1
|
Denos M, Sun YQ, Brumpton BM, Li Y, Albanes D, Burnett-Hartman A, Campbell PT, Küry S, Li CI, White E, Samadder JN, Jenkins MA, Mai XM. Sex hormones and risk of lung and colorectal cancers in women: a Mendelian randomization study. Sci Rep 2024; 14:23891. [PMID: 39396092 PMCID: PMC11470916 DOI: 10.1038/s41598-024-75305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024] Open
Abstract
The roles of sex hormones such as estradiol, testosterone, and sex hormone-binding globulin (SHBG) in the etiology of lung and colorectal cancers in women, among the most common cancers after breast cancer, are unclear. This Mendelian randomization (MR) study evaluated such potential causal associations in women of European ancestry. We used summary statistics data from genome-wide association studies on sex hormones and from the Trøndelag Health Study (HUNT) and large consortia on cancers. There was suggestive evidence of 1-standard deviation increase in total testosterone levels being associated with a lower risk of lung non-adenocarcinoma (hazard ratio 0.60, 95% confidence interval 0.37-0.98) in the HUNT Study. However, this was not confirmed by using data from a larger consortium. In general, we did not find convincing evidence to support a causal role of sex hormones on risk of lung and colorectal cancers in women of European ancestry.
Collapse
Affiliation(s)
- Marion Denos
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Yi-Qian Sun
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pathology, Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway
- Center for Oral Health Services and Research Mid-Norway (TkMidt), Trondheim, Norway
| | - Ben Michael Brumpton
- Department of Public Health and Nursing, K.G. Jebsen Centre for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Public Health and Nursing, HUNT Research Centre, NTNU, Norwegian University of Science and Technology, Levanger, 7600, Norway
- Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Yafang Li
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sébastien Küry
- Service de Génétique Médicale, Nantes Université, CHU Nantes, Nantes, 44000, France
| | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jewel N Samadder
- Department of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, AZ, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Xiao-Mei Mai
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
2
|
Guengerich FP, Tateishi Y, McCarty KD, Yoshimoto FK. Updates on Mechanisms of Cytochrome P450 Catalysis of Complex Steroid Oxidations. Int J Mol Sci 2024; 25:9020. [PMID: 39201706 PMCID: PMC11354347 DOI: 10.3390/ijms25169020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Cytochrome P450 (P450) enzymes dominate steroid metabolism. In general, the simple C-hydroxylation reactions are mechanistically straightforward and are generally agreed to involve a perferryl oxygen species (formally FeO3+). Several of the steroid transformations are more complex and involve C-C bond scission. We initiated mechanistic studies with several of these (i.e., 11A1, 17A1, 19A1, and 51A1) and have now established that the dominant modes of catalysis for P450s 19A1 and 51A1 involve a ferric peroxide anion (i.e., Fe3+O2¯) instead of a perferryl ion complex (FeO3+), as demonstrated with 18O incorporation studies. P450 17A1 is less clear. The indicated P450 reactions all involve sequential oxidations, and we have explored the processivity of these multi-step reactions. P450 19A1 is distributive, i.e., intermediate products dissociate and reassociate, but P450s 11A1 and 51A1 are highly processive. P450 17A1 shows intermediate processivity, as expected from the release of 17-hydroxysteroids for the biosynthesis of key molecules, and P450 19A1 is very distributive. P450 11B2 catalyzes a processive multi-step oxidation process with the complexity of a chemical closure of an intermediate to a locked lactol form.
Collapse
Affiliation(s)
- F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Kevin D. McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Francis K. Yoshimoto
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| |
Collapse
|
3
|
Tateishi Y, McCarty KD, Martin MV, Yoshimoto FK, Guengerich FP. Roles of Ferric Peroxide Anion Intermediates (Fe 3+O 2 -, Compound 0) in Cytochrome P450 19A1 Steroid Aromatization and a Cytochrome P450 2B4 Secosteroid Oxidation Model. Angew Chem Int Ed Engl 2024; 63:e202406542. [PMID: 38820076 PMCID: PMC11519728 DOI: 10.1002/anie.202406542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/02/2024]
Abstract
Cytochrome P450 (P450, CYP) 19A1 is the steroid aromatase, the enzyme responsible for the 3-step conversion of androgens (androstenedione or testosterone) to estrogens. The final step is C-C bond scission (removing the 19-oxo group as formic acid) that proceeds via a historically controversial reaction mechanism. The two competing mechanistic possibilities involve a ferric peroxide anion (Fe3+O2 -, Compound 0) and a perferryl oxy species (FeO3+, Compound I). One approach to discern the role of each species in the reaction is with the use of oxygen-18 labeling, i.e., from 18O2 and H2 18O of the reaction product formic acid. We applied this approach, using several technical improvements, to study the deformylation of 19-oxo-androstenedione by human P450 19A1 and of a model secosteroid, 3-oxodecaline-4-ene-10-carboxaldehyde (ODEC), by rabbit P450 2B4. Both aldehyde substrates were sensitive to non-enzymatic acid-catalyzed deformylation, yielding 19-norsteroids, and conditions were established to avoid issues with artifactual generation of formic acid. The Compound 0 reaction pathway predominated (i.e., Fe3+O2 -) in both P450 19A1 oxidation of 19-oxo-androstenedione and P450 2B4 oxidation of ODEC. The P450 19A1 results contrast with our prior conclusions (J. Am. Chem. Soc. 2014, 136, 15016-16025), attributed to several technical modifications.
Collapse
Affiliation(s)
- Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232-0146, United States
| | - Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232-0146, United States
| | - Martha V Martin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232-0146, United States
| | - Francis K Yoshimoto
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, 78249, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232-0146, United States
| |
Collapse
|
4
|
Sutherland L, Lang J, Gonzalez-Juarbe N, Pickett BE. Secondary Analysis of Human Bulk RNA-Seq Dataset Suggests Potential Mechanisms for Letrozole Resistance in Estrogen-Positive (ER+) Breast Cancer. Curr Issues Mol Biol 2024; 46:7114-7133. [PMID: 39057065 PMCID: PMC11275280 DOI: 10.3390/cimb46070424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Estrogen receptor-positive (ER+) breast cancer is common among postmenopausal women and is frequently treated with Letrozole, which inhibits aromatase from synthesizing estrogen from androgens. Decreased estrogen slows the growth of tumors and can be an effective treatment. The increase in Letrozole resistance poses a unique problem for patients. To better understand the underlying molecular mechanism(s) of Letrozole resistance, we reanalyzed transcriptomic data by comparing individuals who responded to Letrozole therapy (responders) to those who were resistant to treatment (non-responders). We identified SOX11 and S100A9 as two significant differentially expressed genes (DEGs) between these patient cohorts, with "PLK1 signaling events" being the most significant signaling pathway. We also identified PRDX4 and E2F8 gene products as being the top mechanistic transcriptional markers for ER+ treatment resistance. Many of the significant DEGs that we identified play a known role in ER+ breast cancer or other types of cancer, which partially validate our results. Several of the gene products we identified are novel in the context of ER+ breast cancer. Many of the genes that we identified warrant further research to elucidate the more specific molecular mechanisms of Letrozole resistance in this patient population and could potentially be used as prognostic markers with further wet lab validation. We anticipate that these findings could contribute to improved detection and therapeutic outcomes in aromatase-resistant ER+ breast cancer patients.
Collapse
Affiliation(s)
- Lincoln Sutherland
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (L.S.); (J.L.)
| | - Jacob Lang
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (L.S.); (J.L.)
| | - Norberto Gonzalez-Juarbe
- J. Craig Venter Institute, Rockville, MD 20850, USA;
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Brett E. Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (L.S.); (J.L.)
| |
Collapse
|
5
|
Lee J, Zee S, Kim HI, Cho SH, Park CB. Effects of crosstalk between steroid hormones mediated thyroid hormone in zebrafish exposed to 4-tert-octylphenol: Estrogenic and anti-androgenic effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116348. [PMID: 38669872 DOI: 10.1016/j.ecoenv.2024.116348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Alkylphenols, such as nonylphenol and 4-tert-octylphenol (OP), are byproducts of the biodegradation of alkylphenol ethoxylates and present substantial ecological and health risks in aquatic environments and higher life forms. In this context, our study aimed to explore the effect of OP on reproductive endocrine function in both female and male zebrafish. Over a period of 21 days, the zebrafish were subjected to varying concentrations of OP (0, 0.02, 0.1, and 0.5 μg/L), based on the lowest effective concentration (EC10 = 0.48 μg/L) identified for zebrafish embryos. OP exposure led to a pronounced increase in hepatic vitellogenin (vtg) mRNA expression and 17β-estradiol biosynthesis in both sexes. Conversely, OP exhibits anti-androgenic properties, significantly diminishes gonadal androgen receptor (ar) mRNA expression, and reduces endogenous androgen (testosterone and 11-ketotestosterone) levels in male zebrafish. Notably, cortisol and thyroid hormone (TH) levels demonstrated concentration-dependent elevations in zebrafish, influencing the regulation of gonadal steroid hormones (GSHs). These findings suggest that prolonged OP exposure may result in sustained reproductive dysfunction in adult zebrafish, which is largely attributable to the intricate reciprocal relationship between hormone levels and the associated gene expression. Our comprehensive biological response analysis of adult zebrafish offers vital insights into the reproductive toxicological effects of OP, thereby enriching future ecological studies on aquatic systems.
