1
|
Bjørklund G, Oliinyk P, Khavrona O, Lozynska I, Lysiuk R, Darmohray R, Antonyak H, Dub N, Zayachuk V, Antoniv O, Rybak O, Peana M. The Effects of Fisetin and Curcumin on Oxidative Damage Caused by Transition Metals in Neurodegenerative Diseases. Mol Neurobiol 2024:10.1007/s12035-024-04321-2. [PMID: 38970766 DOI: 10.1007/s12035-024-04321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/19/2024] [Indexed: 07/08/2024]
Abstract
Neurodegenerative diseases pose a significant health challenge for the elderly. The escalating presence of toxic metals and chemicals in the environment is a potential contributor to central nervous system dysfunction and the onset of neurodegenerative conditions. Transition metals play a crucial role in various pathophysiological mechanisms associated with prevalent neurodegenerative diseases such as Alzheimer's and Parkinson's. Given the ubiquitous exposure to metals from diverse sources in everyday life, the workplace, and the environment, most of the population faces regular contact with different forms of these metals. Disturbances in the levels and homeostasis of certain transition metals are closely linked to the manifestation of neurodegenerative disorders. Oxidative damage further exacerbates the progression of neurological consequences. Presently, there exists no curative therapy for individuals afflicted by neurodegenerative diseases, with treatment approaches primarily focusing on alleviating pathological symptoms. Within the realm of biologically active compounds derived from plants, flavonoids and curcuminoids stand out for their extensively documented antioxidant, antiplatelet, and neuroprotective properties. The utilization of these compounds holds the potential to formulate highly effective therapeutic strategies for managing neurodegenerative diseases. This review provides a comprehensive overview of the impact of abnormal metal levels, particularly copper, iron, and zinc, on the initiation and progression of neurodegenerative diseases. Additionally, it aims to elucidate the potential of fisetin and curcumin to inhibit or decelerate the neurodegenerative process.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo I Rana, Norway.
| | - Petro Oliinyk
- Department of Disaster Medicine and Military Medicine, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Oksana Khavrona
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Biological Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Iryna Lozynska
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Biological Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Roman Lysiuk
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Roman Darmohray
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Halyna Antonyak
- Department of Ecology, Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
| | - Natalia Dub
- Andrei Krupynskyi Lviv Medical Academy, Lviv, 79000, Ukraine
| | - Vasyl Zayachuk
- Department of Botany, Ukrainian National Forestry University, Wood Science and Non-Wood Forest Products, Lviv, 79057, Ukraine
| | - Olha Antoniv
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacology, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Oksana Rybak
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100, Sassari, Italy.
| |
Collapse
|
2
|
Neurauter CG, Pannone M, Sousa MMLD, Wang W, Kuśnierczyk A, Luna L, Sætrom P, Scheffler K, Bjørås M. Enhanced glutathione levels confer resistance to apoptotic and ferroptotic programmed cell death in NEIL DNA glycosylase deficient HAP1 cells. Free Radic Biol Med 2024; 213:470-487. [PMID: 38301978 DOI: 10.1016/j.freeradbiomed.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
The NTHL1 and NEIL1-3 DNA glycosylases are major enzymes in the removal of oxidative DNA base lesions, via the base excision repair (BER) pathway. It is expected that lack of these DNA glycosylases activities would render cells vulnerable to oxidative stress, promoting cell death. Intriguingly, we found that single, double, triple, and quadruple DNA glycosylase knockout HAP1 cells are, however, more resistant to oxidative stress caused by genotoxic agents than wild type cells. Furthermore, glutathione depletion in NEIL deficient cells further enhances resistance to cell death induced via apoptosis and ferroptosis. Finally, we observed higher basal level of glutathione and differential expression of NRF2-regulated genes associated with glutathione homeostasis in the NEIL triple KO cells. We propose that lack of NEIL DNA glycosylases causes aberrant transcription and subsequent errors in protein synthesis. This leads to increased endoplasmic reticulum stress and proteotoxic stress. To counteract the elevated intracellular stress, an adaptive response mediated by increased glutathione basal levels, rises in these cells. This study reveals an unforeseen role of NEIL glycosylases in regulation of resistance to oxidative stress, suggesting that modulation of NEIL glycosylase activities is a potential approach to improve the efficacy of e.g. anti-inflammatory therapies.
Collapse
Affiliation(s)
- Christine Gran Neurauter
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, 0424, Norway; Centre for Embryology and Healthy Development, University of Oslo, Oslo, 0373, Norway.
| | - Marco Pannone
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, 0424, Norway; Centre for Embryology and Healthy Development, University of Oslo, Oslo, 0373, Norway; Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Mirta Mittelstedt Leal de Sousa
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, 0424, Norway; Centre for Embryology and Healthy Development, University of Oslo, Oslo, 0373, Norway; Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Wei Wang
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Anna Kuśnierczyk
- Proteomics and Modomics Experimental Core Facility (PROMEC), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Luisa Luna
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, 0424, Norway; Centre for Embryology and Healthy Development, University of Oslo, Oslo, 0373, Norway.
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Katja Scheffler
- Department of Neurology, St.Olavs University Hospital, Trondheim, 7006, Norway; Department of Neuromedicine and Movement Science (INB), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, 0424, Norway; Centre for Embryology and Healthy Development, University of Oslo, Oslo, 0373, Norway; Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| |
Collapse
|
3
|
Friese S, Heinze T, Ebert F, Schwerdtle T. Establishment of a nonradioactive DNA ligation assay and its applications in murine tissues. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:106-115. [PMID: 38767089 DOI: 10.1002/em.22602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
As final process of every DNA repair pathway, DNA ligation is crucial for maintaining genomic stability and preventing DNA strand breaks to accumulate. Therefore, a method reliably assessing DNA ligation capacity in protein extracts from murine tissues was aimed to establish. To optimize applicability, the use of radioactively labeled substrates was avoided and replaced by fluorescently labeled oligonucleotides. Briefly, tissue extracts were incubated with those complementary oligonucleotides so that in an ensuing gel electrophoresis ligated strands could be separated from unconnected molecules. Originally, the method was intended for use in cerebellum tissue to further elucidate possible mechanisms of neurodegenerative diseases. However, due to its inhomogeneous anatomy, DNA ligation efficiency varied strongly between different cerebellar areas, illuminating the established assay to be suitable only for homogenous organs. Thus, for murine liver tissue sufficient intra- and interday repeatability was shown during validation. In further experiments, the established assay was applied to an animal study comprising young and old (24 and 110 weeks) mice which showed that DNA ligation efficiency was affected by neither sex nor age. Finally, the impact of in vitro addition of the trace elements copper, iron, and zinc on DNA ligation in tissue extracts was investigated. While all three metals inhibited DNA ligation, variations in their potency became evident. In conclusion, the established method can be reliably used for investigation of DNA ligation efficiency in homogenous murine tissues.
Collapse
Affiliation(s)
- Sharleen Friese
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Tom Heinze
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Franziska Ebert
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
4
|
Wang K, Mao W, Song X, Chen M, Feng W, Peng B, Chen Y. Reactive X (where X = O, N, S, C, Cl, Br, and I) species nanomedicine. Chem Soc Rev 2023; 52:6957-7035. [PMID: 37743750 DOI: 10.1039/d2cs00435f] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Reactive oxygen, nitrogen, sulfur, carbonyl, chlorine, bromine, and iodine species (RXS, where X = O, N, S, C, Cl, Br, and I) have important roles in various normal physiological processes and act as essential regulators of cell metabolism; their inherent biological activities govern cell signaling, immune balance, and tissue homeostasis. However, an imbalance between RXS production and consumption will induce the occurrence and development of various diseases. Due to the considerable progress of nanomedicine, a variety of nanosystems that can regulate RXS has been rationally designed and engineered for restoring RXS balance to halt the pathological processes of different diseases. The invention of radical-regulating nanomaterials creates the possibility of intriguing projects for disease treatment and promotes advances in nanomedicine. In this comprehensive review, we summarize, discuss, and highlight very-recent advances in RXS-based nanomedicine for versatile disease treatments. This review particularly focuses on the types and pathological effects of these reactive species and explores the biological effects of RXS-based nanomaterials, accompanied by a discussion and the outlook of the challenges faced and future clinical translations of RXS nanomedicines.
Collapse
Affiliation(s)
- Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
5
|
Phosphorylation of the Human DNA Glycosylase NEIL2 Is Affected by Oxidative Stress and Modulates Its Activity. Antioxidants (Basel) 2023; 12:antiox12020355. [PMID: 36829914 PMCID: PMC9952225 DOI: 10.3390/antiox12020355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The DNA glycosylase NEIL2 plays a central role in maintaining genome integrity, in particular during oxidative stress, by recognizing oxidized base lesions and initiating repair of these via the base excision repair (BER) pathway. Post-translational modifications are important molecular switches that regulate and coordinate the BER pathway, and thereby enable a rapid and fine-tuned response to DNA damage. Here, we report for the first time that human NEIL2 is regulated by phosphorylation. We demonstrate that NEIL2 is phosphorylated by the two kinases cyclin-dependent kinase 5 (CDK5) and protein kinase C (PKC) in vitro and in human SH-SY5Y neuroblastoma cells. The phosphorylation of NEIL2 by PKC causes a substantial reduction in NEIL2 repair activity, while CDK5 does not directly alter the enzymatic activity of NEIL2 in vitro, suggesting distinct modes of regulating NEIL2 function by the two kinases. Interestingly, we show a rapid dephosphorylation of NEIL2 in response to oxidative stress in SH-SY5Y cells. This points to phosphorylation as an important modulator of NEIL2 function in this cellular model, not least during oxidative stress.
Collapse
|
6
|
Deus CM, Teixeira J, Raimundo N, Tucci P, Borges F, Saso L, Oliveira PJ. Modulation of cellular redox environment as a novel therapeutic strategy for Parkinson's disease. Eur J Clin Invest 2022; 52:e13820. [PMID: 35638352 DOI: 10.1111/eci.13820] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 12/01/2022]
Abstract
Parkinson's disease (PD) is an incurable neurodegenerative movement disorder. PD affects 2% of the population above 65 years old; however, with the growing number of senior citizens, PD prevalence is predicted to increase in the following years. Pathologically, PD is characterized by dopaminergic cell neurodegeneration in the substantia nigra, resulting in decreased dopamine levels in the nigrostriatal pathway, triggering motor symptoms. Although the pathological mechanisms leading to PD are still unclear, large evidence indicates that oxidative stress plays an important role, not only because it increases with age which is the most significant risk factor for PD development, but also as a result of alterations in several processes, particularly mitochondria dysfunction. The modulation of oxidative stress, especially using dietary mitochondriotropic antioxidants, represents a promising approach to prevent or treat PD. Although most mitochondria-targeted antioxidants with beneficial effects in PD-associated models have failed to show any therapeutic benefit in clinical trials, several questions remain to be clarified. Hereby, we review the role played by oxidative stress in PD pathogenesis, emphasizing mitochondria as reactive oxygen species (ROS) producers and as targets for oxidative stress-related dysfunctional mechanisms. In addition, we also describe the importance of using dietary-based mitochondria-targeted antioxidants as a valuable strategy to counteract the deleterious effects of ROS in pre-clinical and/or clinical trials of PD, pointing out their significance to slow, and possibly halt, the progression of PD.
