1
|
Qi H, Xie YY, Yang XJ, Xia J, Liu K, Zhang FX, Peng WJ, Wen FY, Li BX, Zhang BW, Yao XY, Li BY, Meng HD, Shi ZM, Wang Y, Zhang L. Susceptibility gene identification and risk evaluation model construction by transcriptome-wide association analysis for salt sensitivity of blood pressure. BMC Genomics 2024; 25:612. [PMID: 38890564 PMCID: PMC11184770 DOI: 10.1186/s12864-024-10409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Salt sensitivity of blood pressure (SSBP) is an intermediate phenotype of hypertension and is a predictor of long-term cardiovascular events and death. However, the genetic structures of SSBP are uncertain, and it is difficult to precisely diagnose SSBP in population. So, we aimed to identify genes related to susceptibility to the SSBP, construct a risk evaluation model, and explore the potential functions of these genes. METHODS AND RESULTS A genome-wide association study of the systemic epidemiology of salt sensitivity (EpiSS) cohort was performed to obtain summary statistics for SSBP. Then, we conducted a transcriptome-wide association study (TWAS) of 12 tissues using FUSION software to predict the genes associated with SSBP and verified the genes with an mRNA microarray. The potential roles of the genes were explored. Risk evaluation models of SSBP were constructed based on the serial P value thresholds of polygenetic risk scores (PRSs), polygenic transcriptome risk scores (PTRSs) and their combinations of the identified genes and genetic variants from the TWAS. The TWAS revealed that 2605 genes were significantly associated with SSBP. Among these genes, 69 were differentially expressed according to the microarray analysis. The functional analysis showed that the genes identified in the TWAS were enriched in metabolic process pathways. The PRSs were correlated with PTRSs in the heart atrial appendage, adrenal gland, EBV-transformed lymphocytes, pituitary, artery coronary, artery tibial and whole blood. Multiple logistic regression models revealed that a PRS of P < 0.05 had the best predictive ability compared with other PRSs and PTRSs. The combinations of PRSs and PTRSs did not significantly increase the prediction accuracy of SSBP in the training and validation datasets. CONCLUSIONS Several known and novel susceptibility genes for SSBP were identified via multitissue TWAS analysis. The risk evaluation model constructed with the PRS of susceptibility genes showed better diagnostic performance than the transcript levels, which could be applied to screen for SSBP high-risk individuals.
Collapse
Affiliation(s)
- Han Qi
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Capital Medical University, Beijing, 100088, China
| | - Yun-Yi Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Xiao-Jun Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Juan Xia
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Kuo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Feng-Xu Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Wen-Juan Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Fu-Yuan Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Bing-Xiao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Bo-Wen Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Xin-Yue Yao
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Bo-Ya Li
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Hong-Dao Meng
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Zu-Min Shi
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Yang Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China.
| |
Collapse
|
2
|
Stefani C, Bruchez AM, Rosasco MG, Yoshida AE, Fasano KJ, Levan PF, Lorant A, Hubbard NW, Oberst A, Stuart LM, Lacy-Hulbert A. LITAF protects against pore-forming protein-induced cell death by promoting membrane repair. Sci Immunol 2024; 9:eabq6541. [PMID: 38181093 DOI: 10.1126/sciimmunol.abq6541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/09/2023] [Indexed: 01/07/2024]
Abstract
Pore-forming toxins (PFTs) are the largest class of bacterial toxins and contribute to virulence by triggering host cell death. Vertebrates also express endogenous pore-forming proteins that induce cell death as part of host defense. To mitigate damage and promote survival, cells mobilize membrane repair mechanisms to neutralize and counteract pores, but how these pathways are activated is poorly understood. Here, we use a transposon-based gene activation screen to discover pathways that counteract the cytotoxicity of the archetypal PFT Staphylococcus aureus α-toxin. We identify the endolysosomal protein LITAF as a mediator of cellular resistance to PFT-induced cell death that is active against both bacterial toxins and the endogenous pore, gasdermin D, a terminal effector of pyroptosis. Activation of the ubiquitin ligase NEDD4 by potassium efflux mobilizes LITAF to recruit the endosomal sorting complexes required for transport (ESCRT) machinery to repair damaged membrane. Cells lacking LITAF, or carrying naturally occurring disease-associated mutations of LITAF, are highly susceptible to pore-induced death. Notably, LITAF-mediated repair occurs at endosomal membranes, resulting in expulsion of damaged membranes as exosomes, rather than through direct excision of pores from the surface plasma membrane. These results identify LITAF as a key effector that links sensing of cellular damage to repair.
Collapse
Affiliation(s)
- Caroline Stefani
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Anna M Bruchez
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Mario G Rosasco
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Anna E Yoshida
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Kayla J Fasano
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Paula F Levan
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Alina Lorant
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | | | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Lynda M Stuart
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Adam Lacy-Hulbert
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
McElrath CJ, Benzow S, Zhuo Y, Marchese A. β-arrestin1 is an E3 ubiquitin ligase adaptor for substrate linear polyubiquitination. J Biol Chem 2023; 299:105474. [PMID: 37981209 PMCID: PMC10755771 DOI: 10.1016/j.jbc.2023.105474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023] Open
Abstract
G protein-coupled receptor (GPCR) signaling and trafficking are regulated by multiple mechanisms, including posttranslational modifications such as ubiquitination by E3 ubiquitin ligases. E3 ligases have been linked to agonist-stimulated ubiquitination of GPCRs via simultaneous binding to βarrestins. In addition, βarrestins have been suggested to assist E3 ligases for ubiquitination of key effector molecules, yet mechanistic insight is lacking. Here, we developed an in vitro reconstituted system and show that βarrestin1 (βarr1) serves as an adaptor between the effector protein signal-transducing adaptor molecule 1 (STAM1) and the E3 ligase atrophin-interacting protein 4. Via mass spectrometry, we identified seven lysine residues within STAM1 that are ubiquitinated and several types of ubiquitin linkages. We provide evidence that βarr1 facilitates the formation of linear polyubiquitin chains at lysine residue 136 on STAM1. This lysine residue is important for stabilizing the βarr1:STAM1 interaction in cells following GPCR activation. Our study identifies atrophin-interacting protein 4 as only the second E3 ligase known to conjugate linear polyubiquitin chains and a possible role for linear ubiquitin chains in GPCR signaling and trafficking.
Collapse
Affiliation(s)
- Chandler J McElrath
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sara Benzow
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ya Zhuo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Adriano Marchese
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
4
|
Teafatiller T, Perez O, Kitazawa M, Agrawal A, Subramanian VS. Nedd4-1 regulates human sodium-dependent vitamin C transporter-2 functional expression in neuronal and epithelial cells. J Nutr Biochem 2023; 120:109413. [PMID: 37423323 DOI: 10.1016/j.jnutbio.2023.109413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
The ubiquitin-proteasomal pathway regulates the functional expression of many membrane transporters in a variety of cellular systems. Nothing is currently known about the role of ubiquitin E3 ligase, neural precursor cell-expressed developmentally down-regulated gene 4 (Nedd4-1) and the proteasomal degradation pathway in regulating human vitamin C transporter-2 (hSVCT2) in neuronal cells. hSVCT2 mediates the uptake of ascorbic acid (AA) and is the predominantly expressed vitamin C transporter isoform in neuronal systems. Therefore, we addressed this knowledge gap in our study. Analysis of mRNA revealed markedly higher expression of Nedd4-1 in neuronal samples than that of Nedd4-2. Interestingly, Nedd4-1 expression in the hippocampus was higher in patients with Alzheimer's disease (AD) and age-dependently increased in the J20 mouse model of AD. The interaction of Nedd4-1 and hSVCT2 was confirmed by coimmunoprecipitation and colocalization. While the coexpression of Nedd4-1 with hSVCT2 displayed a significant decrease in AA uptake, siRNA-mediated knockdown of Nedd4-1 expression up-regulated the AA uptake. Further, we mutated a classical Nedd4 protein interacting motif ("PPXY") within the hSVCT2 polypeptide and observed markedly decreased AA uptake due to the intracellular localization of the mutated hSVCT2. Also, we determined the role of the proteasomal degradation pathway in hSVCT2 functional expression in SH-SY5Y cells and the results indicated that the proteasomal inhibitor (MG132) significantly up-regulated the AA uptake and hSVCT2 protein expression level. Taken together, our findings show that the regulation of hSVCT2 functional expression is at least partly mediated by the Nedd4-1 dependent ubiquitination and proteasomal pathways.
Collapse
Affiliation(s)
- Trevor Teafatiller
- Department of Medicine, University of California, Irvine, California, USA
| | - Oasis Perez
- Department of Medicine, University of California, Irvine, California, USA
| | - Masashi Kitazawa
- Department of Environmental and Occupational Health, University of California, Irvine, California, USA
| | - Anshu Agrawal
- Department of Medicine, University of California, Irvine, California, USA
| | | |
Collapse
|
5
|
Augustynek B, Gyimesi G, Dernič J, Sallinger M, Albano G, Klesse GJ, Kandasamy P, Grabmayr H, Frischauf I, Fuster DG, Peinelt C, Hediger MA, Bhardwaj R. Discovery of novel gating checkpoints in the Orai1 calcium channel by systematic analysis of constitutively active mutants of its paralogs and orthologs. Cell Calcium 2022; 105:102616. [PMID: 35792401 DOI: 10.1016/j.ceca.2022.102616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
Abstract
In humans, there are three paralogs of the Orai Ca2+ channel that form the core of the store-operated calcium entry (SOCE) machinery. While the STIM-mediated gating mechanism of Orai channels is still under active investigation, several artificial and natural variants are known to cause constitutive activity of the human Orai1 channel. Surprisingly, little is known about the conservation of the gating checkpoints among the different human Orai paralogs and orthologs in other species. In our work, we show that the mutation corresponding to the activating mutation H134A in transmembrane helix 2 (TM2) of human Orai1 also activates Orai2 and Orai3, likely via a similar mechanism. However, this cross-paralog conservation does not apply to the "ANSGA" nexus mutations in TM4 of human Orai1, which is reported to mimic the STIM1-activated state of the channel. In investigating the mechanistic background of these differences, we identified two positions, H171 and F246 in human Orai1, that are not conserved among paralogs and that seem to be crucial for the channel activation triggered by the "ANSGA" mutations in Orai1. However, mutations of the same residues still allow gating of Orai1 by STIM1, suggesting that the ANSGA mutant of Orai1 may not be a surrogate for the STIM1-activated state of the Orai1 channel. Our results shed new light on these important gating checkpoints and show that the gating mechanism of Orai channels is affected by multiple factors that are not necessarily conserved among orai homologs, such as the TM4-TM3 coupling.
Collapse
Affiliation(s)
- Bartłomiej Augustynek
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Gergely Gyimesi
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Jan Dernič
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Matthias Sallinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Giuseppe Albano
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Gabriel J Klesse
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Palanivel Kandasamy
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Herwig Grabmayr
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Irene Frischauf
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Daniel G Fuster
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland.
| | - Rajesh Bhardwaj
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland; Current address: Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, 111 TW Alexander Drive, NC 27709, USA.
| |
Collapse
|
6
|
α-Arrestins and Their Functions: From Yeast to Human Health. Int J Mol Sci 2022; 23:ijms23094988. [PMID: 35563378 PMCID: PMC9105457 DOI: 10.3390/ijms23094988] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
α-Arrestins, also called arrestin-related trafficking adaptors (ARTs), constitute a large family of proteins conserved from yeast to humans. Despite their evolutionary precedence over their extensively studied relatives of the β-arrestin family, α-arrestins have been discovered relatively recently, and thus their properties are mostly unexplored. The predominant function of α-arrestins is the selective identification of membrane proteins for ubiquitination and degradation, which is an important element in maintaining membrane protein homeostasis as well as global cellular metabolisms. Among members of the arrestin clan, only α-arrestins possess PY motifs that allow canonical binding to WW domains of Rsp5/NEDD4 ubiquitin ligases and the subsequent ubiquitination of membrane proteins leading to their vacuolar/lysosomal degradation. The molecular mechanisms of the selective substrate’s targeting, function, and regulation of α-arrestins in response to different stimuli remain incompletely understood. Several functions of α-arrestins in animal models have been recently characterized, including redox homeostasis regulation, innate immune response regulation, and tumor suppression. However, the molecular mechanisms of α-arrestin regulation and substrate interactions are mainly based on observations from the yeast Saccharomyces cerevisiae model. Nonetheless, α-arrestins have been implicated in health disorders such as diabetes, cardiovascular diseases, neurodegenerative disorders, and tumor progression, placing them in the group of potential therapeutic targets.