Collapse
Affiliation(s)
- Jangjae Lee
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea; Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Seonggeun Zee
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea; Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Sung-Hee Cho
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Chang-Beom Park
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea.
| |
Collapse
|
6
|
Valentín-Goyco J, Im SC, Auchus RJ. Kinetics of Intermediate Release Enhances P450 11B2-Catalyzed Aldosterone Synthesis. Biochemistry 2024; 63:1026-1037. [PMID: 38564530 PMCID: PMC11259377 DOI: 10.1021/acs.biochem.3c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The mitochondrial enzyme cytochrome P450 11B2 (aldosterone synthase) catalyzes the 3 terminal transformations in the biosynthesis of aldosterone from 11-deoxycorticosterone (DOC): 11β-hydroxylation to corticosterone, 18-hydroxylation, and 18-oxidation. Prior studies have shown that P450 11B2 produces more aldosterone from DOC than from the intermediate corticosterone and that the reaction sequence is processive, with intermediates remaining bound to the active site between oxygenation reactions. In contrast, P450 11B1 (11β-hydroxylase), which catalyzes the terminal step in cortisol biosynthesis, shares a 93% amino acid sequence identity with P450 11B2, converts DOC to corticosterone, but cannot synthesize aldosterone from DOC. The biochemical and biophysical properties of P450 11B2, which enable its unique 18-oxygenation activity and processivity, yet are not also represented in P450 11B1, remain unknown. To understand the mechanism of aldosterone biosynthesis, we introduced point mutations at residue 320, which partially exchange the activities of P450 11B1 and P450 11B2 (V320A and A320V, respectively). We then investigated NADPH coupling efficiencies, binding kinetics and affinities, and product formation of purified P450 11B1 and P450 11B2, wild-type, and residue 320 mutations in phospholipid vesicles and nanodiscs. Coupling efficiencies for the 18-hydroxylase reaction with corticosterone as the substrate failed to correlate with aldosterone synthesis, ruling out uncoupling as a relevant mechanism. Conversely, corticosterone dissociation rates correlated inversely with aldosterone production. We conclude that intermediate dissociation kinetics, not coupling efficiency, enable P450 11B2 to synthesize aldosterone via a processive mechanism. Our kinetic data also suggest that the binding of DOC to P450 11B enzymes occurs in at least two distinct steps, favoring an induced-fit mechanism.
Collapse
Affiliation(s)
- Juan Valentín-Goyco
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
- LTC Charles S. Kettles Veterans Affairs Medical Center, 2215 Fuller Road, Ann Arbor, MI 48105, United States
| | - Sang-Choul Im
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
- LTC Charles S. Kettles Veterans Affairs Medical Center, 2215 Fuller Road, Ann Arbor, MI 48105, United States
| | - Richard J. Auchus
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
- LTC Charles S. Kettles Veterans Affairs Medical Center, 2215 Fuller Road, Ann Arbor, MI 48105, United States
| |
Collapse
|
7
|
Denos M, Sun YQ, Brumpton B, Li Y, Albanes D, Burnett-Hartman A, Campbell PT, Küry S, Li CI, White E, Samadder JN, Jenkins M, Mai XM. Sex hormones and risk of lung and colorectal cancers in women: a Mendelian randomization study. RESEARCH SQUARE 2024:rs.3.rs-4083598. [PMID: 38659935 PMCID: PMC11042402 DOI: 10.21203/rs.3.rs-4083598/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The roles of sex hormones such as estradiol, testosterone, and sex hormone-binding globulin (SHBG) in the etiology of lung and colorectal cancers in women, among the most common cancers after breast cancer, are unclear. This Mendelian randomization (MR) study evaluated such potential causal associations in women of European ancestry. We used summary statistics data from genome-wide association studies (GWASs) on sex hormones and from the Trøndelag Health (HUNT) Study and large consortia on cancers. There was suggestive evidence of genetically predicted 1-standard deviation increase in total testosterone levels being associated with a lower risk of lung non-adenocarcinoma (hazard ratio (HR) 0.60, 95% CI 0.37-0.98) in the HUNT Study. However, this was not confirmed by using data from a larger consortium. In general, we did not find convincing evidence to support a causal role of sex hormones on risk of lung and colorectal cancers in women of European ancestry.
Collapse
Affiliation(s)
| | - Yi-Qian Sun
- Norwegian University of Science and Technology
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Guengerich FP. Ninety-eight semesters of cytochrome P450 enzymes and related topics-What have I taught and learned? J Biol Chem 2024; 300:105625. [PMID: 38185246 PMCID: PMC10847173 DOI: 10.1016/j.jbc.2024.105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/09/2024] Open
Abstract
This Reflection article begins with my family background and traces my career through elementary and high school, followed by time at the University of Illinois, Vanderbilt University, the University of Michigan, and then for 98 semesters as a Vanderbilt University faculty member. My research career has dealt with aspects of cytochrome P450 enzymes, and the basic biochemistry has had applications in fields as diverse as drug metabolism, toxicology, medicinal chemistry, pharmacogenetics, biological engineering, and bioremediation. I am grateful for the opportunity to work with the Journal of Biological Chemistry not only as an author but also for 34 years as an Editorial Board Member, Associate Editor, Deputy Editor, and interim Editor-in-Chief. Thanks are extended to my family and my mentors, particularly Profs. Harry Broquist and Minor J. Coon, and the more than 170 people who have trained with me. I have never lost the enthusiasm for research that I learned in the summer of 1968 with Harry Broquist, and I have tried to instill this in the many trainees I have worked with. A sentence I use on closing slides is "It's not just a laboratory-it's a fraternity."
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
9
|
McCarty KD, Liu L, Tateishi Y, Wapshott-Stehli HL, Guengerich FP. The multistep oxidation of cholesterol to pregnenolone by human cytochrome P450 11A1 is highly processive. J Biol Chem 2024; 300:105495. [PMID: 38006947 PMCID: PMC10716780 DOI: 10.1016/j.jbc.2023.105495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023] Open
Abstract
Cytochrome P450 (P450, CYP) 11A1 is the classical cholesterol side chain cleavage enzyme (P450scc) that removes six carbons of the side chain, the first and rate-limiting step in the synthesis of all mammalian steroids. The reaction is a 3-step, 6-electron oxidation that proceeds via formation of 22R-hydroxy (OH) and 20R,22R-(OH)2 cholesterol, yielding pregnenolone. We expressed human P450 11A1 in bacteria, purified the enzyme in the absence of nonionic detergents, and assayed pregnenolone formation by HPLC-mass spectrometry of the dansyl hydrazone. The reaction was inhibited by the nonionic detergent Tween 20, and several lipids did not enhance enzymatic activity. The 22R-OH and 20R,22R-(OH)2 cholesterol intermediates were bound to P450 11A1 relatively tightly, as judged by steady-state optical titrations and koff rates. The electron donor adrenodoxin had little effect on binding; the substrate cholesterol showed a ∼5-fold stimulatory effect on the binding of adrenodoxin to P450 11A1. Presteady-state single-turnover kinetic analysis was consistent with a highly processive reaction with rates of intermediate oxidation steps far exceeding dissociation rates for products and substrates. The presteady-state kinetic analysis revealed a second di-OH cholesterol product, separable by HPLC, in addition to 20R,22R-(OH)2 cholesterol, which we characterized as a rotamer that was also converted to pregnenolone at a similar rate. The first oxidation step (at C-22) is the slowest, limiting the overall rate of cleavage. d3-Cholesterol showed no kinetic deuterium isotope effect on C-22, indicating that C-H bond cleavage is not rate-limiting in the first hydroxylation step.
Collapse
Affiliation(s)
- Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lu Liu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
10
|
Sumangala N, Im SC, Valentín-Goyco J, Auchus RJ. Influence of cholesterol on kinetic parameters for human aromatase (P450 19A1) in phospholipid nanodiscs. J Inorg Biochem 2023; 247:112340. [PMID: 37544101 PMCID: PMC11260420 DOI: 10.1016/j.jinorgbio.2023.112340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/08/2023]
Abstract
Cholesterol, a significant constituent of the endoplasmic reticulum membrane, exerts a substantial effect on the membrane's biophysical and mechanical properties. Cholesterol, however, is often neglected in model systems used to study membrane-bound proteins. For example, the influence of cholesterol on the enzymatic functions of type 2 cytochromes P450, which require a phospholipid bilayer and the redox partner P450-oxidoreductase (POR) for activity, are rarely investigated. Human aromatase (P450 19A1) catalyzes three sequential oxygenations of 19‑carbon steroids to estrogens and is widely expressed across various tissues, which are characterized by varying cholesterol compositions. Our study examined the impact of cholesterol on the functionality of the P450 19A1 complex with POR. Nanodiscs containing P450 19A1 with 20% cholesterol/80% phospholipid had similar rates and affinity of androstenedione binding as phospholipid-only P450 19A1 nanodiscs, and rates of product formation were indistinguishable among these conditions. In contrast, the rate of the first electron transfer from POR to P450 19A1 was 3-fold faster in cholesterol-containing nanodiscs than in phospholipid-only nanodiscs. These results suggest that cholesterol influences some aspects of POR interaction with P450 19A1 and might serve as an additional regulatory mechanism in this catalytic system.
Collapse
Affiliation(s)
- Nirupama Sumangala
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, Ann Arbor, MI 48109, USA; Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sang-Choul Im
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Veterans Affairs Medical Center, Ann Arbor, MI 48105, United States
| | - Juan Valentín-Goyco
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, Ann Arbor, MI 48109, USA; Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Veterans Affairs Medical Center, Ann Arbor, MI 48105, United States.
| |
Collapse
|
11
|
McCarty KD, Sullivan ME, Tateishi Y, Hargrove TY, Lepesheva GI, Guengerich FP. Processive kinetics in the three-step lanosterol 14α-demethylation reaction catalyzed by human cytochrome P450 51A1. J Biol Chem 2023; 299:104841. [PMID: 37209823 PMCID: PMC10285260 DOI: 10.1016/j.jbc.2023.104841] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023] Open
Abstract
Cytochrome P450 (P450, CYP) family 51 enzymes catalyze the 14α-demethylation of sterols, leading to critical products used for membranes and the production of steroids, as well as signaling molecules. In mammals, P450 51 catalyzes the 3-step, 6-electron oxidation of lanosterol to form (4β,5α)-4,4-dimethyl-cholestra-8,14,24-trien-3-ol (FF-MAS). P450 51A1 can also use 24,25-dihydrolanosterol (a natural substrate in the Kandutsch-Russell cholesterol pathway). 24,25-Dihydrolanosterol and the corresponding P450 51A1 reaction intermediates, the 14α-alcohol and -aldehyde derivatives of dihydrolanosterol, were synthesized to study the kinetic processivity of the overall 14α-demethylation reaction of human P450 51A1. A combination of steady-state kinetic parameters, steady-state binding constants, dissociation rates of P450-sterol complexes, and kinetic modeling of the time course of oxidation of a P450-dihydrolanosterol complex showed that the overall reaction is highly processive, with koff rates of P450 51A1-dihydrolanosterol and the 14α-alcohol and 14α-aldehyde complexes being 1 to 2 orders of magnitude less than the forward rates of competing oxidations. epi-Dihydrolanosterol (the 3α-hydroxy analog) was as efficient as the common 3β-hydroxy isomer in the binding and formation of dihydro FF-MAS. The common lanosterol contaminant dihydroagnosterol was found to be a substrate of human P450 51A1, with roughly one-half the activity of dihydrolanosterol. Steady-state experiments with 14α-methyl deuterated dihydrolanosterol showed no kinetic isotope effect, indicating that C-14α C-H bond breaking is not rate-limiting in any of the individual steps. The high processivity of this reaction generates higher efficiency and also renders the reaction less sensitive to inhibitors.