Collapse
Affiliation(s)
- Cláudia M Deus
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - José Teixeira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Nuno Raimundo
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania, USA.,Multidisciplinary Institute of Ageing (MIA), University of Coimbra, Coimbra, Portugal
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Roma, Italy
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Mitra J, Kodavati M, Provasek VE, Rao KS, Mitra S, Hamilton DJ, Horner PJ, Vahidy FS, Britz GW, Kent TA, Hegde ML. SARS-CoV-2 and the central nervous system: Emerging insights into hemorrhage-associated neurological consequences and therapeutic considerations. Ageing Res Rev 2022; 80:101687. [PMID: 35843590 PMCID: PMC9288264 DOI: 10.1016/j.arr.2022.101687] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/20/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to impact our lives by causing widespread illness and death and poses a threat due to the possibility of emerging strains. SARS-CoV-2 targets angiotensin-converting enzyme 2 (ACE2) before entering vital organs of the body, including the brain. Studies have shown systemic inflammation, cellular senescence, and viral toxicity-mediated multi-organ failure occur during infectious periods. However, prognostic investigations suggest that both acute and long-term neurological complications, including predisposition to irreversible neurodegenerative diseases, can be a serious concern for COVID-19 survivors, especially the elderly population. As emerging studies reveal sites of SARS-CoV-2 infection in different parts of the brain, potential causes of chronic lesions including cerebral and deep-brain microbleeds and the likelihood of developing stroke-like pathologies increases, with critical long-term consequences, particularly for individuals with neuropathological and/or age-associated comorbid conditions. Our recent studies linking the blood degradation products to genome instability, leading to cellular senescence and ferroptosis, raise the possibility of similar neurovascular events as a result of SARS-CoV-2 infection. In this review, we discuss the neuropathological consequences of SARS-CoV-2 infection in COVID survivors, focusing on possible hemorrhagic damage in brain cells, its association to aging, and the future directions in developing mechanism-guided therapeutic strategies.
Collapse
Affiliation(s)
- Joy Mitra
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Manohar Kodavati
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Vincent E Provasek
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; College of Medicine, Texas A&M University, College Station, TX, USA
| | - K S Rao
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation Deemed to be University, Green Fields, Vaddeswaram, Andhra Pradesh 522502, India
| | - Sankar Mitra
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Dale J Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA
| | - Philip J Horner
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA
| | - Farhaan S Vahidy
- Center for Outcomes Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Gavin W Britz
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA
| | - Thomas A Kent
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, USA
| | - Muralidhar L Hegde
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA.
| |
Collapse
|
8
|
Provasek VE, Mitra J, Malojirao VH, Hegde ML. DNA Double-Strand Breaks as Pathogenic Lesions in Neurological Disorders. Int J Mol Sci 2022; 23:ijms23094653. [PMID: 35563044 PMCID: PMC9099445 DOI: 10.3390/ijms23094653] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
The damage and repair of DNA is a continuous process required to maintain genomic integrity. DNA double-strand breaks (DSBs) are the most lethal type of DNA damage and require timely repair by dedicated machinery. DSB repair is uniquely important to nondividing, post-mitotic cells of the central nervous system (CNS). These long-lived cells must rely on the intact genome for a lifetime while maintaining high metabolic activity. When these mechanisms fail, the loss of certain neuronal populations upset delicate neural networks required for higher cognition and disrupt vital motor functions. Mammalian cells engage with several different strategies to recognize and repair chromosomal DSBs based on the cellular context and cell cycle phase, including homologous recombination (HR)/homology-directed repair (HDR), microhomology-mediated end-joining (MMEJ), and the classic non-homologous end-joining (NHEJ). In addition to these repair pathways, a growing body of evidence has emphasized the importance of DNA damage response (DDR) signaling, and the involvement of heterogeneous nuclear ribonucleoprotein (hnRNP) family proteins in the repair of neuronal DSBs, many of which are linked to age-associated neurological disorders. In this review, we describe contemporary research characterizing the mechanistic roles of these non-canonical proteins in neuronal DSB repair, as well as their contributions to the etiopathogenesis of selected common neurological diseases.
Collapse
Affiliation(s)
- Vincent E. Provasek
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- Correspondence: (J.M.); (M.L.H.)
| | - Vikas H. Malojirao
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
| | - Muralidhar L. Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- College of Medicine, Texas A&M University, College Station, TX 77843, USA
- Department of Neurosciences, Weill Cornell Medical College, New York, NY 11021, USA
- Correspondence: (J.M.); (M.L.H.)
| |
Collapse
|
9
|
Volatier T, Schumacher B, Cursiefen C, Notara M. UV Protection in the Cornea: Failure and Rescue. BIOLOGY 2022; 11:biology11020278. [PMID: 35205145 PMCID: PMC8868636 DOI: 10.3390/biology11020278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 01/07/2023]
Abstract
Simple Summary The sun is a deadly laser, and its damaging rays harm exposed tissues such as our skin and eyes. The skin’s protection and repair mechanisms are well understood and utilized in therapeutic approaches while the eye lacks such complete understanding of its defenses and therefore often lacks therapeutic support in most cases. The aim here was to document the similarities and differences between the two tissues as well as understand where current research stands on ocular, particularly corneal, ultraviolet protection. The objective is to identify what mechanisms may be best suited for future investigation and valuable therapeutic approaches. Abstract Ultraviolet (UV) irradiation induces DNA lesions in all directly exposed tissues. In the human body, two tissues are chronically exposed to UV: the skin and the cornea. The most frequent UV-induced DNA lesions are cyclobutane pyrimidine dimers (CPDs) that can lead to apoptosis or induce tumorigenesis. Lacking the protective pigmentation of the skin, the transparent cornea is particularly dependent on nucleotide excision repair (NER) to remove UV-induced DNA lesions. The DNA damage response also triggers intracellular autophagy mechanisms to remove damaged material in the cornea; these mechanisms are poorly understood despite their noted involvement in UV-related diseases. Therapeutic solutions involving xenogenic DNA-repair enzymes such as T4 endonuclease V or photolyases exist and are widely distributed for dermatological use. The corneal field lacks a similar set of tools to address DNA-lesions in photovulnerable patients, such as those with genetic disorders or recently transplanted tissue.
Collapse
Affiliation(s)
- Thomas Volatier
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 62, 50937 Cologne, Germany; (C.C.); (M.N.)
- Correspondence:
| | - Björn Schumacher
- Cologne Excellence Cluster for Cellular Stress Responses, Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany;
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 62, 50937 Cologne, Germany; (C.C.); (M.N.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 21, 50931 Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 62, 50937 Cologne, Germany; (C.C.); (M.N.)
- Cologne Excellence Cluster for Cellular Stress Responses, Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany;
| |
Collapse
|
10
|
de Sousa MML, Ye J, Luna L, Hildrestrand G, Bjørås K, Scheffler K, Bjørås M. Impact of Oxidative DNA Damage and the Role of DNA Glycosylases in Neurological Dysfunction. Int J Mol Sci 2021; 22:12924. [PMID: 34884729 PMCID: PMC8657561 DOI: 10.3390/ijms222312924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
The human brain requires a high rate of oxygen consumption to perform intense metabolic activities, accounting for 20% of total body oxygen consumption. This high oxygen uptake results in the generation of free radicals, including reactive oxygen species (ROS), which, at physiological levels, are beneficial to the proper functioning of fundamental cellular processes. At supraphysiological levels, however, ROS and associated lesions cause detrimental effects in brain cells, commonly observed in several neurodegenerative disorders. In this review, we focus on the impact of oxidative DNA base lesions and the role of DNA glycosylase enzymes repairing these lesions on brain function and disease. Furthermore, we discuss the role of DNA base oxidation as an epigenetic mechanism involved in brain diseases, as well as potential roles of DNA glycosylases in different epigenetic contexts. We provide a detailed overview of the impact of DNA glycosylases on brain metabolism, cognition, inflammation, tissue loss and regeneration, and age-related neurodegenerative diseases based on evidence collected from animal and human models lacking these enzymes, as well as post-mortem studies on patients with neurological disorders.
Collapse
Affiliation(s)
- Mirta Mittelstedt Leal de Sousa
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7028 Trondheim, Norway; (J.Y.); (K.B.)
| | - Jing Ye
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7028 Trondheim, Norway; (J.Y.); (K.B.)
| | - Luisa Luna
- Department of Microbiology, Oslo University Hospital, University of Oslo, Rikshospitalet, 0424 Oslo, Norway; (L.L.); (G.H.)
| | - Gunn Hildrestrand
- Department of Microbiology, Oslo University Hospital, University of Oslo, Rikshospitalet, 0424 Oslo, Norway; (L.L.); (G.H.)
| | - Karine Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7028 Trondheim, Norway; (J.Y.); (K.B.)
| | - Katja Scheffler
- Department of Neurology, St. Olavs Hospital, 7006 Trondheim, Norway;
- Department of Laboratory Medicine, St. Olavs Hospital, 7006 Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7028 Trondheim, Norway; (J.Y.); (K.B.)
- Department of Microbiology, Oslo University Hospital, University of Oslo, Rikshospitalet, 0424 Oslo, Norway; (L.L.); (G.H.)
| |
Collapse
|
11
|
Bardestani A, Ebrahimpour S, Esmaeili A, Esmaeili A. Quercetin attenuates neurotoxicity induced by iron oxide nanoparticles. J Nanobiotechnology 2021; 19:327. [PMID: 34663344 PMCID: PMC8522232 DOI: 10.1186/s12951-021-01059-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/24/2021] [Indexed: 01/19/2023] Open
Abstract
Iron oxide nanoparticles (IONPs) have been proposed as targeted carriers to deliver therapeutic molecules in the central nervous system (CNS). However, IONPs may damage neural tissue via free iron accumulation, protein aggregation, and oxidative stress. Neuroprotective effects of quercetin (QC) have been proven due to its antioxidant and anti-inflammatory properties. However, poor solubility and low bioavailability of QC have also led researchers to make various QC-involved nanoparticles to overcome these limitations. We wondered how high doses or prolonged treatment with quercetin conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) could improve cognitive dysfunction and promote neurogenesis without any toxicity. It can be explained that the QC inhibits protein aggregation and acts against iron overload via iron-chelating activity, iron homeostasis genes regulation, radical scavenging, and attenuation of Fenton/Haber-Weiss reaction. In this review, first, we present brain iron homeostasis, molecular mechanisms of iron overload that induced neurotoxicity, and the role of iron in dementia-associated diseases. Then by providing evidence of IONPs neurotoxicity, we discuss how QC neutralizes IONPs neurotoxicity, and finally, we make a brief comparison between QC and conventional iron chelators. In this review, we highlight that QC as supplementation and especially in conjugated form reduces iron oxide nanoparticles neurotoxicity in clinical application.
