatment of alcohol dependence, especially in the long term possibly through altering gene expression. Our immunohistochemical studies verified that LIFU does not cause any tissue damage. These findings may lead to new studies in investigating the efficacy of LIFU for the treatment of alcohol dependence and also for other psychiatric disorders.
Collapse
|
8
|
Moradi Vastegani S, Alani B, Kharazmi K, Ardjmand A. MiR-33-5p Regulates CREB to Induce Morphine State-dependent Memory in Rats: Interaction with the µ Opioid Receptor. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2023; 11:150-167. [PMID: 37091037 PMCID: PMC10116354 DOI: 10.22088/ijmcm.bums.11.2.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/02/2023] [Accepted: 01/21/2023] [Indexed: 04/25/2023]
Abstract
The aim of the present study was to examine the hypothesis that miR-33-5p attenuates morphine state-dependent (StD) memory via the µ opioid receptor by regulating cyclic AMP response element-binding protein (CREB). The effects of post-training morphine and morphine StD memory and their interaction with pre-test naloxone were evaluated using a single-trial inhibitory avoidance paradigm. Then, the hippocampal miR-33-5p gene and pCREB/CREB protein expression profiles were evaluated using quantitative real-time PCR and western blotting, respectively. We found that while post-training morphine and morphine StD memory respectively up- and down-regulate the miR-33-5p expression profile in the hippocampus, the reverse results are true for the expression of pCREB/CREB. Pre-test naloxone antagonized the response. Overall, our findings suggest that the expression levels of miR-33-5p in the hippocampus set the basis for morphine StD memory with low miR-33-5p enabling state dependency. The mechanism is mediated via miR33-5p and CREB signaling with the interaction of the µ opioid receptor. This finding may be used as a potential strategy for ameliorating morphine-induced memory-related disorders.
Collapse
Affiliation(s)
- Sadegh Moradi Vastegani
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Behrang Alani
- Department of Applied Cell Sciences, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Khatereh Kharazmi
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Abolfazl Ardjmand
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran.
- Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
9
|
Chivero ET, Dagur RS, Peeples ES, Sil S, Liao K, Ma R, Chen L, Gurumurthy CB, Buch S, Hu G. Biogenesis, physiological functions and potential applications of extracellular vesicles in substance use disorders. Cell Mol Life Sci 2021; 78:4849-4865. [PMID: 33821293 PMCID: PMC10563196 DOI: 10.1007/s00018-021-03824-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/02/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Substance use disorder (SUD) is a growing health problem that affects several millions of people worldwide, resulting in negative socioeconomic impacts and increased health care costs. Emerging evidence suggests that extracellular vesicles (EVs) play a crucial role in SUD pathogenesis. EVs, including exosomes and microvesicles, are membrane-encapsulated particles that are released into the extracellular space by most types of cells. EVs are important players in mediating cell-to-cell communication through transfer of cargo such as proteins, lipids and nucleic acids. The EV cargo can alter the status of recipient cells, thereby contributing to both physiological and pathological processes; some of these play critical roles in SUD. Although the functions of EVs under several pathological conditions have been extensively reviewed, EV functions and potential applications in SUD remain less studied. In this review, we provide an overview of the current knowledge of the role of EVs in SUD, including alcohol, cocaine, heroin, marijuana, nicotine and opiate abuse. The review will focus on the biogenesis and cargo composition of EVs as well as the potential use of EVs as biomarkers of SUD or therapeutic targets in SUD.
Collapse
Affiliation(s)
- Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Raghubendra Singh Dagur
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68105, USA
| | - Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong, China
- Key Laboratory of Intelligent Manufacturing Technology, Ministry of Education, Shantou University, Shantou, Guangdong, China
| | - Channabasavaiah B Gurumurthy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
10
|
Gowen AM, Odegaard KE, Hernandez J, Chand S, Koul S, Pendyala G, Yelamanchili SV. Role of microRNAs in the pathophysiology of addiction. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1637. [PMID: 33336550 PMCID: PMC8026578 DOI: 10.1002/wrna.1637] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
Addiction is a chronic and relapsing brain disorder characterized by compulsive seeking despite adverse consequences. There are both heritable and epigenetic mechanisms underlying drug addiction. Emerging evidence suggests that non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long non-coding RNAs, and circular RNAs regulate synaptic plasticity and related behaviors caused by substances of abuse. These ncRNAs modify gene expression and may contribute to the behavioral phenotypes of addiction. Among the ncRNAs, the most widely researched and impactful are miRNAs. The goal in this systematic review is to provide a detailed account of recent research involving the role of miRNAs in addiction. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Austin M Gowen
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Katherine E Odegaard
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jordan Hernandez
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Subhash Chand
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sneh Koul
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sowmya V Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
11
|
Xu C, Fan W, Zhang Y, Loh HH, Law PY. Kappa opioid receptor controls neural stem cell differentiation via a miR-7a/Pax6 dependent pathway. Stem Cells 2021; 39:600-616. [PMID: 33452745 DOI: 10.1002/stem.3334] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/28/2020] [Indexed: 01/04/2023]
Abstract
Although the roles of opioid receptors in neurogenesis have been implicated in previous studies, the mechanism by which κ-opioid receptor (OPRK1) regulates adult neurogenesis remains elusive. We now demonstrate that two agonists of OPRK1, U50,488H and dynorphin A, inhibit adult neurogenesis by hindering neuronal differentiation of mouse hippocampal neural stem cells (NSCs), both in vitro and in vivo. This effect was blocked by nor-binaltorphimine (nor-BNI), a specific antagonist of OPRK1. By examining neurogenesis-related genes, we found that OPRK1 agonists were able to downregulate the expression of Pax6, Neurog2, and NeuroD1 in mouse hippocampal NSCs, in a way that Pax6 regulates the transcription of Neurog2 and Neurod1 by directly interacting with their promoters. Moreover, this effect of OPRK1 was accomplished by inducing expression of miR-7a, a miRNA that specifically targeted Pax6 by direct interaction with its 3'-UTR sequence, and thereby decreased the levels of Pax6, Neurog2, and NeuroD1, thus resulted in hindrance of neuronal differentiation of NSCs. Thus, by modulating Pax6/Neurog2/NeuroD1 activities via upregulation of miR-7a expression, OPRK1 agonists hinder the neuronal differentiation of NSCs and hence inhibit adult neurogenesis in mouse hippocampus.
Collapse
Affiliation(s)
- Chi Xu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Wenxiang Fan
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Ying Zhang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Gong S, Ying L, Fan Y, Sun Z. Fentanyl Inhibits Lung Cancer Viability and Invasion via Upregulation of miR-331-3p and Repression of HDAC5. Onco Targets Ther 2020; 13:13131-13141. [PMID: 33380803 PMCID: PMC7767728 DOI: 10.2147/ott.s281095] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Non-small cell lung cancer (NSCLC) accounts for more than 80% of lung cancer cases and remains the primary cause of cancer-related deaths worldwide. Fentanyl is a commonly utilized anesthetic during the process of tumor resection, and exhibits inhibitory effects on the progression of numerous cancer types, including pancreatic cancer, colorectal cancer and gastric cancer. However, the effects of fentanyl on the cell viability and invasion of NSCLC has not been investigated. Current study aimed to investigate the effects and the mechanisms underlying the effects of fentanyl on NSCLC. Methods The expression of μ-opioid receptor (MOR) was proved by flow cytometry. The expression of microRNA-331-3p (miR-331-3p) and histone deacetylase 5 (HDAC5) in NSCLC tissues and cell lines are evaluated by reverse transcription-quantitative PCR (RT-qPCR) and Western blot, respectively. Cell viability and invasion are measured by cell counting kit-8 (CCK-8) assay and transwell assay, respectively. The interaction between miR-331-3p and 3ʹ-untranslated region (UTR) of HDAC5 is predicted by TargetScan 7.1 (http://www.targetscan.org/vert_71/), validated by dual luciferase assay, RT-qPCR and Western blot. Results There was lower miR-331-3p expression and higher HDAC5 expression in NSCLC cell lines A549 and CALU-1 compared with BEAS-2B, which was reversed by fentanyl administration. miR-331-3p targeted 3ʹ-UTR of HDAC5 in NSCLC cell lines A549 and CALU-1. miR-331-3p inhibitor partially abrogated the inhibitory effects of fentanyl on NSCLC cell viability and invasion by targeting HDAC5. In addition, there was higher HDAC5 expression and lower miR-331-3p expression in tumor tissues which were isolated from patients with NSCLC compared to the adjacent normal tissues, and miR-331-3p was negatively correlated with HDAC5 in NSCLC tumor tissues. Conclusion Fentanyl inhibits the viability and invasion of NSCLC cells by induction of miR-331-3p and reduction of HDAC5.
Collapse
Affiliation(s)
- Shengkai Gong
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Liang Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University Medical College, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Yu'ning Fan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Zhentao Sun
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| |
Collapse
|
13
|
Lisowska B, Jakubiak J, Siewruk K, Sady M, Kosson D. Which idea is better with regard to immune response? Opioid anesthesia or opioid free anesthesia. J Inflamm Res 2020; 13:859-869. [PMID: 33177861 PMCID: PMC7652233 DOI: 10.2147/jir.s275986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
The stress of surgery is characterized by an inflammatory response with immune suppression resulting from many factors, including the type of surgery and the kind of anesthesia, linked with the drugs that are used and the underlying disease of the patient. The trauma of surgery triggers a cascade of reactions involving the immune response and nociception. As strong analgesics, opioids provide the analgesic component of general anesthesia with bi-directional effect on the immune system. Opioids influence almost all aspects of the immune response in regards to leukocytes, macrophages, mast cells, lymphocytes, and NK cells. The suppressive effect of opioids on the immune system is limiting their use, especially in patients with impaired immune response, so the possibility of using multimodal anesthesia without opioids, known as opioid-free anesthesia (OFA), is gaining more and more sympathizers. The idea of OFA is to eliminate opioid analgesia in the treatment of acute pain and to replace it with drugs from other groups that are assumed to have a comparable analgesic effect without affecting the immune system. Here, we present a review on the impact of anesthesia, with and without the use of opioids, on the immune response to surgical stress.