Collapse
Affiliation(s)
- Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Molly E Sullivan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tatiana Y Hargrove
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Galina I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
12
|
Enzymology on an Electrode and in a Nanopore: Analysis Algorithms, Enzyme Kinetics, and Perspectives. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Teslenko I, Watson CJW, Chen G, Lazarus P. Inhibition of the aromatase enzyme by exemestane cysteine conjugates. Mol Pharmacol 2022; 102:MOLPHARM-AR-2022-000545. [PMID: 35953090 PMCID: PMC9595203 DOI: 10.1124/molpharm.122.000545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Exemestane (EXE) is an aromatase inhibitor used to treat hormone-dependent breast cancer. EXE is extensively metabolized, with unchanged EXE and its active metabolite 17-dihydroexemestane (17-DHE) accounting for 17 and 12%, respectively, of total plasma EXE in vivo The major circulating EXE metabolites are the cysteine conjugates of EXE and 17-DHE, and the 17-DHE glucuronide, which together account for 70% of total plasma EXE in vivo The goal of the present study was to examine the inhibition potential of major metabolites of EXE through inhibition assays using aromatase-overexpressing cells and pooled ovarian tissues. Estrone formation was used as a measure of aromatase activity and was detected and quantified using UPLC-MS. EXE-cys, 17β-DHE, and 17β-DHE-cys all exhibited inhibition of estrone formation at both 1 µM and 10 µM concentrations, with 17β-DHE and EXE-cys showing significant inhibition of estrone formation (63% each) at 10 µM. In contrast, 17β-DHE-Gluc displayed minimal inhibition (5-8%) at both concentrations. In ovarian tissue, EXE-cys and 17β-DHE showed similar patterns of inhibition, with 49% and 47% inhibition, respectively, at 10 µM. The IC50 value for EXE-cys (16 {plus minus} 10 µM) was similar to 17β-DHE (9.2 {plus minus} 2.7 µM) and higher than EXE (1.3 {plus minus} 0.28 µM), and all three compounds showed time-dependent inhibition with IC50 shifts of 13 {plus minus} 10, 5.0 {plus minus} 2.5 and 36 {plus minus} 12-fold, respectively. Given its high circulating levels in patients taking EXE, these results suggest that EXE-cys may contribute to the pharmacologic effect of EXE in vivo Significance Statement The current study is the first to examine the major phase II metabolites of EXE (EXE-cys, 17β-DHE-cys, and 17β-DHE-Gluc) for inhibition potential against the target enzyme, aromatase (CYP19A1). EXE-cys was found to significantly inhibit aromatase in a time dependent manner. Given its high circulating levels in patients taking EXE, this phase II metabolite may play an important role in reducing circulating estrogen levels in vivo.
Collapse
Affiliation(s)
- Irina Teslenko
- Pharmaceutical Sciences, Washington State University, United States
| | | | - Gang Chen
- Pharmaceutical Sciences, WSU College of Pharmacy, United States
| | - Philip Lazarus
- Pharmaceutical Sciences, Washington State University College of Pharmacy, United States
| |
Collapse
|
14
|
Feng J, Wu Q, Zhu D, Ma Y. Biotransformation Enables Innovations Toward Green Synthesis of Steroidal Pharmaceuticals. CHEMSUSCHEM 2022; 15:e202102399. [PMID: 35089653 DOI: 10.1002/cssc.202102399] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Steroids have been widely used in birth-control, prevention, and treatment of various diseases, representing the largest sector after antibiotics in the global pharmaceutical market. The steroidal active pharmaceutical ingredients (APIs) have been produced via partial synthetic processes first mainly from sapogenins, which was converted into 16-dehydropregnenolone by the famous "Marker Degradation". Traditional mutation and screening, and process engineering have resulted in the industrial production of 4-androstene-3,17-dione (AD), androst-1,4-diene-3,17-dione (ADD), 9α-hydroxy-androsta-4-ene-3,17-dione (9α-OH-AD), and so on, which serve as the key intermediates for the synthesis of steroidal APIs. Recently, genetic and metabolic engineering have generated highly efficient microbial strains for the production of these precursors, leading to the replacement of sapogenins with phytosterols as the starting materials. Further advances in synthetic biology hold promise in the design and construction of microbial cell factories for the industrial production of steroidal intermediates and/or APIs from simple carbon sources such as glucose. Integration of biotransformation into the synthesis of steroidal APIs can greatly reduce the number of reaction steps, achieve lower waste discharge and higher production efficiency, thus enabling a greener steroidal pharmaceutical industry.
Collapse
Affiliation(s)
- Jinhui Feng
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| | - Qiaqing Wu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| | - Dunming Zhu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| | - Yanhe Ma
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| |
Collapse
|
15
|
Schmitz D, Ek WE, Berggren E, Höglund J, Karlsson T, Johansson Å. Genome-wide Association Study of Estradiol Levels and the Causal Effect of Estradiol on Bone Mineral Density. J Clin Endocrinol Metab 2021; 106:e4471-e4486. [PMID: 34255042 PMCID: PMC8530739 DOI: 10.1210/clinem/dgab507] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 12/22/2022]
Abstract
CONTEXT Estradiol is the primary female sex hormone and plays an important role for skeletal health in both sexes. Several enzymes are involved in estradiol metabolism, but few genome-wide association studies (GWAS) have been performed to characterize the genetic contribution to variation in estrogen levels. OBJECTIVE Identify genetic loci affecting estradiol levels and estimate causal effect of estradiol on bone mineral density (BMD). DESIGN We performed GWAS for estradiol in males (n = 147 690) and females (n = 163 985) from UK Biobank. Estradiol was analyzed as a binary phenotype above/below detection limit (175 pmol/L). We further estimated the causal effect of estradiol on BMD using Mendelian randomization. RESULTS We identified 14 independent loci associated (P < 5 × 10-8) with estradiol levels in males, of which 1 (CYP3A7) was genome-wide and 7 nominally (P < 0.05) significant in females. In addition, 1 female-specific locus was identified. Most loci contain functionally relevant genes that have not been discussed in relation to estradiol levels in previous GWAS (eg, SRD5A2, which encodes a steroid 5-alpha reductase that is involved in processing androgens, and UGT3A1 and UGT2B7, which encode enzymes likely to be involved in estradiol elimination). The allele that tags the O blood group at the ABO locus was associated with higher estradiol levels. We identified a causal effect of high estradiol levels on increased BMD in both males (P = 1.58 × 10-11) and females (P = 7.48 × 10-6). CONCLUSION Our findings further support the importance of the body's own estrogen to maintain skeletal health in males and in females.
Collapse
Affiliation(s)
- Daniel Schmitz
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Correspondence: Daniel Schmitz, MS, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden. E-mail:
| | - Weronica E Ek
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Elin Berggren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Julia Höglund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Torgny Karlsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Åsa Johansson, PhD, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden. E-mail:
| |
Collapse
|
16
|
Abaffy T, Matsunami H. 19-hydroxy Steroids in the Aromatase Reaction: Review on Expression and Potential Functions. J Endocr Soc 2021; 5:bvab050. [PMID: 34095690 PMCID: PMC8169043 DOI: 10.1210/jendso/bvab050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Indexed: 12/05/2022] Open
Abstract
Scientific evidence related to the aromatase reaction in various biological processes spanning from mid-1960 to today is abundant; however, as our analytical sensitivity increases, a new look at the old chemical reaction is necessary. Here, we review an irreversible aromatase reaction from the substrate androstenedione. It proceeds in 3 consecutive steps. In the first 2 steps, 19-hydroxy steroids are produced. In the third step, estrone is produced. They can dissociate from the enzyme complex and either accumulate in tissues or enter the blood. In this review, we want to highlight the potential importance of these 19-hydroxy steroids in various physiological and pathological conditions. We focus primarily on 19-hydroxy steroids, and in particular on the 19-hydroxyandrostenedione produced by the incomplete aromatase reaction. Using a PubMed database and the search term “aromatase reaction,” 19-hydroxylation of androgens and steroid measurements, we detail the chemistry of the aromatase reaction and list previous and current methods used to measure 19-hydroxy steroids. We present evidence of the existence of 19-hydroxy steroids in brain tissue, ovaries, testes, adrenal glands, prostate cancer, as well as during pregnancy and parturition and in Cushing’s disease. Based on the available literature, a potential involvement of 19-hydroxy steroids in the brain differentiation process, sperm motility, ovarian function, and hypertension is suggested and warrants future research. We hope that with the advancement of highly specific and sensitive analytical methods, future research into 19-hydroxy steroids will be encouraged, as much remains to be learned and discovered.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
17
|
Souza SA, Held A, Lu WJ, Drouhard B, Avila B, Leyva-Montes R, Hu M, Miller BR, Ng HL. Mechanisms of allosteric and mixed mode aromatase inhibitors. RSC Chem Biol 2021; 2:892-905. [PMID: 34458816 PMCID: PMC8341375 DOI: 10.1039/d1cb00046b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 11/21/2022] Open
Abstract
Aromatase (CYP19) catalyzes the last biosynthetic step of estrogens in mammals and is a primary drug target for hormone-related breast cancer. However, treatment with aromatase inhibitors is often associated with adverse effects and drug resistance. In this study, we used virtual screening targeting a predicted cytochrome P450 reductase binding site on aromatase to discover four novel non-steroidal aromatase inhibitors. The inhibitors have potencies comparable to the noncompetitive tamoxifen metabolite, endoxifen. Our two most potent inhibitors, AR11 and AR13, exhibit both mixed-type and competitive-type inhibition. The cytochrome P450 reductase-CYP19 coupling interface likely acts as a transient binding site. Our modeling shows that our inhibitors bind better at different sites near the catalytic site. Our results predict the location of multiple ligand binding sites on aromatase. The combination of modeling and experimental results supports the important role of the reductase binding interface as a low affinity, promiscuous ligand binding site. Our new inhibitors may be useful as alternative chemical scaffolds that may show different adverse effects profiles than current clinically used aromatase inhibitors.