Collapse
|
7
|
The Role of NEDD4 E3 Ubiquitin–Protein Ligases in Parkinson’s Disease. Genes (Basel) 2022; 13:genes13030513. [PMID: 35328067 PMCID: PMC8950476 DOI: 10.3390/genes13030513] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 01/25/2023] Open
Abstract
Parkinson’s disease (PD) is a debilitating neurodegenerative disease that causes a great clinical burden. However, its exact molecular pathologies are not fully understood. Whilst there are a number of avenues for research into slowing, halting, or reversing PD, one central idea is to enhance the clearance of the proposed aetiological protein, oligomeric α-synuclein. Oligomeric α-synuclein is the main constituent protein in Lewy bodies and neurites and is considered neurotoxic. Multiple E3 ubiquitin-protein ligases, including the NEDD4 (neural precursor cell expressed developmentally downregulated protein 4) family, parkin, SIAH (mammalian homologues of Drosophila seven in absentia), CHIP (carboxy-terminus of Hsc70 interacting protein), and SCFFXBL5 SCF ubiquitin ligase assembled by the S-phase kinase-associated protein (SKP1), cullin-1 (Cul1), a zinc-binding RING finger protein, and the F-box domain/Leucine-rich repeat protein 5-containing protein FBXL5), have been shown to be able to ubiquitinate α-synuclein, influencing its subsequent degradation via the proteasome or lysosome. Here, we explore the link between NEDD4 ligases and PD, which is not only via α-synuclein but further strengthened by several additional substrates and interaction partners. Some members of the NEDD4 family of ligases are thought to crosstalk even with PD-related genes and proteins found to be mutated in familial forms of PD. Mutations in NEDD4 family genes have not been observed in PD patients, most likely because of their essential survival function during development. Following further in vivo studies, it has been thought that NEDD4 ligases may be viable therapeutic targets in PD. NEDD4 family members could clear toxic proteins, enhancing cell survival and slowing disease progression, or might diminish beneficial proteins, reducing cell survival and accelerating disease progression. Here, we review studies to date on the expression and function of NEDD4 ubiquitin ligases in the brain and their possible impact on PD pathology.
Collapse
|
8
|
Schnyder D, Albano G, Kucharczyk P, Dolder S, Siegrist M, Anderegg M, Pathare G, Hofstetter W, Baron R, Fuster DG. Deletion of the sodium/hydrogen exchanger 6 causes low bone volume in adult mice. Bone 2021; 153:116178. [PMID: 34508879 DOI: 10.1016/j.bone.2021.116178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/04/2021] [Accepted: 09/05/2021] [Indexed: 11/18/2022]
Abstract
The sodium/hydrogen exchanger 6 (NHE6) localizes to recycling endosomes, where it mediates endosomal alkalinization through K+/H+ exchange. Mutations in the SLC9A6 gene encoding NHE6 cause severe X-linked mental retardation, epilepsy, autism and corticobasal degeneration in humans. Patients with SLC9A6 mutations exhibit skeletal malformations, and a previous study suggested a key role of NHE6 in osteoblast-mediated mineralization. The goal of this study was to explore the role of NHE6 in bone homeostasis. To this end, we studied the bone phenotype of NHE6 knock-out mice by microcomputed tomography, quantitative histomorphometry and complementary ex vivo and in vitro studies. We detected NHE6 transcript and protein in both differentiated osteoclasts and mineralizing osteoblasts. In vitro studies with osteoclasts and osteoblasts derived from NHE6 knock-out mice demonstrated normal osteoclast differentiation and osteoblast proliferation without an impairment in mineralization capacity. Microcomputed tomography and bone histomorphometry studies showed a significantly reduced bone volume and trabecular number as well as an increased trabecular space at lumbar vertebrae of 6 months old NHE6 knock-out mice. The bone degradation marker c-terminal telopeptides of type I collagen was unaltered in NHE6 knock-out mice. However, we observed a reduction of the bone formation marker procollagen type 1 N-terminal propeptide, and increased circulating sclerostin levels in NHE6 knock-out mice. Subsequent studies revealed a significant upregulation of sclerostin transcript expression in both primary calvarial cultures and femora derived from NHE6 knock-out mice. Thus, loss of NHE6 in mice causes an increase of sclerostin expression associated with reduced bone formation and low bone volume.
Collapse
Affiliation(s)
- Daniela Schnyder
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Giuseppe Albano
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Patrycja Kucharczyk
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Silvia Dolder
- National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Mark Siegrist
- National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Manuel Anderegg
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Ganesh Pathare
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Willy Hofstetter
- National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Roland Baron
- Division of Bone and Mineral Research, Harvard Medical School and Harvard School of Dental Medicine, Boston, MA, USA; Department of Oral Medicine, Infection and Immunity, Harvard Medical School and Harvard School of Dental Medicine, Boston, MA, USA
| | - Daniel G Fuster
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
9
|
Liu Z, Bian X, Gao W, Su J, Ma C, Xiao X, Yu T, Zhang H, Liu X, Fan G. Rg3 promotes the SUMOylation of SERCA2a and corrects cardiac dysfunction in heart failure. Pharmacol Res 2021; 172:105843. [PMID: 34428586 DOI: 10.1016/j.phrs.2021.105843] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/08/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023]
Abstract
SUMOylation of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) has been shown to play a critical role in the abnormal Ca2+ cycle of heart failure. Ginsenoside Rg3 (Rg3), the main active constituent of Panax ginseng, exerts a wide range of pharmacological effects in cardiovascular diseases. However, the effect of Rg3 on abnormal Ca2+ homeostasis in heart failure has not been reported. In this study, we showed a novel role of Rg3 in the abnormal Ca2+ cycle in cardiomyocytes of mice with heart failure. Among mice undergoing transverse aortic constriction, animals that received Rg3 showed improvements in cardiac function and Ca2+ homeostasis, accompanied by increases in the SUMOylation level and SERCA2a activity. In an isoproterenol (ISO)-induced cell hypertrophy model, Rg3 reduced the ISO-induced Ca2+ overload in HL-1 cells. Gene knockout of SUMO1 in mice inhibited the cardioprotective effect of Rg3, and SUMO1 knockout mice that received Rg3 did not exhibit improved Ca2+ homeostasis in cardiomyocytes. Additionally, mutation of the SUMOylation sites of SERCA2a blocked the positive effect of Rg3 on the ISO-induced abnormal Ca2+ cycle in HL-1 cells, and was accompanied by an abnormal endoplasmic reticulum stress response and generation of ROS. Our data demonstrated that Rg3 has a positive effect on the abnormal Ca2+ cycle in the cardiomyocytes of mice with heart failure. SUMO1 is an important factor that mediates the protective effect of Rg3. Our findings suggest that drug intervention by regulating the SUMOylation of SERCA2a can provide a novel therapeutic strategy for the treatment of heart failure.
Collapse
Affiliation(s)
- Zhihao Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiyun Bian
- Central Laboratory, the Fifth Central Hospital of Tianjin, Tianjin 300450, China; Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, the Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Wenbo Gao
- Central Laboratory, the Fifth Central Hospital of Tianjin, Tianjin 300450, China; Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, the Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Jing Su
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Xiaolin Xiao
- Central Laboratory, the Fifth Central Hospital of Tianjin, Tianjin 300450, China; Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, the Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Tian Yu
- Central Laboratory, the Fifth Central Hospital of Tianjin, Tianjin 300450, China; Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, the Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Han Zhang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaozhi Liu
- Central Laboratory, the Fifth Central Hospital of Tianjin, Tianjin 300450, China; Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, the Fifth Central Hospital of Tianjin, Tianjin 300450, China.
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
10
|
Chen J, Zhang M, Ma Z, Yuan D, Zhu J, Tuo B, Li T, Liu X. Alteration and dysfunction of ion channels/transporters in a hypoxic microenvironment results in the development and progression of gastric cancer. Cell Oncol (Dordr) 2021; 44:739-749. [PMID: 33856653 PMCID: PMC8338819 DOI: 10.1007/s13402-021-00604-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignant cancers in the world and has only few treatment options and, concomitantly, a poor prognosis. It is generally accepted now that the tumor microenvironment, particularly that under hypoxia, plays an important role in cancer development. Hypoxia can regulate the energy metabolism and malignancy of tumor cells by inducing or altering various important factors, such as oxidative stress, reactive oxygen species (ROS), hypoxia-inducible factors (HIFs), autophagy and acidosis. In addition, altered expression and/or dysfunction of ion channels/transporters (ICTs) have been encountered in a variety of human tumors, including GC, and to play an important role in the processes of tumor cell proliferation, migration, invasion and apoptosis. Increasing evidence indicates that ICTs are at least partly involved in interactions between cancer cells and their hypoxic microenvironment. Here, we provide an overview of the different ICTs that regulate or are regulated by hypoxia in GC. CONCLUSIONS AND PERSPECTIVES Hypoxia is one of the major obstacles to cancer therapy. Regulating cellular responses and factors under hypoxia can inhibit GC. Similarly, altering the expression or activity of ICTs, such as the application of ion channel inhibitors, can slow down the growth and/or migration of GC cells. Since targeting the hypoxic microenvironment and/or ICTs may be a promising strategy for the treatment of GC, more attention should be paid to the interplay between ICTs and the development and progression of GC in such a microenvironment.
Collapse
Affiliation(s)
- Junling Chen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Minglin Zhang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Dumin Yuan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China.
| |
Collapse
|
11
|
Dissecting the structural features of β-arrestins as multifunctional proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140603. [PMID: 33421644 DOI: 10.1016/j.bbapap.2021.140603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023]
Abstract
β-arrestins bind active G protein-coupled receptors (GPCRs) and play a crucial role in receptor desensitization and internalization. The classical paradigm of arrestin function has been expanded with the identification of many non-receptor-binding partners, which indicated the multifunctional role of β-arrestins in cellular functions. To elucidate the molecular mechanism of β-arrestin-mediated signaling, the structural features of β-arrestins were investigated using X-ray crystallography and cryogenic electron microscopy (cryo-EM). However, the intrinsic conformational flexibility of β-arrestins hampers the elucidation of structural interactions between β-arrestins and their binding partners using conventional structure determination tools. Therefore, structural information obtained using complementary structure analysis techniques would be necessary in combination with X-ray crystallography and cryo-EM data. In this review, we describe how β-arrestins interact with their binding partners from a structural point of view, as elucidated by both traditional methods (X-ray crystallography and cryo-EM) and complementary structure analysis techniques.