Collapse
Affiliation(s)
- Barbara Lisowska
- Department Anesthesiology and Intensive Medical Care, National Geriatrics, Rheumatology and Rehabilitation Institute, Warsaw 02-637, Poland
| | - Jakub Jakubiak
- Department of Anesthesiology and Intensive Care, John Paul II Western Hospital, Grodzisk Mazowiecki 05-825, Poland
| | - Katarzyna Siewruk
- Faculty of Veterinary Medicine, Department of Large Animal Diseases with Clinic, Warsaw University of Life Sciences, Warsaw 02-797, Poland
| | - Maria Sady
- Faculty of Veterinary Medicine, Department of Large Animal Diseases with Clinic, Warsaw University of Life Sciences, Warsaw 02-797, Poland
| | - Dariusz Kosson
- Department of Anaesthesiology and Intensive Care, Division of Teaching, Medical University of Warsaw, Warsaw 02-005, Poland
| |
Collapse
|
14
|
Qi Y, Yan T, Chen L, Zhang Q, Wang W, Han X, Li D, Shi J, Sui G. Characterization of YY1 OPB Peptide for its Anticancer Activity. Curr Cancer Drug Targets 2020; 19:504-511. [PMID: 30381079 DOI: 10.2174/1568009618666181031153151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 10/02/2018] [Accepted: 10/18/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The oncoprotein binding (OPB) domain of Yin Yang 1 (YY1) consists of 26 amino acids between G201 and S226, and is involved in YY1 interaction with multiple oncogene products, including MDM2, AKT, EZH2 and E1A. Through the OPB domain, YY1 promotes the oncogenic or proliferative regulation of these oncoproteins in cancer cells. We previously demonstrated that a peptide with the OPB sequence blocked YY1-AKT interaction and inhibited breast cancer cell proliferation. OBJECTIVE In the current study, we characterized the OPB domain and determined a minimal region for peptide design to suppress cancer cells. METHODS Using alanine-scan method, we identified that the amino acids at OPB C-terminal are essential to YY1 binding to AKT. Further studies suggested that serine and threonine residues, but not lysines, in OPB play a key role in YY1-AKT interaction. We generated GFP fusion expression vectors to express OPB peptides with serially deleted N-terminal and found that OPB1 (i.e. G201-S226) is cytoplasmic, but OPB2 (i.e. E206-S226), OPB3 (i.e. E206-S226) and control peptide were both nuclear and cytoplasmic. RESULTS Both OPB1 and 2 inhibited breast cancer cell proliferation and migration, but OPB3 exhibited similar effects to control. OPB1 and 2 caused cell cycle arrest at G1 phase, increased p53 and p21 expression, and reduced AKT(S473) phosphorylation in MCF-7 cells, but not in MDA-MB-231 cells. CONCLUSION Overall, the serines and threonines of OPB are essential to YY1 binding to oncoproteins, and OPB peptide can be minimized to E206-S226 that maintain inhibitory activity to YY1- promoted cell proliferation.
Collapse
Affiliation(s)
- Yige Qi
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Ting Yan
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Lu Chen
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Qiang Zhang
- College of Life Science, Northeast Forestry University, Harbin, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| | - Weishu Wang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xu Han
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jinming Shi
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
15
|
Zhang H, Wang Q, Wang Q, Liu A, Qin F, Sun Q, Li Q, Gu Y, Tang Z, Lu S, Lu Z. Circular RNA expression profiling in the nucleus accumbens: Effects of electroacupuncture treatment on morphine-induced conditioned place preference. Addict Biol 2020; 25:e12794. [PMID: 31240833 DOI: 10.1111/adb.12794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/16/2019] [Accepted: 05/23/2019] [Indexed: 11/30/2022]
Abstract
Electroacupuncture (EA) has been developed on the basis of traditional Chinese acupuncture. EA can suppress craving in opioid addicts and opioid-seeking responses in rodents. However, the molecular mechanism of EA on the rewarding properties of morphine and craving responses is not known. Here, we have applied a conditioned place preference paradigm in mice to measure morphine-induced rewarding effects along with EA treatment. Circular RNAs (circRNAs) can function as micro RNA (miRNA) sponges to effectively regulate gene expression levels. CircRNA profiling within the nucleus accumbens (NAc) was performed in EA-treated and sham-treated mice. Following RNAseq, data were analyzed by gene ontology (GO) and Kyoto Encyclopedia Genes and Genomes (KEGG) tools. We identified 112 significantly differentially expressed circRNAs, including 51 that were up-regulated and 61 that were down-regulated. Our bioinformatics analyses show that these differentially expressed circRNAs map into pathways that are mainly involved with renin secretion and the cGMP-PKG signaling. We further constructed a circRNA-miRNA network that predicts the potential roles of the differentially expressed circRNAs and the interaction of circRNAs with miRNAs. Our secondary sequencing and bioinformatics analysis in the NAc after EA treatment on morphine-induced CPP provides putative novel targets on molecular mechanisms involved in morphine reinforcement and possibly craving.
Collapse
Affiliation(s)
- Han Zhang
- First Clinical Medical College Nanjing University of Chinese Medicine China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education Nanjing University of Chinese Medicine China
| | - Qian Wang
- International Education college Nanjing University of Chinese Medicine China
| | - Qisheng Wang
- First Clinical Medical College Nanjing University of Chinese Medicine China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education Nanjing University of Chinese Medicine China
| | - Anlong Liu
- First Clinical Medical College Nanjing University of Chinese Medicine China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education Nanjing University of Chinese Medicine China
| | - Fenfen Qin
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education Nanjing University of Chinese Medicine China
- College of Pharmacy Nanjing University of Chinese Medicine China
| | - Qinmei Sun
- First Clinical Medical College Nanjing University of Chinese Medicine China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education Nanjing University of Chinese Medicine China
| | - Qian Li
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education Nanjing University of Chinese Medicine China
| | - Yun Gu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education Nanjing University of Chinese Medicine China
| | - Zongxiang Tang
- School of Medicine and Life Science Nanjing University of Chinese Medicine China
| | - Shengfeng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education Nanjing University of Chinese Medicine China
| | - Zhigang Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education Nanjing University of Chinese Medicine China
- College of Pharmacy Nanjing University of Chinese Medicine China
| |
Collapse
|
16
|
Zhang Y, Zhai H. Bilobalide assuages morphine-induced addiction in hippocampal neuron cells through upregulation of microRNA-101. J Biochem Mol Toxicol 2020; 34:e22493. [PMID: 32319158 DOI: 10.1002/jbt.22493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/24/2019] [Accepted: 03/03/2020] [Indexed: 11/09/2022]
Abstract
Bilobalide exhibits many biological activities, but its effects on morphine stimulation have not been elucidated. The research aims to explore the function and underlying mechanisms of bilobalide in morphine-led hippocampal neuron cells. Cells were treated with or without morphine or oxaliplatin (OXA), bilobalide, or SCH772984 dilutions. miR-101 inhibitor and negative control were transfected into cells. Western blot and quantitative reverse transcription-polymerase chain reaction were, respectively, conducted to measure the relative expression of proteins or RNAs. Morphine improved the expression levels of orexin1 receptor (OX1R) and c-FOS, the p/t-ERK/PKC as well. The c-FOS protein level and p/t-ERK/PKC were significantly elevated by morphine + OXA. Bilobalide had no effect on OX1R and p/t-PKC but evidently decreased the c-FOS and p/t-ERK. The p-ERK and the c-FOS accumulation levels were remarkably reduced by SCH772984. The production of miR-101 was promoted by bilobalide but inhibited by the miR-101 inhibitor. miR-101 inhibitor abolished bilobalide's inhibitory effects on p/t-ERK. Bilobalide exhibited morphine-induced effects on hippocampal neuron cells by upregulating miR-101.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng, China
| | - Hongyin Zhai
- Department of Children Rehabilitation Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Wu T, Donohoe ME. Yy1 regulates Senp1 contributing to AMPA receptor GluR1 expression following neuronal depolarization. J Biomed Sci 2019; 26:79. [PMID: 31629407 PMCID: PMC6800989 DOI: 10.1186/s12929-019-0582-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/09/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuronal activity-induced changes in gene expression patterns are important mediators of neuronal plasticity. Many neuronal genes can be activated or inactivated in response to neuronal depolarization. Mechanisms that activate gene transcription are well established, but activity-dependent mechanisms that silence transcription are less understood. It is also not clear what is the significance of inhibiting these genes during neuronal activity. METHODS Quantitative Real Time-PCR, western blot and immunofluorescence staining were performed to examine the expression of Senp1 and GluR1 in mouse cortical neurons. The alterations of Yy1 phosphorylation upon neuronal depolarization and the interaction of Yy1 with Brd4 were studied by protein co-immunoprecipitation. The regulators of Yy1 phosphorylation were identified by phosphatase inhibitors. Chromatin immunoprecipitation, in vitro DNA binding assay, luciferase assay and gene knockdown experiments were used to validate the roles of Yy1 and its phosphorylation as well as Brd4 in regulating Senp1 expression. RESULTS We report that neuronal depolarization deactivates the transcription of the SUMO protease Senp1, an important component regulating synaptic transmission, scaling, and plasticity, through Yy1. In un-stimulated neurons, Senp1 transcription is activated by a Yy1-Brd4 transcription factor protein complex assembled on the Senp1 promoter. Upon membrane depolarization, however, Yy1 is dephosphorylated and the Yy1-Brd4 complex is evicted from the Senp1 promoter, reducing Senp1 transcription levels. Both Yy1 and Senp1 promote the expression of AMPA receptor subunit GluR1, a pivotal component in learning and memory. CONCLUSIONS These results reveal an axis of Yy1/Brd4-Senp1 which regulates the expression of GluR1 during neuronal depolarization. This implicates a regulation mechanism in silencing gene expression upon neuronal activity.