Collapse
Affiliation(s)
- Samson A Souza
- Department of Biochemistry and Molecular Biophysics, Kansas State University Manhattan KS USA
| | - Abby Held
- Department of Chemistry, Truman State University Kirksville MO USA
| | - Wenjie J Lu
- Department of Chemistry, University of Hawai'i at Mānoa Honolulu HI USA
| | - Brendan Drouhard
- Department of Biochemistry and Molecular Biophysics, Kansas State University Manhattan KS USA
| | - Bryant Avila
- Department of Biochemistry and Molecular Biophysics, Kansas State University Manhattan KS USA
| | - Raul Leyva-Montes
- Department of Biochemistry and Molecular Biophysics, Kansas State University Manhattan KS USA
| | - Michelle Hu
- Department of Chemistry, University of Hawai'i at Mānoa Honolulu HI USA
| | - Bill R Miller
- Department of Chemistry, Truman State University Kirksville MO USA
| | - Ho Leung Ng
- Department of Biochemistry and Molecular Biophysics, Kansas State University Manhattan KS USA
| |
Collapse
|
18
|
Kim D, Kim V, McCarty KD, Guengerich FP. Tight binding of cytochrome b 5 to cytochrome P450 17A1 is a critical feature of stimulation of C21 steroid lyase activity and androgen synthesis. J Biol Chem 2021; 296:100571. [PMID: 33753170 PMCID: PMC8080067 DOI: 10.1016/j.jbc.2021.100571] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022] Open
Abstract
It has been recognized for >50 years that cytochrome b5 (b5) stimulates some cytochrome P450 (P450)–catalyzed oxidations, but the basis of this function is still not understood well. The strongest stimulation of catalytic activity by b5 is in the P450 17A1 lyase reaction, an essential step in androgen synthesis from 21-carbon (C21) steroids, making this an excellent model system to interrogate b5 function. One of the issues in studying b5–P450 interactions has been the limited solution assay methods. We constructed a fluorescently labeled variant of human b5 that can be used in titrations. The labeled b5 bound to WT P450 17A1 with a Kd of 2.5 nM and rapid kinetics, on the order of 1 s−1. Only weak binding was observed with the clinical P450 17A1 variants E305G, R347H, and R358Q; these mutants are deficient in lyase activity, which has been hypothesized to be due to attenuated b5 binding. Kd values were not affected by the presence of P450 17A1 substrates. A peptide containing the P450 17A1 Arg-347/Arg-358 region attenuated Alexa 488-T70C-b5 fluorescence at higher concentrations. The addition of NADPH–P450 reductase (POR) to an Alexa 488-T70C-b5:P450 17A1 complex resulted in a concentration-dependent partial restoration of b5 fluorescence, indicative of a ternary P450:b5:POR complex, which was also supported by gel filtration experiments. Overall, these results are interpreted in the context of a dynamic and tight P450 17A1:b5 complex that also binds POR to form a catalytically competent ternary complex, and variants that disrupt this interaction have low catalytic activity.
Collapse
Affiliation(s)
- Donghak Kim
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
19
|
Arora B, Jai-Chyi Pei K, Feng Weng C, Ching-Min Sun N. Measuring fecal metabolites of endogenous steroids using ESI-MS/MS spectra in Taiwanese pangolin, (order Pholidota, family Manidae, Genus: Manis): A non-invasive method for endangered species. Gen Comp Endocrinol 2020; 299:113607. [PMID: 32882210 DOI: 10.1016/j.ygcen.2020.113607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022]
Abstract
Pangolins are 'keystone species' driven towards extinction due to a lack of profound awareness and illegal trade. The drivers urge for immediate development in the understanding of demographics and reproductive dynamics of this species. In this study, we developed and validated a quantitative method to measure pangolin fecal extracts using the electrospray (ESI-MS/MS) interface in positive ionization mode. The method aids in the measurement of hormones from the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axis, making it a possibly appropriate technique to understand the cross-talk between the axes. The study aims to measure the relative abundance of adrenal and gonadal hormones such as corticosterone, cortisol, estrone, estradiol-17β, progesterone, testosterone, and a number of its metabolites. From the dried fecal extract, the principal metabolite identified from the estrogen family was estradiol-17β, whereas the gestagen family revealed that the pregnane series is predominated in 5α-configuration. On the other hand, epiandrosterone was seen as the dominant form in the male fecal extracts. Additionally, the glucocorticoids are excreted majorly as corticosterone, but traces of cortisol are also present in both the male and female fecal samples. The physiological validation confirmed that the ESI-MS/MS technique is suitable to determine physiologically caused differences in the fecal steroid concentrations. Physiologically, the age structure in pangolin is not responsible for causing differences within gender. However, the results revealed that glucocorticoids might vary between the sexes, i.e., males have a higher relative abundance of glucocorticoids over females. Therefore, our studies show that some of the main adrenal and gonadal metabolites can be predicted by exploiting MS/MS, which can steer research to potentially assess the reproductive status of captive and free-ranging pangolin species.
Collapse
Affiliation(s)
- Bharti Arora
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Taiwan.
| | - Kurtis Jai-Chyi Pei
- Institute of Wildlife Conservation, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ching Feng Weng
- Department of Life Sciences, National Dong Hwa University, Taiwan
| | - Nick Ching-Min Sun
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
20
|
Masamrekh RA, Filippova TA, Haurychenka YI, Sherbakov KA, Veselovsky AV, Shumyantseva VV, Kuzikov AV. The interactions of a number of steroid-metabolizing cytochromes P450 with abiraterone D4A metabolite: spectral analysis and molecular docking. Steroids 2020; 162:108693. [PMID: 32645328 DOI: 10.1016/j.steroids.2020.108693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
The interactions of pharmacologically active 3-keto-Δ4-metabolite of anticancer drug abiraterone (D4A) with steroid-metabolizing cytochromes P450 (CYP51A1, CYP11A1, CYP19A1) was studied by absorption spectroscopy and molecular docking. Both abiraterone and D4A induce type I spectral changes of CYP51A1, one of the enzymes of cholesterol biosynthesis. We have revealed that D4A did not induce spectral changes of CYP11A1, the key enzyme of pregnenolone biosynthesis, unlike abiraterone (type II ligand of CYP11A1). On the contrary, D4A interacts with the active site of CYP19A1, the key enzyme of estrogen biosynthesis, inducing type II spectral changes, while abiraterone does not. Spectral analysis allowed us to calculate spectral dissociation constant (KS) for each complex of cytochrome P450 with respective ligands. The data were supported by molecular docking. The obtained results broaden understanding of interactions of D4A with some of the key steroid-metabolizing cytochromes P450 and allow one to predict possible disproportions of steroid metabolism.
Collapse
Affiliation(s)
- Rami A Masamrekh
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia
| | - Tatiana A Filippova
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia
| | - Yaraslau I Haurychenka
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia
| | - Kirill A Sherbakov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia
| | - Alexander V Veselovsky
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia
| | - Victoria V Shumyantseva
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia
| | - Alexey V Kuzikov
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia.
| |
Collapse
|
21
|
Zhang C, Catucci G, Di Nardo G, Gilardi G. Effector role of cytochrome P450 reductase for androstenedione binding to human aromatase. Int J Biol Macromol 2020; 164:510-517. [PMID: 32698066 DOI: 10.1016/j.ijbiomac.2020.07.163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/04/2020] [Accepted: 07/15/2020] [Indexed: 10/23/2022]
Abstract
Cytochromes P450 constitute a large superfamily of monooxygenases involved in many metabolic pathways. Most of them are not self-sufficient and need a reductase protein to provide the electrons necessary for catalysis. It was shown that the redox partner plays a role in the modulation of the structure and function of some bacterial P450 enzymes. Here, the effect of NADPH-cytochrome reductase (CPR) on human aromatase (Aro) is studied for what concerns its role in substrate binding. Pre-steady-state kinetic experiments indicate that both the substrate binding rates and the percentage of spin shift detected for aromatase are increased when CPR is present. Moreover, aromatase binds the substrate through a conformational selection mechanism, suggesting a possible effector role of CPR. The thermodynamic parameters for the formation of the CPR-Aro complex were studied by isothermal titration calorimetry. The dissociation constant of the complex formation is 4.5 folds lower for substrate-free compared to the substrate-bound enzyme. The enthalpy change observed when the CPR-Aro complex forms in the absence of the substrate are higher than in its presence, indicating that more interactions are formed/broken in the former case. Taken together, our data confirm that CPR has a role in promoting aromatase conformation optimal for substrate binding.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino 10123, Italy
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino 10123, Italy
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino 10123, Italy.
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino 10123, Italy.
| |
Collapse
|
22
|
Zárate-Pérez F, Hackett JC. Conformational selection is present in ligand binding to cytochrome P450 19A1 lipoprotein nanodiscs. J Inorg Biochem 2020; 209:111120. [PMID: 32464592 DOI: 10.1016/j.jinorgbio.2020.111120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/28/2020] [Accepted: 05/16/2020] [Indexed: 11/25/2022]
Abstract
Cytochromes P450 (CYPs) display remarkable plasticity in their ability to bind substrates and catalyze a broad array of chemical reactions. Herein we evaluate binding of androstenedione, testosterone, and 7-hydroxyflavone to CYP19A1, also known as aromatase, in phospholipid nanodiscs by stopped-flow UV-vis spectroscopy. Exponential fitting of the kinetic traces supports the possibility of a multi-step binding mechanism. Subsequent global fitting of the data to the solutions of the coupled differential equations describing the fundamental mechanisms of induced fit and conformational selection, consistently support presence of the latter. To our knowledge, this is the first discrimination of conformational selection from induced fit for a mono-disperse CYP in a native-like membrane environment. In addition, 7-hydroxyflavone binds to CYP19A1 nanodiscs with comparable affinity to the substrates and induces an unusual spectral response likely attributable to hydrogen bonding to, rather than displacement of the heme-coordinated water molecule.