Collapse
Affiliation(s)
- Akram Bardestani
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, P.O. Box: 8174673441, Isfahan, Iran
| | - Shiva Ebrahimpour
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, P.O. Box: 8174673441, Isfahan, Iran
| | - Ali Esmaeili
- School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, P.O. Box: 8174673441, Isfahan, Iran.
| |
Collapse
|
12
|
Naser AFA, Aziz WM, Ahmed YR, Khalil WKB, Hamed MAA. Parkinsonism-like disease induced by rotenone in rats: Treatment role of curcumin, dopamine agonist and adenosine A2A receptor antagonist. Curr Aging Sci 2021; 15:65-76. [PMID: 34042043 DOI: 10.2174/1874609814666210526115740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Parkinsonism is a neurodegenerative disorder that affects elderly people worldwide. METHODS Curcumin, adenosine A2AR antagonist (ZM241385) and Sinemet® (L-dopa) were evaluated against Parkinson's disease (PD) induced by rotenone in rats and comparativelyrelatively compared with our previous study on mice model. RESULTS Rats injected with rotenone showed severe alterations in adenosine A2A receptor gene expression, oxidative stress markers, inflammatory mediator, energetic indices, apoptotic marker and DNA fragmentation levels as compare with the control group. Treatments with curcumin, ZM241385, and Sinemet® restored all the selected parameters. The brain histopathological features of cerebellum regions confirmed our results. By comparing our results with the previous results on mice, we noticed that mice respond to rotenone toxicity and treatments more than rats regarding to behavioral observation, A2AR gene expression, neurotransmitter levels, inflammatory mediator and apoptotic markers, while rats showed higher response to treatments regarding to oxidative stress and energetic indices. CONCLUSION Curcumin succeeded to attenuate the severe effects of Parkinson's disease in rat model and can be consider as a potential dietary supplement. Adenosine A2AR antagonist has almost the same pattern of improvement as Sinemet® and may be considered as a promising therapy against PD. By comparing the role of animal species in response to PD symptoms and treatments, our previous report on mice explore the response of mice to rotenone toxicity than rats, while rats showed higher response to treatments. Therefore, no animal model can perfectly recapitulate all the pathologies of PD.
Collapse
Affiliation(s)
| | - Wessam Magdi Aziz
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Yomna Rashad Ahmed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | | | | |
Collapse
|
13
|
Breslauer KJ. The shaping of a molecular linguist: How a career studying DNA energetics revealed the language of molecular communication. J Biol Chem 2021; 296:100522. [PMID: 34237886 PMCID: PMC8058554 DOI: 10.1016/j.jbc.2021.100522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 01/31/2023] Open
Abstract
My personal and professional journeys have been far from predictable based on my early childhood. Owing to a range of serendipitous influences, I miraculously transitioned from a rebellious, apathetic teenage street urchin who did poorly in school to a highly motivated, disciplined, and ambitious academic honors student. I was the proverbial “late bloomer.” Ultimately, I earned my PhD in biophysical chemistry at Yale, followed by a postdoc fellowship at Berkeley. These two meccas of thermodynamics, coupled with my deep fascination with biology, instilled in me a passion to pursue an academic career focused on mapping the energy landscapes of biological systems. I viewed differential energetics as the language of molecular communication that would dictate and control biological structures, as well as modulate the modes of action associated with biological functions. I wanted to be a “molecular linguist.” For the next 50 years, my group and I used a combination of spectroscopic and calorimetric techniques to characterize the energy profiles of the polymorphic conformational space of DNA molecules, their differential ligand-binding properties, and the energy landscapes associated with mutagenic DNA damage recognition, repair, and replication. As elaborated below, the resultant energy databases have enabled the development of quantitative molecular biology through the rational design of primers, probes, and arrays for diagnostic, therapeutic, and molecular-profiling protocols, which collectively have contributed to a myriad of biomedical assays. Such profiling is further justified by yielding unique energy-based insights that complement and expand elegant, structure-based understandings of biological processes.
Collapse
Affiliation(s)
- Kenneth J Breslauer
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA; The Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
| |
Collapse
|
14
|
Ullah I, Zhao L, Hai Y, Fahim M, Alwayli D, Wang X, Li H. "Metal elements and pesticides as risk factors for Parkinson's disease - A review". Toxicol Rep 2021; 8:607-616. [PMID: 33816123 PMCID: PMC8010213 DOI: 10.1016/j.toxrep.2021.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Essential metals including iron (Fe) and manganese (Mn) with known physiological functions in human body play an important role in cell homeostasis. Excessive exposure to these essential as well as non-essential metals including mercury (Hg) and Aluminum (Al) may contribute to pathological conditions, including PD. Each metal could be toxic through specific pathways. Epidemiological evidences from occupational and ecological studies besides various in vivo and in vitro studies have revealed the possible pathogenic role and neurotoxicity of different metals. Pesticides are substances that aim to mitigate the harm done by pests to plants and crops, and are extensively used to boost agricultural production. This review provides an outline of our current knowledge on the possible association between metals and PD. We have discussed the potential association between these two, furthermore the chemical properties, biological and toxicological aspects as well as possible mechanisms of Fe, Mn, Cu, Zn, Al, Ca, Pb, Hg and Zn in PD pathogenesis. In addition, we review recent evidence on deregulated microRNAs upon pesticide exposure and possible role of deregulated miRNA and pesticides to PD pathogenesis.
Collapse
Affiliation(s)
- Inam Ullah
- School of Life Sciences, Lanzhou University, China
| | - Longhe Zhao
- School of Pharmacy, Lanzhou University, China
| | - Yang Hai
- School of Pharmacy, Lanzhou University, China
| | | | | | - Xin Wang
- School of Pharmacy, Lanzhou University, China
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, China
- School of Pharmacy, Lanzhou University, China
| |
Collapse
|
15
|
Wandt VK, Winkelbeiner N, Bornhorst J, Witt B, Raschke S, Simon L, Ebert F, Kipp AP, Schwerdtle T. A matter of concern - Trace element dyshomeostasis and genomic stability in neurons. Redox Biol 2021; 41:101877. [PMID: 33607499 PMCID: PMC7902532 DOI: 10.1016/j.redox.2021.101877] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 02/09/2023] Open
Abstract
Neurons are post-mitotic cells in the brain and their integrity is of central importance to avoid neurodegeneration. Yet, the inability of self-replenishment of post-mitotic cells results in the need to withstand challenges from numerous stressors during life. Neurons are exposed to oxidative stress due to high oxygen consumption during metabolic activity in the brain. Accordingly, DNA damage can occur and accumulate, resulting in genome instability. In this context, imbalances in brain trace element homeostasis are a matter of concern, especially regarding iron, copper, manganese, zinc, and selenium. Although trace elements are essential for brain physiology, excess and deficient conditions are considered to impair neuronal maintenance. Besides increasing oxidative stress, DNA damage response and repair of oxidative DNA damage are affected by trace elements. Hence, a balanced trace element homeostasis is of particular importance to safeguard neuronal genome integrity and prevent neuronal loss. This review summarises the current state of knowledge on the impact of deficient, as well as excessive iron, copper, manganese, zinc, and selenium levels on neuronal genome stability. Post-mitotic neurons show an increased vulnerability to oxidative stress. Trace element dyshomeostasis impairs neuronal genome maintenance, affecting DNA damage response as well as DNA repair. The review summarises the effects of excessive and deficient trace element levels neuronal genome stability maintenance.
Collapse
Affiliation(s)
- Viktoria K Wandt
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Nicola Winkelbeiner
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Julia Bornhorst
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany.
| | - Barbara Witt
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Stefanie Raschke
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Luise Simon
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Franziska Ebert
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Anna P Kipp
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany.
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
16
|
Shahandeh A, Bui BV, Finkelstein DI, Nguyen CTO. Therapeutic applications of chelating drugs in iron metabolic disorders of the brain and retina. J Neurosci Res 2020; 98:1889-1904. [DOI: 10.1002/jnr.24685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Ali Shahandeh
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences University of Melbourne Parkville VIC Australia
| | - Bang V. Bui
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences University of Melbourne Parkville VIC Australia
| | | | - Christine T. O. Nguyen
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences University of Melbourne Parkville VIC Australia
| |
Collapse
|
17
|
Dharmalingam P, Talakatta G, Mitra J, Wang H, Derry PJ, Nilewski LG, McHugh EA, Fabian RH, Mendoza K, Vasquez V, Hegde PM, Kakadiaris E, Roy T, Boldogh I, Hegde VL, Mitra S, Tour JM, Kent TA, Hegde ML. Pervasive Genomic Damage in Experimental Intracerebral Hemorrhage: Therapeutic Potential of a Mechanistic-Based Carbon Nanoparticle. ACS NANO 2020; 14:2827-2846. [PMID: 32049495 PMCID: PMC7850811 DOI: 10.1021/acsnano.9b05821] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Therapy for intracerebral hemorrhage (ICH) remains elusive, in part dependent on the severity of the hemorrhage itself as well as multiple deleterious effects of blood and its breakdown products such as hemin and free iron. While oxidative injury and genomic damage have been seen following ICH, the details of this injury and implications remain unclear. Here, we discovered that, while free iron produced mostly reactive oxygen species (ROS)-related single-strand DNA breaks, hemin unexpectedly induced rapid and persistent nuclear and mitochondrial double-strand breaks (DSBs) in neuronal and endothelial cell genomes and in mouse brains following experimental ICH comparable to that seen with γ radiation and DNA-complexing chemotherapies. Potentially as a result of persistent DSBs and the DNA damage response, hemin also resulted in senescence phenotype in cultured neurons and endothelial cells. Subsequent resistance to ferroptosis reported in other senescent cell types was also observed here in neurons. While antioxidant therapy prevented senescence, cells became sensitized to ferroptosis. To address both senescence and resistance to ferroptosis, we synthesized a modified, catalytic, and rapidly internalized carbon nanomaterial, poly(ethylene glycol)-conjugated hydrophilic carbon clusters (PEG-HCC) by covalently bonding the iron chelator, deferoxamine (DEF). This multifunctional nanoparticle, DEF-HCC-PEG, protected cells from both senescence and ferroptosis and restored nuclear and mitochondrial genome integrity in vitro and in vivo. We thus describe a potential molecular mechanism of hemin/iron-induced toxicity in ICH that involves a rapid induction of DSBs, senescence, and the consequent resistance to ferroptosis and provide a mechanistic-based combinatorial therapeutic strategy.