Collapse
Affiliation(s)
- Tao Wu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China.
- Burke Medical Research Institute, White Plains, NY, 10605, USA.
- Department of Neuroscience, Brain Mind Research Institute, Department of Cell & Development, Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Mary E Donohoe
- Burke Medical Research Institute, White Plains, NY, 10605, USA.
- Department of Neuroscience, Brain Mind Research Institute, Department of Cell & Development, Weill Cornell Medical College, New York, NY, 10065, USA.
- Present address: Department of Medicine, Division of Regenerative Medicine, University of California San Diego School of Medicine, La Jolla, CA, 92037, USA.
| |
Collapse
|
18
|
Abstract
miRNAs, a major class of small noncoding RNAs approximately 18-25 nucleotides in length, function by repressing the expression of target genes through binding to complementary sequences in the 3'-UTRs of target genes. Emerging evidence has highlighted their important roles in numerous diseases, including human cancers. Recently, miR-190 has been shown to be dysregulated in various types of human cancers that participates in cancer-related biological processes, including proliferation, apoptosis, metastasis, drug resistance, by regulating associated target genes, and to predict cancer diagnosis and prognosis. In this review, we summarized the roles of miR-190-5p in human diseases, especially in human cancers. Then we classified its target genes in tumorigenesis and progression, which might provide evidence for cancer diagnosis and prognosis, promising tools for cancer treatment, or leads for further investigation.
Collapse
Affiliation(s)
- Yue Yu
- 1The First Department of Breast Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Hexi District, Tianjin, 300060 China.,2Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060 China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060 China.,4Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060 China
| | - Xu-Chen Cao
- 1The First Department of Breast Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Hexi District, Tianjin, 300060 China.,2Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060 China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060 China.,4Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060 China
| |
Collapse
|
19
|
Wang J, Zhang N, Peng M, Hua X, Huang C, Tian Z, Xie Q, Zhu J, Li J, Huang H, Huang C. p85α Inactivates MMP-2 and Suppresses Bladder Cancer Invasion by Inhibiting MMP-14 Transcription and TIMP-2 Degradation. Neoplasia 2019; 21:908-920. [PMID: 31401412 PMCID: PMC6700442 DOI: 10.1016/j.neo.2019.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023]
Abstract
Recent studies show p85α up-regulates epidermal growth factor (EGF) receptor, thereby promoting malignant cell transformation and migration in normal mouse embryonic fibroblasts (MEFs). However, the potential role of p85α in human bladder cancer (BC) remains unknown. Here, we show that p85α is down-regulated in BC tumor tissues. Ectopic expression of p85α inhibited cell invasion, but not migration, whereas p85α knockdown promoted invasion in BC cells, revealing that p85α inhibits BC invasion. Overexpression of kinase-deficient p110 in T24 T(p85α) cells inhibited BC cell migration, but not invasion, suggesting that the inhibition of p85α on invasion is independent of PI3K activity. The effect of p85α on inhibiting BC invasion was mediated by the inactivation of MMP-2 concomitant with the up-regulation of TIMP-2 and down-regulation of MMP-14. Mechanistic studies revealed c-Jun inactivation was associated with p85α knockdown-induced MMP-14 expression, and down-regulated miR-190, leading to ATG7 mRNA degradation. This suppressed the autophagy-dependent removal of TIMP-2 in human BC cells. The present results identify a novel function of p85α and clarify the mechanisms underlying its inhibition of BC invasion, providing insight into the role of p85α in normal and cancer cells.
Collapse
Affiliation(s)
- Jingjing Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Ning Zhang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Minggang Peng
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Xiaohui Hua
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Chao Huang
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Zhongxian Tian
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Junlan Zhu
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Jingxia Li
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035.
| | - Chuanshu Huang
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA.
| |
Collapse
|
20
|
Decreased Level of Blood MicroRNA-133b in Men with Opioid Use Disorder on Methadone Maintenance Therapy. J Clin Med 2019; 8:jcm8081105. [PMID: 31349687 PMCID: PMC6722972 DOI: 10.3390/jcm8081105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/14/2019] [Accepted: 07/24/2019] [Indexed: 12/20/2022] Open
Abstract
Although previous animal studies have indicated that certain micro ribonucleic acids (microRNAs) play a part in the pathway of opioid addiction, whether such findings extend to human models is yet unknown. This study aims to investigate the important microRNA expressions in patients with opioid use disorder (OUD) on methadone maintenance treatment (MMT) compared to healthy controls and analyze the correlation between microRNAs and opioid characteristics among the patients. We recruited 50 patients and 25 controls, and both groups were matched regarding gender, age, and body mass index. Serum microRNAs (miR-133b, miR-23b, miR-190, miR-206, miR-210, and miR-21) were measured. The age of OUD onset, duration of MMT participation, and recent daily methadone dosage were considered the opioid characteristics. We adopted the t-test to compare the difference between patients and controls and Pearson's correlation to evaluate the association between microRNAs and opioid profiles. Only the level of miR-133b in OUD patients on MMT was significantly lower than that in healthy controls. We did not detect differences of any other microRNA expressions between the two groups. Furthermore, we found no evidence to support the association between microRNAs and opioid characteristics. This study indicates that miR-133b values may be decreased in OUD patients on MMT.
Collapse
|
21
|
Signaling characteristics and functional regulation of delta opioid-kappa opioid receptor (DOP-KOP) heteromers in peripheral sensory neurons. Neuropharmacology 2019; 151:208-218. [PMID: 30776373 PMCID: PMC6500751 DOI: 10.1016/j.neuropharm.2019.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/01/2019] [Accepted: 02/12/2019] [Indexed: 12/12/2022]
Abstract
Receptor heteromers often display distinct pharmacological and functional properties compared to the individual receptor constituents. In this study, we compared the properties of the DOP-KOP heteromer agonist, 6'-guanidinonaltrindole (6'-GNTI), with agonists for DOP ([D-Pen2,5]-enkephalin [DPDPE]) and KOP (U50488) in peripheral sensory neurons in culture and in vivo. In primary cultures, all three agonists inhibited PGE2-stimulated cAMP accumulation as well as activated extracellular signal-regulated kinase 1/2 (ERK) with similar efficacy. ERK activation by U50488 was Gi-protein mediated but that by DPDPE or 6'-GNTI was Gi-protein independent (i.e., pertussis toxin insensitive). Brief pretreatment with DPDPE or U50488 resulted in loss of cAMP signaling, however, no desensitization occurred with 6'-GNTI pretreatment. In vivo, following intraplantar injection, all three agonists reduced thermal nociception. The dose-response curves for DPDPE and 6'-GNTI were monotonic whereas the curve for U50488 was an inverted U-shape. Inhibition of ERK blocked the downward phase and shifted the curve for U50488 to the right. Following intraplantar injection of carrageenan, antinociceptive responses to either DPDPE or U50488 were transient but could be prolonged with inhibitors of 12/15-lipoxgenases (LOX). By contrast, responsiveness to 6'-GNTI remained for a prolonged time in the absence of LOX inhibitors. Further, pretreatment with the 12/15-LOX metabolites, 12- and 15- hydroxyeicosatetraenoic acid, abolished responses to U50488 and DPDPE but had no effect on 6'-GNTI-mediated responses either in cultures or in vivo. Overall, these results suggest that DOP-KOP heteromers exhibit unique signaling and functional regulation in peripheral sensory neurons and may be a promising therapeutic target for the treatment of pain.
Collapse
|
22
|
Li J, Wang R, Hu X, Gao Y, Wang Z, Li J, Wong J. Activated MEK/ERK Pathway Drives Widespread and Coordinated Overexpression of UHRF1 and DNMT1 in Cancer cells. Sci Rep 2019; 9:907. [PMID: 30696879 PMCID: PMC6351616 DOI: 10.1038/s41598-018-37258-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022] Open
Abstract
The UHRF1-DNMT1 axis plays a key role in DNA maintenance methylation in mammals. Accumulative studies demonstrate that UHRF1 is broadly overexpressed in cancers, which contributes to cancer cell proliferation and tumorigenesis. Interestingly, a proteasome-dependent downregulation of UHRF1 has been observed in pluripotent ground state mouse embryonic stem cells (mESCs) cultured in the presence of two kinase (MEK1/MEK2 and GSK3β) inhibitors (termed 2i), raising the question whether UHRF1 is similarly regulated in cancer cells. Here we present evidence that while addition of 2i broadly downregulates UHRF1 and DNMT1 in various cancer cells, distinct underlying mechanisms are involved. In contrast to mESCs, 2i-induced downregulation of UHRF1 and DNMT1 in cancer cells cannot be rescued by proteasome inhibitor and occurs primarily at the level of transcription. Furthermore, downregulation of UHRF1 and DNMT1 by 2i is due to inhibition of MEK1/MEK2, but not GSK3β activity. Data mining reveals a marked co-expression of UHRF1 and DNMT1 in normal tissues as well as cancers. We provide evidence that multiple transcription factors including E2F1 and SP1 mediate the transcriptional activation of UHRF1 and DNMT1 by the activated MEK/ERK pathway. Together our study reveals distinct regulation of UHRF1/DNMT1 in mESCs and cancer cells and identifies activated MEK/ERK pathway as a driving force for coordinated and aberrant over-expression of UHRF1 and DNMT1 in cancers.