Collapse
Affiliation(s)
- Francisco Zárate-Pérez
- Department of Physiology and Biophysics and The Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States of America
| | - John C Hackett
- Department of Physiology and Biophysics and The Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States of America.
| |
Collapse
|
23
|
Li J, Tang Y, Li W, Tu Y. Mechanistic Insights into the Regio- and Stereoselectivities of Testosterone and Dihydrotestosterone Hydroxylation Catalyzed by CYP3A4 and CYP19A1. Chemistry 2020; 26:6214-6223. [PMID: 32049373 PMCID: PMC7318132 DOI: 10.1002/chem.201905272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/22/2020] [Indexed: 12/27/2022]
Abstract
The hydroxylation of nonreactive C-H bonds can be easily catalyzed by a variety of metalloenzymes, especially cytochrome P450s (P450s). The mechanism of P450 mediated hydroxylation has been intensively studied, both experimentally and theoretically. However, understanding the regio- and stereoselectivities of substrates hydroxylated by P450s remains a great challenge. Herein, we use a multi-scale modeling approach to investigate the selectivity of testosterone (TES) and dihydrotestosterone (DHT) hydroxylation catalyzed by two important P450s, CYP3A4 and CYP19A1. For CYP3A4, two distinct binding modes for TES/DHT were predicted by dockings and molecular dynamics simulations, in which the experimentally identified sites of metabolism of TES/DHT can access to the catalytic center. The regio- and stereoselectivities of TES/DHT hydroxylation were further evaluated by quantum mechanical and ONIOM calculations. For CYP19A1, we found that sites 1β, 2β and 19 can access the catalytic center, with the intrinsic reactivity 2β>1β>19. However, our ONIOM calculations indicate that the hydroxylation is favored at site 19 for both TES and DHT, which is consistent with the experiments and reflects the importance of the catalytic environment in determining the selectivity. Our study unravels the mechanism underlying the selectivity of TES/DHT hydroxylation mediated by CYP3A4 and CYP19A1 and is helpful for understanding the selectivity of other substrates that are hydroxylated by P450s.
Collapse
Affiliation(s)
- Junhao Li
- Department of Theoretical Chemistry and BiologyKTH Royal Institute of TechnologyRoslagstullsbacken 1510691StockholmSweden
| | - Yun Tang
- Shanghai Key Laboratory of New Drug DesignEast China University of Science and TechnologyMeilong Road 130200237ShanghaiP.R. China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug DesignEast China University of Science and TechnologyMeilong Road 130200237ShanghaiP.R. China
| | - Yaoquan Tu
- Department of Theoretical Chemistry and BiologyKTH Royal Institute of TechnologyRoslagstullsbacken 1510691StockholmSweden
| |
Collapse
|
24
|
Kuzikov AV, Masamrekh RA, Filippova TA, Haurychenka YI, Gilep AA, Shkel TV, Strushkevich NV, Usanov SA, Shumyantseva VV. Electrochemical oxidation of estrogens as a method for CYP19A1 (aromatase) electrocatalytic activity determination. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Reddish MJ, Guengerich FP. Human cytochrome P450 11B2 produces aldosterone by a processive mechanism due to the lactol form of the intermediate 18-hydroxycorticosterone. J Biol Chem 2019; 294:12975-12991. [PMID: 31296661 DOI: 10.1074/jbc.ra119.009830] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
Human cytochrome P450 (P450) 11B2 catalyzes the formation of aldosterone, the major endogenous human mineralocorticoid. Aldosterone is important for the regulation of electrolyte homeostasis. Mutations and overexpression of P450 11B2 (also known as aldosterone synthase) can lead to hypertension, congestive heart failure, and diabetic nephropathy. The enzyme is therefore a target for drug development to manage these various disorders. P450 11B2 catalyzes aldosterone formation from 11-deoxycorticosterone through three distinct oxidation steps. It is currently unknown to which degree these reactions happen in sequence without the intermediate products dissociating from the enzyme (i.e. processively) or whether these reactions happen solely distributively, in which the intermediate products must first dissociate and then rebind to the enzyme before subsequent oxidation. We present here a comprehensive investigation of processivity in P450 11B2-catalyzed reactions using steady-state, pre-steady-state, pulse-chase, equilibrium-binding titrations, and stopped-flow binding studies. We utilized the data obtained to develop a kinetic model for P450 11B2 and tested this model by enzyme kinetics simulations. We found that although aldosterone is produced processively, the enzyme preferentially utilizes a distributive mechanism that ends with the production of 18-OH corticosterone. This seemingly contradictory observation could be resolved by considering the ability of the intermediate product 18-OH corticosterone to exist as a lactol form, with the equilibrium favoring the ring-closed lactol configuration. In summary, our refined model for P450 11B2 catalysis indicates isomerization of the intermediate to a lactol can explain why P450 11B2 must produce aldosterone through a processive mechanism despite favoring a distributive mechanism.
Collapse
Affiliation(s)
- Michael J Reddish
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.
| |
Collapse
|
26
|
Guengerich FP, Wilkey CJ, Phan TTN. Human cytochrome P450 enzymes bind drugs and other substrates mainly through conformational-selection modes. J Biol Chem 2019; 294:10928-10941. [PMID: 31147443 DOI: 10.1074/jbc.ra119.009305] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/29/2019] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (P450) enzymes are major catalysts involved in the oxidations of most drugs, steroids, carcinogens, fat-soluble vitamins, and natural products. The binding of substrates to some of the 57 human P450s and other mammalian P450s is more complex than a two-state system and has been proposed to involve mechanisms such as multiple ligand occupancy, induced-fit, and conformational-selection. Here, we used kinetic analysis of binding with multiple concentrations of substrates and computational modeling of these data to discern possible binding modes of several human P450s. We observed that P450 2D6 binds its ligand rolapitant in a mechanism involving conformational-selection. P450 4A11 bound the substrate lauric acid via conformational-selection, as did P450 2C8 with palmitic acid. Binding of the steroid progesterone to P450 21A2 was also best described by a conformational-selection model. Hexyl isonicotinate binding to P450 2E1 could be described by either a conformational-selection or an induced-fit model. Simulation of the binding of the ligands midazolam, bromocriptine, testosterone, and ketoconazole to P450 3A4 was consistent with an induced-fit or a conformational-selection model, but the concentration dependence of binding rates for varying both P450 3A4 and midazolam concentrations revealed discordance in the parameters, indicative of conformational-selection. Binding of the P450s 2C8, 2D6, 3A4, 4A11, and 21A2 was best described by conformational-selection, and P450 2E1 appeared to fit either mode. These findings highlight the complexity of human P450-substrate interactions and that conformational-selection is a dominant feature of many of these interactions.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.
| | - Clayton J Wilkey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Thanh T N Phan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
27
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
28
|
Spinello A, Martini S, Berti F, Pennati M, Pavlin M, Sgrignani J, Grazioso G, Colombo G, Zaffaroni N, Magistrato A. Rational design of allosteric modulators of the aromatase enzyme: An unprecedented therapeutic strategy to fight breast cancer. Eur J Med Chem 2019; 168:253-262. [DOI: 10.1016/j.ejmech.2019.02.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/29/2022]
|
29
|
O'Reilly MW, Westgate CS, Hornby C, Botfield H, Taylor AE, Markey K, Mitchell JL, Scotton WJ, Mollan SP, Yiangou A, Jenkinson C, Gilligan LC, Sherlock M, Gibney J, Tomlinson JW, Lavery GG, Hodson DJ, Arlt W, Sinclair AJ. A unique androgen excess signature in idiopathic intracranial hypertension is linked to cerebrospinal fluid dynamics. JCI Insight 2019; 4:125348. [PMID: 30753168 PMCID: PMC6483000 DOI: 10.1172/jci.insight.125348] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/05/2019] [Indexed: 12/14/2022] Open
Abstract
Idiopathic intracranial hypertension (IIH) is a condition of unknown etiology, characterized by elevated intracranial pressure frequently manifesting with chronic headaches and visual loss. Similar to polycystic ovary syndrome (PCOS), IIH predominantly affects obese women of reproductive age. In this study, we comprehensively examined the systemic and cerebrospinal fluid (CSF) androgen metabolome in women with IIH in comparison with sex-, BMI-, and age-matched control groups with either simple obesity or PCOS (i.e., obesity and androgen excess). Women with IIH showed a pattern of androgen excess distinct to that observed in PCOS and simple obesity, with increased serum testosterone and increased CSF testosterone and androstenedione. Human choroid plexus expressed the androgen receptor, alongside the androgen-activating enzyme aldoketoreductase type 1C3. We show that in a rat choroid plexus cell line, testosterone significantly enhanced the activity of Na+/K+-ATPase, a surrogate of CSF secretion. We demonstrate that IIH patients have a unique signature of androgen excess and provide evidence that androgens can modulate CSF secretion via the choroid plexus. These findings implicate androgen excess as a potential causal driver and therapeutic target in IIH. Women with idiopathic intracranial hypertension have a unique androgen excess signature that is associated with modulation of cerebrospinal fluid secretion dynamics.
Collapse
Affiliation(s)
- Michael W O'Reilly
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Edgbaston, Birmingham, United Kingdom
| | - Connar Sj Westgate
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Catherine Hornby
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Hannah Botfield
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Edgbaston, Birmingham, United Kingdom
| | - Angela E Taylor
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Edgbaston, Birmingham, United Kingdom
| | - Keira Markey
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Edgbaston, Birmingham, United Kingdom.,Department of Neurology, and
| | - James L Mitchell
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Edgbaston, Birmingham, United Kingdom.,Department of Neurology, and
| | - William J Scotton
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Edgbaston, Birmingham, United Kingdom.,Department of Neurology, and
| | - Susan P Mollan
- Birmingham Neuro-Ophthalmology Unit, Ophthalmology Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Andreas Yiangou
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Edgbaston, Birmingham, United Kingdom.,Department of Neurology, and
| | - Carl Jenkinson
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Lorna C Gilligan
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Mark Sherlock
- Department of Endocrinology and Diabetes Mellitus, Tallaght Hospital, Tallaght, Dublin, Ireland
| | - James Gibney
- Department of Endocrinology and Diabetes Mellitus, Tallaght Hospital, Tallaght, Dublin, Ireland
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, National Institute of Health Research (NIHR) Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Edgbaston, Birmingham, United Kingdom
| | - David J Hodson
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Edgbaston, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, University of Birmingham, and University of Warwick, Birmingham, United Kingdom
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Edgbaston, Birmingham, United Kingdom
| | - Alexandra J Sinclair
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Edgbaston, Birmingham, United Kingdom.,Department of Neurology, and
| |
Collapse
|
30
|
Abstract
Enzymes are complex biological catalysts and are critical to life. Most oxidations of chemicals are catalyzed by cytochrome P450 (P450, CYP) enzymes, which generally utilize mixed-function oxidase stoichiometry, utilizing pyridine nucleotides as electron donors: NAD(P)H + O2 + R → NAD(P)+ + RO + H2O (where R is a carbon substrate and RO is an oxidized product). The catalysis of oxidations is largely understood in the context of the heme iron-oxygen complex generally referred to as Compound I, formally FeO3+, whose basis was in peroxidase chemistry. Many X-ray crystal structures of P450s are now available (≥ 822 structures from ≥146 different P450s) and have helped in understanding catalytic specificity. In addition to hydroxylations, P450s catalyze more complex oxidations, including C-C bond formation and cleavage. Enzymes derived from P450s by directed evolution can even catalyze more unusual reactions, e.g. cyclopropanation. Current P450 questions under investigation include the potential role of the intermediate Compound 0 (formally FeIII-O2 -) in catalysis of some reactions, the roles of high- and low-spin forms of Compound I, the mechanism of desaturation, the roles of open and closed structures of P450s in catalysis, the extent of processivity in multi-step oxidations, and the role of the accessory protein cytochrome b 5. More global questions include exactly how structure drives function, prediction of catalysis, and roles of multiple protein conformations.
