1
|
Bayer-Császár E, Jörg A, Härtel B, Brennicke A, Takenaka M. The Gating Domain of MEF28 Is Essential for Editing Two Contiguous Cytidines in nad2 mRNA in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2024; 65:590-601. [PMID: 37530742 DOI: 10.1093/pcp/pcad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
In plant organelles, each C-to-U RNA-editing site is specifically recognized by pentatricopeptide repeat (PPR) proteins with E1-E2, E1-E2-E+ or E1-E2-DYW domain extensions at the C-terminus. The distance between the PPR domain-binding site and the RNA-editing site is usually fixed at four bases, increasing the specificity of target-site recognition in this system. We here report, in contrast to the general case, on MEF28, which edits two adjacent mitochondrial sites, nad2-89 and nad2-90. When the sDYW domain of MEF28 was replaced with one derived from MEF11 or CRR22, the ability to edit downstream sites was lost, suggesting that the DYW domain of MEF28 provides unique target flexibility for two continuous cytidines. By contrast, substitutions of the entire E1-E2-DYW domains by MEF19E1-E2, SLO2E1-E2-E+ or CRR22E1-E2-E+ target both nad2 sites. In these cases, access to the contiguous sites in the chimeric PPR proteins is likely to be provided by the trans-associated DYW1-like proteins via the replaced E1-E2 or E1-E2-E+ domains. Furthermore, we demonstrated that the gating domain of MEF28 plays an important role in specific target-site recognition of the DYW domain. This finding suggests that the DYW domain and its internal gating domain fine-tune the specificity of the target site, which is valuable information for designing specific synthetic RNA-editing tools based on plant RNA-editing factors.
Collapse
Affiliation(s)
| | - Anja Jörg
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89069, Germany
| | - Barbara Härtel
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89069, Germany
| | - Axel Brennicke
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89069, Germany
| | - Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
2
|
Nagle MF, Yuan J, Kaur D, Ma C, Peremyslova E, Jiang Y, Goralogia GS, Magnuson A, Li JY, Muchero W, Fuxin L, Strauss SH. Genome-wide association study and network analysis of in vitro transformation in Populus trichocarpa support key roles of diverse phytohormone pathways and cross talk. THE NEW PHYTOLOGIST 2024. [PMID: 38650352 DOI: 10.1111/nph.19737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
Wide variation in amenability to transformation and regeneration (TR) among many plant species and genotypes presents a challenge to the use of genetic engineering in research and breeding. To help understand the causes of this variation, we performed association mapping and network analysis using a population of 1204 wild trees of Populus trichocarpa (black cottonwood). To enable precise and high-throughput phenotyping of callus and shoot TR, we developed a computer vision system that cross-referenced complementary red, green, and blue (RGB) and fluorescent-hyperspectral images. We performed association mapping using single-marker and combined variant methods, followed by statistical tests for epistasis and integration of published multi-omic datasets to identify likely regulatory hubs. We report 409 candidate genes implicated by associations within 5 kb of coding sequences, and epistasis tests implicated 81 of these candidate genes as regulators of one another. Gene ontology terms related to protein-protein interactions and transcriptional regulation are overrepresented, among others. In addition to auxin and cytokinin pathways long established as critical to TR, our results highlight the importance of stress and wounding pathways. Potential regulatory hubs of signaling within and across these pathways include GROWTH REGULATORY FACTOR 1 (GRF1), PHOSPHATIDYLINOSITOL 4-KINASE β1 (PI-4Kβ1), and OBF-BINDING PROTEIN 1 (OBP1).