Collapse
Affiliation(s)
- Jialun Li
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ruiping Wang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xueli Hu
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Gao
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhen Wang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
23
|
Fan W, Wang H, Zhang Y, Loh HH, Law PY, Xu C. Morphine regulates adult neurogenesis and contextual memory extinction via the PKCε/Prox1 pathway. Neuropharmacology 2018; 141:126-138. [PMID: 30170081 DOI: 10.1016/j.neuropharm.2018.08.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 02/08/2023]
Abstract
We have previously reported that the miR-181a/Prox1/Notch1 pathway mediates the effect of morphine on modulating lineage-specific differentiation of adult neural stem/progenitor cells (NSPCs) via a PKCε-dependent pathway, whereas fentanyl shows no such effect. However, the role of the PKCε/Prox1 pathway in mediating drug-associated contextual memory remains unknown. The current study investigated the effect of PKCε/Prox1 on morphine-induced inhibition of adult neurogenesis and drug-associated contextual memory in mice, while the effect of fentanyl was tested simultaneously. By using BrdU labeling, we were able to examine the lineages of differentiated NSPCs in adult DG. PKCε knockout blocked morphine's effects on inducing in vivo astrocyte-preferential differentiation of NSPCs, but did not alter NSPC lineages upon fentanyl treatment. Inhibited adult neurogenesis further resulted in prolonged extinction and enhanced reinstatement of morphine-induced CPP, as well as prolonged extinction of space reference memory indicated by the Morris water maze paradigm. However, after fentanyl administration, no significant changes were found between wild-type and PKCε knockout mice, during either CPP or water maze tasks. When the lentivirus encoding Nestin-promoter-controlled Prox1 cDNA was injected into hippocampi of wildtype and PKCε knockout adult mice to modulate PKCε/Prox1 activity, similar effects were discovered in adult mice injected with lentivirus encoding Prox1, and more dramatic effects were found in PKCε knockout mice with concurrent Prox1 overexpression. In conclusion, morphine mediates lineage-specific NSPC differentiation, inhibits adult neurogenesis and regulates contextual memory retention via the PKCε/Prox1 pathway, which are implicated in the eventual context-associated relapse.
Collapse
Affiliation(s)
- Wenxiang Fan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Helei Wang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yue Zhang
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Chi Xu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
24
|
Xiong Y, Wu S, Yu H, Wu J, Wang Y, Li H, Huang H, Zhang H. miR-190 promotes HCC proliferation and metastasis by targeting PHLPP1. Exp Cell Res 2018; 371:185-195. [PMID: 30092222 DOI: 10.1016/j.yexcr.2018.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 01/10/2023]
Abstract
miRNAs regulate gene expression and enable clinicians to distinguish between benign and malignant tissues in cancers. PH domain leucine-rich repeat-containing protein phosphatase 1 (PHLPP1) is known to be a tumour suppressor. A lentiviral overexpression system was used to stably express miR-190, leading to the enhancement of hepatocellular carcinoma (HCC) proliferation and metastasis as a result of inhibited PHLPP1 expression. The results showed that stable miR-190 expression increased the expression of EMT-related proteins (Snail and TCF8/ZEB1) as well as the phosphorylation of Akt at Ser473 and the expression of a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1). However, restoring PHLPP1 expression counteracted the effects of miR-190 on HCC proliferation, migration and invasion. The results of the animal experiments showed that miR-190 improved the HepG2 cell tumour formation and lung metastasis ability. Stable miR-190 overexpression leads to the downregulation of PHLPP1 protein expression. miR-190 has potential as a target in the treatment and diagnosis of HCC.
Collapse
Affiliation(s)
- Yuzhen Xiong
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Shang Wu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Huajun Yu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Jun Wu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Yajun Wang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Huimin Li
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Hui Huang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Haitao Zhang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
25
|
Smith ACW, Kenny PJ. MicroRNAs regulate synaptic plasticity underlying drug addiction. GENES, BRAIN, AND BEHAVIOR 2018; 17:e12424. [PMID: 28873276 PMCID: PMC5837931 DOI: 10.1111/gbb.12424] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/11/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022]
Abstract
Chronic use of drugs of abuse results in neurochemical, morphological and behavioral plasticity that underlies the emergence of compulsive drug seeking and vulnerability to relapse during periods of attempted abstinence. Identifying and reversing addiction-relevant plasticity is seen as a potential point of pharmacotherapeutic intervention in drug-addicted individuals. Despite considerable advances in our understanding of the actions of drugs of abuse in the brain, this information has thus far yielded few novel treatment options addicted individuals. MicroRNAs are small noncoding RNAs that can each regulate the translation of hundreds to thousands of messenger RNAs. The highly pleiotropic nature of miRNAs has focused attention on their contribution to addiction-relevant structural and functional plasticity in the brain and their potential utility as targets for medications development. In this review, we discuss the roles of miRNAs in synaptic plasticity underlying the development of addiction and then briefly discuss the possibility of using circulating miRNA as biomarkers for addiction.
Collapse
Affiliation(s)
- A. C. W. Smith
- The Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - P. J. Kenny
- The Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
26
|
Crist RC, Doyle GA, Nelson EC, Degenhardt L, Martin NG, Montgomery GW, Saxon AJ, Ling W, Berrettini WH. A polymorphism in the OPRM1 3'-untranslated region is associated with methadone efficacy in treating opioid dependence. THE PHARMACOGENOMICS JOURNAL 2016; 18:173-179. [PMID: 27958381 PMCID: PMC5468510 DOI: 10.1038/tpj.2016.89] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/07/2016] [Accepted: 11/14/2016] [Indexed: 11/10/2022]
Abstract
The mu-opioid receptor (MOR) is the primary target of methadone and buprenorphine. The primary neuronal transcript of the OPRM1 gene, MOR-1, contains a ~13kb 3′ untranslated region with five common haplotypes in European-Americans. We analyzed the effects of these haplotypes on the percentage of opioid positive urine tests in European-Americans (n = 582) during a 24-week, randomized, open-label trial of methadone or buprenorphine/naloxone (Suboxone) for the treatment of opioid dependence. A single haplotype, tagged by rs10485058, was significantly associated with patient urinalysis data in the methadone treatment group. Methadone patients with the A/A genotype at rs10485058 were less likely to have opioid-positive urine drug screens than those in the combined A/G and G/G genotypes group (Relative Risk = 0.76, 95% confidence intervals = 0.73–0.80, p = 0.0064). Genotype at rs10485058 also predicted self-reported relapse rates in an independent population of Australian patients of European descent (n = 1215) who were receiving opioid substitution therapy (p = 0.003). In silico analysis predicted that miR-95-3p would interact with the G, but not the A allele of rs10485058. Luciferase assays indicated miR-95-3p decreased reporter activity of constructs containing the G, but not the A allele of rs10485058, suggesting a potential mechanism for the observed pharmacogenetic effect. These findings suggest that selection of a medication for opioid dependence based on rs10485058 genotype might improve outcomes in this ethnic group.
Collapse
Affiliation(s)
- R C Crist
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, PA, Pennsylvania, USA
| | - G A Doyle
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, PA, Pennsylvania, USA
| | - E C Nelson
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - L Degenhardt
- National Drug and Alcohol Research Centre, UNSW Australia, Sydney, New South Wales, Australia
| | - N G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - G W Montgomery
- The University of Queensland, Herston, Queensland, Australia
| | - A J Saxon
- Veteran's Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - W Ling
- University of California, Los Angeles, Integrated Substance Abuse Programs, Los Angeles, CA, USA
| | - W H Berrettini
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, PA, Pennsylvania, USA
| |
Collapse
|
27
|
Peregud DI, Panchenko LF, Gulyaeva NV. MicroRNA may regulate the content of the brain-derived neurotrophic factor in the frontal cortex of rats after spontaneous morphine withdrawal. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416040085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Mirra P, Nigro C, Prevenzano I, Procopio T, Leone A, Raciti GA, Andreozzi F, Longo M, Fiory F, Beguinot F, Miele C. The role of miR-190a in methylglyoxal-induced insulin resistance in endothelial cells. Biochim Biophys Acta Mol Basis Dis 2016; 1863:440-449. [PMID: 27864140 DOI: 10.1016/j.bbadis.2016.11.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/17/2016] [Accepted: 11/14/2016] [Indexed: 01/08/2023]
Abstract
Methylglyoxal (MGO) is a reactive dicarbonyl produced as by-product of glycolysis, and its formation is heightened in hyperglycaemia. MGO plasma levels are two-fold to five-fold increased in diabetics and its accumulation promotes the progression of vascular complications. Impairment of endothelium-derived nitric oxide represents a common feature of endothelial dysfunction in diabetics. We previously demonstrated that MGO induces endothelial insulin resistance. Increasing evidence shows that high glucose and MGO modify vascular expression of several microRNAs (miRNAs), suggesting their potential role in the impairment of endothelial insulin sensitivity. The aim of the study is to investigate whether miRNAs may be involved in MGO-induced endothelial insulin resistance in endothelial cells. MGO reduces the expression of miR-190a both in mouse aortic endothelial cells (MAECs) and in aortae from mice knocked-down for glyoxalase-1. miR-190a inhibition impairs insulin sensitivity, whereas its overexpression prevents the MGO-induced insulin resistance in MAECs. miR-190a levels are not affected by the inhibition of ERK1/2 phosphorylation. Conversely, ERK1/2 activation is sustained by miR-190a inhibitor and the MGO-induced ERK1/2 hyper-activation is reduced by miR-190a mimic transfection. Similarly, protein levels of the upstream KRAS are increased by both MGO and miR-190a inhibitor, and these levels are reduced by miR-190a mimic transfection. Interestingly, silencing of KRAS is able to rescue the MGO-impaired activation of IRS1/Akt/eNOS pathway in response to insulin. In conclusion, miR-190a down-regulation plays a role in MGO-induced endothelial insulin resistance by increasing KRAS. This study highlights miR-190a as new candidate for the identification of strategies aiming at ameliorating vascular function in diabetes.