Collapse
|
12
|
The sodium/proton exchanger NHA2 regulates blood pressure through a WNK4-NCC dependent pathway in the kidney. Kidney Int 2020; 99:350-363. [PMID: 32956652 DOI: 10.1016/j.kint.2020.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
NHA2 is a sodium/proton exchanger associated with arterial hypertension in humans, but the role of NHA2 in kidney function and blood pressure homeostasis is currently unknown. Here we show that NHA2 localizes almost exclusively to distal convoluted tubules in the kidney. NHA2 knock-out mice displayed reduced blood pressure, normocalcemic hypocalciuria and an attenuated response to the thiazide diuretic hydrochlorothiazide. Phosphorylation of the thiazide-sensitive sodium/chloride cotransporter NCC and its upstream activating kinase Ste20/SPS1-related proline/alanine rich kinase (SPAK), as well as the abundance of with no lysine kinase 4 (WNK4), were significantly reduced in the kidneys of NHA2 knock-out mice. In vitro experiments recapitulated these findings and revealed increased WNK4 ubiquitylation and enhanced proteasomal WNK4 degradation upon loss of NHA2. The effect of NHA2 on WNK4 stability was dependent from the ubiquitylation pathway protein Kelch-like 3 (KLHL3). More specifically, loss of NHA2 selectively attenuated KLHL3 phosphorylation and blunted protein kinase A- and protein kinase C-mediated decrease of WNK4 degradation. Phenotype analysis of NHA2/NCC double knock-out mice supported the notion that NHA2 affects blood pressure homeostasis by a kidney-specific and NCC-dependent mechanism. Thus, our data show that NHA2 as a critical component of the WNK4-NCC pathway and is a novel regulator of blood pressure homeostasis in the kidney.
Collapse
|
13
|
Estadella I, Pedrós-Gámez O, Colomer-Molera M, Bosch M, Sorkin A, Felipe A. Endocytosis: A Turnover Mechanism Controlling Ion Channel Function. Cells 2020; 9:E1833. [PMID: 32759790 PMCID: PMC7463639 DOI: 10.3390/cells9081833] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 01/08/2023] Open
Abstract
Ion channels (IChs) are transmembrane proteins that selectively drive ions across membranes. The function of IChs partially relies on their abundance and proper location in the cell, fine-tuned by the delicate balance between secretory, endocytic, and degradative pathways. The disruption of this balance is associated with several diseases, such as Liddle's and long QT syndromes. Because of the vital role of these proteins in human health and disease, knowledge of ICh turnover is essential. Clathrin-dependent and -independent mechanisms have been the primary mechanisms identified with ICh endocytosis and degradation. Several molecular determinants recognized by the cellular internalization machinery have been discovered. Moreover, specific conditions can trigger the endocytosis of many IChs, such as the activation of certain receptors, hypokalemia, and some drugs. Ligand-dependent receptor activation primarily results in the posttranslational modification of IChs and the recruitment of important mediators, such as β-arrestins and ubiquitin ligases. However, endocytosis is not a final fate. Once internalized into endosomes, IChs are either sorted to lysosomes for degradation or recycled back to the plasma membrane. Rab proteins are crucial participants during these turnover steps. In this review, we describe the major ICh endocytic pathways, the signaling inputs triggering ICh internalization, and the key mediators of this essential cellular process.
Collapse
Affiliation(s)
- Irene Estadella
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| | - Oriol Pedrós-Gámez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| | - Magalí Colomer-Molera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| | - Manel Bosch
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
- Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alexander Sorkin
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| |
Collapse
|
14
|
Pedersen SF, Counillon L. The SLC9A-C Mammalian Na +/H + Exchanger Family: Molecules, Mechanisms, and Physiology. Physiol Rev 2019; 99:2015-2113. [PMID: 31507243 DOI: 10.1152/physrev.00028.2018] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.
Collapse
Affiliation(s)
- S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - L Counillon
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
15
|
Lee S, Park S, Lee H, Han S, Song JM, Han D, Suh YH. Nedd4 E3 ligase and beta-arrestins regulate ubiquitination, trafficking, and stability of the mGlu7 receptor. eLife 2019; 8:44502. [PMID: 31373553 PMCID: PMC6690720 DOI: 10.7554/elife.44502] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 08/01/2019] [Indexed: 12/23/2022] Open
Abstract
The metabotropic glutamate receptor 7 (mGlu7) is a class C G protein-coupled receptor that modulates excitatory neurotransmitter release at the presynaptic active zone. Although post-translational modification of cellular proteins with ubiquitin is a key molecular mechanism governing protein degradation and function, mGlu7 ubiquitination and its functional consequences have not been elucidated yet. Here, we report that Nedd4 ubiquitin E3 ligase and β-arrestins regulate ubiquitination of mGlu7 in heterologous cells and rat neurons. Upon agonist stimulation, β-arrestins recruit Nedd4 to mGlu7 and facilitate Nedd4-mediated ubiquitination of mGlu7. Nedd4 and β-arrestins regulate constitutive and agonist-induced endocytosis of mGlu7 and are required for mGlu7-dependent MAPK signaling in neurons. In addition, Nedd4-mediated ubiquitination results in the degradation of mGlu7 by both the ubiquitin-proteasome system and the lysosomal degradation pathway. These findings provide a model in which Nedd4 and β-arrestin act together as a complex to regulate mGlu7 surface expression and function at presynaptic terminals.
Collapse
Affiliation(s)
- Sanghyeon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sunha Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyojin Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seulki Han
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Man Song
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Ho Suh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Laporte SA, Scott MGH. β-Arrestins: Multitask Scaffolds Orchestrating the Where and When in Cell Signalling. Methods Mol Biol 2019; 1957:9-55. [PMID: 30919345 DOI: 10.1007/978-1-4939-9158-7_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The β-arrestins (β-arrs) were initially appreciated for the roles they play in the desensitization and endocytosis of G protein-coupled receptors (GPCRs). They are now also known to act as multifunctional adaptor proteins binding many non-receptor protein partners to control multiple signalling pathways. β-arrs therefore act as key regulatory hubs at the crossroads of external cell inputs and functional outputs in cellular processes ranging from gene transcription to cell growth, survival, cytoskeletal regulation, polarity, and migration. An increasing number of studies have also highlighted the scaffolding roles β-arrs play in vivo in both physiological and pathological conditions, which opens up therapeutic avenues to explore. In this introductory review chapter, we discuss the functional roles that β-arrs exert to control GPCR function, their dynamic scaffolding roles and how this impacts signal transduction events, compartmentalization of β-arrs, how β-arrs are regulated themselves, and how the combination of these events culminates in cellular regulation.
Collapse
Affiliation(s)
- Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montreal, QC, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada. .,RI-MUHC/Glen Site, Montréal, QC, Canada.
| | - Mark G H Scott
- Institut Cochin, INSERM U1016, Paris, France. .,CNRS, UMR 8104, Paris, France. .,Univ. Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
17
|
Şimşek G, Vaughan-Jones RD, Swietach P, Kandilci HB. Recovery from hypoxia-induced internalization of cardiac Na + /H + exchanger 1 requires an adequate intracellular store of antioxidants. J Cell Physiol 2018; 234:4681-4694. [PMID: 30191998 DOI: 10.1002/jcp.27268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/24/2018] [Indexed: 11/07/2022]
Abstract
The heart is highly active metabolically but relatively underperfused and, therefore, vulnerable to ischemia. In addition to acidosis, a key component of ischemia is hypoxia that can modulate gene expression and protein function as part of an adaptive or even maladaptive response. Here, using cardiac-derived HL-1 cells, we investigate the effect of various hypoxic stimuli on the expression and activity of Na+ /H + exchanger 1 (NHE1), a principal regulator of intracellular pH. Acute (10 min) anoxia produced a reversible decrease in the sarcolemmal NHE1 activity attributable to NHE1 internalization. Treatment with either 1% O 2 or dimethyloxaloylglycine (DMOG; 1 mM) for 48-hr stabilized hypoxia-inducible factor 1 and reduced the sarcolemmal NHE1 activity by internalization, but without a change in total NHE1 immunoreactivity or message levels of the coding gene ( SLC9A1) determined in whole-cell lysates. Unlike the effect of DMOG, which was rapidly reversed on washout, reoxygenation after a prolonged period of hypoxia did not reverse the effects on NHE1, unless media were also supplemented with a membrane-permeant derivative of glutathione (GSH). Without a prior hypoxic episode, GSH supplementation had no effect on the NHE1 activity. Thus, posthypoxic NHE1 reinsertion can only take place if cells have a sufficient reservoir of a reducing agent. We propose that oxidative stress under prolonged hypoxia depletes intracellular GSH to an extent that curtails NHE1 reinsertion once the hypoxic stimulus is withdrawn. This effect may be cardioprotective, as rapid postischaemic restoration of the NHE1 activity is known to trigger reperfusion injury by producing an intracellular Na + -overload, which is proarrhythmogenic.
Collapse
Affiliation(s)
- Gül Şimşek
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | | | - Pawel Swietach
- Department of Physiology, Anatomy, and Genetics, Oxford University, Oxford, UK
| | - H Burak Kandilci
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
18
|
Olesen CW, Vogensen J, Axholm I, Severin M, Schnipper J, Pedersen IS, von Stemann JH, Schrøder JM, Christensen DP, Pedersen SF. Trafficking, localization and degradation of the Na +,HCO 3- co-transporter NBCn1 in kidney and breast epithelial cells. Sci Rep 2018; 8:7435. [PMID: 29743600 PMCID: PMC5943355 DOI: 10.1038/s41598-018-25059-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 04/13/2018] [Indexed: 01/28/2023] Open
Abstract
The Na+;HCO3− co-transporter NBCn1 (SLC4A7) is a major regulator of intracellular pH yet its trafficking and turnover are essentially unstudied. Here, we used MDCK-II and MCF-7 cells to investigate these processes in epithelial cells. GFP-NBCn1 membrane localization was abolished by truncation of the full NBCn1 C-terminal tail (C-tail) yet did not require the C-terminal PDZ-binding motif (ETSL). Glutathione-S-Transferase-pulldown of the C-tail followed by mass spectrometry analysis revealed putative interactions with multiple sorting-, degradation- and retention factors, including the scaffolding protein RACK1. Pulldown of FLAG-tagged deletion constructs mapped the RACK1 interaction to the proximal NBCn1 C-tail. Proximity Ligation Assay and co-immunoprecipitation confirmed that native NBCn1 interacts with RACK1 in a cellular context. Consistent with a functional role of this complex, RACK1 knockdown reduced NBCn1 membrane localization without affecting total NBCn1 expression. Notably, only non-confluent cells exhibited detectable NBCn1-RACK1 plasma membrane co-localization, suggesting that RACK1 regulates the trafficking of NBCn1 to the membrane. Whereas total NBCn1 degradation was slow, with a half-life of more than 24 h, one-third of surface NBCn1 was constitutively endocytosed from the basolateral membrane within 60 min. This suggests that a fraction of NBCn1 exhibits recycling between the basolateral membrane and intracellular compartment(s). Our findings have important implications for understanding NBCn1 regulation as well as its dysregulation in disease.
Collapse
Affiliation(s)
- Christina Wilkens Olesen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Jens Vogensen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Ida Axholm
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Marc Severin
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Julie Schnipper
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Isabella Skandorff Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Jakob Hjorth von Stemann
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Jacob Morville Schrøder
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Dan Ploug Christensen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark.