Collapse
Affiliation(s)
- Michael F Nagle
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Jialin Yuan
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Damanpreet Kaur
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Cathleen Ma
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Ekaterina Peremyslova
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Yuan Jiang
- Statistics Department, Oregon State University, Corvallis, OR, 97331, USA
| | - Greg S Goralogia
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Anna Magnuson
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Jia Yi Li
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, 37996, USA
| | - Li Fuxin
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Steven H Strauss
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
3
|
Xu M, Zhang X, Cao J, Liu J, He Y, Guan Q, Tian X, Tang J, Li X, Ren D, Bu Q, Wang Z. OsPGL3A encodes a DYW-type pentatricopeptide repeat protein involved in chloroplast RNA processing and regulated chloroplast development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:29. [PMID: 38549701 PMCID: PMC10965880 DOI: 10.1007/s11032-024-01468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/19/2024] [Indexed: 04/24/2024]
Abstract
The chloroplast serves as the primary site of photosynthesis, and its development plays a crucial role in regulating plant growth and morphogenesis. The Pentatricopeptide Repeat Sequence (PPR) proteins constitute a vast protein family that function in the post-transcriptional modification of RNA within plant organelles. In this study, we characterized mutant of rice with pale green leaves (pgl3a). The chlorophyll content of pgl3a at the seedling stage was significantly reduced compared to the wild type (WT). Transmission electron microscopy (TEM) and quantitative PCR analysis revealed that pgl3a exhibited aberrant chloroplast development compared to the wild type (WT), accompanied by significant alterations in gene expression levels associated with chloroplast development and photosynthesis. The Mutmap analysis revealed that a single base deletionin the coding region of Os03g0136700 in pgl3a. By employing CRISPR/Cas9 mediated gene editing, two homozygous cr-pgl3a mutants were generated and exhibited a similar phenotype to pgl3a, thereby confirming that Os03g0136700 was responsible for pgl3a. Consequently, it was designated as OsPGL3A. OsPGL3A belongs to the DYW-type PPR protein family and is localized in chloroplasts. Furthermore, we demonstrated that the RNA editing efficiency of rps8-182 and rpoC2-4106, and the splicing efficiency of ycf3-1 were significantly decreased in pgl3a mutants compared to WT. Collectively, these results indicate that OsPGL3A plays a crucial role in chloroplast development by regulating the editing and splicing of chloroplast genes in rice. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01468-7.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 Heilongjiang China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xinying Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030 Heilongjiang China
| | - Jinzhe Cao
- Key Laboratory of the Ministry of Education for Ecological Restoration of Saline Vegetation, College of Life Sciences, Northeast Forestry University, Harbin, 150040 Heilongjiang China
| | - Jiali Liu
- Key Laboratory of the Ministry of Education for Ecological Restoration of Saline Vegetation, College of Life Sciences, Northeast Forestry University, Harbin, 150040 Heilongjiang China
| | - Yiyuan He
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 Heilongjiang China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qingjie Guan
- Key Laboratory of the Ministry of Education for Ecological Restoration of Saline Vegetation, College of Life Sciences, Northeast Forestry University, Harbin, 150040 Heilongjiang China
| | - Xiaojie Tian
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 Heilongjiang China
| | - Jiaqi Tang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 Heilongjiang China
| | - Xiufeng Li
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 Heilongjiang China
| | - Deyong Ren
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006 People’s Republic of China
| | - Qingyun Bu
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 Heilongjiang China
| | - Zhenyu Wang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 Heilongjiang China
| |
Collapse
|
4
|
Yapa MM, Doroodian P, Gao Z, Yu P, Hua Z. MORF2-mediated plastidial retrograde signaling is involved in stress response and skotomorphogenesis beyond RNA editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1146922. [PMID: 37056496 PMCID: PMC10086144 DOI: 10.3389/fpls.2023.1146922] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Retrograde signaling modulates the expression of nuclear genome-encoded organelle proteins to adjust organelle function in response to environmental cues. MULTIPLE ORGANELLAR RNA EDITING FACTOR 2 (MORF2) was initially recognized as a plastidial RNA-editing factor but recently shown to interact with GUN1. Given the central role of GUN1 in chloroplast retrograde signaling and the unviable phenotype of morf2 mutants that is inconsistent with many viable mutants involved in RNA editing, we hypothesized that MORF2 has functions either dosage dependent or beyond RNA editing. Using an inducible Clustered Interspaced Short Palindromic Repeat interference (iCRISPRi) approach, we were able to reduce the MORF2 transcripts in a controlled manner. In addition to MORF2-dosage dependent RNA-editing errors, we discovered that reducing MORF2 by iCRISPRi stimulated the expression of stress responsive genes, triggered plastidial retrograde signaling, repressed ethylene signaling and skotomorphogenesis, and increased accumulation of hydrogen peroxide. These findings along with previous discoveries suggest that MORF2 is an effective regulator involved in plastidial metabolic pathways whose reduction can readily activate multiple retrograde signaling molecules possibly involving reactive oxygen species to adjust plant growth. In addition, our newly developed iCRISPRi approach provided a novel genetic tool for quantitative reverse genetics studies on hub genes in plants.