Collapse
Affiliation(s)
- Paola Mirra
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Cecilia Nigro
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Immacolata Prevenzano
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Teresa Procopio
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Alessia Leone
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Gregory Alexander Raciti
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna-Graecia, Catanzaro, Italy
| | - Michele Longo
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesca Fiory
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesco Beguinot
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Claudia Miele
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
29
|
Hollins SL, Cairns MJ. MicroRNA: Small RNA mediators of the brains genomic response to environmental stress. Prog Neurobiol 2016; 143:61-81. [PMID: 27317386 DOI: 10.1016/j.pneurobio.2016.06.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/24/2016] [Accepted: 06/11/2016] [Indexed: 01/09/2023]
Abstract
The developmental processes that establish the synaptic architecture of the brain while retaining capacity for activity-dependent remodeling, are complex and involve a combination of genetic and epigenetic influences. Dysregulation of these processes can lead to problems with neural circuitry which manifest in humans as a range of neurodevelopmental syndromes, such as schizophrenia, bipolar disorder and fragile X mental retardation. Recent studies suggest that prenatal, postnatal and intergenerational environmental factors play an important role in the aetiology of stress-related psychopathology. A number of these disorders have been shown to display epigenetic changes in the postmortem brain that reflect early life experience. These changes affect the regulation of gene expression though chromatin remodeling (transcriptional) and post-transcriptional influences, especially small noncoding microRNA (miRNA). These dynamic and influential molecules appear to play an important function in both brain development and its adaption to stress. In this review, we examine the role of miRNA in mediating the brain's response to both prenatal and postnatal environmental perturbations and explore how stress- induced alterations in miRNA expression can regulate the stress response via modulation of the immune system. Given the close relationship between environmental stress, miRNA, and brain development/function, we assert that miRNA hold a significant position at the molecular crossroads between neural development and adaptations to environmental stress. A greater understanding of the dynamics that mediate an individual's predisposition to stress-induced neuropathology has major human health benefits and is an important area of research.
Collapse
Affiliation(s)
- Sharon L Hollins
- School of Biomedical Sciences and Pharmacy and the Hunter Medical Research Institute, the University of Newcastle, Callaghan, NSW 2308, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy and the Hunter Medical Research Institute, the University of Newcastle, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia.
| |
Collapse
|
30
|
Tapocik JD, Ceniccola K, Mayo CL, Schwandt ML, Solomon M, Wang BD, Luu TV, Olender J, Harrigan T, Maynard TM, Elmer GI, Lee NH. MicroRNAs Are Involved in the Development of Morphine-Induced Analgesic Tolerance and Regulate Functionally Relevant Changes in Serpini1. Front Mol Neurosci 2016; 9:20. [PMID: 27047334 PMCID: PMC4805586 DOI: 10.3389/fnmol.2016.00020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/29/2016] [Indexed: 12/23/2022] Open
Abstract
Long-term opioid treatment results in reduced therapeutic efficacy and in turn leads to an increase in the dose required to produce equivalent pain relief and alleviate break-through or insurmountable pain. Altered gene expression is a likely means for inducing long-term neuroadaptations responsible for tolerance. Studies conducted by our laboratory (Tapocik et al., 2009) revealed a network of gene expression changes occurring in canonical pathways involved in neuroplasticity, and uncovered miRNA processing as a potential mechanism. In particular, the mRNA coding the protein responsible for processing miRNAs, Dicer1, was positively correlated with the development of analgesic tolerance. The purpose of the present study was to test the hypothesis that miRNAs play a significant role in the development of analgesic tolerance as measured by thermal nociception. Dicer1 knockdown, miRNA profiling, bioinformatics, and confirmation of high value targets were used to test the proposition. Regionally targeted Dicer1 knockdown (via shRNA) had the anticipated consequence of eliminating the development of tolerance in C57BL/6J (B6) mice, thus supporting the involvement of miRNAs in the development of tolerance. MiRNA expression profiling identified a core set of chronic morphine-regulated miRNAs (miR's 27a, 9, 483, 505, 146b, 202). Bioinformatics approaches were implemented to identify and prioritize their predicted target mRNAs. We focused our attention on miR27a and its predicted target serpin peptidase inhibitor clade I (Serpini1) mRNA, a transcript known to be intricately involved in dendritic spine density regulation in a manner consistent with chronic morphine's consequences and previously found to be correlated with the development of analgesic tolerance. In vitro reporter assay confirmed the targeting of the Serpini1 3'-untranslated region by miR27a. Interestingly miR27a was found to positively regulate Serpini1 mRNA and protein levels in multiple neuronal cell lines. Lastly, Serpini1 knockout mice developed analgesic tolerance at a slower rate than wild-type mice thus confirming a role for the protein in analgesic tolerance. Overall, these results provide evidence to support a specific role for miR27a and Serpini1 in the behavioral response to chronic opioid administration (COA) and suggest that miRNA expression and mRNA targeting may underlie the neuroadaptations that mediate tolerance to the analgesic effects of morphine.
Collapse
Affiliation(s)
- Jenica D. Tapocik
- National Institute of Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | - Kristin Ceniccola
- Department of Pharmacology and Physiology, The George Washington UniversityWashington, DC, USA
| | - Cheryl L. Mayo
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of MedicineBaltimore, MD, USA
| | - Melanie L. Schwandt
- National Institute of Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | - Matthew Solomon
- National Institute of Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | - Bi-Dar Wang
- Department of Pharmacology and Physiology, The George Washington UniversityWashington, DC, USA
| | - Truong V. Luu
- Department of Pharmacology and Physiology, The George Washington UniversityWashington, DC, USA
| | - Jacqueline Olender
- Department of Pharmacology and Physiology, The George Washington UniversityWashington, DC, USA
| | - Thomas Harrigan
- Department of Pharmacology and Physiology, The George Washington UniversityWashington, DC, USA
| | - Thomas M. Maynard
- Department of Pharmacology and Physiology, The George Washington UniversityWashington, DC, USA
| | - Greg I. Elmer
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of MedicineBaltimore, MD, USA
| | - Norman H. Lee
- Department of Pharmacology and Physiology, The George Washington UniversityWashington, DC, USA
| |
Collapse
|
31
|
Effects of addictive drugs on adult neural stem/progenitor cells. Cell Mol Life Sci 2015; 73:327-48. [PMID: 26468052 DOI: 10.1007/s00018-015-2067-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/04/2015] [Accepted: 10/08/2015] [Indexed: 12/18/2022]
Abstract
Neural stem/progenitor cells (NSPCs) undergo a series of developmental processes before giving rise to newborn neurons, astrocytes and oligodendrocytes in adult neurogenesis. During the past decade, the role of NSPCs has been highlighted by studies on adult neurogenesis modulated by addictive drugs. It has been proven that these drugs regulate the proliferation, differentiation and survival of adult NSPCs in different manners, which results in the varying consequences of adult neurogenesis. The effects of addictive drugs on NSPCs are exerted via a variety of different mechanisms and pathways, which interact with one another and contribute to the complexity of NSPC regulation. Here, we review the effects of different addictive drugs on NSPCs, and the related experimental methods and paradigms. We also discuss the current understanding of major signaling molecules, especially the putative common mechanisms, underlying such effects. Finally, we review the future directions of research in this area.
Collapse
|
32
|
Pilakka-Kanthikeel S, Nair MPN. Interaction of drugs of abuse and microRNA with HIV: a brief review. Front Microbiol 2015; 6:967. [PMID: 26483757 PMCID: PMC4586453 DOI: 10.3389/fmicb.2015.00967] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs), the post-transcriptional regulators of gene expression, play key roles in modulating many cellular processes. The changes in the expression profiles of several specific miRNAs affect the interactions between miRNA and their targets in various illnesses, including addiction, HIV, cancer etc. The presence of anti-HIV-1 microRNAs (which regulate the level of infectivity of HIV-1) have been validated in the cells which are the primary targets of HIV infection. Drugs of abuse impair the intracellular innate anti-HIV mechanism(s) in monocytes, contributing to cell susceptibility to HIV infection. Emerging evidence has implicated miRNAs are differentially expressed in response to chronic morphine treatment. Activation of mu opioid receptors (MOR) by morphine is shown to down regulate the expression of anti-HIV miRNAs. In this review, we summarize the results which demonstrate that several drugs of abuse related miRNAs have roles in the mechanisms that define addiction, and how they interact with HIV.
Collapse
Affiliation(s)
- Sudheesh Pilakka-Kanthikeel
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| | - Madhavan P N Nair
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| |
Collapse
|
33
|
Xu C, Zhang Y, Zheng H, Loh HH, Law PY. Morphine modulates mouse hippocampal progenitor cell lineages by upregulating miR-181a level. Stem Cells 2015; 32:2961-72. [PMID: 24964978 DOI: 10.1002/stem.1774] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
The mechanism by which addictive drugs such as morphine regulate adult neurogenesis remains elusive. We now demonstrate that morphine can regulate neurogenesis by control of miR-181a and subsequent hippocampal neural progenitor cell (hNPC) lineages. In the presence of morphine, hNPCs preferentially differentiated into astrocytes, an effect blocked by the specific μ-opioid receptor antagonist, Cys(2)-Tyr(3)-Orn(5)-Pen(7)-amide. This effect was mediated by the Prox1/Notch1 pathway as demonstrated by an increase in Notch1 level in the morphine- but not fentanyl-treated hNPCs and blocked by overexpression of Notch1 siRNA. Overexpression of Prox1 siRNA upregulated Notch1 level and potentiated the morphine-induced lineage changes. Prox1 transcript level was regulated by direct interaction between miR-181a and its 3'-UTR sequence. In vitro and in vivo treatment with morphine resulted in an increase in miR-181a level in hNPCs and mouse hippocampi, respectively. Overexpression of miR-181a mimics reduced Prox1 levels, increased Notch1 levels, and enhanced hNPCs differentiation into astrocytes. Meanwhile, overexpression of the miR-181a inhibitor raised Prox1 levels, decreased Notch1 levels, and subsequently blocked the morphine-induced lineage changes. Thus, by modulating Prox1/Notch1 activities via miR-181a, morphine influences the fate of differentiating hNPCs differentiation and therefore the ultimate quantities of mature neurons and astrocytes.