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark.
| |
Collapse
|
19
|
Compensatory Internalization of Pma1 in V-ATPase Mutants in Saccharomyces cerevisiae Requires Calcium- and Glucose-Sensitive Phosphatases. Genetics 2017; 208:655-672. [PMID: 29254995 PMCID: PMC5788529 DOI: 10.1534/genetics.117.300594] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/09/2017] [Indexed: 11/23/2022] Open
Abstract
Loss of V-ATPase activity in organelles triggers compensatory endocytic downregulation of the plasma membrane proton pump Pma1. Here, Velivela and Kane... Loss of V-ATPase activity in organelles, whether through V-ATPase inhibition or V-ATPase (vma) mutations, triggers a compensatory downregulation of the essential plasma membrane proton pump Pma1 in Saccharomyces cerevisiae. We have previously determined that the α-arrestin Rim8 and ubiquitin ligase Rsp5 are essential for Pma1 ubiquination and endocytosis in response to loss of V-ATPase activity. Here, we show that Pma1 endocytosis in V-ATPase mutants does not require Rim101 pathway components upstream and downstream of Rim8, indicating that Rim8 is acting independently in Pma1 internalization. We find that two phosphatases, the calcium-responsive phosphatase calcineurin and the glucose-sensitive phosphatase Glc7 (PP1), and one of the Glc7 regulatory subunits Reg1, exhibit negative synthetic genetic interactions with vma mutants, and demonstrate that both phosphatases are essential for ubiquitination and endocytic downregulation of Pma1 in these mutants. Although both acute and chronic loss of V-ATPase activity trigger the internalization of ∼50% of surface Pma1, a comparable reduction in Pma1 expression in a pma1-007 mutant neither compensates for loss of V-ATPase activity nor stops further Pma1 endocytosis. The results indicate that the cell surface level of Pma1 is not directly sensed and that internalized Pma1 may play a role in compensating for loss of V-ATPase-dependent acidification. Taken together, these results provide new insights into cross talk between two major proton pumps central to cellular pH control.
Collapse
|
20
|
Peterson YK, Luttrell LM. The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling. Pharmacol Rev 2017. [PMID: 28626043 DOI: 10.1124/pr.116.013367] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The visual/β-arrestins, a small family of proteins originally described for their role in the desensitization and intracellular trafficking of G protein-coupled receptors (GPCRs), have emerged as key regulators of multiple signaling pathways. Evolutionarily related to a larger group of regulatory scaffolds that share a common arrestin fold, the visual/β-arrestins acquired the capacity to detect and bind activated GPCRs on the plasma membrane, which enables them to control GPCR desensitization, internalization, and intracellular trafficking. By acting as scaffolds that bind key pathway intermediates, visual/β-arrestins both influence the tonic level of pathway activity in cells and, in some cases, serve as ligand-regulated scaffolds for GPCR-mediated signaling. Growing evidence supports the physiologic and pathophysiologic roles of arrestins and underscores their potential as therapeutic targets. Circumventing arrestin-dependent GPCR desensitization may alleviate the problem of tachyphylaxis to drugs that target GPCRs, and find application in the management of chronic pain, asthma, and psychiatric illness. As signaling scaffolds, arrestins are also central regulators of pathways controlling cell growth, migration, and survival, suggesting that manipulating their scaffolding functions may be beneficial in inflammatory diseases, fibrosis, and cancer. In this review we examine the structure-function relationships that enable arrestins to perform their diverse roles, addressing arrestin structure at the molecular level, the relationship between arrestin conformation and function, and sites of interaction between arrestins, GPCRs, and nonreceptor-binding partners. We conclude with a discussion of arrestins as therapeutic targets and the settings in which manipulating arrestin function might be of clinical benefit.
Collapse
Affiliation(s)
- Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| | - Louis M Luttrell
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| |
Collapse
|
21
|
Pujol-Giménez J, Hediger MA, Gyimesi G. A novel proton transfer mechanism in the SLC11 family of divalent metal ion transporters. Sci Rep 2017; 7:6194. [PMID: 28754960 PMCID: PMC5533754 DOI: 10.1038/s41598-017-06446-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/13/2017] [Indexed: 12/17/2022] Open
Abstract
In humans, the H+-coupled Fe2+ transporter DMT1 (SLC11A2) is essential for proper maintenance of iron homeostasis. While X-ray diffraction has recently unveiled the structure of the bacterial homologue ScaDMT as a LeuT-fold transporter, the exact mechanism of H+-cotransport has remained elusive. Here, we used a combination of molecular dynamics simulations, in silico pK a calculations and site-directed mutagenesis, followed by rigorous functional analysis, to discover two previously uncharacterized functionally relevant residues in hDMT1 that contribute to H+-coupling. E193 plays a central role in proton binding, thereby affecting transport properties and electrogenicity, while N472 likely coordinates the metal ion, securing an optimally "closed" state of the protein. Our molecular dynamics simulations provide insight into how H+-translocation through E193 is allosterically linked to intracellular gating, establishing a novel transport mechanism distinct from that of other H+-coupled transporters.
Collapse
Affiliation(s)
- Jonai Pujol-Giménez
- Institute of Biochemistry and Molecular Medicine and National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine and National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.
| | - Gergely Gyimesi
- Institute of Biochemistry and Molecular Medicine and National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.
| |
Collapse
|
22
|
Takakuwa S, Mizuno N, Takano T, Asakawa S, Sato T, Hiratsuka M, Hirasawa N. Down-regulation of Na +/H + exchanger 1 by Toll-like receptor stimulation in macrophages. Immunobiology 2016; 222:176-182. [PMID: 27771174 DOI: 10.1016/j.imbio.2016.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/17/2022]
Abstract
The role of Na+/H+ exchanger 1 (NHE1) in various cell types, including inflammatory cells, has been extensively studied. However, regulation of NHE1 protein level in activated inflammatory cells is yet to be characterized. In this study, we investigated whether Toll-like receptor (TLR) ligands can regulate NHE1 protein level in the mouse macrophage-like RAW 264 cell line. We found that lipopolysaccharide (LPS), a TLR4 ligand, lowered NHE1 level and activity in RAW 264 cells and in primary murine macrophages. Other TLR ligands, such as zymosan A and poly(I:C), also displayed reduced NHE1 level. LPS promoted NHE1 ubiquitination and reduced the expression of calcineurin homologous protein 1 (CHP1), a regulator of NHE1 activity and stability. These responses were inhibited by c-Jun N-terminal kinase (JNK) inhibitor SP600125 and dexamethasone. A proteasome inhibitor, but not caspase-3 or lysosomal inhibitors, blocked the LPS-induced NHE1 down-regulation. These results suggested that LPS promotes the degranulation of NHE1 mediated by the ubiquitin-proteasome system and CHP1 downregulation resulting from activation of JNK.
Collapse
Affiliation(s)
- Shiho Takakuwa
- Laboratory of Pharmacotherapy of Lifestyle Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Natsumi Mizuno
- Laboratory of Pharmacotherapy of Lifestyle Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Takayuki Takano
- Laboratory of Pharmacotherapy of Lifestyle Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Sanki Asakawa
- Laboratory of Pharmacotherapy of Lifestyle Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Taiki Sato
- Laboratory of Pharmacotherapy of Lifestyle Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Lifestyle Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Lifestyle Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
23
|
Xu D, Wang H, You G. Posttranslational Regulation of Organic Anion Transporters by Ubiquitination: Known and Novel. Med Res Rev 2016; 36:964-79. [PMID: 27291023 DOI: 10.1002/med.21397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 12/25/2022]
Abstract
Organic anion transporters (OATs) encoded by solute carrier 22 family are localized in the epithelia of multiple organs, where they mediate the absorption, distribution, and excretion of a diverse array of negatively charged environmental toxins and clinically important drugs. Alterations in the expression and function of OATs play important roles in intra- and interindividual variability of the therapeutic efficacy and the toxicity of many drugs. As a result, the activity of OATs must be under tight regulation so as to carry out their normal functions. The regulation of OAT transport activity in response to various stimuli can occur at several levels such as transcription, translation, and posttranslational modification. Posttranslational regulation is of particular interest, because it usually happens within a very short period of time (minutes to hours) when the body has to deal with rapidly changing amounts of substances as a consequence of variable intake of drugs, fluids, or meals as well as metabolic activity. This review article highlights the recent advances from our laboratory in uncovering several posttranslational mechanisms underlying OAT regulation. These advances offer the promise of identifying targets for novel strategies that will maximize therapeutic efficacy in drug development.
Collapse
Affiliation(s)
- Da Xu
- Department of Pharmaceutics, Rutgers University, Piscataway, New Jersey, 08854
| | - Haoxun Wang
- Department of Pharmaceutics, Rutgers University, Piscataway, New Jersey, 08854
| | - Guofeng You
- Department of Pharmaceutics, Rutgers University, Piscataway, New Jersey, 08854
| |
Collapse
|
24
|
Xu D, Wang H, Gardner C, Pan Z, Zhang PL, Zhang J, You G. The role of Nedd4-1 WW domains in binding and regulating human organic anion transporter 1. Am J Physiol Renal Physiol 2016; 311:F320-9. [PMID: 27226107 DOI: 10.1152/ajprenal.00153.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/20/2016] [Indexed: 12/30/2022] Open
Abstract
Human organic anion transporter 1 (hOAT1), expressed at the basolateral membrane of kidney proximal tubule cells, mediates the active renal secretion of a diverse array of clinically important drugs, including anti-human immunodeficiency virus therapeutics, antitumor drugs, antibiotics, antihypertensives, and anti-inflammatories. We have previously demonstrated that posttranslational modification of hOAT1 by ubiquitination is an important mechanism for the regulation of this transporter. The present study aimed at identifying the ubiquitin ligase for hOAT1 and its mechanism of action. We showed that overexpression of neural precursor cell expressed, developmentally downregulated (Nedd)4-1, an E3 ubiquitin ligase, enhanced hOAT1 ubiquitination, decreased hOAT1 expression at the cell surface, and inhibited hOAT1 transport activity. In contrast, overexpression of the ubiquitin ligase-dead mutant Nedd4-1/C867S was without effects on hOAT1. Furthermore, knockdown of endogenously expressed Nedd4-1 by Nedd4-1-specific small interfering RNA reduced hOAT1 ubiquitination. Immunoprecipitation experiments in cultured cells and rat kidney slices and immunofluorescence experiments in rat kidney slices showed that there was a physical interaction between OAT1 and Nedd4-1. Nedd4-1 contains four protein-protein interacting WW domains. When these WW domains were inactivated by mutating two amino acid residues in each of the four WW domains (Mut-WW1: V210W/H212G, Mut-WW2: V367W/H369G, Mut-WW3: I440W/H442G, and Mut-WW4: I492W/H494G, respectively), only Mut-WW2 and Mut-WW3 significantly lost their ability to bind and to ubiquitinate hOAT1. As a result, Mut-WW2 and Mut-WW3 were unable to suppress hOAT1-mediated transport as effectively as wild-type Nedd4-1. In conclusion, this is the first demonstration that Nedd4-1 regulates hOAT1 ubiquitination, expression, and transport activity through its WW2 and WW3 domains.