Collapse
Affiliation(s)
- Madhura M. Yapa
- Environmental and Plant Biology Department, Ohio University, Athens, OH, United States
| | - Paymon Doroodian
- Environmental and Plant Biology Department, Ohio University, Athens, OH, United States
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH, United States
| | - Zhenyu Gao
- Environmental and Plant Biology Department, Ohio University, Athens, OH, United States
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Peifeng Yu
- Environmental and Plant Biology Department, Ohio University, Athens, OH, United States
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH, United States
| | - Zhihua Hua
- Environmental and Plant Biology Department, Ohio University, Athens, OH, United States
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH, United States
| |
Collapse
|
5
|
Maeda A, Takenaka S, Wang T, Frink B, Shikanai T, Takenaka M. DYW deaminase domain has a distinct preference for neighboring nucleotides of the target RNA editing sites. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:756-767. [PMID: 35652245 DOI: 10.1111/tpj.15850] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
C-to-U RNA editing sites in plant organelles show a strong bias for neighboring nucleotides. The nucleotide upstream of the target cytidine is typically C or U, whereas A and G are less common and rare, respectively. In pentatricopeptide repeat (PPR)-type RNA editing factors, the PPR domain specifically binds to the 5' sequence of target cytidines, whereas the DYW domain catalyzes the C-to-U deamination. We comprehensively analyzed the effects of neighboring nucleotides of the target cytidines using an Escherichia coli orthogonal system. Physcomitrium PPR56 efficiently edited target cytidines when the nucleotide upstream was U or C, whereas it barely edited when the position was G or the nucleotide downstream was C. This preference pattern, which corresponds well with the observed nucleotide bias for neighboring nucleotides in plant organelles, was altered when the DYW domain of OTP86 or DYW1 was adopted. The PPR56 chimeric proteins edited the target sites even when the -1 position was G. Our results suggest that the DYW domain possesses a distinct preference for the neighboring nucleotides of the target sites, thus contributing to target selection in addition to the existing selection determined by the PPR domain.
Collapse
Affiliation(s)
- Ayako Maeda
- Department of Botany Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Sachi Takenaka
- Department of Botany Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tenghua Wang
- Department of Botany Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Brody Frink
- Department of Botany Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshiharu Shikanai
- Department of Botany Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Mizuki Takenaka
- Department of Botany Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
6
|
Small ID, Schallenberg-Rüdinger M, Takenaka M, Mireau H, Ostersetzer-Biran O. Plant organellar RNA editing: what 30 years of research has revealed. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1040-1056. [PMID: 31630458 DOI: 10.1111/tpj.14578] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 05/21/2023]
Abstract
The central dogma in biology defines the flow of genetic information from DNA to RNA to protein. Accordingly, RNA molecules generally accurately follow the sequences of the genes from which they are transcribed. This rule is transgressed by RNA editing, which creates RNA products that differ from their DNA templates. Analyses of the RNA landscapes of terrestrial plants have indicated that RNA editing (in the form of C-U base transitions) is highly prevalent within organelles (that is, mitochondria and chloroplasts). Numerous C→U conversions (and in some plants also U→C) alter the coding sequences of many of the organellar transcripts and can also produce translatable mRNAs by creating AUG start sites or eliminating premature stop codons, or affect the RNA structure, influence splicing and alter the stability of RNAs. RNA-binding proteins are at the heart of post-transcriptional RNA expression. The C-to-U RNA editing process in plant mitochondria involves numerous nuclear-encoded factors, many of which have been identified as pentatricopeptide repeat (PPR) proteins that target editing sites in a sequence-specific manner. In this review we report on major discoveries on RNA editing in plant organelles, since it was first documented 30 years ago.
Collapse
Affiliation(s)
- Ian D Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abt. Molekulare Evolution, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| |
Collapse
|
7
|
The Analysis of the Editing Defects in the dyw2 Mutant Provides New Clues for the Prediction of RNA Targets of Arabidopsis E+-Class PPR Proteins. PLANTS 2020; 9:plants9020280. [PMID: 32098170 PMCID: PMC7076377 DOI: 10.3390/plants9020280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/02/2023]
Abstract
C to U editing is one of the post-transcriptional steps which are required for the proper expression of chloroplast and mitochondrial genes in plants. It depends on several proteins acting together which include the PLS-class pentatricopeptide repeat proteins (PPR). DYW2 was recently shown to be required for the editing of many sites in both organelles. In particular almost all the sites associated with the E+ subfamily of PPR proteins are depending on DYW2, suggesting that DYW2 is required for the function of E+-type PPR proteins. Here we strengthened this link by identifying 16 major editing sites controlled by 3 PPR proteins: OTP90, a DYW-type PPR and PGN and MEF37, 2 E+-type PPR proteins. A re-analysis of the DYW2 editotype showed that the 49 sites known to be associated with the 18 characterized E+-type PPR proteins all depend on DYW2. Considering only the 288 DYW2-dependent editing sites as potential E+-type PPR sites, instead of the 795 known editing sites, improves the performances of binding predictions systems based on the PPR code for E+-type PPR proteins. However, it does not compensate for poor binding predictions.