Collapse
Affiliation(s)
- Prakash Dharmalingam
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Girish Talakatta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Paul J Derry
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, United States
| | | | - Emily A McHugh
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Roderic H Fabian
- Department of Neurology, Baylor College of Medicine, and Michael E. DeBakey VA Medical Center, Houston, Texas 77030, United States
| | - Kimberly Mendoza
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Velmarini Vasquez
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Pavana M Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Eugenia Kakadiaris
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Trenton Roy
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Venkatesh L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Weill Medical College of Cornell University, New York, New York 10065, United States
| | - James M Tour
- Departments of Chemistry, Computer Science, Materials Science and NanoEngineering, Smalley-Curl Institute and the NanoCarbon Center, Rice University, Houston, Texas 77005, United States
| | - Thomas A Kent
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital and Research Institute, Houston, Texas 77030, United States
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Weill Medical College of Cornell University, New York, New York 10065, United States
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist, Houston, Texas 77030, United States
| |
Collapse
|
18
|
Motawi TK, Sadik NAH, Hamed MA, Ali SA, Khalil WKB, Ahmed YR. Potential therapeutic effects of antagonizing adenosine A2A receptor, curcumin and niacin in rotenone-induced Parkinson’s disease mice model. Mol Cell Biochem 2019; 465:89-102. [PMID: 31820278 DOI: 10.1007/s11010-019-03670-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/30/2019] [Indexed: 01/04/2023]
|
19
|
Hamed MA, Mohammed MA, Aboul Naser AF, Matloub AA, Fayed DB, Ali SA, Khalil WK. Optimization of Curcuminoids Extraction for Evaluation Against Parkinson’s Disease in Rats. JOURNAL OF BIOLOGICALLY ACTIVE PRODUCTS FROM NATURE 2019. [DOI: 10.1080/22311866.2019.1698317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Manal A. Hamed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Mona A. Mohammed
- Medicinal and Aromatic Plants Research Department, National Research Centre, Dokki, Giza, Egypt
| | - Asmaa F. Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Azaa A. Matloub
- Pharmacognosy Department, National Research Centre, Dokki, Giza, Egypt
| | - Dalia B. Fayed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Sanaa A. Ali
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Wagdy K.B. Khalil
- Cell Biology Department, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
20
|
Yumoto S, Kakimi S, Ishikawa A. Colocalization of Aluminum and Iron in Nuclei of Nerve Cells in Brains of Patients with Alzheimer's Disease. J Alzheimers Dis 2019; 65:1267-1281. [PMID: 30149443 PMCID: PMC6218123 DOI: 10.3233/jad-171108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence indicates that metal-induced oxidative stress plays a pivotal role in the pathogenesis of Alzheimer's disease (AD). Recently, the presence of 8-hydroxydeoxyguanosine, a biomarker of oxidative DNA damage, was demonstrated in nuclear DNA (nDNA) in the AD brain. Iron (Fe) is a pro-oxidant metal capable of generating hydroxyl radicals that can oxidize DNA, and aluminum (Al) has been reported to facilitate Fe-mediated oxidation. In the present study, we examined the elements contained in the nuclei of nerve cells in AD brains using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS). Our results demonstrated that Al and Fe were colocalized in the nuclei of nerve cells in the AD brain. Within the nuclei, the highest levels of both Al and Fe were measured in the nucleolus. The SEM-EDS analysis also revealed the colocalization of Al and Fe in the heterochromatin and euchromatin in neuronal nuclei in the AD brain. Notably, the levels of Al and Fe in the nucleus of nerve cells in the AD brain were markedly higher than those in age-matched control brains. We hypothesize that the colocalization of Al and Fe in the nucleus of nerve cells might induce oxidative damage to nDNA and concurrently inhibit the repair of oxidatively damaged nDNA. An imbalance caused by the increase in DNA damage and the decrease in DNA repair activities might lead to the accumulation of unrepaired damaged DNA, eventually causing neurodegeneration and the development of AD.
Collapse
Affiliation(s)
- Sakae Yumoto
- Yumoto Institute of Neurology, Kawadacho, Shinjuku-ku, Tokyo, Japan
| | - Shigeo Kakimi
- Department of Functional Morphology, Nihon University School of Medicine, Ohyaguchiuemachi, Itabashi-ku, Tokyo, Japan
| | - Akira Ishikawa
- Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajousui, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
21
|
Mitra J, Guerrero EN, Hegde PM, Liachko NF, Wang H, Vasquez V, Gao J, Pandey A, Taylor JP, Kraemer BC, Wu P, Boldogh I, Garruto RM, Mitra S, Rao KS, Hegde ML. Motor neuron disease-associated loss of nuclear TDP-43 is linked to DNA double-strand break repair defects. Proc Natl Acad Sci U S A 2019; 116:4696-4705. [PMID: 30770445 PMCID: PMC6410842 DOI: 10.1073/pnas.1818415116] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Genome damage and their defective repair have been etiologically linked to degenerating neurons in many subtypes of amyotrophic lateral sclerosis (ALS) patients; however, the specific mechanisms remain enigmatic. The majority of sporadic ALS patients feature abnormalities in the transactivation response DNA-binding protein of 43 kDa (TDP-43), whose nucleo-cytoplasmic mislocalization is characteristically observed in spinal motor neurons. While emerging evidence suggests involvement of other RNA/DNA binding proteins, like FUS in DNA damage response (DDR), the role of TDP-43 in DDR has not been investigated. Here, we report that TDP-43 is a critical component of the nonhomologous end joining (NHEJ)-mediated DNA double-strand break (DSB) repair pathway. TDP-43 is rapidly recruited at DSB sites to stably interact with DDR and NHEJ factors, specifically acting as a scaffold for the recruitment of break-sealing XRCC4-DNA ligase 4 complex at DSB sites in induced pluripotent stem cell-derived motor neurons. shRNA or CRISPR/Cas9-mediated conditional depletion of TDP-43 markedly increases accumulation of genomic DSBs by impairing NHEJ repair, and thereby, sensitizing neurons to DSB stress. Finally, TDP-43 pathology strongly correlates with DSB repair defects, and damage accumulation in the neuronal genomes of sporadic ALS patients and in Caenorhabditis elegans mutant with TDP-1 loss-of-function. Our findings thus link TDP-43 pathology to impaired DSB repair and persistent DDR signaling in motor neuron disease, and suggest that DSB repair-targeted therapies may ameliorate TDP-43 toxicity-induced genome instability in motor neuron disease.
Collapse
Affiliation(s)
- Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030
| | - Erika N Guerrero
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030
- Center for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama, Republic of Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur 522510, India
| | - Pavana M Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030
| | - Nicole F Liachko
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104
| | - Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030
- Institute of Academic Medicine, Houston Methodist Research Institute, Houston, TX 77030
| | - Velmarini Vasquez
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030
- Center for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama, Republic of Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur 522510, India
| | - Junling Gao
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Arvind Pandey
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
- Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Chevy Chase, MD 20815
| | - Brian C Kraemer
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104
| | - Ping Wu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Ralph M Garruto
- Department of Anthropology, Binghamton University, State University of New York, Binghamton, NY 13902;
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030
- Department of Radiation Oncology, Weill Medical College, New York, NY 10065
| | - K S Rao
- Center for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama, Republic of Panama
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030;
- Institute of Academic Medicine, Houston Methodist Research Institute, Houston, TX 77030
- Department of Radiation Oncology, Weill Medical College, New York, NY 10065
- Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston, TX 77030
| |
Collapse
|
22
|
Bavarsad K, Barreto GE, Hadjzadeh MAR, Sahebkar A. Protective Effects of Curcumin Against Ischemia-Reperfusion Injury in the Nervous System. Mol Neurobiol 2018; 56:1391-1404. [PMID: 29948942 DOI: 10.1007/s12035-018-1169-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/31/2018] [Indexed: 01/28/2023]
Abstract
Ischemia-reperfusion injury (I/R injury) is a common feature of ischemic stroke which occurs when blood supply is restored after a period of ischemia. Although stroke is an important cause of death in the world, effective therapeutic strategies aiming at improving neurological outcomes in this disease are lacking. Various studies have suggested the involvement of different mechanisms in the pathogenesis of I/R injury in the nervous system. These mechanisms include oxidative stress, platelet adhesion and aggregation, leukocyte infiltration, complement activation, blood-brain barrier (BBB) disruption, and mitochondria-mediated mechanisms. Curcumin, an active ingredient of turmeric, can affect all these pathways and exert neuroprotective activity culminating in the amelioration of I/R injury in the nervous system. In this review, we discuss the protective effects of curcumin against I/R injury in the nervous system and highlight the studies that have linked biological functions of curcumin and I/R injury improvement.
Collapse
Affiliation(s)
- Kowsar Bavarsad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Mousa-Al-Reza Hadjzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, P.O. Box: 91779-48564, Mashhad, Iran.