Collapse
Affiliation(s)
- Da Xu
- Department of Pharmaceutics, Rutgers University, Piscataway, New Jersey
| | - Haoxun Wang
- Department of Pharmaceutics, Rutgers University, Piscataway, New Jersey
| | - Carol Gardner
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
| | - Zui Pan
- Thoracic Surgery Division, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Ping L Zhang
- Department of Anatomic Pathology, William Beaumont Hospital, Royal Oak, Michigan
| | - Jinghui Zhang
- Department of Pharmaceutics, Rutgers University, Piscataway, New Jersey
| | - Guofeng You
- Department of Pharmaceutics, Rutgers University, Piscataway, New Jersey;
| |
Collapse
|
25
|
Jean-Charles PY, Freedman NJ, Shenoy SK. Chapter Nine - Cellular Roles of Beta-Arrestins as Substrates and Adaptors of Ubiquitination and Deubiquitination. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:339-69. [PMID: 27378762 DOI: 10.1016/bs.pmbts.2016.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
β-Arrestin1 and β-arrestin2 are homologous adaptor proteins that are ubiquitously expressed in mammalian cells. They belong to a four-member family of arrestins that regulate the vast family of seven-transmembrane receptors that couple to heterotrimeric G proteins (7TMRs or GPCRs), and that modulate 7TMR signal transduction. β-Arrestins were originally identified in the context of signal inhibition via the 7TMRs because they competed with and thereby blocked G protein coupling to 7TMRs. Currently, in addition to their role as desensitizers of signaling, β-arrestins are appreciated as multifunctional adaptors that mediate trafficking and signal transduction of not only 7TMRs, but a growing list of additional receptors, ion channels, and nonreceptor proteins. β-Arrestins' interactions with their multifarious partners are based on their dynamic conformational states rather than particular domain-domain interactions. β-Arrestins adopt activated conformations upon 7TMR association. In addition, β-arrestins undergo various posttranslational modifications that are choreographed by activated 7TMRs, including phosphorylation, ubiquitination, acetylation, nitrosylation, and SUMOylation. Ubiquitination of β-arrestins is critical for their high-affinity interaction with 7TMRs as well as with endocytic adaptor proteins and signaling kinases. β-Arrestins also function as critical adaptors for ubiquitination and deubiquitination of various cellular proteins, and thereby affect the longevity of signal transducers and the intensity of signal transmission.
Collapse
Affiliation(s)
- P-Y Jean-Charles
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, United States
| | - N J Freedman
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, United States; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States
| | - S K Shenoy
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, United States; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States.
| |
Collapse
|
26
|
Dhayat N, Simonin A, Anderegg M, Pathare G, Lüscher BP, Deisl C, Albano G, Mordasini D, Hediger MA, Surbek DV, Vogt B, Sass JO, Kloeckener-Gruissem B, Fuster DG. Mutation in the Monocarboxylate Transporter 12 Gene Affects Guanidinoacetate Excretion but Does Not Cause Glucosuria. J Am Soc Nephrol 2016; 27:1426-36. [PMID: 26376857 PMCID: PMC4849831 DOI: 10.1681/asn.2015040411] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/05/2015] [Indexed: 01/08/2023] Open
Abstract
A heterozygous mutation (c.643C>A; p.Q215X) in the monocarboxylate transporter 12-encoding gene MCT12 (also known as SLC16A12) that mediates creatine transport was recently identified as the cause of a syndrome with juvenile cataracts, microcornea, and glucosuria in a single family. Whereas the MCT12 mutation cosegregated with the eye phenotype, poor correlation with the glucosuria phenotype did not support a pathogenic role of the mutation in the kidney. Here, we examined MCT12 in the kidney and found that it resides on basolateral membranes of proximal tubules. Patients with MCT12 mutation exhibited reduced plasma levels and increased fractional excretion of guanidinoacetate, but normal creatine levels, suggesting that MCT12 may function as a guanidinoacetate transporter in vivo However, functional studies in Xenopus oocytes revealed that MCT12 transports creatine but not its precursor, guanidinoacetate. Genetic analysis revealed a separate, undescribed heterozygous mutation (c.265G>A; p.A89T) in the sodium/glucose cotransporter 2-encoding gene SGLT2 (also known as SLC5A2) in the family that segregated with the renal glucosuria phenotype. When overexpressed in HEK293 cells, the mutant SGLT2 transporter did not efficiently translocate to the plasma membrane, and displayed greatly reduced transport activity. In summary, our data indicate that MCT12 functions as a basolateral exit pathway for creatine in the proximal tubule. Heterozygous mutation of MCT12 affects systemic levels and renal handling of guanidinoacetate, possibly through an indirect mechanism. Furthermore, our data reveal a digenic syndrome in the index family, with simultaneous MCT12 and SGLT2 mutation. Thus, glucosuria is not part of the MCT12 mutation syndrome.
Collapse
Affiliation(s)
- Nasser Dhayat
- Division of Nephrology, Hypertension and Clinical Pharmacology, and Department of Clinical Research, University of Bern, Switzerland
| | - Alexandre Simonin
- Institute of Biochemistry and Molecular Medicine, Swiss National Centre of Competence in Research Transcure, and
| | - Manuel Anderegg
- Division of Nephrology, Hypertension and Clinical Pharmacology, and Department of Clinical Research, University of Bern, Switzerland; Institute of Biochemistry and Molecular Medicine, Swiss National Centre of Competence in Research Transcure, and
| | - Ganesh Pathare
- Division of Nephrology, Hypertension and Clinical Pharmacology, and Department of Clinical Research, University of Bern, Switzerland; Institute of Biochemistry and Molecular Medicine, Swiss National Centre of Competence in Research Transcure, and
| | - Benjamin P Lüscher
- Department of Clinical Research, University of Bern, Switzerland; Swiss National Centre of Competence in Research Transcure, and Department of Obstetrics and Gynecology, University Hospital of Bern, Switzerland
| | - Christine Deisl
- Division of Nephrology, Hypertension and Clinical Pharmacology, and Department of Clinical Research, University of Bern, Switzerland; Institute of Biochemistry and Molecular Medicine, Swiss National Centre of Competence in Research Transcure, and
| | - Giuseppe Albano
- Division of Nephrology, Hypertension and Clinical Pharmacology, and Department of Clinical Research, University of Bern, Switzerland; Institute of Biochemistry and Molecular Medicine, Swiss National Centre of Competence in Research Transcure, and
| | - David Mordasini
- Division of Nephrology, Hypertension and Clinical Pharmacology, and Department of Clinical Research, University of Bern, Switzerland
| | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine, Swiss National Centre of Competence in Research Transcure, and Department of Obstetrics and Gynecology, University Hospital of Bern, Switzerland
| | - Daniel V Surbek
- Department of Clinical Research, University of Bern, Switzerland; Swiss National Centre of Competence in Research Transcure, and Department of Obstetrics and Gynecology, University Hospital of Bern, Switzerland
| | - Bruno Vogt
- Division of Nephrology, Hypertension and Clinical Pharmacology, and Department of Clinical Research, University of Bern, Switzerland
| | - Jörn Oliver Sass
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital, Zürich, Switzerland; Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | - Barbara Kloeckener-Gruissem
- Institute of Medical Molecular Genetics, University of Zürich, Zürich, Switzerland; and Department of Biology, Swiss Federal Institute of Technology in Zürich, Zürich, Switzerland
| | - Daniel G Fuster
- Division of Nephrology, Hypertension and Clinical Pharmacology, and Department of Clinical Research, University of Bern, Switzerland; Institute of Biochemistry and Molecular Medicine, Swiss National Centre of Competence in Research Transcure, and
| |
Collapse
|
27
|
Jean-Charles PY, Rajiv V, Shenoy SK. Ubiquitin-Related Roles of β-Arrestins in Endocytic Trafficking and Signal Transduction. J Cell Physiol 2016; 231:2071-80. [PMID: 26790995 DOI: 10.1002/jcp.25317] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 12/25/2022]
Abstract
The non-visual arrestins, β-arrestin1, and β-arrestin2 were originally identified as proteins that bind to seven-transmembrane receptors (7TMRs, also called G protein-coupled receptors, GPCRs) and block heterotrimeric G protein activation, thus leading to desensitization of transmembrane signaling. However, as subsequent discoveries have continually demonstrated, their functionality is not constrained to desensitization. They are now recognized for their critical roles in mediating intracellular trafficking of 7TMRs, growth factor receptors, ion transporters, ion channels, nuclear receptors, and non-receptor proteins. Additionally, they function as crucial mediators of ubiquitination of 7TMRs as well as other receptors and non-receptor proteins. Recently, emerging studies suggest that a class of proteins with predicted structural features of β-arrestins regulate substrate ubiquitination in yeast and higher mammals, lending support to the idea that the adaptor role of β-arrestins in protein ubiquitination is evolutionarily conserved. β-arrestins also function as scaffolds for kinases and transduce signals from 7TMRs through pathways that do not require G protein activation. Remarkably, the endocytic and scaffolding functions of β-arrestin are intertwined with its ubiquitination status; the dynamic and site specific ubiquitination on β-arrestin plays a critical role in stabilizing β-arrestin-7TMR association and the formation of signalosomes. This review summarizes the current findings on ubiquitin-dependent regulation of 7TMRs as well as β-arrestins and the potential role of reversible ubiquitination as a "biological switch" in signal transduction. J. Cell. Physiol. 231: 2071-2080, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Vishwaesh Rajiv
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina
| | - Sudha K Shenoy
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
28
|
Xu D, Wang H, Zhang Q, You G. Nedd4-2 but not Nedd4-1 is critical for protein kinase C-regulated ubiquitination, expression, and transport activity of human organic anion transporter 1. Am J Physiol Renal Physiol 2016; 310:F821-31. [PMID: 26823285 DOI: 10.1152/ajprenal.00522.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/20/2016] [Indexed: 11/22/2022] Open
Abstract
Human organic anion transporter 1 (hOAT1) expressed at the membrane of the kidney proximal tubule cells mediates the body disposition of a diverse array of clinically important drugs, including anti-HIV therapeutics, antitumor drugs, antibiotics, antihypertensives, and antiinflammatories. Therefore, understanding the regulation of hOAT1 will provide significant insights into kidney function and dysfunction. We previously established that hOAT1 transport activity is inhibited by activation of protein kinase C (PKC) through accelerating hOAT1 internalization from cell surface into intracellular endosomes and subsequent degradation. We further established that PKC-induced hOAT1 ubiquitination is an important step preceding hOAT1 internalization. In the current study, we identified two closely related E3 ubiquitin ligases, neural precursor cell expressed, developmentally downregulated 4-1 and 4-2 (Nedd4-1 and Nedd4-2), as important regulators for hOAT1: overexpression of Nedd4-1 or Nedd4-2 enhanced hOAT1 ubiquitination, reduced the hOAT1 amount at the cell surface, and suppressed hOAT1 transport activity. In further exploring the relationship among PKC, Nedd4-1, and Nedd4-2, we discovered that PKC-dependent changes in hOAT1 ubiquitination, expression, and transport activity were significantly blocked in cells transfected with the ligase-dead mutant of Nedd4-2 (Nedd4-2/C821A) or with Nedd4-2-specific siRNA to knockdown endogenous Nedd4-2 but not in cells transfected with the ligase-dead mutant of Nedd4-1 (Nedd4-1/C867S) or with Nedd4-1-specific siRNA to knockdown endogenous Nedd4-1. In conclusion, this is the first demonstration that both Nedd4-1 and Nedd4-2 are important regulators for hOAT1 ubiquitination, expression, and function. Yet they play distinct roles, as Nedd4-2 but not Nedd4-1 is a critical mediator for PKC-regulated hOAT1 ubiquitination, expression, and transport activity.