Collapse
Affiliation(s)
- Chi Xu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | | | | | | | | |
Collapse
|
34
|
Xu C, Zheng H, Loh HH, Law PY. Morphine Promotes Astrocyte-Preferential Differentiation of Mouse Hippocampal Progenitor Cells via PKCε-Dependent ERK Activation and TRBP Phosphorylation. Stem Cells 2015; 33:2762-72. [PMID: 26012717 DOI: 10.1002/stem.2055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/12/2015] [Indexed: 01/24/2023]
Abstract
Previously we have shown that morphine regulates adult neurogenesis by modulating miR-181a maturation and subsequent hippocampal neural progenitor cell (NPC) lineages. Using NPCs cultured from PKCε or β-arrestin2 knockout mice and the MAPK/ERK kinase inhibitor U0126, we demonstrate that regulation of NPC differentiation via the miR-181a/Prox1/Notch1 pathway exhibits ligand-dependent selectivity. In NPCs, morphine and fentanyl activate ERK via the PKCε- and β-arrestin-dependent pathways, respectively. After fentanyl exposure, the activated phospho-ERK translocates to the nucleus. Conversely, after morphine treatment, phospho-ERK remains in the cytosol and is capable of phosphorylating TAR RNA-binding protein (TRBP), a cofactor of Dicer. This augments Dicer activity and promotes the maturation of miR-181a. Furthermore, using NPCs transfected with wild-type TRBP, SΔA, and SΔD TRBP mutants, we confirmed the crucial role of TRBP phosphorylation in Dicer activity, miR-181a maturation, and finally the morphine-induced astrocyte-preferential differentiation of NPCs. Thus, morphine modulates the lineage-specific differentiation of NPCs by PKCε-dependent ERK activation with subsequent TRBP phosphorylation and miR-181a maturation.
Collapse
Affiliation(s)
- Chi Xu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Hui Zheng
- Stem Cell and Cancer Biology Group, Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
35
|
Wang AM, Huang TT, Hsu KW, Huang KH, Fang WL, Yang MH, Lo SS, Chi CW, Lin JJ, Yeh TS. Yin Yang 1 is a target of microRNA-34 family and contributes to gastric carcinogenesis. Oncotarget 2015; 5:5002-16. [PMID: 24970812 PMCID: PMC4148117 DOI: 10.18632/oncotarget.2073] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is the second leading cause of cancer-related death worldwide. Herein, we investigated the role of transcription factor Yin Yang 1 (YY1), a multi-functional protein, in tumorigenesis of gastric cancer cells. Results showed that YY1 contributed to gastric carcinogenesis of SC-M1 cells including growth, viability, and abilities of colony formation, migration, invasion, and tumorsphere formation. Levels of pluripotency genes CD44, Oct4, SOX-2, and Nanog were also up-regulated by YY1 in SC-M1 cells. Additionally, the 3'-untranslated region (3'-UTR) of YY1 mRNA was the target of microRNA-34 (miR-34) family consisting of miR-34a, miR-34b, and miR-34c. Overexpression of miR-34 family suppressed carcinogenesis through down-regulation of YY1 in NUGC-3 gastric cancer cells scarcely expressing miR-34 family. Alternatively, knockdown of miR-34 family promoted tumorigenesis via up-regulation of YY1 in SC-M1 and AZ521 gastric cancer cells with higher levels of miR-34 family. The miR-34 family also affected tumorsphere ultra-structure and inhibited the xenografted tumor growth as well as lung metastasis of SC-M1 cells through YY1. Expressions of miR-34a and miR-34c in gastric cancer tissues of patients were lower than those in normal tissues. Taken together, these results suggest that miR-34 family-YY1 axis plays an important role in the control of gastric carcinogenesis.
Collapse
Affiliation(s)
- An-Ming Wang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei , Taiwan. Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei , Taiwan
| | - Tzu-Ting Huang
- Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei , Taiwan. Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei , Taiwan. These authors contributed equally to this work
| | - Kai-Wen Hsu
- Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei , Taiwan. These authors contributed equally to this work
| | - Kuo-Hung Huang
- Department of Surgery, Taipei Veterans General Hospital, Taipei , Taiwan. Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei , Taiwan. These authors contributed equally to this work
| | - Wen-Liang Fang
- Department of Surgery, Taipei Veterans General Hospital, Taipei , Taiwan. Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei , Taiwan. These authors contributed equally to this work
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei , Taiwan
| | - Su-Shun Lo
- Department of Medicine, School of Medicine, National Yang-Ming University, Taipei , Taiwan. Department of Surgery, National Yang-Ming University Hospital, Yi-Lan, Taiwan
| | - Chin-Wen Chi
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei , Taiwan. Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei , Taiwan
| | - Jing-Jer Lin
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei , Taiwan. Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tien-Shun Yeh
- Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei , Taiwan. Genome Research Center, National Yang-Ming University, Taipei , Taiwan. Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
36
|
Bonavida B, Kaufhold S. Prognostic significance of YY1 protein expression and mRNA levels by bioinformatics analysis in human cancers: a therapeutic target. Pharmacol Ther 2015; 150:149-68. [PMID: 25619146 DOI: 10.1016/j.pharmthera.2015.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/15/2015] [Indexed: 01/22/2023]
Abstract
Conventional therapeutic treatments for various cancers include chemotherapy, radiotherapy, hormonal therapy and immunotherapy. While such therapies have resulted in clinical responses, they were coupled with non-tumor specificity, toxicity and resistance in a large subset of the treated patients. During the last decade, novel approaches based on scientific knowledge on the biology of cancer were exploited and led to the development of novel targeted therapies, such as specific chemical inhibitors and immune-based therapies. Although these targeted therapies resulted in better responses and less toxicity, there still remains the problem of the inherent or acquired resistance. Hence, current studies are seeking additional novel therapeutic targets that can overcome several mechanisms of resistance. The transcription factor Yin Yang 1 (YY1) is a ubiquitous protein expressed in normal and cancer tissues, though the expression level is much higher in a large number of cancers; hence, YY1 has been considered as a potential novel prognostic biomarker and therapeutic target. YY1 has been reported to be involved in the regulation of drug/immune resistance and also in the regulation of EMT. Several excellent reviews have been published on YY1 and cancer (see below), and, thus, this review will update recently published reports as well as report on the analysis of bioinformatics datasets for YY1 in various cancers and the relationship between reported protein expression and mRNA levels. The potential clinical significance of YY1 is discussed.
Collapse
Affiliation(s)
- Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, United States.
| | - Samantha Kaufhold
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
37
|
Pietrzykowski AZ, Spijker S. Impulsivity and comorbid traits: a multi-step approach for finding putative responsible microRNAs in the amygdala. Front Neurosci 2014; 8:389. [PMID: 25561905 PMCID: PMC4263087 DOI: 10.3389/fnins.2014.00389] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/13/2014] [Indexed: 01/09/2023] Open
Abstract
Malfunction of synaptic plasticity in different brain regions, including the amygdala plays a role in impulse control deficits that are characteristics of several psychiatric disorders, such as ADHD, schizophrenia, depression and addiction. Previously, we discovered a locus for impulsivity (Impu1) containing the neuregulin 3 (Nrg3) gene, of which the level of expression determines levels of inhibitory control. MicroRNAs (miRNAs) are potent regulators of gene expression, and have recently emerged as important factors contributing to the development of psychiatric disorders. However, their role in impulsivity, as well as control of Nrg3 expression or malfunction of the amygdala, is not well established. Here, we used the GeneNetwork database of BXD mice to search for correlated traits with impulsivity using an overrepresentation analysis to filter for biologically meaningful traits. We determined that inhibitory control was significantly correlated with expression of miR-190b, -28a, -340, -219a, and -491 in the amygdala, and that the overrepresented correlated traits showed a specific pattern of coregulation with these miRNAs. A bioinformatics analysis identified that miR-190b, by targeting an Nrg3-related network, could affect synaptic plasticity in the amygdala, targeting bot impulsive and compulsive traits. Moreover, miR-28a, -340, -219a, and possibly -491 could act on synaptic function by determining the balance between neuronal outgrowth and differentiation. We propose that these miRNAs are attractive candidates of regulation of amygdala synaptic plasticity, possibly during development but also in maintaining the impulsive phenotype. These results can help us to better understand mechanisms of synaptic dysregulation in psychiatric disorders.
Collapse
Affiliation(s)
- Andrzej Z Pietrzykowski
- Department of Animal Sciences, Rutgers University New Brunswick, NJ, USA ; Department of Genetics, Rutgers University Piscataway, NJ, USA
| | - Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Netherlands
| |
Collapse
|
38
|
Li W, He S, Zhou Y, Li Y, Hao J, Zhou X, Wang F, Zhang Y, Huang Z, Li Z, Loh HH, Law PY, Zheng H. Neurod1 modulates opioid antinociceptive tolerance via two distinct mechanisms. Biol Psychiatry 2014; 76:775-84. [PMID: 24993058 PMCID: PMC4503258 DOI: 10.1016/j.biopsych.2014.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND The activity of neurogenic differentiation 1 (Neurod1) decreases after morphine administration, which leads to impairments of the stability of dendritic spines in primary hippocampal neurons, adult neurogenesis in mouse hippocampi, and drug-associated contextual memory. The current study examined whether Neurod1 could affect the development of opioid tolerance. METHODS Lentivirus encoding Neurod1, microRNA-190 (miR-190), or short hairpin RNA against Neurod1 was injected into mouse hippocampi separately or combined (more than eight mice for each treatment) to modulate NeuroD1 activity. The antinociceptive median effective dose values of morphine and fentanyl were determined with tail-flick assay and used to calculate development of tolerance. Contextual learning and memory were assayed using the Morris water maze. RESULTS Decrease in NeuroD1 activity increased the initial antinociceptive median effective dose values of both morphine and fentanyl, which was reversed by restoring NeuroD1 activity. In contrast, decrease in NeuroD1 activity inhibited development of tolerance in a time-dependent manner, paralleling its effects on the acquisition and extinction of contextual memory. In addition, only development of tolerance, but not antinociceptive median effective dose values, was modulated by the expression of miR-190 and Neurod1 driven by Nestin promoter. CONCLUSIONS Neurod1 regulates the developments of opioid tolerance via a time-dependent pathway through contextual learning and a short-response pathway through antinociception.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Hui Zheng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences.
| |
Collapse
|
39
|
Hao Y, Yang J, Yin S, Zhang H, Fan Y, Sun C, Gu J, Xi JJ. The synergistic regulation of VEGF-mediated angiogenesis through miR-190 and target genes. RNA (NEW YORK, N.Y.) 2014; 20:1328-1336. [PMID: 24962367 PMCID: PMC4105756 DOI: 10.1261/rna.044651.114] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/30/2014] [Indexed: 06/03/2023]
Abstract
VEGF is a major contributor to angiogenesis, a vital process in normal growth and development and tumor transition. However, the current clinical efficacy of VEGF inhibitors is limited, and the molecular mechanism underlying VEGF regulation remains to be elucidated. Here we show that miR-190 directly targets a group of angiogenic effectors besides VEGF per se. Noted, these effectors can transcriptionally regulate VEGF expression in an intracellular or intercellular manner, thus demonstrating that miR-190 modulates the VEGF-mediated tumor angiogenesis at three levels. The synergistic effect of miR-190 and its target genes demonstrates a complex but apparently more stable system, allowing for the tight control of the level of VEGF. Finally, we showed that miR-190 significantly suppresses tumor metastasis, especially angiogenesis. Together, these results indicate that miR-190 is a promising antitumor target in clinical applications.