Collapse
|
8
|
Takenaka M, Jörg A, Burger M, Haag S. RNA editing mutants as surrogates for mitochondrial SNP mutants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:310-321. [PMID: 30599308 DOI: 10.1016/j.plaphy.2018.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
In terrestrial plants, RNA editing converts specific cytidines to uridines in mitochondrial and plastidic transcripts. Most of these events appear to be important for proper function of organellar encoded genes, since translated proteins from edited mRNAs show higher similarity with evolutionary conserved polypeptide sequences. So far about 100 nuclear encoded proteins have been characterized as RNA editing factors in plant organelles. Respective RNA editing mutants reduce or lose editing activity at different sites and display various macroscopic phenotypes from pale or albino in the case of chloroplasts to growth retardation or even embryonic lethality. Therefore, RNA editing mutants can be a useful resource of surrogate mutants for organellar encoded genes, especially for mitochondrially encoded genes that it is so far unfeasible to manipulate. However, connections between RNA editing defects and observed phenotypes in the mutants are often hard to elucidate, since RNA editing factors often target multiple RNA sites in different genes simultaneously. In this review article, we summarize the physiological aspects of respective RNA editing mutants and discuss them as surrogate mutants for functional analysis of mitochondrially encoded genes.
Collapse
Affiliation(s)
- Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Anja Jörg
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | - Matthias Burger
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | - Sascha Haag
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| |
Collapse
|
9
|
Li XL, Huang WL, Yang HH, Jiang RC, Sun F, Wang HC, Zhao J, Xu CH, Tan BC. EMP18 functions in mitochondrial atp6 and cox2 transcript editing and is essential to seed development in maize. THE NEW PHYTOLOGIST 2019; 221:896-907. [PMID: 30168136 DOI: 10.1111/nph.15425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/02/2018] [Indexed: 05/02/2023]
Abstract
RNA editing plays an important role in organellar gene expression in plants, and pentatricopeptide repeat (PPR) proteins are involved in this function. Because of its large family size, many PPR proteins are not known for their function and roles in plant growth and development. Through genetic and molecular analyses of the empty pericarp18 (emp18) mutant in maize (Zea mays), we cloned the Emp18 gene, revealed its molecular function, and defined its role in the mitochondrial complex assembly and seed development. Emp18 encodes a mitochondrial-localized DYW-PPR protein. Null mutation of Emp18 arrests embryo and endosperm development at an early stage in maize, resulting in embryo lethality. Mutants are deficient in the cytidine (C)-to-uridine (U) editing at atp6-635 and cox2-449, which converts a Leu to Pro in ATP6 and a Met to Thr in Cox2. The atp6 gene encodes the subunit a of F1 Fo -ATPase. The Leu to Pro alteration disrupts an α-helix of subunit a, resulting in a dramatic reduction in assembly and activity of F1 Fo -ATPase holoenzyme and an accumulation of free F1 -subcomplex. These results demonstrate that EMP18 functions in the C-to-U editing of atp6 and cox2, and is essential to mitochondrial biogenesis and seed development in maize.
Collapse
Affiliation(s)
- Xiu-Lan Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Wen-Long Huang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Huan-Huan Yang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Rui-Cheng Jiang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Feng Sun
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Hong-Chun Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Jiao Zhao
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Chun-Hui Xu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| |
Collapse
|
10
|
Xiao H, Zhang Q, Qin X, Xu Y, Ni C, Huang J, Zhu L, Zhong F, Liu W, Yao G, Zhu Y, Hu J. Rice PPS1 encodes a DYW motif-containing pentatricopeptide repeat protein required for five consecutive RNA-editing sites of nad3 in mitochondria. THE NEW PHYTOLOGIST 2018; 220:878-892. [PMID: 30019754 DOI: 10.1111/nph.15347] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/09/2018] [Indexed: 05/02/2023]
Abstract
The pentatricopeptide repeat (PPR) protein family is a large family characterized by tandem arrays of a degenerate 35-amino-acid motif whose members function as important regulators of organelle gene expression at the post-transcriptional level. Despite the roles of PPRs in RNA editing in organelles, their editing activities and the underlying mechanism remain obscure. Here, we show that a novel DYW motif-containing PPR protein, PPS1, is associated with five conserved RNA-editing sites of nad3 located in close proximity to each other in mitochondria, all of which involve conversion from proline to leucine in rice. Both pps1 RNAi and heterozygous plants are characterized by delayed development and partial pollen sterility at vegetative stages and reproductive stage. RNA electrophoresis mobility shift assays (REMSAs) and reciprocal competition assays using different versions of nad3 probes confirm that PPS1 can bind to cis-elements near the five affected sites, which is distinct from the existing mode of PPR-RNA binding because of the continuity of the editing sites. Loss of editing at nad3 in pps1 reduces the activity of several complexes in the mitochondrial electron transport chain and affects mitochondrial morphology. Taken together, our results indicate that PPS1 is required for specific editing sites in nad3 in rice.