Collapse
Affiliation(s)
- F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
31
|
Albertolle ME, Peter Guengerich F. The relationships between cytochromes P450 and H 2O 2: Production, reaction, and inhibition. J Inorg Biochem 2018; 186:228-234. [PMID: 29990746 PMCID: PMC6084448 DOI: 10.1016/j.jinorgbio.2018.05.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 12/26/2022]
Abstract
In this review we address the relationship between cytochromes P450 (P450) and H2O2. This association can affect biology in three distinct ways. First, P450s produce H2O2 as a byproduct either during catalysis or when no substrate is present. This reaction, known as uncoupling, releases reactive oxygen species that may have implications in disease. Second, H2O2 is used as an oxygen-donating co-substrate in peroxygenase and peroxidase reactions catalyzed by P450s. This activity has proven to be important mainly in reactions involving prokaryotic P450s, and investigators have harnessed this reaction with the aim of adaptation for industrial use. Third, H2O2-dependent inhibition of human P450s has been studied in our laboratory, demonstrating heme destruction and also the inactivating oxidation of the heme-thiolate ligand to a sulfenic acid (-SOH). This reversible oxidative modification of P450s may have implications in the prevention of uncoupling and may give new insights into the oxidative regulation of these enzymes. Research has elucidated many of the chemical mechanisms involved in the relationship between P450 and H2O2, but the application to biology is difficult to evaluate. Further studies are needed reveal both the harmful and protective natures of reactive oxygen species in an organismal context.
Collapse
Affiliation(s)
- Matthew E Albertolle
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, United States.
| |
Collapse
|
32
|
Zarate-Perez F, Velázquez-Fernández JB, Jennings GK, Shock LS, Lyons CE, Hackett JC. Biophysical characterization of Aptenodytes forsteri cytochrome P450 aromatase. J Inorg Biochem 2018; 184:79-87. [PMID: 29684698 PMCID: PMC5964043 DOI: 10.1016/j.jinorgbio.2018.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/19/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 19 (CYP19, aromatase) catalyzes the conversion of androgens to estrogens in a sequence of three reactions that each depend on NADPH and O2. Aromatase is a phylogenetically-ancient enzyme and its breadth of expression in other species has highlighted distinct physiological functions. In songbirds, estrogen production is required for programming the neural circuits controlling song and in the determination of sex in fish and reptiles. This work describes the expression, purification, and biophysical characterization of Aptenodytes forsteri (Emperor penguin, af) aromatase. Using human cytochrome P450 reductase as a redox partner, afCYP19 displayed similar substrate turnover and LC/MS/MS confirmed that afCYP19 catalyzes the transformations through the intermediates 19-hydroxy- and 19-oxo-androstenedione. Androstenedione and anastrozole had the highest affinity for the enzyme and were followed closely by 19-hydroxyandrostenedione and testosterone. The affinity of 19-oxo-androstenedione for afCYP19 was ten-fold lower. The time-dependent changes in the Soret bands observed in stopped-flow mixing experiments of the steroidal ligands and the inhibitor anastrozole with afCYP19 were best described by a two-step binding mechanism. In summary, these studies describe the first biophysical characterization of an avian aromatase that displays strikingly similar enzyme kinetics and ligand binding properties to the human enzyme and could serve as a convenient model system for studies of the enigmatic transformation of androgens to estrogens.
Collapse
Affiliation(s)
- Francisco Zarate-Perez
- Department of Physiology and Biophysics, the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0035, United States
| | - Jesús B Velázquez-Fernández
- Department of Physiology and Biophysics, the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0035, United States
| | - Gareth K Jennings
- Department of Physiology and Biophysics, the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0035, United States
| | - Lisa S Shock
- Department of Physiology and Biophysics, the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0035, United States; Department of Microbiology and Immunology, the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0035, United States
| | - Charles E Lyons
- Department of Physiology and Biophysics, the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0035, United States
| | - John C Hackett
- Department of Physiology and Biophysics, the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0035, United States.
| |
Collapse
|
33
|
Spinello A, Pavlin M, Casalino L, Magistrato A. A Dehydrogenase Dual Hydrogen Abstraction Mechanism Promotes Estrogen Biosynthesis: Can We Expand the Functional Annotation of the Aromatase Enzyme? Chemistry 2018; 24:10840-10849. [DOI: 10.1002/chem.201802025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Angelo Spinello
- CNR-IOM-Democritos, c/o International School for Advanced Studies (SISSA); via Bonomea 265 34136 Trieste Italy
| | - Matic Pavlin
- CNR-IOM-Democritos, c/o International School for Advanced Studies (SISSA); via Bonomea 265 34136 Trieste Italy
| | - Lorenzo Casalino
- International School for Advanced Studies (SISSA); via Bonomea 265 34136 Trieste Italy
| | - Alessandra Magistrato
- CNR-IOM-Democritos, c/o International School for Advanced Studies (SISSA); via Bonomea 265 34136 Trieste Italy
| |
Collapse
|
34
|
Guengerich FP, Yoshimoto FK. Formation and Cleavage of C-C Bonds by Enzymatic Oxidation-Reduction Reactions. Chem Rev 2018; 118:6573-6655. [PMID: 29932643 DOI: 10.1021/acs.chemrev.8b00031] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many oxidation-reduction (redox) enzymes, particularly oxygenases, have roles in reactions that make and break C-C bonds. The list includes cytochrome P450 and other heme-based monooxygenases, heme-based dioxygenases, nonheme iron mono- and dioxygenases, flavoproteins, radical S-adenosylmethionine enzymes, copper enzymes, and peroxidases. Reactions involve steroids, intermediary metabolism, secondary natural products, drugs, and industrial and agricultural chemicals. Many C-C bonds are formed via either (i) coupling of diradicals or (ii) generation of unstable products that rearrange. C-C cleavage reactions involve several themes: (i) rearrangement of unstable oxidized products produced by the enzymes, (ii) oxidation and collapse of radicals or cations via rearrangement, (iii) oxygenation to yield products that are readily hydrolyzed by other enzymes, and (iv) activation of O2 in systems in which the binding of a substrate facilitates O2 activation. Many of the enzymes involve metals, but of these, iron is clearly predominant.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| | - Francis K Yoshimoto
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| |
Collapse
|
35
|
A Fungal P450 Enzyme from Thanatephorus cucumeris with Steroid Hydroxylation Capabilities. Appl Environ Microbiol 2018; 84:AEM.00503-18. [PMID: 29728383 DOI: 10.1128/aem.00503-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/23/2018] [Indexed: 12/27/2022] Open
Abstract
In this study, we identified a P450 enzyme (STH10) and an oxidoreductase (POR) from Thanatephorus cucumeris NBRC 6298 by a combination of transcriptome sequencing and heterologous expression in Pichia pastoris The biotransformation of 11-deoxycortisol was performed by using Pichia pastoris whole cells coexpressing sth10 and por, and the product analysis indicated that the STH10 enzyme possessed steroidal 19- and 11β-hydroxylase activities. This is a novel fungal P450 enzyme with 19-hydroxylase activity, which is different from the known steroidal aromatase cytochrome P450 19 (CYP19) and CYP11B families of enzymes.IMPORTANCE Hydroxylation is one of the most important reactions in steroid functionalization; in particular, C-19 hydroxylation produces a key intermediate for the synthesis of 19-nor-steroid drugs without a C-19 angular methyl group in three chemoenzymatic steps, in contrast to the current industrial process, which uses 10 chemical reactions. However, hydroxylation of the C-19 angular methyl group remains a very challenging task due to the high level of steric resistance to the C-19 methyl group between the A and B rings. The present report describes a novel fungal P450 enzyme with 19-hydroxylase activity. This opens a new venue for searching effective biocatalysts for the useful process of steroidal C-19 hydroxylation, although further studies for better understanding of the structural basis of the regioselectivity and substrate specificity of this fungal steroidal 19-hydroxylase are warranted to facilitate the engineering of this enzyme for industrial applications.