| |
Collapse
|
23
|
Hegde ML, Dutta A, Yang C, Mantha AK, Hegde PM, Pandey A, Sengupta S, Yu Y, Calsou P, Chen D, Lees-Miller SP, Mitra S. Scaffold attachment factor A (SAF-A) and Ku temporally regulate repair of radiation-induced clustered genome lesions. Oncotarget 2018; 7:54430-54444. [PMID: 27303920 PMCID: PMC5342353 DOI: 10.18632/oncotarget.9914] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/26/2016] [Indexed: 12/22/2022] Open
Abstract
Ionizing radiation (IR) induces highly cytotoxic double-strand breaks (DSBs) and also clustered oxidized bases in mammalian genomes. Base excision repair (BER) of bi-stranded oxidized bases could generate additional DSBs as repair intermediates in the vicinity of direct DSBs, leading to loss of DNA fragments. This could be avoided if DSB repair via DNA-PK-mediated nonhomologous end joining (NHEJ) precedes BER initiated by NEIL1 and other DNA glycosylases (DGs). Here we show that DNA-PK subunit Ku inhibits DGs via direct interaction. The scaffold attachment factor (SAF)-A, (also called hnRNP-U), phosphorylated at Ser59 by DNA-PK early after IR treatment, is linked to transient release of chromatin-bound NEIL1, thus preventing BER. SAF-A is subsequently dephosphorylated. Ku inhibition of DGs in vitro is relieved by unphosphorylated SAF-A, but not by the phosphomimetic Asp59 mutant. We thus propose that SAF-A, in concert with Ku, temporally regulates base damage repair in irradiated cell genome.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Houston Methodist Neurological Institute, Houston, TX, USA.,Weill Medical College of Cornell University, Ithaca, NY, USA
| | - Arijit Dutta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX , USA
| | - Chunying Yang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Anil K Mantha
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX , USA.,Center for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Pavana M Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Arvind Pandey
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Shiladitya Sengupta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Weill Medical College of Cornell University, Ithaca, NY, USA
| | - Yaping Yu
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Patrick Calsou
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Université de Toulouse-Université Paul Sabatier, Equipe Labellisée Ligue contre le Cancer, Toulouse, France
| | - David Chen
- UT Southwestern Medical Center, Dallas, TX, USA
| | - Susan P Lees-Miller
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Weill Medical College of Cornell University, Ithaca, NY, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX , USA
| |
Collapse
|
24
|
Wang XS, Zhang ZR, Zhang MM, Sun MX, Wang WW, Xie CL. Neuroprotective properties of curcumin in toxin-base animal models of Parkinson's disease: a systematic experiment literatures review. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:412. [PMID: 28818104 PMCID: PMC5561616 DOI: 10.1186/s12906-017-1922-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/11/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Curcumin (diferuloylmethane), a polyphenol extracted from the plant Curcuma longa, is widely used in Southeast Asia, China and India in food preparation and for medicinal purposes. Meanwhile, the neuroprotective actions of curcumin have been documented for experimental therapy in Parkinson's disease (PD). METHODS In this study, we used a systematic review to comprehensively assess the efficacy of curcumin in experimental PD. Using electronic and manual search for the literatures, we identified studies describing the efficacy of curcumin in animal models of PD. RESULTS We identified 13 studies with a total of 298 animals describing the efficacy of curcumin in animal models of PD. The methodological quality of all preclinical trials is ranged from 2 to 5. The majority of the experiment studies demonstrated that curcumin was more significantly neuroprotection effective than control groups for treating PD. Among them, five studies indicated that curcumin had an anti-inflammatory effect in the PD animal models (p < 0.05). Meanwhile, four studies showed the antioxidant capability of curcumin, by which it protected substantia nigra neurons and improved striatal dopamine levels. Furthermore, two studies in this review displayed that curcumin treatment was also effective in reducing neuronal apoptosis and improving functional outcome in animal models of PD. Most of the preclinical studies demonstrated the positive findings while one study reported that curcumin had no beneficial effects against Mn-induced disruption of hippocampal metal and neurotransmitter homeostasis. CONCLUSIONS The results demonstrated a marked efficacy of curcumin in experimental model of PD, suggesting curcumin probably a candidate neuroprotective drug for human PD patients.
Collapse
Affiliation(s)
- Xin-Shi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| | - Zeng-Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| | - Man-Man Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| | - Miao-Xuan Sun
- The center of rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| | - Wen-Wen Wang
- The center of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325027 China
| | - Cheng-Long Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| |
Collapse
|
25
|
Abstract
Copper is an essential trace metal that is required for several important biological processes, however, an excess of copper can be toxic to cells. Therefore, systemic and cellular copper homeostasis is tightly regulated, but dysregulation of copper homeostasis may occur in disease states, resulting either in copper deficiency or copper overload and toxicity. This chapter will give an overview on the biological roles of copper and of the mechanisms involved in copper uptake, storage, and distribution. In addition, we will describe potential mechanisms of the cellular toxicity of copper and copper oxide nanoparticles. Finally, we will summarize the current knowledge on the connection of copper toxicity with neurodegenerative diseases.
Collapse
Affiliation(s)
- Felix Bulcke
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, Bremen, Germany
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, Bremen, Germany
| | - Ivo Florin Scheiber
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany.
- Center for Environmental Research and Sustainable Technology, Bremen, Germany.
| |
Collapse
|
26
|
|
27
|
Wang H, Dharmalingam P, Vasquez V, Mitra J, Boldogh I, Rao KS, Kent TA, Mitra S, Hegde ML. Chronic oxidative damage together with genome repair deficiency in the neurons is a double whammy for neurodegeneration: Is damage response signaling a potential therapeutic target? Mech Ageing Dev 2016; 161:163-176. [PMID: 27663141 DOI: 10.1016/j.mad.2016.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022]
Abstract
A foremost challenge for the neurons, which are among the most oxygenated cells, is the genome damage caused by chronic exposure to endogenous reactive oxygen species (ROS), formed as cellular respiratory byproducts. Strong metabolic activity associated with high transcriptional levels in these long lived post-mitotic cells render them vulnerable to oxidative genome damage, including DNA strand breaks and mutagenic base lesions. There is growing evidence for the accumulation of unrepaired DNA lesions in the central nervous system (CNS) during accelerated aging and progressive neurodegeneration. Several germ line mutations in DNA repair or DNA damage response (DDR) signaling genes are uniquely manifested in the phenotype of neuronal dysfunction and are etiologically linked to many neurodegenerative disorders. Studies in our lab and elsewhere revealed that pro-oxidant metals, ROS and misfolded amyloidogenic proteins not only contribute to genome damage in CNS, but also impede their repair/DDR signaling leading to persistent damage accumulation, a common feature in sporadic neurodegeneration. Here, we have reviewed recent advances in our understanding of the etiological implications of DNA damage vs. repair imbalance, abnormal DDR signaling in triggering neurodegeneration and potential of DDR as a target for the amelioration of neurodegenerative diseases.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Prakash Dharmalingam
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Velmarini Vasquez
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, Panama; Department of Biotechnology, Acharya Nagarjuna University, Guntur, AP, India; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - K S Rao
- Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, Panama
| | - Thomas A Kent
- Department of Neurology, Baylor College of Medicine and Center for Translational Research on Inflammatory Diseases Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Medical College of Cornell University, New York, USA
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA; Weill Medical College of Cornell University, New York, USA.
| |
Collapse
|
28
|
Hu S, Maiti P, Ma Q, Zuo X, Jones MR, Cole GM, Frautschy SA. Clinical development of curcumin in neurodegenerative disease. Expert Rev Neurother 2016; 15:629-37. [PMID: 26035622 DOI: 10.1586/14737175.2015.1044981] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Curcumin, a polyphenolic antioxidant derived from the turmeric root has undergone extensive preclinical development, showing remarkable efficacy in wound repair, cancer and inflammatory disorders. This review addresses the rationale for its use in neurodegenerative disease, particularly Alzheimer's disease. Curcumin is a pleiotropic molecule, which not only directly binds to and limits aggregation of the β-sheet conformations of amyloid characteristic of many neurodegenerative diseases but also restores homeostasis of the inflammatory system, boosts the heat shock system to enhance clearance of toxic aggregates, scavenges free radicals, chelates iron and induces anti-oxidant response elements. Although curcumin corrects dysregulation of multiple pathways, it may exert many effects via a few molecular targets. Pharmaceutical development of natural compounds like curcumin and synthetic derivatives have strong scientific rationale, but will require overcoming various hurdles including; high cost of trials, concern about profitability and misconceptions about drug specificity, stability, and bioavailability.
Collapse
Affiliation(s)
- Shuxin Hu
- Greater Los Angeles Healthcare System, Veteran's Administration, Geriatric Research Education and Clinical Center, Los Angeles, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Bauer NC, Corbett AH, Doetsch PW. The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res 2015; 43:10083-101. [PMID: 26519467 PMCID: PMC4666366 DOI: 10.1093/nar/gkv1136] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/16/2015] [Indexed: 12/15/2022] Open
Abstract
DNA damage is a natural hazard of life. The most common DNA lesions are base, sugar, and single-strand break damage resulting from oxidation, alkylation, deamination, and spontaneous hydrolysis. If left unrepaired, such lesions can become fixed in the genome as permanent mutations. Thus, evolution has led to the creation of several highly conserved, partially redundant pathways to repair or mitigate the effects of DNA base damage. The biochemical mechanisms of these pathways have been well characterized and the impact of this work was recently highlighted by the selection of Tomas Lindahl, Aziz Sancar and Paul Modrich as the recipients of the 2015 Nobel Prize in Chemistry for their seminal work in defining DNA repair pathways. However, how these repair pathways are regulated and interconnected is still being elucidated. This review focuses on the classical base excision repair and strand incision pathways in eukaryotes, considering both Saccharomyces cerevisiae and humans, and extends to some important questions and challenges facing the field of DNA base damage repair.
Collapse
Affiliation(s)
- Nicholas C Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
30
|
Hegde PM, Dutta A, Sengupta S, Mitra J, Adhikari S, Tomkinson AE, Li GM, Boldogh I, Hazra TK, Mitra S, Hegde ML. The C-terminal Domain (CTD) of Human DNA Glycosylase NEIL1 Is Required for Forming BERosome Repair Complex with DNA Replication Proteins at the Replicating Genome: DOMINANT NEGATIVE FUNCTION OF THE CTD. J Biol Chem 2015; 290:20919-20933. [PMID: 26134572 DOI: 10.1074/jbc.m115.642918] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 12/21/2022] Open
Abstract
The human DNA glycosylase NEIL1 was recently demonstrated to initiate prereplicative base excision repair (BER) of oxidized bases in the replicating genome, thus preventing mutagenic replication. A significant fraction of NEIL1 in cells is present in large cellular complexes containing DNA replication and other repair proteins, as shown by gel filtration. However, how the interaction of NEIL1 affects its recruitment to the replication site for prereplicative repair was not investigated. Here, we show that NEIL1 binarily interacts with the proliferating cell nuclear antigen clamp loader replication factor C, DNA polymerase δ, and DNA ligase I in the absence of DNA via its non-conserved C-terminal domain (CTD); replication factor C interaction results in ∼8-fold stimulation of NEIL1 activity. Disruption of NEIL1 interactions within the BERosome complex, as observed for a NEIL1 deletion mutant (N311) lacking the CTD, not only inhibits complete BER in vitro but also prevents its chromatin association and reduced recruitment at replication foci in S phase cells. This suggests that the interaction of NEIL1 with replication and other BER proteins is required for efficient repair of the replicating genome. Consistently, the CTD polypeptide acts as a dominant negative inhibitor during in vitro repair, and its ectopic expression sensitizes human cells to reactive oxygen species. We conclude that multiple interactions among BER proteins lead to large complexes, which are critical for efficient BER in mammalian cells, and the CTD interaction could be targeted for enhancing drug/radiation sensitivity of tumor cells.
Collapse
Affiliation(s)
- Pavana M Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030
| | - Arijit Dutta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030; Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Shiladitya Sengupta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030
| | - Sanjay Adhikari
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030
| | - Alan E Tomkinson
- Department of Internal Medicine and University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131
| | - Guo-Min Li
- Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Istvan Boldogh
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Tapas K Hazra
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030; Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555; Weill Medical College of Cornell University, New York, New York.