Collapse
Affiliation(s)
- Yang Hao
- Biomedical Engineering Department, College of Engineering, Peking University, Beijing 100871, China
| | - Junyu Yang
- Biomedical Engineering Department, College of Engineering, Peking University, Beijing 100871, China
| | - Shenyi Yin
- Biomedical Engineering Department, College of Engineering, Peking University, Beijing 100871, China
| | - Hanshuo Zhang
- Biomedical Engineering Department, College of Engineering, Peking University, Beijing 100871, China
| | - Yu Fan
- Biomedical Engineering Department, College of Engineering, Peking University, Beijing 100871, China
| | - Changhong Sun
- Biomedical Engineering Department, College of Engineering, Peking University, Beijing 100871, China
| | - Jin Gu
- Peking University School of Oncology, Beijing Cancer Hospital, Beijing 100142, China
| | - Jianzhong Jeff Xi
- Biomedical Engineering Department, College of Engineering, Peking University, Beijing 100871, China State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| |
Collapse
|
40
|
miR-190 is upregulated in Epstein-Barr Virus type I latency and modulates cellular mRNAs involved in cell survival and viral reactivation. Virology 2014; 464-465:184-195. [PMID: 25086243 DOI: 10.1016/j.virol.2014.06.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 10/25/2013] [Accepted: 06/20/2014] [Indexed: 12/17/2022]
Abstract
Epstein-Barr Virus (EBV) is a prevalent human pathogen infecting over 90% of the population. Much of the success of the virus is attributed to its ability to maintain latency. The detailed mechanisms underlying the establishment and maintenance of EBV latency remain poorly understood. A microRNA profiling study revealed differential expression of many cellular miRNAs between types I and III latency cells, suggesting cellular miRNAs may play roles in regulating EBV latency. mir-190 is the most differentially up-regulated miRNA in type I latency cells as compared with type III latency cells and the up-regulation appears to be attributed to EBER RNAs that express in higher levels in type I latency cells than type III cells. With the aide of a lentiviral overexpression system and microarray analysis, several cellular mRNAs are identified as potential targets of mir-190. By targeting TP53INP1, miR-190 enhances cell survival by preventing apoptosis and relieving G0/G1 cell cycle arrest. Additionally, miR-190 down-regulates NR4A3, a cellular immediate-early gene for EBV reactivation, and inhibits the expression of the viral immediate-early gene bzlf1 and viral lytic DNA replication. Taken together, our data revealed a mechanism that EBV utilizes a cellular microRNA to promote host cell survival and prevent virus from entering lytic life cycle for latency maintenance.
Collapse
|
41
|
Kang W, Tong JHM, Chan AWH, Zhao J, Dong Y, Wang S, Yang W, Sin FMC, Ng SSM, Yu J, Cheng ASL, To KF. Yin Yang 1 contributes to gastric carcinogenesis and its nuclear expression correlates with shorter survival in patients with early stage gastric adenocarcinoma. J Transl Med 2014; 12:80. [PMID: 24674326 PMCID: PMC3986816 DOI: 10.1186/1479-5876-12-80] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 03/24/2014] [Indexed: 01/12/2023] Open
Abstract
Background Yin Yang 1 (YY1) is a transcription factor that regulates diverse biological processes and increasing recognized to have important roles in carcinogenesis. The function and clinical significance of YY1 in gastric adenocarcinoma (GAC) have not been elucidated. Methods In this study, the functional role of YY1 in gastric cancer was investigated by MTT proliferation assays, monolayer colony formation, cell cycle analysis, signaling pathway analysis, Western blot analysis and in vivo study through YY1 knockdown or overexpression. Immunohistochemical study with YY1 antibody was performed on tissue microarray consisting of 247 clinical GAC samples. The clinical correlation and prognosis significance were evaluated. Results YY1 expression was up-regulated in gastric cancer cell lines and primary gastric cancers. Knocking down YY1 by siYY1 inhibited cell growth, inducing G1 phase accumulation and apoptosis. Ectopic YY1 expression enhanced cell proliferation in vitro and in vivo. Knocking down YY1 in gastric cancer cells suppressed proliferation by inhibiting Wnt/β-catenin pathway, whereas its overexpression exerted oncogenic property by activating Wnt/β-catenin pathway. In primary GAC samples, YY1 nuclear expression correlated with shorter survival and predicted poor prognosis in early stage GACs. Conclusion Our data demonstrated that YY1 contributes to gastric carcinogenesis in gastric cancer. In early stage GACs YY1 might serve as a poor prognostic marker and possibly as a potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
| |
Collapse
|
42
|
Lu Z, Xu J, Xu M, Pasternak GW, Pan YX. Morphine regulates expression of μ-opioid receptor MOR-1A, an intron-retention carboxyl terminal splice variant of the μ-opioid receptor (OPRM1) gene via miR-103/miR-107. Mol Pharmacol 2013; 85:368-80. [PMID: 24302561 DOI: 10.1124/mol.113.089292] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The μ-opioid receptor (MOR-1) gene OPRM1 undergoes extensive alternative splicing, generating an array of splice variants. Of these variants, MOR-1A, an intron-retention carboxyl terminal splice variant identical to MOR-1 except for the terminal intracellular tail encoded by exon 3b, is quite abundant and conserved from rodent to humans. Increasing evidence indicates that miroRNAs (miRNAs) regulate MOR-1 expression and that μ agonists such as morphine modulate miRNA expression. However, little is known about miRNA regulation of the OPRM1 splice variants. Using 3'-rapid amplification cDNA end and Northern blot analyses, we identified the complete 3'-untranslated region (3'-UTR) for both mouse and human MOR-1A and their conserved polyadenylation site, and defined the role the 3'-UTR in mRNA stability using a luciferase reporter assay. Computer models predicted a conserved miR-103/107 targeting site in the 3'-UTR of both mouse and human MOR-1A. The functional relevance of miR-103/107 in regulating expression of MOR-1A protein through the consensus miR-103/107 binding sites in the 3'-UTR was established by using mutagenesis and a miR-107 inhibitor in transfected human embryonic kidney 293 cells and Be(2)C cells that endogenously express human MOR-1A. Chronic morphine treatment significantly upregulated miR-103 and miR-107 levels, leading to downregulation of polyribosome-associated MOR-1A in both Be(2)C cells and the striatum of a morphine-tolerant mouse, providing a new perspective on understanding the roles of miRNAs and OPRM1 splice variants in modulating the complex actions of morphine in animals and humans.
Collapse
Affiliation(s)
- Zhigang Lu
- Department of Neurology and the Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | | | | | | | |
Collapse
|
43
|
Chu HW, Cheng CW, Chou WC, Hu LY, Wang HW, Hsiung CN, Hsu HM, Wu PE, Hou MF, Shen CY, Yu JC. A novel estrogen receptor-microRNA 190a-PAR-1-pathway regulates breast cancer progression, a finding initially suggested by genome-wide analysis of loci associated with lymph-node metastasis. Hum Mol Genet 2013; 23:355-67. [DOI: 10.1093/hmg/ddt426] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
44
|
Almog N, Briggs C, Beheshti A, Ma L, Wilkie KP, Rietman E, Hlatky L. Transcriptional changes induced by the tumor dormancy-associated microRNA-190. Transcription 2013; 4:177-91. [PMID: 23863200 PMCID: PMC3977918 DOI: 10.4161/trns.25558] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tumor dormancy is a highly prevalent stage in cancer progression. We have previously generated and characterized in vivo experimental models of human tumor dormancy in which micro-tumors remain occult until they spontaneously shift into rapid tumor growth. We showed that the dormant micro-tumors undergo a stable microRNA (miRNA) switch during their transition from dormancy to a fast-growing phenotype and reported the identification of a consensus signature of human tumor dormancy-associated miRNAs (DmiRs). miRNA-190 (miR-190) is among the most upregulated DmiRs in all dormant tumors analyzed. Upregulation of miR-190 led to prolonged tumor dormancy in otherwise fast-growing glioblastomas and osteosarcomas. Here we investigate the transcriptional changes induced by miR-190 expression in cancer cells and show similar patterns of miR-190 mediated transcriptional reprogramming in both glioblastoma and osteosarcoma cells. The data suggests that miR-190 mediated effects rely on an extensive network of molecular changes in tumor cells and that miR-190 affects several transcriptional factors, tumor suppressor genes and interferon response pathways. The molecular mechanisms governing tumor dormancy described in this work may provide promising targets for early prevention of cancer and may lead to novel treatments to convert the malignant tumor phenotype into an asymptomatic dormant state.