Collapse
|
36
|
Insights into the functional properties of the marneral oxidase CYP71A16 from Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:2-10. [PMID: 28734978 DOI: 10.1016/j.bbapap.2017.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/12/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022]
Abstract
The Arabidopsis thaliana gene encoding CYP71A16 is part of the gene cluster for the biosynthesis and modification of the triterpenoid marneral. Previous investigations of A. thaliana have revealed that CYP71A16 catalyzes marneral oxidation, while it also can accept marnerol as substrate. The aim of the present study was to investigate functional properties of CYP71A16 in vitro. For this purpose, heterologous expression of a N-terminally modified version of CYP71A16 was established in Escherichia coli, which yielded up to 50mgL-1 recombinant enzyme. The enzyme was purified and activity was reconstituted in vitro with different redox partners. A heterologous bacterial redox partner system consisting of the flavodoxin YkuN from Bacillus subtilis and the flavodoxin reductase Fpr from E. coli clearly outperformed the cytochrome P450 reductase ATR2 from A. thaliana in supporting the CYP71A16-mediated hydroxylation of marnerol. Substrate binding experiments with CYP71A16 revealed a dissociation constant KD of 225μM for marnerol. CYP71A16 catalyzed the hydroxylation of marnerol to 23-hydroxymarnerol with a KM of 142μM and a kcat of 3.9min-1. Furthermore, GC/MS analysis revealed an as of yet unidentified overoxidation product of this in vitro reaction. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
|
37
|
Baravalle R, Ciaramella A, Baj F, Di Nardo G, Gilardi G. Identification of endocrine disrupting chemicals acting on human aromatase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:88-96. [PMID: 28578073 DOI: 10.1016/j.bbapap.2017.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 01/28/2023]
Abstract
Human aromatase is the cytochrome P450 catalysing the conversion of androgens into estrogens playing a key role in the endocrine system. Due to this role, it is likely to be a target of the so-called endocrine disrupting chemicals, a series of compounds able to interfere with the hormone system with toxic effects. If on one side the toxicity of some compounds such as bisphenol A is well known, on the other side the toxic concentrations of such compounds as well as the effect of the many other molecules that are in contact with us in everyday life still need a deep investigation. The availability of biological assays able to detect the interaction of chemicals with key molecular targets of the endocrine system represents a possible solution to identify potential endocrine disrupting chemicals. Here the so-called alkali assay previously developed in our laboratory is applied to test the effect of different compounds on the activity of human aromatase. The assay is based on the detection of the alkali product that forms upon strong alkali treatment of the NADP+ released upon enzyme turnover. Here it is applied on human aromatase and validated using anastrozole and sildenafil as known aromatase inhibitors. Out of the small library of compounds tested, resveratrol and ketoconazole resulted to inhibit aromatase activity, while bisphenol A and nicotine were found to exert an inhibitory effect at relatively high concentrations (100μM), and other molecules such as lindane and four plasticizers did not show any significant effect. These data are confirmed by quantification of the product estrone in the same reaction mixtures through ELISA. Overall, the results show that the alkali assay is suitable to screen for molecules that interfere with aromatase activity. As a consequence it can also be applied to other molecular targets of EDCs that use NAD(P)H for catalysis in a high throughput format for the fast screening of many different compounds as endocrine disrupting chemicals. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Roberta Baravalle
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Alberto Ciaramella
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Francesca Baj
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy.
| |
Collapse
|
38
|
Albertolle ME, Kim D, Nagy LD, Yun CH, Pozzi A, Savas Ü, Johnson EF, Guengerich FP. Heme-thiolate sulfenylation of human cytochrome P450 4A11 functions as a redox switch for catalytic inhibition. J Biol Chem 2017; 292:11230-11242. [PMID: 28533430 DOI: 10.1074/jbc.m117.792200] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/16/2017] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (P450, CYP) 4A11 is a human fatty acid ω-hydroxylase that catalyzes the oxidation of arachidonic acid to the eicosanoid 20-hydroxyeicosatetraenoic acid (20-HETE), which plays important roles in regulating blood pressure regulation. Variants of P450 4A11 have been associated with high blood pressure and resistance to anti-hypertensive drugs, and 20-HETE has both pro- and antihypertensive properties relating to increased vasoconstriction and natriuresis, respectively. These physiological activities are likely influenced by the redox environment, but the mechanisms are unclear. Here, we found that reducing agents (e.g. dithiothreitol and tris(2-carboxyethyl)phosphine) strongly enhanced the catalytic activity of P450 4A11, but not of 10 other human P450s tested. Conversely, added H2O2 attenuated P450 4A11 catalytic activity. Catalytic roles of five of the potentially eight implicated Cys residues of P450 4A11 were eliminated by site-directed mutagenesis. Using an isotope-coded dimedone/iododimedone-labeling strategy and mass spectrometry of peptides, we demonstrated that the heme-thiolate cysteine (Cys-457) is selectively sulfenylated in an H2O2 concentration-dependent manner. This sulfenylation could be reversed by reducing agents, including dithiothreitol and dithionite. Of note, we observed heme ligand cysteine sulfenylation of P450 4A11 ex vivo in kidneys and livers derived from CYP4A11 transgenic mice. We also detected sulfenylation of murine P450 4a12 and 4b1 heme peptides in kidneys. To our knowledge, reversible oxidation of the heme thiolate has not previously been observed in P450s and may have relevance for 20-HETE-mediated functions.
Collapse
Affiliation(s)
- Matthew E Albertolle
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Donghak Kim
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.,the Department of Biological Sciences, Konkuk University, Seoul 05025, Korea
| | - Leslie D Nagy
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Chul-Ho Yun
- the School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Ambra Pozzi
- the Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6602.,the Veterans Affairs Medical Center, Nashville, Tennessee 37232, and
| | - Üzen Savas
- the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Eric F Johnson
- the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146,
| |
Collapse
|
39
|
Khatri Y, Schifrin A, Bernhardt R. Investigating the effect of available redox protein ratios for the conversion of a steroid by a myxobacterial CYP260A1. FEBS Lett 2017; 591:1126-1140. [PMID: 28281299 DOI: 10.1002/1873-3468.12619] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 11/11/2022]
Abstract
Since cytochromes P450 are external monooxygenases, available surrogate redox partners have been used to reconstitute the P450 activity. However, the effect of various ratios of P450s and the redox proteins have not been extensively studied so far, although different combinations of the redox partners have shown variations in substrate conversion. To address this issue, CYP260A1 was reconstituted with various ratios of adrenodoxin and adrenodoxin reductase to convert 11-deoxycorticosterone, and the products were characterized by NMR. We show the effect of the available redox protein ratios not only on the P450 catalytic activity but also on the product pattern.
Collapse
Affiliation(s)
- Yogan Khatri
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | | | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
40
|
Baravalle R, Valetti F, Catucci G, Gambarotta G, Chiesa M, Maurelli S, Giamello E, Barone I, Catalano S, Andò S, Di Nardo G, Gilardi G. Effect of sildenafil on human aromatase activity: From in vitro structural analysis to catalysis and inhibition in cells. J Steroid Biochem Mol Biol 2017; 165:438-447. [PMID: 27616271 DOI: 10.1016/j.jsbmb.2016.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 11/15/2022]
Abstract
Aromatase catalyses the conversion of androgens into estrogens and is a well-known target for breast cancer therapy. As it has been suggested that its activity is affected by inhibitors of phosphodiesterase-5, this work investigates the potential interaction of sildenafil with aromatase. This is carried out both at molecular level through structural and kinetics assays applied to the purified enzyme, and at cellular level using neuronal and breast cancer cell lines. Sildenafil is found to bind to aromatase with a KD of 0.58±0.05μM acting as a partial and mixed inhibitor with a maximal inhibition of 35±2%. Hyperfine sublevel correlation spectroscopy and docking studies show that sildenafil binds to the heme iron via its 6th axial water ligand. These results also provide information on the starting molecular scaffold for the development of new generations of drugs designed to inhibit aromatase as well as phosphodiesterase-5, a new emerging target for breast cancer therapy.
Collapse
Affiliation(s)
- Roberta Baravalle
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy
| | - Francesca Valetti
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole, 10-10043 Orbassano, Italy
| | - Mario Chiesa
- Department of Chemistry, University of Torino, via Pietro Giuria 7, 10125, Torino, Italy
| | - Sara Maurelli
- Department of Chemistry, University of Torino, via Pietro Giuria 7, 10125, Torino, Italy
| | - Elio Giamello
- Department of Chemistry, University of Torino, via Pietro Giuria 7, 10125, Torino, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, CS, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, CS, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, CS, Italy
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy; CrisDi, Interdepartmental Center for Crystallography, via Pietro Giuria 7, 10125, Torino, Italy.
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy; CrisDi, Interdepartmental Center for Crystallography, via Pietro Giuria 7, 10125, Torino, Italy.
| |
Collapse
|
41
|
Heme iron centers in cytochrome P450: structure and catalytic activity. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2016. [DOI: 10.1007/s12210-016-0565-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Yoshimoto FK, Auchus RJ. Rapid kinetic methods to dissect steroidogenic cytochrome P450 reaction mechanisms. J Steroid Biochem Mol Biol 2016; 161:13-23. [PMID: 26472553 PMCID: PMC4841756 DOI: 10.1016/j.jsbmb.2015.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/12/2015] [Accepted: 10/07/2015] [Indexed: 01/03/2023]
Abstract
All cytochrome P450 enzyme reactions involve a catalytic cycle with several discreet physical or chemical steps. This cycle ends with the formation of the reactive heme iron-oxygen complex, which oxygenates substrate. While the steps might be very similar for each P450 enzyme, the rates of each step varies tremendously for each enzyme and sometimes even for different reactions catalyzed by the same enzyme. For example, the rate-limiting step for most bacterial P450 enzymes, with turnover numbers over 1000s(-1), is the second electron transfer. In contrast, steroidogenic P450s from eukaryotes catalyze much slower reactions, with turnover numbers of ∼5-250min(-1); therefore, assumptions about kinetic properties for the mammalian P450 enzymes based on the bacterial enzymes are tenuous. In order to dissect the rates for individual steps, special techniques that isolate individual steps and/or single turnovers are required. This article will review the theoretical principles and practical considerations for several of these techniques, with illustrative published examples. The reader should gain an appreciation for the appropriate methods used to interrogate particular steps in the P450 reaction cycle.
Collapse
Affiliation(s)
- Francis K Yoshimoto
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, Ann Arbor, MI 48019, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48019, USA.
| |
Collapse
|
43
|
Viciano I, Martí S. Theoretical Study of the Mechanism of Exemestane Hydroxylation Catalyzed by Human Aromatase Enzyme. J Phys Chem B 2016; 120:3331-43. [PMID: 26972150 DOI: 10.1021/acs.jpcb.6b01014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human aromatase (CYP19A1) aromatizes the androgens to form estrogens via a three-step oxidative process. The estrogens are necessary in humans, mainly in women, because of the role they play in sexual and reproductive development. However, these also are involved in the development and growth of hormone-dependent breast cancer. Therefore, inhibition of the enzyme aromatase, by means of drugs known as aromatase inhibitors, is the frontline therapy for these types of cancers. Exemestane is a suicidal third-generation inhibitor of aromatase, currently used in breast cancer treatment. In this study, the hydroxylation of exemestane catalyzed by aromatase has been studied by means of hybrid QM/MM methods. The Free Energy Perturbation calculations provided a free energy of activation for the hydrogen abstraction step (rate-limiting step) of 17 kcal/mol. The results reveal that the hydroxylation of exemestane is not the inhibition stage, suggesting a possible competitive mechanism between the inhibitor and the natural substrate androstenedione in the first catalytic subcycle of the enzyme. Furthermore, the analysis of the interaction energy for the substrate and the cofactor in the active site shows that the role of the enzymatic environment during this reaction consists of a transition state stabilization by means of electrostatic effects.