Collapse
Affiliation(s)
- Da Xu
- Department of Pharmaceutics, Rutgers University, Piscataway, New Jersey
| | - Haoxun Wang
- Department of Pharmaceutics, Rutgers University, Piscataway, New Jersey
| | - Qiang Zhang
- Department of Pharmaceutics, Rutgers University, Piscataway, New Jersey
| | - Guofeng You
- Department of Pharmaceutics, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
29
|
Sodium-Proton (Na+/H+) Antiporters: Properties and Roles in Health and Disease. Met Ions Life Sci 2016; 16:391-458. [DOI: 10.1007/978-3-319-21756-7_12] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Simonin A, Montalbetti N, Gyimesi G, Pujol-Giménez J, Hediger MA. The Hydroxyl Side Chain of a Highly Conserved Serine Residue Is Required for Cation Selectivity and Substrate Transport in the Glial Glutamate Transporter GLT-1/SLC1A2. J Biol Chem 2015; 290:30464-74. [PMID: 26483543 DOI: 10.1074/jbc.m115.689836] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 12/12/2022] Open
Abstract
Glutamate transporters maintain synaptic concentration of the excitatory neurotransmitter below neurotoxic levels. Their transport cycle consists of cotransport of glutamate with three sodium ions and one proton, followed by countertransport of potassium. Structural studies proposed that a highly conserved serine located in the binding pocket of the homologous GltPh coordinates L-aspartate as well as the sodium ion Na1. To experimentally validate these findings, we generated and characterized several mutants of the corresponding serine residue, Ser-364, of human glutamate transporter SLC1A2 (solute carrier family 1 member 2), also known as glutamate transporter GLT-1 and excitatory amino acid transporter EAAT2. S364T, S364A, S364C, S364N, and S364D were expressed in HEK cells and Xenopus laevis oocytes to measure radioactive substrate transport and transport currents, respectively. All mutants exhibited similar plasma membrane expression when compared with WT SLC1A2, but substitutions of serine by aspartate or asparagine completely abolished substrate transport. On the other hand, the threonine mutant, which is a more conservative mutation, exhibited similar substrate selectivity, substrate and sodium affinities as WT but a lower selectivity for Na(+) over Li(+). S364A and S364C exhibited drastically reduced affinities for each substrate and enhanced selectivity for L-aspartate over D-aspartate and L-glutamate, and lost their selectivity for Na(+) over Li(+). Furthermore, we extended the analysis of our experimental observations using molecular dynamics simulations. Altogether, our findings confirm a pivotal role of the serine 364, and more precisely its hydroxyl group, in coupling sodium and substrate fluxes.
Collapse
Affiliation(s)
- Alexandre Simonin
- From the Institute of Biochemistry and Molecular Medicine and Swiss National Center of Competence in Research, National Center of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| | - Nicolas Montalbetti
- From the Institute of Biochemistry and Molecular Medicine and Swiss National Center of Competence in Research, National Center of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| | - Gergely Gyimesi
- From the Institute of Biochemistry and Molecular Medicine and Swiss National Center of Competence in Research, National Center of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| | - Jonai Pujol-Giménez
- From the Institute of Biochemistry and Molecular Medicine and Swiss National Center of Competence in Research, National Center of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| | - Matthias A Hediger
- From the Institute of Biochemistry and Molecular Medicine and Swiss National Center of Competence in Research, National Center of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
31
|
Huetsch J, Shimoda LA. Na(+)/H(+) exchange and hypoxic pulmonary hypertension. Pulm Circ 2015; 5:228-43. [PMID: 26064449 DOI: 10.1086/680213] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/22/2014] [Indexed: 12/24/2022] Open
Abstract
Intracellular pH (pHi) homeostasis is key to the functioning of vascular smooth muscle cells, including pulmonary artery smooth muscle cells (PASMCs). Sodium-hydrogen exchange (NHE) is an important contributor to pHi control in PASMCs. In this review, we examine the role of NHE in PASMC function, in both physiologic and pathologic conditions. In particular, we focus on the contribution of NHE to the PASMC response to hypoxia, considering both acute hypoxic pulmonary vasoconstriction and the development of pulmonary vascular remodeling and pulmonary hypertension in response to chronic hypoxia. Hypoxic pulmonary hypertension remains a disease with limited therapeutic options. Thus, this review explores past efforts at disrupting NHE signaling and discusses the therapeutic potential that such efforts may have in the field of pulmonary hypertension.
Collapse
Affiliation(s)
- John Huetsch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| |
Collapse
|
32
|
Zhou W, Xu J, Zhao Y, Sun Y. SAG/RBX2 is a novel substrate of NEDD4-1 E3 ubiquitin ligase and mediates NEDD4-1 induced chemosensitization. Oncotarget 2015; 5:6746-55. [PMID: 25216516 PMCID: PMC4196160 DOI: 10.18632/oncotarget.2246] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sensitive to apoptosis gene (SAG), also known as RBX2, ROC2, or RNF7, is a RING component of SCF E3 ubiquitin ligases, which regulates cellular functions through ubiquitylation and degradation of many protein substrates. Although our previous studies showed that SAG is transcriptionally induced by redox, mitogen and hypoxia via AP-1 and HIF-1, it is completely unknown whether and how SAG is ubiquitylated and degraded. Here we report that NEDD4-1, a HECT domain-containing E3 ubiquitin ligase, binds via its HECT domain directly with SAG's C-terminal RING domain and ubiquitylates SAG for proteasome-mediated degradation. Consistently, SAG protein half-life is shortened or extended by NEDD4-1 overexpression or silencing, respectively. We also found that SAG bridges NEDD4-1 via its C-terminus and CUL-5 via its N-terminus to form a NEDD4-1/SAG/CUL-5 tri-complex. Biologically, NEDD4-1 overexpression sensitizes cancer cells to etoposide-induced apoptosis by reducing SAG levels through targeted degradation. Thus, SAG is added to a growing list of NEDD4-1 substrates and mediates its biological function.
Collapse
Affiliation(s)
- Weihua Zhou
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Jie Xu
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Yongchao Zhao
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI. Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
33
|
Damseh N, Simonin A, Jalas C, Picoraro JA, Shaag A, Cho MT, Yaacov B, Neidich J, Al-Ashhab M, Juusola J, Bale S, Telegrafi A, Retterer K, Pappas JG, Moran E, Cappell J, Anyane Yeboa K, Abu-Libdeh B, Hediger MA, Chung WK, Elpeleg O, Edvardson S. Mutations in SLC1A4, encoding the brain serine transporter, are associated with developmental delay, microcephaly and hypomyelination. J Med Genet 2015; 52:541-7. [PMID: 26041762 DOI: 10.1136/jmedgenet-2015-103104] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/11/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND L-serine plays an essential role in neuronal development and function. Although a non-essential amino acid, L-serine must be synthesised within the brain because of its poor permeability by the blood-brain barrier. Within the brain, its synthesis is confined to astrocytes, and its shuttle to neuronal cells is performed by a dedicated neutral amino acid transporter, ASCT1. METHODS AND RESULTS Using exome analysis we identified the recessive mutations, p.E256K, p.L315fs, and p.R457W, in SLC1A4, the gene encoding ASCT1, in patients with developmental delay, microcephaly and hypomyelination; seizure disorder was variably present. When expressed in a heterologous system, the mutations did not affect the protein level at the plasma membrane but abolished or markedly reduced L-serine transport for p.R457W and p.E256K mutations, respectively. Interestingly, p.E256K mutation displayed a lower L-serine and alanine affinity but the same substrate selectivity as wild-type ASCT1. CONCLUSIONS The clinical phenotype of ASCT1 deficiency is reminiscent of defects in L-serine biosynthesis. The data underscore that ASCT1 is essential in brain serine transport. The SLC1A4 p.E256K mutation has a carrier frequency of 0.7% in the Ashkenazi-Jewish population and should be added to the carrier screening panel in this community.
Collapse
Affiliation(s)
- Nadirah Damseh
- Department of Pediatrics, Al-Makassed Islamic Hospital, Jerusalem, Israel
| | - Alexandre Simonin
- NCCR TransCure, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Chaim Jalas
- Bonei Olam, Center for Rare Jewish Genetic Disorders, Brooklyn, New York, USA
| | - Joseph A Picoraro
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Avraham Shaag
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Megan T Cho
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA GeneDx, Gaithersburg, Maryland, USA
| | - Barak Yaacov
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Motee Al-Ashhab
- Department of Pediatrics, Al-Makassed Islamic Hospital, Jerusalem, Israel
| | | | | | | | | | - John G Pappas
- Department of Pediatrics, New York University, New York, New York, USA
| | - Ellen Moran
- Department of Pediatrics, New York University, New York, New York, USA
| | - Joshua Cappell
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Kwame Anyane Yeboa
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Bassam Abu-Libdeh
- Department of Pediatrics, Al-Makassed Islamic Hospital, Jerusalem, Israel
| | - Matthias A Hediger
- NCCR TransCure, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Simon Edvardson
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
34
|
Montalbetti N, Simonin A, Simonin C, Awale M, Reymond JL, Hediger MA. Discovery and characterization of a novel non-competitive inhibitor of the divalent metal transporter DMT1/SLC11A2. Biochem Pharmacol 2015; 96:216-24. [PMID: 26047847 DOI: 10.1016/j.bcp.2015.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
Divalent metal transporter-1 (SLC11A2/DMT1) uses the H(+) electrochemical gradient as the driving force to transport divalent metal ions such as Fe(2+), Mn(2+) and others metals into mammalian cells. DMT1 is ubiquitously expressed, most notably in proximal duodenum, immature erythroid cells, brain and kidney. This transporter mediates H(+)-coupled transport of ferrous iron across the apical membrane of enterocytes. In addition, in cells such as to erythroid precursors, following transferrin receptor (TfR) mediated endocytosis; it mediates H(+)-coupled exit of ferrous iron from endocytic vesicles into the cytosol. Dysfunction of human DMT1 is associated with several pathologies such as iron deficiency anemia hemochromatosis, Parkinson's disease and Alzheimer's disease, as well as colorectal cancer and esophageal adenocarcinoma, making DMT1 an attractive target for drug discovery. In the present study, we performed a ligand-based virtual screening of the Princeton database (700,000 commercially available compounds) to search for pharmacophore shape analogs of recently reported DMT1 inhibitors. We discovered a new compound, named pyrimidinone 8, which mediates a reversible linear non-competitive inhibition of human DMT1 (hDMT1) transport activity with a Ki of ∼20μM. This compound does not affect hDMT1 cell surface expression and shows no dependence on extracellular pH. To our knowledge, this is the first experimental evidence that hDMT1 can be allosterically modulated by pharmacological agents. Pyrimidinone 8 represents a novel versatile tool compound and it may serve as a lead structure for the development of therapeutic compounds for pre-clinical assessment.
Collapse
Affiliation(s)
- Nicolas Montalbetti
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland; Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Switzerland.
| | - Alexandre Simonin
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland; Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Switzerland.
| | - Céline Simonin
- Department of Chemistry and Biochemistry, University of Bern, Switzerland; Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Switzerland
| | - Mahendra Awale
- Department of Chemistry and Biochemistry, University of Bern, Switzerland; Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern, Switzerland; Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Switzerland.
| | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland; Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Switzerland.
| |
Collapse
|
35
|
Puca L, Brou C. Α-arrestins - new players in Notch and GPCR signaling pathways in mammals. J Cell Sci 2015; 127:1359-67. [PMID: 24687185 DOI: 10.1242/jcs.142539] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
For many years, β-arrestins have been known to be involved in G-protein-coupled receptor (GPCR) desensitization. However, β-arrestins belong to a family of proteins that act as multifunctional scaffolding proteins, in particular during trafficking of transmembrane receptors. The arrestin family comprises visual arrestins, β-arrestins and α-arrestins. In mammals, the functions of the α-arrestins are beginning to be elucidated, and they are described as versatile adaptors that link GPCRs or the Notch receptor to E3 ubiquitin ligases and endocytic factors. These α-arrestins can act in sequence, complementarily or cooperatively with β-arrestins in trafficking and ubiquitylation events. This Commentary will summarize the recent advances in our understanding of the functions and properties of these α-arrestin proteins in comparison to β-arrestins, and will highlight a new hypothesis linking their functional complementarity to their physical interactions. α- and β-arrestins could form transient and versatile heterodimers that form a bridge between cargo and E3 ubiquitin ligases, thus allowing trafficking to proceed.