Collapse
Affiliation(s)
- Nava Almog
- Center of Cancer Systems Biology; Tufts University School of Medicine; Boston, MA
| | | | | | | | | | | | | |
Collapse
|
45
|
Law PY, Reggio PH, Loh HH. Opioid receptors: toward separation of analgesic from undesirable effects. Trends Biochem Sci 2013; 38:275-82. [PMID: 23598157 DOI: 10.1016/j.tibs.2013.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/06/2013] [Accepted: 03/11/2013] [Indexed: 12/21/2022]
Abstract
The use of opioid analgesics for pain has always been hampered by their many side effects; in particular, the addictive liability associated with chronic use. Recently, attempts to develop analgesic agents with reduced side effects have targeted either the putative opioid receptor splice variants or the receptor hetero-oligomers. This review discusses the potential for receptor splice variant- and the hetero-oligomer-based discovery of new opioid analgesics. We also examine an alternative approach of using receptor mutants for pain management. Finally, we discuss the role of the biased agonism observed and the recently reported opioid receptor crystal structures in guiding the future development of opioid analgesics.
Collapse
Affiliation(s)
- Ping-Yee Law
- Department of Pharmacology, University of Minnesota, Medical School, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
46
|
He X, Yang Y, Zhi F, Moore ML, Kang X, Chao D, Wang R, Balboni G, Salvadori S, Kim DH, Xia Y. δ-Opioid receptor activation modified microRNA expression in the rat kidney under prolonged hypoxia. PLoS One 2013; 8:e61080. [PMID: 23596515 PMCID: PMC3626642 DOI: 10.1371/journal.pone.0061080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/05/2013] [Indexed: 12/25/2022] Open
Abstract
Hypoxic/ischemic injury to kidney is a frequently encountered clinical problem with limited therapeutic options. Since microRNAs are differentially involved in hypoxic/ischemic events and δ-opioid receptor (DOR) activation is known to protect against hypoxic/ischemic injury, we speculated on the involvement of DOR activation in altering the microRNA (miRNA) expression in kidney under hypoxic condition. We selected 31 miRNAs based on microarray data for quantitative PCR analysis. Among them, 14 miRNAs were significantly altered after prolonged hypoxia, DOR activation or a combination of both. We found that 1) DOR activation alters miRNA expression profiles in normoxic conditions; 2) hypoxia differentially alters miRNA expression depending on the duration of hypoxia; and 3) DOR activation can modify hypoxia-induced changes in miRNA expression. For example, 10-day hypoxia reduced the level of miR-212 by over 70%, while DOR activation could mimic such reduction even in normoxic kidney. In contrast, the same stress increased miR-29a by >100%, which was reversed following DOR activation. These first data suggest that hypoxia comprehensively modifies the miRNA profile within the kidney, which can be mimicked or modified by DOR activation. Ascertaining the targeted pathways that regulate the diverse cellular and molecular functions of miRNA may provide new insights into potential therapies for hypoxic/ischemic injury of the kidney.
Collapse
Affiliation(s)
- Xiaozhou He
- Research Institute of Modern Medicine, The Third Clinical College of Soochow University, Changzhou, Jiangsu, People’s Republic of China
| | - Yilin Yang
- Research Institute of Modern Medicine, The Third Clinical College of Soochow University, Changzhou, Jiangsu, People’s Republic of China
| | - Feng Zhi
- Research Institute of Modern Medicine, The Third Clinical College of Soochow University, Changzhou, Jiangsu, People’s Republic of China
| | - Meredith L. Moore
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Xuezhi Kang
- Laboratory of Molecular Neurology, Shanghai Research Center for Acupuncture and Meridians, Shanghai, People’s Republic of China
| | - Dongman Chao
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas, United States of America
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Rong Wang
- Research Institute of Modern Medicine, The Third Clinical College of Soochow University, Changzhou, Jiangsu, People’s Republic of China
| | - Gianfranco Balboni
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Severo Salvadori
- Department of Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Dong H. Kim
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Ying Xia
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas, United States of America
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
47
|
NF-κB1 p50 promotes p53 protein translation through miR-190 downregulation of PHLPP1. Oncogene 2013; 33:996-1005. [PMID: 23396362 DOI: 10.1038/onc.2013.8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 12/04/2012] [Accepted: 12/14/2012] [Indexed: 12/25/2022]
Abstract
The biological function of NF-κB1 (p50) in the regulation of protein expression is far from well understood owing to the lack of a transcriptional domain. Here, we report a novel function of p50 in its regulation of p53 protein translation under stress conditions. We found that the deletion of p50 (p50-/-) impaired arsenite-induced p53 protein expression, which could be restored after reconstitutive expression of HA-p50 in p50-/- cells, p50-/-(Ad-HA-p50). Further studies indicated that the amounts of p53 mRNA, p53 promoter-driven transcription activity and p53 protein degradation were comparable between wild-type and p50-/- cells. Moreover, we found that p50 was crucial for Akt/S6 ribosomal protein activation via inhibition of the translation of the PH domain and leucine-rich repeat protein phosphatases 1 (PHLPP1), a phosphatase of Akt. Further studies showed that p50-mediated upregulation of miR-190 was responsible for the inhibition of PHLPP1 translation by targeting the 3'-untranslated region of its mRNA. Collectively, we have identified a novel function of p50 in modulating p53 protein translation via regulation of the miR-190/PHLPP1/Akt-S6 ribosomal protein pathway.
Collapse
|
48
|
Zheng H, Loh HH, Law PY. Posttranslation modification of G protein-coupled receptor in relationship to biased agonism. Methods Enzymol 2013; 522:391-408. [PMID: 23374194 DOI: 10.1016/b978-0-12-407865-9.00018-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biased signaling has been reported with a series of G protein-coupled receptors (GPCRs), including β(2)-adrenergic receptor and μ-opioid receptor (OPRM1). The concept of biased signaling suggests that the agonists of one particular receptor may activate the downstream signaling pathways with different efficacies. Thus in an extreme case, agonists might activate different sets of signaling pathways, which provide a new route to develop drugs with increased efficacies and decreased side effects. Among the many factors, posttranslation modifications of receptor proteins have major roles in influencing the biased signaling. Take OPRM1, for example, the phosphorylation and palmitoylation of receptor can regulate the biased signaling induced by agonists. Thus, by modulating these posttranslation modifications, the biased signaling of GPCRs can be regulated. In addition, although it is not considered as posttranslation modification normally, the distribution of GPCRs on cell membrane, especially the distribution between lipid-raft and non-raft microdomains, also contributes to the biased signaling. Thus in this chapter, we described the methods used in our laboratory to study receptor phosphorylation, receptor palmitoylation, and membrane distribution of receptor by using OPRM1 as a model. A functional model was also provided on these posttranslational modifications at the last section of this chapter.
Collapse
Affiliation(s)
- Hui Zheng
- Stem Cell and Cancer Biology Group, Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | | | | |
Collapse
|
49
|
Hwang CK, Wagley Y, Law PY, Wei LN, Loh HH. MicroRNAs in opioid pharmacology. J Neuroimmune Pharmacol 2012; 7:808-19. [PMID: 22068836 PMCID: PMC3295898 DOI: 10.1007/s11481-011-9323-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/24/2011] [Indexed: 01/20/2023]
Abstract
MicroRNAs (miRNA), a class of ~22-nucleotide RNA molecules, are important gene regulators that bind to the target sites of mRNAs to inhibit the gene expressions either through translational inhibition or mRNA destabilization. There are growing evidences that miRNAs have played several regulatory roles in opioid pharmacology. Like other research fields such as cancer biology, the area where numerous miRNAs are found to be involved in gene regulation, we assume that in opioid studies including research fields of drug additions and opioid receptor regulation, there may be more miRNAs waiting to be discovered. This review will summarize our current knowledge of miRNA functions on opioids biology and briefly describe future research directions of miRNAs related to opioids.
Collapse
Affiliation(s)
- Cheol Kyu Hwang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
50
|
López-Bellido R, Barreto-Valer K, Sánchez-Simón FM, Rodríguez RE. Cocaine modulates the expression of opioid receptors and miR-let-7d in zebrafish embryos. PLoS One 2012; 7:e50885. [PMID: 23226419 PMCID: PMC3511421 DOI: 10.1371/journal.pone.0050885] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/25/2012] [Indexed: 11/19/2022] Open
Abstract
Prenatal exposure to cocaine, in mammals, has been shown to interfere with the expression of opioid receptors, which can have repercussions in its activity. Likewise, microRNAs, such as let-7, have been shown to regulate the expression of opioid receptors and hence their functions in mammals and in vitro experiments. In light of this, using the zebrafish embryos as a model our aim here was to evaluate the actions of cocaine in the expression of opioid receptors and let-7d miRNA during embryogenesis. In order to determine the effects produced by cocaine on the opioid receptors (zfmor, zfdor1 and zfdor2) and let-7d miRNA (dre-let-7d) and its precursors (dre-let-7d-1 and dre-let-7d-2), embryos were exposed to 1.5 µM cocaine hydrochloride (HCl). Our results revealed that cocaine upregulated dre-let-7d and its precursors, and also increased the expression of zfmor, zfdor1 and zfdor2 during early developmental stages and decreased them in late embryonic stages. The changes observed in the expression of opioid receptors might occur through dre-let-7d, since DNA sequences and the morpholinos of opioid receptors microinjections altered the expression of dre-let-7d and its precursors. Likewise, opioid receptors and dre-let-7d showed similar distributions in the central nervous system (CNS) and at the periphery, pointing to a possible interrelationship between them.In conclusion, the silencing and overexpression of opioid receptors altered the expression of dre-let-7d, which points to the notion that cocaine via dre-let-7 can modulate the expression of opioid receptors. Our study provides new insights into the actions of cocaine during zebrafish embryogenesis, indicating a role of miRNAs, let-7d, in development and its relationship with gene expression of opioid receptors, related to pain and addiction process.
Collapse
Affiliation(s)
- Roger López-Bellido
- Department of Biochemistry and Molecular Biology, Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Katherine Barreto-Valer
- Department of Biochemistry and Molecular Biology, Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Fátima Macho Sánchez-Simón
- Department of Biochemistry and Molecular Biology, Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Raquel E. Rodríguez
- Department of Biochemistry and Molecular Biology, Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|