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030; Weill Medical College of Cornell University, New York, New York; Houston Methodist Neurological Institute, Houston, Texas 77030.
| |
Collapse
|
31
|
Panigrahi SK, Hopkins KM, Lieberman HB. Regulation of NEIL1 protein abundance by RAD9 is important for efficient base excision repair. Nucleic Acids Res 2015; 43:4531-46. [PMID: 25873625 PMCID: PMC4482081 DOI: 10.1093/nar/gkv327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/31/2015] [Indexed: 11/21/2022] Open
Abstract
RAD9 participates in DNA damage-induced cell cycle checkpoints and DNA repair. As a member of the RAD9-HUS1-RAD1 (9-1-1) complex, it can sense DNA damage and recruit ATR to damage sites. RAD9 binding can enhance activities of members of different DNA repair pathways, including NEIL1 DNA glycosylase, which initiates base excision repair (BER) by removing damaged DNA bases. Moreover, RAD9 can act independently of 9-1-1 as a gene-specific transcription factor. Herein, we show that mouse Rad9−/− relative to Rad9+/+ embryonic stem (ES) cells have reduced levels of Neil1 protein. Also, human prostate cancer cells, DU145 and PC-3, knocked down for RAD9 demonstrate reduced NEIL1 abundance relative to controls. We found that Rad9 is required for Neil1 protein stability in mouse ES cells, whereas it regulates NEIL1 transcription in the human cells. RAD9 depletion enhances sensitivity to UV, gamma rays and menadione, but ectopic expression of RAD9 or NEIL1 restores resistance. Glycosylase/apurinic lyase activity was reduced in Rad9−/− mouse ES and RAD9 knocked-down human prostate cancer whole cell extracts, relative to controls. Neil1 or Rad9 addition restored this incision activity. Thus, we demonstrate that RAD9 regulates BER by controlling NEIL1 protein levels, albeit by different mechanisms in human prostate cancer versus mouse ES cells.
Collapse
Affiliation(s)
- Sunil K Panigrahi
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Kevin M Hopkins
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Howard B Lieberman
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
32
|
Dixon M, Woodrick J, Gupta S, Karmahapatra SK, Devito S, Vasudevan S, Dakshanamurthy S, Adhikari S, Yenugonda VM, Roy R. Naturally occurring polyphenol, morin hydrate, inhibits enzymatic activity of N-methylpurine DNA glycosylase, a DNA repair enzyme with various roles in human disease. Bioorg Med Chem 2015; 23:1102-11. [PMID: 25650313 DOI: 10.1016/j.bmc.2014.12.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/19/2014] [Accepted: 12/28/2014] [Indexed: 10/24/2022]
Abstract
Interest in the mechanisms of DNA repair pathways, including the base excision repair (BER) pathway specifically, has heightened since these pathways have been shown to modulate important aspects of human disease. Modulation of the expression or activity of a particular BER enzyme, N-methylpurine DNA glycosylase (MPG), has been demonstrated to play a role in carcinogenesis and resistance to chemotherapy as well as neurodegenerative diseases, which has intensified the focus on studying MPG-related mechanisms of repair. A specific small molecule inhibitor for MPG activity would be a valuable biochemical tool for understanding these repair mechanisms. By screening several small molecule chemical libraries, we identified a natural polyphenolic compound, morin hydrate, which inhibits MPG activity specifically (IC50=2.6μM). Detailed mechanism analysis showed that morin hydrate inhibited substrate DNA binding of MPG, and eventually the enzymatic activity of MPG. Computational docking studies with an x-ray derived MPG structure as well as comparison studies with other structurally-related flavonoids offer a rationale for the inhibitory activity of morin hydrate observed. The results of this study suggest that the morin hydrate could be an effective tool for studying MPG function and it is possible that morin hydrate and its derivatives could be utilized in future studies focused on the role of MPG in human disease.
Collapse
Affiliation(s)
- Monica Dixon
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States
| | - Jordan Woodrick
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States
| | - Suhani Gupta
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States
| | - Soumendra Krishna Karmahapatra
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States
| | - Stephen Devito
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States
| | - Sona Vasudevan
- Department of Biochemistry, Georgetown University Medical School, Washington, DC 20057, United States
| | - Sivanesan Dakshanamurthy
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States
| | - Sanjay Adhikari
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States
| | - Venkata M Yenugonda
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States
| | - Rabindra Roy
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States.
| |
Collapse
|
33
|
Dutta A, Yang C, Sengupta S, Mitra S, Hegde ML. New paradigms in the repair of oxidative damage in human genome: mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins. Cell Mol Life Sci 2015; 72:1679-98. [PMID: 25575562 DOI: 10.1007/s00018-014-1820-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 11/30/2022]
Abstract
Oxidized bases in the mammalian genome, which are invariably mutagenic due to their mispairing property, are continuously induced by endogenous reactive oxygen species and more abundantly after oxidative stress. Unlike bulky base adducts induced by UV and other environmental mutagens in the genome that block replicative DNA polymerases, oxidatively damaged bases such as 5-hydroxyuracil, produced by oxidative deamination of cytosine in the template strand, do not block replicative polymerases and thus need to be repaired prior to replication to prevent mutation. Following up our earlier studies, which showed that the Nei endonuclease VIII like 1 (NEIL1) DNA glycosylase, one of the five base excision repair (BER)-initiating enzymes in mammalian cells, has enhanced expression during the S-phase and higher affinity for replication fork-mimicking single-stranded (ss) DNA substrates, we recently provided direct experimental evidence for NEIL1's role in replicating template strand repair. The key requirement for this event, which we named as the 'cow-catcher' mechanism of pre-replicative BER, is NEIL1's non-productive binding (substrate binding without product formation) to the lesion base in ss DNA template to stall DNA synthesis, causing fork regression. Repair of the lesion in reannealed duplex is then carried out by NEIL1 in association with the DNA replication proteins. NEIL1 (and other BER-initiating enzymes) also interact with several accessory and non-canonical proteins including the heterogeneous nuclear ribonucleoprotein U and Y-box-binding protein 1 as well as high mobility group box 1 protein, whose precise roles in BER are still obscure. In this review, we have discussed the recent advances in our understanding of oxidative genome damage repair pathways with particular focus on the pre-replicative template strand repair and the role of scaffold factors like X-ray repairs cross-complementing protein 1 and poly (ADP-ribose) polymerase 1 and other accessory proteins guiding distinct BER sub-pathways.
Collapse
Affiliation(s)
- Arijit Dutta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | | | | | | | | |
Collapse
|
34
|
Thakur S, Sarkar B, Cholia RP, Gautam N, Dhiman M, Mantha AK. APE1/Ref-1 as an emerging therapeutic target for various human diseases: phytochemical modulation of its functions. Exp Mol Med 2014; 46:e106. [PMID: 25033834 PMCID: PMC4119211 DOI: 10.1038/emm.2014.42] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/27/2014] [Accepted: 03/05/2014] [Indexed: 12/12/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme involved in the base excision repair (BER) pathway, which repairs oxidative base damage caused by endogenous and exogenous agents. APE1 acts as a reductive activator of many transcription factors (TFs) and has also been named redox effector factor 1, Ref-1. For example, APE1 activates activator protein-1, nuclear factor kappa B, hypoxia-inducible factor 1α, paired box gene 8, signal transducer activator of transcription 3 and p53, which are involved in apoptosis, inflammation, angiogenesis and survival pathways. APE1/Ref-1 maintains cellular homeostasis (redox) via the activation of TFs that regulate various physiological processes and that crosstalk with redox balancing agents (for example, thioredoxin, catalase and superoxide dismutase) by controlling levels of reactive oxygen and nitrogen species. The efficiency of APE1/Ref-1's function(s) depends on pairwise interaction with participant protein(s), the functions regulated by APE1/Ref-1 include the BER pathway, TFs, energy metabolism, cytoskeletal elements and stress-dependent responses. Thus, APE1/Ref-1 acts as a ‘hub-protein' that controls pathways that are important for cell survival. In this review, we will discuss APE1/Ref-1's versatile nature in various human etiologies, including neurodegeneration, cancer, cardiovascular and other diseases that have been linked with alterations in the expression, subcellular localization and activities of APE/Ref-1. APE1/Ref-1 can be targeted for therapeutic intervention using natural plant products that modulate the expression and functions of APE1/Ref-1. In addition, studies focusing on translational applications based on APE1/Ref-1-mediated therapeutic interventions are discussed.
Collapse
Affiliation(s)
- Shweta Thakur
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Bibekananda Sarkar
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Ravi P Cholia
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Nandini Gautam
- Center for Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab, Punjab, India
| | - Monisha Dhiman
- Center for Genetic Diseases and Molecular Medicine, School of Emerging Life Science Technologies, Central University of Punjab, Punjab, India
| | - Anil K Mantha
- 1] Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India [2] Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
35
|
New perspectives on oxidized genome damage and repair inhibition by pro-oxidant metals in neurological diseases. Biomolecules 2014; 4:678-703. [PMID: 25036887 PMCID: PMC4192668 DOI: 10.3390/biom4030678] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 12/23/2022] Open
Abstract
The primary cause(s) of neuronal death in most cases of neurodegenerative diseases, including Alzheimer's and Parkinson's disease, are still unknown. However, the association of certain etiological factors, e.g., oxidative stress, protein misfolding/aggregation, redox metal accumulation and various types of damage to the genome, to pathological changes in the affected brain region(s) have been consistently observed. While redox metal toxicity received major attention in the last decade, its potential as a therapeutic target is still at a cross-roads, mostly because of the lack of mechanistic understanding of metal dyshomeostasis in affected neurons. Furthermore, previous studies have established the role of metals in causing genome damage, both directly and via the generation of reactive oxygen species (ROS), but little was known about their impact on genome repair. Our recent studies demonstrated that excess levels of iron and copper observed in neurodegenerative disease-affected brain neurons could not only induce genome damage in neurons, but also affect their repair by oxidatively inhibiting NEIL DNA glycosylases, which initiate the repair of oxidized DNA bases. The inhibitory effect was reversed by a combination of metal chelators and reducing agents, which underscore the need for elucidating the molecular basis for the neuronal toxicity of metals in order to develop effective therapeutic approaches. In this review, we have focused on the oxidative genome damage repair pathway as a potential target for reducing pro-oxidant metal toxicity in neurological diseases.