Collapse
Affiliation(s)
- Ignacio Viciano
- Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castelló, Spain
| | - Sergio Martí
- Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castelló, Spain
| |
Collapse
|
44
|
Hatakeyama M, Kitaoka T, Ichinose H. Heterologous expression of fungal cytochromes P450 (CYP5136A1 and CYP5136A3) from the white-rot basidiomycete Phanerochaete chrysosporium: Functionalization with cytochrome b5 in Escherichia coli. Enzyme Microb Technol 2016; 89:7-14. [PMID: 27233123 DOI: 10.1016/j.enzmictec.2016.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/14/2016] [Accepted: 03/08/2016] [Indexed: 12/21/2022]
Abstract
Cytochromes P450 from the white-rot basidiomycete Phanerochaete chrysosporium, CYP5136A1 and CYP5136A3, are capable of catalyzing oxygenation reactions of a wide variety of exogenous compounds, implying their significant roles in the metabolism of xenobiotics by the fungus. It is therefore interesting to explore their biochemistry to better understand fungal biology and to enable the use of fungal enzymes in the biotechnology sector. In the present study, we developed heterologous expression systems for CYP5136A1 and CYP5136A3 using the T7 RNA polymerase/promoter system in Escherichia coli. Expression levels of recombinant P450s were dramatically improved by modifications and optimization of their N-terminal amino acid sequences. A CYP5136A1 reaction system was reconstructed in E. coli whole cells by coexpression of CYP5136A1 and a redox partner, NADPH-dependent P450 reductase (CPR). The catalytic activity of CYP5136A1 was significantly increased when cytochrome b5 (Cyt-b5) was further coexpressed with CPR, indicating that Cyt-b5 supports electron transfer reactions from NAD(P)H to CYP5136A1. Notably, P450 reaction occurred in E. coli cells that harbored CYP5136A1 and Cyt-b5 but not CPR, implying that the reducing equivalents required for the P450 catalytic cycle were transferred via a CPR-independent pathway. Such an "alternative" electron transfer system in CYP5136A1 reaction was also demonstrated using purified enzymes in vitro. The fungal P450 reaction system may be associated with sophisticated electron transfer pathways.
Collapse
Affiliation(s)
- Mayumi Hatakeyama
- Faculty of Agriculture, Kyushu University, 6-10-(1) Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Takuya Kitaoka
- Faculty of Agriculture, Kyushu University, 6-10-(1) Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Hirofumi Ichinose
- Faculty of Agriculture, Kyushu University, 6-10-(1) Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
45
|
Sgrignani J, Iannuzzi M, Magistrato A. Role of Water in the Puzzling Mechanism of the Final Aromatization Step Promoted by the Human Aromatase Enzyme. Insights from QM/MM MD Simulations. J Chem Inf Model 2015; 55:2218-26. [DOI: 10.1021/acs.jcim.5b00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jacopo Sgrignani
- CNR-IOM-Democritos
National Simulation Center c/o International School for Advanced Studies
(SISSA/ISAS), via Bonomea 265, Trieste, Trieste, Italy
| | - Marcella Iannuzzi
- Physical
Chemistry Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Zurich, Switzerland
| | - Alessandra Magistrato
- CNR-IOM-Democritos
National Simulation Center c/o International School for Advanced Studies
(SISSA/ISAS), via Bonomea 265, Trieste, Trieste, Italy
| |
Collapse
|
46
|
Ichinose H, Hatakeyama M, Yamauchi Y. Sequence modifications and heterologous expression of eukaryotic cytochromes P450 in Escherichia coli. J Biosci Bioeng 2015; 120:268-74. [DOI: 10.1016/j.jbiosc.2015.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 01/04/2023]
|
47
|
Richardson SL, Mao Y, Zhang G, Hanjra P, Peterson DL, Huang R. Kinetic mechanism of protein N-terminal methyltransferase 1. J Biol Chem 2015; 290:11601-10. [PMID: 25771539 DOI: 10.1074/jbc.m114.626846] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Indexed: 01/10/2023] Open
Abstract
The protein N-terminal methyltransferase 1 (NTMT1) catalyzes the transfer of the methyl group from the S-adenosyl-l-methionine to the protein α-amine, resulting in formation of S-adenosyl-l-homocysteine and α-N-methylated proteins. NTMT1 is an interesting potential anticancer target because it is overexpressed in gastrointestinal cancers and plays an important role in cell mitosis. To gain insight into the biochemical mechanism of NTMT1, we have characterized the kinetic mechanism of recombinant NTMT1 using a fluorescence assay and mass spectrometry. The results of initial velocity, product, and dead-end inhibition studies indicate that methylation by NTMT1 proceeds via a random sequential Bi Bi mechanism. In addition, our processivity studies demonstrate that NTMT1 proceeds via a distributive mechanism for multiple methylations. Together, our studies provide new knowledge about the kinetic mechanism of NTMT1 and lay the foundation for the development of mechanism-based inhibitors.
Collapse
Affiliation(s)
- Stacie L Richardson
- From the Department of Medicinal Chemistry, the Institute for Structural Biology and Drug Discovery, and
| | - Yunfei Mao
- From the Department of Medicinal Chemistry, the Institute for Structural Biology and Drug Discovery, and
| | - Gang Zhang
- From the Department of Medicinal Chemistry, the Institute for Structural Biology and Drug Discovery, and
| | - Pahul Hanjra
- From the Department of Medicinal Chemistry, the Institute for Structural Biology and Drug Discovery, and
| | - Darrell L Peterson
- the Institute for Structural Biology and Drug Discovery, and the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23219
| | - Rong Huang
- From the Department of Medicinal Chemistry, the Institute for Structural Biology and Drug Discovery, and
| |
Collapse
|
48
|
Bioelectrochemistry as a tool for the study of aromatization of steroids by human aromatase. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2015.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
49
|
Niwa T, Murayama N, Imagawa Y, Yamazaki H. Regioselective hydroxylation of steroid hormones by human cytochromes P450. Drug Metab Rev 2015; 47:89-110. [PMID: 25678418 DOI: 10.3109/03602532.2015.1011658] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This article reviews in vitro metabolic activities [including Michaelis constants (Km), maximal velocities (Vmax) and Vmax/Km] and drug-steroid interactions [such as induction and cooperativity (activation)] of cytochromes P450 (P450 or CYP) in human tissues, including liver and adrenal gland, for 14 kinds of endogenous steroid compounds, including allopregnanolone, cholesterol, cortisol, cortisone, dehydroepiandrosterone, estradiol, estrone, pregnenolone, progesterone, testosterone and bile acids (cholic acid). First, we considered the drug-metabolizing P450s. 6β-Hydroxylation of many steroids, including cortisol, cortisone, progesterone and testosterone, was catalyzed primarily by CYP3A4. CYP1A2 and CYP3A4, respectively, are likely the major hepatic enzymes responsible for 2-/4-hydroxylation and 16α-hydroxylation of estradiol and estrone, steroids that can contribute to breast cancer risk. In contrast, CYP1A1 and CYP1B1 predominantly metabolized estrone and estradiol to 2- and 4-catechol estrogens, which are endogenous ultimate carcinogens if formed in the breast. Some metabolic activities of CYP3A4, including dehydroepiandrosterone 7β-/16α-hydroxylation, estrone 2-hydroxylation and testosterone 6β-hydroxylation, were higher than those for polymorphically expressed CYP3A5. Next, we considered typical steroidogenic P450s. CYP17A1, CYP19A1 and CYP27A1 catalyzed steroid synthesis, including hydroxylation at 17α, 19 and 27 positions, respectively. However, it was difficult to predict which hepatic drug-metabolizing P450 or steroidogenic P450 will be mainly responsible for metabolizing each steroid hormone in vivo based on these results. Further research is required on the metabolism of steroid hormones by various P450s and on prediction of their relative contributions to in vivo metabolism. The findings collected here provide fundamental and useful information on the metabolism of steroid compounds.
Collapse
Affiliation(s)
- Toshiro Niwa
- School of Pharmacy, Shujitsu University , Okayama , Japan and
| | | | | | | |
Collapse
|
50
|
Di Nardo G, Breitner M, Bandino A, Ghosh D, Jennings GK, Hackett JC, Gilardi G. Evidence for an elevated aspartate pK(a) in the active site of human aromatase. J Biol Chem 2014; 290:1186-96. [PMID: 25425647 DOI: 10.1074/jbc.m114.595108] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aromatase (CYP19A1), the enzyme that converts androgens to estrogens, is of significant mechanistic and therapeutic interest. Crystal structures and computational studies of this enzyme shed light on the critical role of Asp(309) in substrate binding and catalysis. These studies predicted an elevated pK(a) for Asp(309) and proposed that protonation of this residue was required for function. In this study, UV-visible absorption, circular dichroism, resonance Raman spectroscopy, and enzyme kinetics were used to study the impact of pH on aromatase structure and androstenedione binding. Spectroscopic studies demonstrate that androstenedione binding is pH-dependent, whereas, in contrast, the D309N mutant retains its ability to bind to androstenedione across the entire pH range studied. Neither pH nor mutation perturbed the secondary structure or heme environment. The origin of the observed pH dependence was further narrowed to the protonation equilibria of Asp(309) with a parallel set of spectroscopic studies using exemestane and anastrozole. Because exemestane interacts with Asp(309) based on its co-crystal structure with the enzyme, its binding is pH-dependent. Aromatase binding to anastrozole is pH-independent, consistent with the hypothesis that this ligand exploits a distinct set of interactions in the active site. In summary, we assign the apparent pK(a) of 8.2 observed for androstenedione binding to the side chain of Asp(309). To our knowledge, this work represents the first experimental assignment of a pK(a) value to a residue in a cytochrome P450. This value is in agreement with theoretical calculations (7.7-8.1) despite the reliance of the computational methods on the conformational snapshots provided by crystal structures.
Collapse
Affiliation(s)
- Giovanna Di Nardo
- From the Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy
| | - Maximilian Breitner
- From the Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy
| | - Andrea Bandino
- From the Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy
| | - Debashis Ghosh
- the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210, and
| | - Gareth K Jennings
- the Department of Physiology and Biophysics and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23219
| | - John C Hackett
- the Department of Physiology and Biophysics and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23219
| | - Gianfranco Gilardi
- From the Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy,
| |
Collapse
|