Collapse
Affiliation(s)
- Loredana Puca
- Institut Pasteur and CNRS URA 2582, Signalisation Moléculaire et Activation Cellulaire, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
36
|
Na+-H+ exchanger-1 (NHE1) regulation in kidney proximal tubule. Cell Mol Life Sci 2015; 72:2061-74. [PMID: 25680790 DOI: 10.1007/s00018-015-1848-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 01/17/2023]
Abstract
The ubiquitously expressed plasma membrane Na(+)-H(+) exchanger NHE1 is a 12 transmembrane-spanning protein that directs important cell functions such as homeostatic intracellular volume and pH control. The 315 amino acid cytosolic tail of NHE1 binds plasma membrane phospholipids and multiple proteins that regulate additional, ion-translocation independent functions. This review focuses on NHE1 structure/function relationships, as well as the role of NHE1 in kidney proximal tubule functions, including pH regulation, vectorial Na(+) transport, cell volume control and cell survival. The implications of these functions are particularly critical in the setting of progressive, albuminuric kidney diseases, where the accumulation of reabsorbed fatty acids leads to disruption of NHE1-membrane phospholipid interactions and tubular atrophy, which is a poor prognostic factor for progression to end stage renal disease. This review amplifies the vital role of the proximal tubule NHE1 Na(+)-H(+) exchanger as a kidney cell survival factor.
Collapse
|
37
|
Boase NA, Kumar S. NEDD4: The founding member of a family of ubiquitin-protein ligases. Gene 2014; 557:113-22. [PMID: 25527121 DOI: 10.1016/j.gene.2014.12.020] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/01/2014] [Accepted: 12/10/2014] [Indexed: 01/31/2023]
Abstract
Ubiquitination plays a crucial role in regulating proteins post-translationally. The focus of this review is on NEDD4, the founding member of the NEDD4 family of ubiquitin ligases that is evolutionarily conserved in eukaryotes. Many potential substrates of NEDD4 have been identified and NEDD4 has been shown to play a critical role in the regulation of a number of membrane receptors, endocytic machinery components and the tumour suppressor PTEN. In this review we will discuss the diverse pathways in which NEDD4 is involved, and the patho-physiological significance of this important ubiquitin ligase.
Collapse
Affiliation(s)
- Natasha Anne Boase
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
38
|
Smardon AM, Kane PM. Loss of vacuolar H+-ATPase activity in organelles signals ubiquitination and endocytosis of the yeast plasma membrane proton pump Pma1p. J Biol Chem 2014; 289:32316-32326. [PMID: 25271159 DOI: 10.1074/jbc.m114.574442] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Yeast mutants lacking the intracellular V-ATPase proton pump (vma mutants) have reduced levels of the Pma1p proton pump at the plasma membrane and increased levels in organelles including the vacuolar lumen. We examined the mechanism and physiological consequences of Pma1p mislocalization. Pma1p is ubiquitinated in vma mutants, and ubiquitination depends on the ubiquitin ligase Rsp5p and the arrestin-related adaptor protein Rim8p. vma mutant strains containing rsp5 or rim8 mutations maintain Pma1p at the plasma membrane, suggesting that ubiquitination is required for Pma1p internalization. Acute inhibition of V-ATPase activity with concanamycin A triggers Pma1p ubiquitination and internalization. In an endocytosis-deficient mutant (end4Δ) Pma1p is ubiquitinated but retained at the plasma membrane during concanamycin A treatment. Consistent with specificity in signaling loss of V-ATPase activity to Pma1p, another plasma membrane transporter, Mup1p, is not internalized in a vma mutant, and loss of the Mup1p adaptor Art1p does not prevent Pma1p internalization in a vma mutant. Very poor growth of vma2 rsp5-1 and vma2 rim8Δ double mutants suggests that Pma1p internalization benefits the vma mutants. We hypothesize that loss of V-ATPase-mediated organelle acidification signals ubiquitination, internalization, and degradation of a portion of Pma1p as a means of balancing overall pH homeostasis.
Collapse
Affiliation(s)
- Anne M Smardon
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210.
| |
Collapse
|
39
|
No YR, He P, Yoo BK, Yun CC. Unique regulation of human Na+/H+ exchanger 3 (NHE3) by Nedd4-2 ligase that differs from non-primate NHE3s. J Biol Chem 2014; 289:18360-72. [PMID: 24831004 DOI: 10.1074/jbc.m113.541706] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Na(+)/H(+) exchanger NHE3 expressed in the intestine and kidney plays a major role in NaCl and HCO3 (-) absorption that is closely linked to fluid absorption and blood pressure regulation. The Nedd4 family of E3 ubiquitin ligases interacts with a number of transporters and channels via PY motifs. A comparison of NHE3 sequences revealed the presence of PY motifs in NHE3s from human and several non-human primates but not in non-primate NHE3s. In this study we evaluated the differences between human and non-primate NHE3s in ubiquitination and interaction with Nedd4-2. We found that Nedd4-2 ubiquitinated human NHE3 (hNHE3) and altered its expression and activity. Surprisingly, rat NHE3 co-immunoprecipitated Nedd4-2, but its expression and activity were not altered by silencing of Nedd4-2. Ubiquitination by Nedd4-2 rendered hNHE3 to undergo internalization at a significantly greater rate than non-primate NHE3s without altering protein stability. Insertion of a PY motif in rabbit NHE3 recapitulated the interaction with Nedd4-2 and enhanced internalization. Thus, we propose a new model where disruption of Nedd4-2 interaction elevates hNHE3 expression and activity.
Collapse
Affiliation(s)
- Yi Ran No
- From the Division of Digestive Diseases, Department of Medicine and
| | - Peijian He
- From the Division of Digestive Diseases, Department of Medicine and
| | - Byong Kwon Yoo
- From the Division of Digestive Diseases, Department of Medicine and
| | - C Chris Yun
- From the Division of Digestive Diseases, Department of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
40
|
Arrestin interaction with E3 ubiquitin ligases and deubiquitinases: functional and therapeutic implications. Handb Exp Pharmacol 2014; 219:187-203. [PMID: 24292831 DOI: 10.1007/978-3-642-41199-1_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Arrestins constitute a small family of four homologous adaptor proteins (arrestins 1-4), which were originally identified as inhibitors of signal transduction elicited by the seven-transmembrane G protein-coupled receptors. Currently arrestins (especially arrestin2 and arrestin3; also called β-arrestin1 and β-arrestin2) are known to be activators of cell signaling and modulators of endocytic trafficking. Arrestins mediate these effects by binding to not only diverse cell-surface receptors but also by associating with a variety of critical signaling molecules in different intracellular compartments. Thus, the functions of arrestins are multifaceted and demand interactions with a host of proteins and require an array of selective conformations. Furthermore, receptor ligands that specifically induce signaling via arrestins are being discovered and their physiological roles are emerging. Recent evidence suggests that the activity of arrestin is regulated in space and time by virtue of its dynamic association with specific enzymes of the ubiquitination pathway. Ubiquitin-dependent, arrestin-mediated signaling could serve as a potential platform for developing novel therapeutic strategies to target transmembrane signaling and physiological responses.
Collapse
|
41
|
Hendus-Altenburger R, Kragelund BB, Pedersen SF. Structural dynamics and regulation of the mammalian SLC9A family of Na⁺/H⁺ exchangers. CURRENT TOPICS IN MEMBRANES 2014; 73:69-148. [PMID: 24745981 DOI: 10.1016/b978-0-12-800223-0.00002-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mammalian Na⁺/H⁺ exchangers of the SLC9A family are widely expressed and involved in numerous essential physiological processes. Their primary function is to mediate the 1:1 exchange of Na⁺ for H⁺ across the membrane in which they reside, and they play central roles in regulation of body, cellular, and organellar pH. Their function is tightly regulated through mechanisms involving interactions with multiple protein and lipid-binding partners, phosphorylations, and other posttranslational modifications. Biochemical and mutational analyses indicate that the SLC9As have a short intracellular N-terminus, 12 transmembrane (TM) helices necessary and sufficient for ion transport, and a C-terminal cytoplasmic tail region with essential regulatory roles. No high-resolution structures of the SLC9As exist; however, models based on crystal structures of the bacterial NhaAs support the 12 TM organization and suggest that TMIV and XI may form a central part of the ion-translocation pathway, whereas pH sensing may involve TMII, TMIX, and several intracellular loops. Similar to most ion transporters studied, SLC9As likely exist as coupled dimers in the membrane, and this appears to be important for the well-studied cooperativity of H⁺ binding. The aim of this work is to summarize and critically discuss the currently available evidence on the structural dynamics, regulation, and binding partner interactions of SLC9As, focusing in particular on the most widely studied isoform, SLC9A1/NHE1. Further, novel bioinformatic and structural analyses are provided that to some extent challenge the existing paradigm on how ions are transported by mammalian SLC9As.
Collapse
Affiliation(s)
- Ruth Hendus-Altenburger
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Section for Cell and Developmental Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stine Falsig Pedersen
- Section for Cell and Developmental Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
42
|
Abstract
Tightly coupled exchange of Na(+) for H(+) occurs across the surface membrane of virtually all living cells. For years, the underlying molecular entity was unknown and the full physiological significance of the exchange process was not appreciated, but much knowledge has been gained in the last two decades. We now realize that, unlike most of the other transporters that specialize in supporting one specific function, Na(+)/H(+) exchangers (NHE) participate in a remarkable assortment of physiological processes, ranging from pH homeostasis and epithelial salt transport, to systemic and cellular volume regulation. In parallel, we have learned a great deal about the biochemistry and molecular biology of Na(+)/H(+) exchange. Indeed, it has now become apparent that exchange is mediated not by one, but by a diverse family of related yet distinct carriers (antiporters) sometimes present in different cell types and located in various intracellular compartments. Each one of these has unique structural features that dictate its functional role and mode of regulation. The biological relevance of Na(+)/H(+) exchange is emphasized by its evolutionary conservation; analogous exchangers are present from bacteria to man. Because of its wide distribution and versatile function, Na(+)/H(+) exchange has attracted an enormous amount of interest and therefore generated a vast literature. The vastness and complexity of the field has been compounded by the multiplicity of NHE isoforms. For reasons of space and in the spirit of this series, this overview is restricted to the family of mammalian NHEs.
Collapse
Affiliation(s)
- John Orlowski
- Department of Physiology, McGill University, Montreal, Canada
| | | |
Collapse
|
43
|
Fuster DG, Alexander RT. Traditional and emerging roles for the SLC9 Na+/H+ exchangers. Pflugers Arch 2013; 466:61-76. [PMID: 24337822 DOI: 10.1007/s00424-013-1408-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/14/2013] [Accepted: 11/20/2013] [Indexed: 10/25/2022]
Abstract
The SLC9 gene family encodes Na(+)/H(+) exchangers (NHEs). These transmembrane proteins transport ions across lipid bilayers in a diverse array of species from prokaryotes to eukaryotes, including plants, fungi, and animals. They utilize the electrochemical gradient of one ion to transport another ion against its electrochemical gradient. Currently, 13 evolutionarily conserved NHE isoforms are known in mammals [22, 46, 128]. The SLC9 gene family (solute carrier classification of transporters: www.bioparadigms.org) is divided into three subgroups [46]. The SLC9A subgroup encompasses plasmalemmal isoforms NHE1-5 (SLC9A1-5) and the predominantly intracellular isoforms NHE6-9 (SLC9A6-9). The SLC9B subgroup consists of two recently cloned isoforms, NHA1 and NHA2 (SLC9B1 and SLC9B2, respectively). The SLC9C subgroup consist of a sperm specific plasmalemmal NHE (SLC9C1) and a putative NHE, SLC9C2, for which there is currently no functional data [46]. NHEs participate in the regulation of cytosolic and organellar pH as well as cell volume. In the intestine and kidney, NHEs are critical for transepithelial movement of Na(+) and HCO3(-) and thus for whole body volume and acid-base homeostasis [46]. Mutations in the NHE6 or NHE9 genes cause neurological disease in humans and are currently the only NHEs directly linked to human disease. However, it is becoming increasingly apparent that members of this gene family contribute to the pathophysiology of multiple human diseases.