Collapse
|
36
|
Human DNA Glycosylase NEIL1's Interactions with Downstream Repair Proteins Is Critical for Efficient Repair of Oxidized DNA Base Damage and Enhanced Cell Survival. Biomolecules 2014; 2:564-78. [PMID: 23926464 PMCID: PMC3733129 DOI: 10.3390/biom2040564] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
NEIL1 is unique among the oxidatively damaged base repair-initiating DNA glycosylases in the human genome due to its S phase-specific activation and ability to excise substrate base lesions from single-stranded DNA. We recently characterized NEIL1’s specific binding to downstream canonical repair and non-canonical accessory proteins, all of which involve NEIL1’s disordered C-terminal segment as the common interaction domain (CID). This domain is dispensable for NEIL1’s base excision and abasic (AP) lyase activities, but is required for its interactions with other repair proteins. Here, we show that truncated NEIL1 lacking the CID is markedly deficient in initiating in vitro repair of 5-hydroxyuracil (an oxidative deamination product of C) in a plasmid substrate compared to the wild-type NEIL1, thus suggesting a critical role of CID in the coordination of overall repair. Furthermore, while NEIL1 downregulation significantly sensitized human embryonic kidney (HEK) 293 cells to reactive oxygen species (ROS), ectopic wild-type NEIL1, but not the truncated mutant, restored resistance to ROS. These results demonstrate that cell survival and NEIL1-dependent repair of oxidative DNA base damage require interactions among repair proteins, which could be explored as a cancer therapeutic target in order to increase the efficiency of chemo/radiation treatment.
Collapse
|
37
|
Canugovi C, Shamanna RA, Croteau DL, Bohr VA. Base excision DNA repair levels in mitochondrial lysates of Alzheimer's disease. Neurobiol Aging 2014; 35:1293-300. [PMID: 24485507 PMCID: PMC5576885 DOI: 10.1016/j.neurobiolaging.2014.01.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 12/20/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022]
Abstract
Alzheimer's disease (AD) is a senile dementia with increased incidence in older subjects (age >65 years). One of the earliest markers of AD is oxidative DNA damage. Recently, it has been reported that preclinical AD patient brains show elevated levels of oxidative damage in both nuclear and mitochondrial nucleic acids. Moreover, different oxidative lesions in mitochondrial DNA are between 5- and 10-fold higher than in nuclear DNA in both control and AD postmortem brains. We previously showed that there is a significant loss of base excision repair (BER) components in whole tissue extracts of AD and mild cognitive impairment subjects relative to matched control subjects. However, comprehensive analysis of specific steps in BER levels in mitochondrial extracts of AD patient brains is not available. In this study, we mainly investigated various components of BER in mitochondrial extracts of AD and matched control postmortem brain samples. We found that the 5-hydroxyuracil incision and ligase activities are significantly lower in AD brains, whereas the uracil incision, abasic site cleavage, and deoxyribonucleotide triphosphate incorporation activities are normal in these samples.
Collapse
Affiliation(s)
- Chandrika Canugovi
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | | | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
38
|
Hegde ML. Molecular characterization of neuroprotective activities of plant based products could revive their utilization and lead discovery of new drug candidates for brain diseases. J Pharm Bioallied Sci 2014; 6:63-4. [PMID: 24741271 PMCID: PMC3983747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- Muralidhar L. Hegde
- Faculty of Departments of Radiation Oncology, and Neurosciences Houston Methodist Research Institute, An Affiliate of Weill Medical College of Cornell University, Houston, Texas 77030, USA E-mail:
| |
Collapse
|
39
|
Alagoz M, Wells OS, El-Khamisy SF. TDP1 deficiency sensitizes human cells to base damage via distinct topoisomerase I and PARP mechanisms with potential applications for cancer therapy. Nucleic Acids Res 2013; 42:3089-103. [PMID: 24335147 PMCID: PMC3950670 DOI: 10.1093/nar/gkt1260] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Base damage and topoisomerase I (Top1)-linked DNA breaks are abundant forms of endogenous DNA breakage, contributing to hereditary ataxia and underlying the cytotoxicity of a wide range of anti-cancer agents. Despite their frequency, the overlapping mechanisms that repair these forms of DNA breakage are largely unknown. Here, we report that depletion of Tyrosyl DNA phosphodiesterase 1 (TDP1) sensitizes human cells to alkylation damage and the additional depletion of apurinic/apyrimidinic endonuclease I (APE1) confers hypersensitivity above that observed for TDP1 or APE1 depletion alone. Quantification of DNA breaks and clonogenic survival assays confirm a role for TDP1 in response to base damage, independently of APE1. The hypersensitivity to alkylation damage is partly restored by depletion of Top1, illustrating that alkylating agents can trigger cytotoxic Top1-breaks. Although inhibition of PARP activity does not sensitize TDP1-deficient cells to Top1 poisons, it confers increased sensitivity to alkylation damage, highlighting partially overlapping roles for PARP and TDP1 in response to genotoxic challenge. Finally, we demonstrate that cancer cells in which TDP1 is inherently deficient are hypersensitive to alkylation damage and that TDP1 depletion sensitizes glioblastoma-resistant cancer cells to the alkylating agent temozolomide.
Collapse
Affiliation(s)
- Meryem Alagoz
- Kreb's Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK, Genome Damage and Stability Center, University of Sussex, Falmer, Brighton, BN1 9RQ, UK and Center of Genomics, Helmy Institute, Zewail City of Science and technology, Giza, Egypt
| | | | | |
Collapse
|
40
|
A short review on the implications of base excision repair pathway for neurons: relevance to neurodegenerative diseases. Mitochondrion 2013; 16:38-49. [PMID: 24220222 DOI: 10.1016/j.mito.2013.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 12/13/2022]
Abstract
Oxidative DNA damage results from the attack by reactive oxygen and nitrogen species (ROS/RNS) on human genome. This includes base modifications such as oxidized bases, abasic (AP) sites, and single-strand breaks (SSBs), all of which are repaired by the base excision repair (BER) pathway, one among the six known repair pathways. BER-pathway in mammalian cells involves several evolutionarily conserved proteins and is also linked to genome replication and transcription. The BER-pathway enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic endonuclease (APE1), form complexes with downstream repair enzymes via protein-protein and DNA-protein interactions. An emerging concept for BER proteins is their involvement in non-canonical functions associated to RNA metabolism, which is opening new interesting perspectives. Various mechanisms that are underlined in maintaining neuronal cell genome integrity are identified, but are inconclusive in providing protection against oxidative damage in neurodegenerative disorders, main emphasis is given towards the role played by the proteins of BER-pathway that is discussed. In addition, mechanisms of action of BER-pathway in nuclear vs. mitochondria as well as the non-canonical functions are discussed in connection to human neurodegenerative diseases.
Collapse
|
41
|
Prereplicative repair of oxidized bases in the human genome is mediated by NEIL1 DNA glycosylase together with replication proteins. Proc Natl Acad Sci U S A 2013; 110:E3090-9. [PMID: 23898192 DOI: 10.1073/pnas.1304231110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Base oxidation by endogenous and environmentally induced reactive oxygen species preferentially occurs in replicating single-stranded templates in mammalian genomes, warranting prereplicative repair of the mutagenic base lesions. It is not clear how such lesions (which, unlike bulky adducts, do not block replication) are recognized for repair. Furthermore, strand breaks caused by base excision from ssDNA by DNA glycosylases, including Nei-like (NEIL) 1, would generate double-strand breaks during replication, which are not experimentally observed. NEIL1, whose deficiency causes a mutator phenotype and is activated during the S phase, is present in the DNA replication complex isolated from human cells, with enhanced association with DNA in S-phase cells and colocalization with replication foci containing DNA replication proteins. Furthermore, NEIL1 binds to 5-hydroxyuracil, the oxidative deamination product of C, in replication protein A-coated ssDNA template and inhibits DNA synthesis by DNA polymerase δ. We postulate that, upon encountering an oxidized base during replication, NEIL1 initiates prereplicative repair by acting as a "cowcatcher" and preventing nascent chain growth. Regression of the stalled replication fork, possibly mediated by annealing helicases, then allows lesion repair in the reannealed duplex. This model is supported by our observations that NEIL1, whose deficiency slows nascent chain growth in oxidatively stressed cells, is stimulated by replication proteins in vitro. Furthermore, deficiency of the closely related NEIL2 alone does not affect chain elongation, but combined NEIL1/2 deficiency further inhibits DNA replication. These results support a mechanism of NEIL1-mediated prereplicative repair of oxidized bases in the replicating strand, with NEIL2 providing a backup function.
Collapse
|
42
|
Santos RX, Correia SC, Zhu X, Smith MA, Moreira PI, Castellani RJ, Nunomura A, Perry G. Mitochondrial DNA oxidative damage and repair in aging and Alzheimer's disease. Antioxid Redox Signal 2013; 18:2444-57. [PMID: 23216311 PMCID: PMC3671662 DOI: 10.1089/ars.2012.5039] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
SIGNIFICANCE Mitochondria are fundamental to the life and proper functioning of cells. These organelles play a key role in energy production, in maintaining homeostatic levels of second messengers (e.g., reactive oxygen species and calcium), and in the coordination of apoptotic cell death. The role of mitochondria in aging and in pathophysiological processes is constantly being unraveled, and their involvement in neurodegenerative processes, such as Alzheimer's disease (AD), is very well known. RECENT ADVANCES A considerable amount of evidence points to oxidative damage to mitochondrial DNA (mtDNA) as a determinant event that occurs during aging, which may cause or potentiate mitochondrial dysfunction favoring neurodegenerative events. Concomitantly to reactive oxygen species production, an inefficient mitochondrial base excision repair (BER) machinery has also been pointed to favor the accumulation of oxidized bases in mtDNA during aging and AD progression. CRITICAL ISSUES The accumulation of oxidized mtDNA bases during aging increases the risk of sporadic AD, an event that is much less relevant in the familial forms of the disease. This aspect is critical for the interpretation of data arising from tissue of AD patients and animal models of AD, as the major part of animal models rely on mutations in genes associated with familial forms of the disease. FUTURE DIRECTIONS Further investigation is important to unveil the role of mtDNA and BER in aging brain and AD in order to design more effective preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Renato X Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Canugovi C, Misiak M, Ferrarelli LK, Croteau DL, Bohr VA. The role of DNA repair in brain related disease pathology. DNA Repair (Amst) 2013; 12:578-87. [PMID: 23721970 DOI: 10.1016/j.dnarep.2013.04.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oxidative DNA damage is implicated in brain aging, neurodegeneration and neurological diseases. Damage can be created by normal cellular metabolism, which accumulates with age, or by acute cellular stress conditions which create bursts of oxidative damage. Brain cells have a particularly high basal level of metabolic activity and use distinct oxidative damage repair mechanisms to remove oxidative damage from DNA and dNTP pools. Accumulation of this damage in the background of a functional DNA repair response is associated with normal aging, but defective repair in brain cells can contribute to neurological dysfunction. Emerging research strongly associates three common neurodegenerative conditions, Alzheimer's, Parkinson's and stroke, with defects in the ability to repair chronic or acute oxidative damage in neurons. This review explores the current knowledge of the role of oxidative damage repair in preserving brain function and highlights the emerging models and methods being used to advance our knowledge of the pathology of neurodegenerative disease.
Collapse
Affiliation(s)
- Chandrika Canugovi
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
44
|
Hegde ML, Tsutakawa SE, Hegde PM, Holthauzen LMF, Li J, Oezguen N, Hilser VJ, Tainer JA, Mitra S. The disordered C-terminal domain of human DNA glycosylase NEIL1 contributes to its stability via intramolecular interactions. J Mol Biol 2013; 425:2359-71. [PMID: 23542007 DOI: 10.1016/j.jmb.2013.03.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/09/2013] [Accepted: 03/13/2013] [Indexed: 12/22/2022]
Abstract
NEIL1 [Nei (endonuclease VIII)-like protein 1], one of the five mammalian DNA glycosylases that excise oxidized DNA base lesions in the human genome to initiate base excision repair, contains an intrinsically disordered C-terminal domain (CTD; ~100 residues), not conserved in its Escherichia coli prototype Nei. Although dispensable for NEIL1's lesion excision and AP lyase activities, this segment is required for efficient in vivo enzymatic activity and may provide an interaction interface for many of NEIL1's interactions with other base excision repair proteins. Here, we show that the CTD interacts with the folded domain in native NEIL1 containing 389 residues. The CTD is poised for local folding in an ordered structure that is induced in the purified fragment by osmolytes. Furthermore, deletion of the disordered tail lacking both Tyr and Trp residues causes a red shift in NEIL1's intrinsic Trp-specific fluorescence, indicating a more solvent-exposed environment for the Trp residues in the truncated protein, which also exhibits reduced stability compared to the native enzyme. These observations are consistent with stabilization of the native NEIL1 structure via intramolecular, mostly electrostatic, interactions that were disrupted by mutating a positively charged (Lys-rich) cluster of residues (amino acids 355-360) near the C-terminus. Small-angle X-ray scattering (SAXS) analysis confirms the flexibility and dynamic nature of NEIL1's CTD, a feature that may be critical to providing specificity for NEIL1's multiple, functional interactions.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Han S, Auger C, Castonguay Z, Appanna VP, Thomas SC, Appanna VD. The unravelling of metabolic dysfunctions linked to metal-associated diseases by blue native polyacrylamide gel electrophoresis. Anal Bioanal Chem 2012; 405:1821-31. [PMID: 23001308 DOI: 10.1007/s00216-012-6413-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/01/2012] [Accepted: 09/05/2012] [Indexed: 01/18/2023]
Abstract
Gel electrophoresis is routinely used to separate and analyse macromolecules in biological systems. Although many of these electrophoretic techniques necessitate the denaturing of the analytes prior to their analysis, blue native polyacrylamide gel electrophoresis (BN-PAGE) permits the investigation of proteins/enzymes and their supramolecular structures such as the metabolon in native form. This attribute renders this analytical tool conducive to deciphering the metabolic perturbations invoked by metal toxicity. In this review, we elaborate on how BN-PAGE has led to the discovery of the dysfunctional metabolic pathways associated with disorders such as Alzheimer's disease, Parkinson's disease, and obesity that have been observed as a consequence of exposure to various metal toxicants.
Collapse
Affiliation(s)
- Sungwon Han
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Hegde ML, Banerjee S, Hegde PM, Bellot LJ, Hazra TK, Boldogh I, Mitra S. Enhancement of NEIL1 protein-initiated oxidized DNA base excision repair by heterogeneous nuclear ribonucleoprotein U (hnRNP-U) via direct interaction. J Biol Chem 2012; 287:34202-11. [PMID: 22902625 DOI: 10.1074/jbc.m112.384032] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Repair of oxidized base lesions in the human genome, initiated by DNA glycosylases, occurs via the base excision repair pathway using conserved repair and some non-repair proteins. However, the functions of the latter noncanonical proteins in base excision repair are unclear. Here we elucidated the role of heterogeneous nuclear ribonucleoprotein-U (hnRNP-U), identified in the immunoprecipitate of human NEIL1, a major DNA glycosylase responsible for oxidized base repair. hnRNP-U directly interacts with NEIL1 in vitro via the NEIL1 common interacting C-terminal domain, which is dispensable for its enzymatic activity. Their in-cell association increases after oxidative stress. hnRNP-U stimulates the NEIL1 in vitro base excision activity for 5-hydroxyuracil in duplex, bubble, forked, or single-stranded DNA substrate, primarily by enhancing product release. Using eluates from FLAG-NEIL1 immunoprecipitates from human cells, we observed 3-fold enhancement in complete repair activity after oxidant treatment. The lack of such enhancement in hnRNP-U-depleted cells suggests its involvement in repairing enhanced base damage after oxidative stress. The NEIL1 disordered C-terminal region binds to hnRNP-U at equimolar ratio with high affinity (K(d) = ∼54 nm). The interacting regions in hnRNP-U, mapped to both termini, suggest their proximity in the native protein; these are also disordered, based on PONDR (Predictor of Naturally Disordered Regions) prediction and circular dichroism spectra. Finally, depletion of hnRNP-U and NEIL1 epistatically sensitized human cells at low oxidative genome damage, suggesting that the hnRNP-U protection of cells after oxidative stress is largely due to enhancement of NEIL1-mediated repair.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555-1079, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Hegde ML, Mantha AK, Hazra TK, Bhakat KK, Mitra S, Szczesny B. Oxidative genome damage and its repair: implications in aging and neurodegenerative diseases. Mech Ageing Dev 2012; 133:157-68. [PMID: 22313689 DOI: 10.1016/j.mad.2012.01.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 01/03/2012] [Accepted: 01/13/2012] [Indexed: 01/19/2023]
Abstract
Reactive oxygen species (ROS), generated endogenously during respiration or exogenously by genotoxic agents, induce oxidized bases and single-strand breaks (SSBs) in DNA that are repaired via the base excision/SSB repair (BER/SSBR) pathway in both the nucleus and mitochondria. Tightly regulated BER/SSBR with multiple sub-pathways is highly complex, and is linked to the replication and transcription. The repair-initiating DNA glycosylases (DGs) or AP-endonuclease (APE1) control the sub-pathway by stably interacting with downstream proteins usually via their common interacting domain (CID). A nonconserved CID with disordered structure usually located at one of the termini includes the sequences for covalent modifications and/or organelle targeting. While the DGs are individually dispensable, the SSBR-initiating APE1 and polynucleotide kinase 3' phosphatase (PNKP) are essential. BER/SSBR of mammalian nuclear and mitochondrial genomes share the same early enzymes. Accumulation of oxidative damage in nuclear and mitochondrial genomes has been implicated in aging and various neurological disorders. While defects in BER/SSBR proteins have been linked to hereditary neurodegenerative diseases, our recent studies implicated transition metal-induced inhibition of NEIL family DGs in sporadic diseases. This review focuses on the recent advances in repair of oxidatively damages in mammalian genomes and their linkage to aging and neurological disorders.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1079, USA
| | | | | | | | | | | |
Collapse
|
48
|
Santos RX, Correia SC, Zhu X, Lee HG, Petersen RB, Nunomura A, Smith MA, Perry G, Moreira PI. Nuclear and mitochondrial DNA oxidation in Alzheimer's disease. Free Radic Res 2012; 46:565-76. [DOI: 10.3109/10715762.2011.648188] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Hegde ML, Izumi T, Mitra S. Oxidized base damage and single-strand break repair in mammalian genomes: role of disordered regions and posttranslational modifications in early enzymes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:123-53. [PMID: 22749145 DOI: 10.1016/b978-0-12-387665-2.00006-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oxidative genome damage induced by reactive oxygen species includes oxidized bases, abasic (AP) sites, and single-strand breaks, all of which are repaired via the evolutionarily conserved base excision repair/single-strand break repair (BER/SSBR) pathway. BER/SSBR in mammalian cells is complex, with preferred and backup sub-pathways, and is linked to genome replication and transcription. The early BER/SSBR enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic endonuclease 1 (APE1), form complexes with downstream repair (and other noncanonical) proteins via pairwise interactions. Furthermore, a unique feature of mammalian early BER/SSBR enzymes is the presence of a disordered terminal extension that is absent in their Escherichia coli prototypes. These nonconserved segments usually contain organelle-targeting signals, common interaction interfaces, and sites of posttranslational modifications that may be involved in regulating their repair function including lesion scanning. Finally, the linkage of BER/SSBR deficiency to cancer, aging, and human neurodegenerative diseases, and therapeutic targeting of BER/SSBR are discussed.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | |
Collapse
|
50
|
Mandal SM, Hegde ML, Chatterjee A, Hegde PM, Szczesny B, Banerjee D, Boldogh I, Gao R, Falkenberg M, Gustafsson CM, Sarkar PS, Hazra TK. Role of human DNA glycosylase Nei-like 2 (NEIL2) and single strand break repair protein polynucleotide kinase 3'-phosphatase in maintenance of mitochondrial genome. J Biol Chem 2011; 287:2819-29. [PMID: 22130663 DOI: 10.1074/jbc.m111.272179] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The repair of reactive oxygen species-induced base lesions and single strand breaks (SSBs) in the nuclear genome via the base excision (BER) and SSB repair (SSBR) pathways, respectively, is well characterize, and important for maintaining genomic integrity. However, the role of mitochondrial (mt) BER and SSBR proteins in mt genome maintenance is not completely clear. Here we show the presence of the oxidized base-specific DNA glycosylase Nei-like 2 (NEIL2) and the DNA end-processing enzyme polynucleotide kinase 3'-phosphatase (PNKP) in purified human mitochondrial extracts (MEs). Confocal microscopy revealed co-localization of PNKP and NEIL2 with the mitochondrion-specific protein cytochrome c oxidase subunit 2 (MT-CO2). Further, chromatin immunoprecipitation analysis showed association of NEIL2 and PNKP with the mitochondrial genes MT-CO2 and MT-CO3 (cytochrome c oxidase subunit 3); importantly, both enzymes also associated with the mitochondrion-specific DNA polymerase γ. In cell association of NEIL2 and PNKP with polymerase γ was further confirmed by proximity ligation assays. PNKP-depleted ME showed a significant decrease in both BER and SSBR activities, and PNKP was found to be the major 3'-phosphatase in human ME. Furthermore, individual depletion of NEIL2 and PNKP in human HEK293 cells caused increased levels of oxidized bases and SSBs in the mt genome, respectively. Taken together, these studies demonstrate the critical role of NEIL2 and PNKP in maintenance of the mammalian mitochondrial genome.
Collapse
Affiliation(s)
- Santi M Mandal
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|