Collapse
Affiliation(s)
- Daniel G Fuster
- Division of Nephrology, Hypertension and Clinical Pharmacology and Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland,
| | | |
Collapse
|
44
|
Zhang H, Nie W, Zhang X, Zhang G, Li Z, Wu H, Shi Q, Chen Y, Ding Z, Zhou X, Yu R. NEDD4-1 regulates migration and invasion of glioma cells through CNrasGEF ubiquitination in vitro. PLoS One 2013; 8:e82789. [PMID: 24340059 PMCID: PMC3858320 DOI: 10.1371/journal.pone.0082789] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 10/28/2013] [Indexed: 01/04/2023] Open
Abstract
Neuronal precursor cell-expressed developmentally down-regulated 4-1 (NEDD4-1) plays a great role in tumor cell growth, but its function and mechanism in cell invasive behavior are totally unknown. Here we report that NEDD4-1 regulates migration and invasion of malignant glioma cells via triggering ubiquitination of cyclic nucleotide Ras guanine nucleotide exchange factor (CNrasGEF) using cultured glioma cells. NEDD4-1 overexpression promoted cell migration and invasion, while its downregulation specifically inhibited them. However, NEDD4-1 did not affect the proliferation and apoptosis of glioma cells. NEDD4-1 physically interacted with CNrasGEF and promoted its poly-ubiquitination and degradation. Contrary to the effect of NEDD4-1, CNrasGEF downregulation promoted cell migration and invasion, while its overexpression inhibited them. Importantly, downregulation of CNrasGEF facilitated the effect of NEDD4-1-induced cell migration and invasion. Interestingly, aberrant up-regulated NEDD4-1 showed reverse correlation with CNrasGEF protein level but not with its mRNA level in glioma tissues. Combined with the in vitro results, the result of glioma tissues indicated post-translationally modification effect of NEDD4-1 on CNrasGEF. Our study suggests that NEDD4-1 regulates cell migration and invasion through ubiquitination of CNrasGEF in vitro.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Wenchen Nie
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xu Zhang
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Gentang Zhang
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhiqiang Li
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Huaibing Wu
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Qiong Shi
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Lab of Neurosurgery, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yong Chen
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhijun Ding
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xiuping Zhou
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Lab of Neurosurgery, Xuzhou Medical College, Xuzhou, Jiangsu, China
- * E-mail: (RY); (XZ)
| | - Rutong Yu
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Lab of Neurosurgery, Xuzhou Medical College, Xuzhou, Jiangsu, China
- * E-mail: (RY); (XZ)
| |
Collapse
|
45
|
Fan H. β-Arrestins 1 and 2 are critical regulators of inflammation. Innate Immun 2013; 20:451-60. [PMID: 24029143 DOI: 10.1177/1753425913501098] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/19/2013] [Indexed: 12/12/2022] Open
Abstract
β-Arrestins 1 and 2 couple to seven trans-membrane receptors and regulate G protein-dependent signaling, receptor endocytosis and ubiquitylation. Recent studies have uncovered several unanticipated functions of β-arrestins, suggesting that the role of β-arrestins in cell signaling is much broader than originally thought. It is now recognized that β-arrestins can transduce receptor signaling independent of G proteins. The expression of β-arrestins is differentially regulated in immune cells and tissues in response to specific inflammatory stimuli, and β-arrestins are critical regulators of the inflammatory response. This review will focus on β-arrestins in immune cells and the impact of altered expression on the pathogenesis of specific inflammatory diseases. Understanding the role of β-arrestins in inflammation may lead to new strategies to treat inflammatory diseases, such as sepsis, rheumatoid arthritis, asthma, multiple sclerosis, inflammatory bowel disease and atherosclerosis.
Collapse
Affiliation(s)
- Hongkuan Fan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
46
|
Donowitz M, Ming Tse C, Fuster D. SLC9/NHE gene family, a plasma membrane and organellar family of Na⁺/H⁺ exchangers. Mol Aspects Med 2013; 34:236-51. [PMID: 23506868 DOI: 10.1016/j.mam.2012.05.001] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/09/2012] [Indexed: 12/24/2022]
Abstract
This brief review of the human Na/H exchanger gene family introduces a new classification with three subgroups to the SLC9 gene family. Progress in the structure and function of this gene family is reviewed with structure based on homology to the bacterial Na/H exchanger NhaA. Human diseases which result from genetic abnormalities of the SLC9 family are discussed although the exact role of these transporters in causing any disease is not established, other than poorly functioning NHE3 in congenital Na diarrhea.
Collapse
Affiliation(s)
- Mark Donowitz
- Departments of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | | | | |
Collapse
|
47
|
Li J, Xu L, Ye J, Li X, Zhang D, Liang D, Xu X, Qi M, Li C, Zhang H, Wang J, Liu Y, Zhang Y, Zhou Z, Liang X, Li J, Peng L, Zhu W, Chen YH. Aberrant dynamin 2-dependent Na(+) /H(+) exchanger-1 trafficking contributes to cardiomyocyte apoptosis. J Cell Mol Med 2013; 17:1119-27. [PMID: 23837875 PMCID: PMC4118171 DOI: 10.1111/jcmm.12086] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 05/13/2013] [Indexed: 02/05/2023] Open
Abstract
Sarcolemmal Na+/H+ exchanger 1 (NHE1) activity is essential for the intracellular pH (pHi) homeostasis in cardiac myocytes. Emerging evidence indicates that sarcolemmal NHE1 dysfunction was closely related to cardiomyocyte death, but it remains unclear whether defective trafficking of NHE1 plays a role in the vital cellular signalling processes. Dynamin (DNM), a large guanosine triphosphatase (GTPase), is best known for its roles in membrane trafficking events. Herein, using co-immunoprecipitation, cell surface biotinylation and confocal microscopy techniques, we investigated the potential regulation on cardiac NHE1 activity by DNM. We identified that DNM2, a cardiac isoform of DNM, directly binds to NHE1. Overexpression of a wild-type DNM2 or a dominant-negative DNM2 mutant with defective GTPase activity in adult rat ventricular myocytes (ARVMs) facilitated or retarded the internalization of sarcolemmal NHE1, whereby reducing or increasing its activity respectively. Importantly, the increased NHE1 activity associated with DNM2 deficiency led to ARVMs apoptosis, as demonstrated by cell viability, terminal deoxynucleotidyl transferase–mediated dUTP nick-end labelling assay, Bcl-1/Bax expression and caspase-3 activity, which were effectively rescued by pharmacological inhibition of NHE1 with zoniporide. Thus, our results demonstrate that disruption of the DNM2-dependent retrograde trafficking of NHE1 contributes to cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China; Institute of Medical Genetics, Tongji University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Provost JJ, Wallert MA. Inside out: targeting NHE1 as an intracellular and extracellular regulator of cancer progression. Chem Biol Drug Des 2013; 81:85-101. [PMID: 23253131 DOI: 10.1111/cbdd.12035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The sodium hydrogen exchanger isoform one is a critical regulator of intracellular pH, serves as an anchor for the formation of cytoplasmic signaling complexes, and modulates cytoskeletal organization. There is a growing interest in the potential for sodium hydrogen exchanger isoform one as a therapeutic target against cancer. Sodium hydrogen exchanger isoform one transport drives formation of membrane protrusions essential for cell migration and contributes to the establishment of a tumor microenvironment that leads to the rearrangement of the extracellular matrix further supporting tumor progression. Here, we focus on the potential impact that an inexpensive, $100 genome would have in identifying prospective therapeutic targets to treat tumors based upon changes in gene expression and variation of sodium hydrogen exchanger isoform one regulators. In particular, we will focus on the ezrin, radixin, moesin family proteins, calcineurin B homologous proteins, Ras/Raf/MEK/ERK signaling, and phosphoinositide signaling as they relate to the regulation of sodium hydrogen exchanger isoform one in cancer progression.
Collapse
Affiliation(s)
- Joseph J Provost
- Center for Biopharmaceutical Research and Production, North Dakota State University, Fargo, ND 58102, USA.
| | | |
Collapse
|
49
|
Hu MC, Di Sole F, Zhang J, McLeroy P, Moe OW. Chronic regulation of the renal Na(+)/H(+) exchanger NHE3 by dopamine: translational and posttranslational mechanisms. Am J Physiol Renal Physiol 2013; 304:F1169-80. [PMID: 23427139 DOI: 10.1152/ajprenal.00630.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The intrarenal autocrine/paracrine dopamine (DA) system contributes to natriuresis in response to both acute and chronic Na(+) loads. While the acute DA effect is well described, how DA induces natriuresis chronically is not known. We used an animal and a cell culture model to study the chronic effect of DA on a principal renal Na(+) transporter, Na(+)/H(+) exchanger-3 (NHE3). Intraperitoneal injection of Gludopa in rats for 2 days elevated DA excretion and decreased total renal cortical and apical brush-border NHE3 antigen. Chronic treatment of an opossum renal proximal cell line with DA decreased NHE3 activity, cell surface and total cellular NHE3 antigen, but not NHE3 transcript. The decrease in NHE3 antigen was dose and time dependent with maximal inhibition at 16-24 h and half maximal effect at 3 × 10(-7) M. This is in contradistinction to the acute effect of DA on NHE3 (half maximal at 2 × 10(-6) M), which was not associated with changes in total cellular NHE3 protein. The DA-induced decrease in total NHE3 protein was associated with decrease in NHE3 translation and mediated by cis-sequences in the NHE3 5'-untranslated region. DA also decreased cell surface and total cellular NHE3 protein half-life. The DA-induced decrease in total cellular NHE3 was partially blocked by proteasome inhibition but not by lysosome inhibition, and DA increased ubiquitylation of total and surface NHE3. In summary, chronic DA inhibits NHE3 with mechanisms distinct from its acute action and involves decreased NHE3 translation and increased NHE3 degradation, which are novel mechanisms for NHE3 regulation.
Collapse
Affiliation(s)
- Ming Chang Hu
- Dept. of Internal Medicine, Univ. of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8885, USA
| | | | | | | | | |
Collapse
|
50
|
Regulation of the cardiac Na⁺/H⁺ exchanger in health and disease. J Mol Cell Cardiol 2013; 61:68-76. [PMID: 23429007 DOI: 10.1016/j.yjmcc.2013.02.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 11/21/2022]
Abstract
The Na(+) gradient produced across the cardiac sarcolemma by the ATP-dependent Na(+)-pump is a constant source of energy for Na(+)-dependent transporters. The plasma membrane Na(+)/H(+) exchanger (NHE) is one such secondary active transporter, regulating intracellular pH, Na(+) concentration, and cell volume. NHE1, the major isoform found in the heart, is activated in response to a variety of stimuli such as hormones and mechanical stress. This important characteristic of NHE1 is intimately linked to heart diseases, including maladaptive cardiac hypertrophy and subsequent heart failure, as well as acute ischemic-reperfusion injury. NHE1 activation results in elevation of pH and intracellular Na(+) concentration, which potentially enhance downstream signaling cascades in the myocardium. Therefore, in addition to determining the mechanism underlying regulation of NHE1 activity, it is important to understand how the ionic signal produced by NHE1 is transmitted to the downstream targets. Extensive studies have identified many accessory factors that interact with NHE1. Here, we have summarized the recent progress on understanding the molecular mechanism underlying NHE1 regulation and have shown a possible signaling pathway leading to cardiac remodeling, which is initiated from NHE1. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
|