Collapse
Affiliation(s)
- Haijun Xiao
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Qiannan Zhang
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xiaojian Qin
- Chongqing Key Laboratory of Molecular Biology of Plants Environmental Adaptations, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, Chongqing, China
| | - Yanghong Xu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Chenzi Ni
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Jishuai Huang
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Linlin Zhu
- No.16 Middle School of Zhengzhou, Zheng Zhou, 450000, Henan, China
| | - Feiya Zhong
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Wei Liu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Guoxin Yao
- School of Life and Science Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Jun Hu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| |
Collapse
|
11
|
Mansilla N, Racca S, Gras DE, Gonzalez DH, Welchen E. The Complexity of Mitochondrial Complex IV: An Update of Cytochrome c Oxidase Biogenesis in Plants. Int J Mol Sci 2018; 19:ijms19030662. [PMID: 29495437 PMCID: PMC5877523 DOI: 10.3390/ijms19030662] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial respiration is an energy producing process that involves the coordinated action of several protein complexes embedded in the inner membrane to finally produce ATP. Complex IV or Cytochrome c Oxidase (COX) is the last electron acceptor of the respiratory chain, involved in the reduction of O2 to H2O. COX is a multimeric complex formed by multiple structural subunits encoded in two different genomes, prosthetic groups (heme a and heme a3), and metallic centers (CuA and CuB). Tens of accessory proteins are required for mitochondrial RNA processing, synthesis and delivery of prosthetic groups and metallic centers, and for the final assembly of subunits to build a functional complex. In this review, we perform a comparative analysis of COX composition and biogenesis factors in yeast, mammals and plants. We also describe possible external and internal factors controlling the expression of structural proteins and assembly factors at the transcriptional and post-translational levels, and the effect of deficiencies in different steps of COX biogenesis to infer the role of COX in different aspects of plant development. We conclude that COX assembly in plants has conserved and specific features, probably due to the incorporation of a different set of subunits during evolution.
Collapse
Affiliation(s)
- Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| | - Sofia Racca
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| | - Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| |
Collapse
|
12
|
Hassani D, Khalid M, Bilal M, Zhang YD, Huang D. Pentatricopeptide Repeat-directed RNA Editing and Their Biomedical Applications. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.762.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Bayer-Császár E, Haag S, Jörg A, Glass F, Härtel B, Obata T, Meyer EH, Brennicke A, Takenaka M. The conserved domain in MORF proteins has distinct affinities to the PPR and E elements in PPR RNA editing factors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:813-828. [PMID: 28549935 DOI: 10.1016/j.bbagrm.2017.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/11/2017] [Accepted: 05/14/2017] [Indexed: 11/15/2022]
Abstract
In plant organelles specific nucleotide motifs at C to U RNA editing sites are recognized by the PLS-class of pentatricopeptide repeat (PPR) proteins, which are additionally characterized by a C-terminal E domain. The PPR elements bind the nucleotides in the target RNA, while the function of the E domain has remained unknown. At most sites RNA editing also requires multiple organellar RNA editing factor (MORF) proteins. To understand how these two types of proteins are involved in RNA editing complexes, we systematically analyzed their protein-protein interactions. In vivo pull-down and yeast two-hybrid assays show that MORF proteins connect with selected PPR proteins. In a loss of function mutant of MORF1, a single amino acid alteration in the conserved MORF domain abrogates interactions with many PLS-class PPR proteins, implying the requirement of direct interaction to PPR proteins for the RNA editing function of MORF1. Subfragment analyses show that predominantly the N-terminal/central regions of the MORF domain in MORF1 and MORF3 bind the PPR proteins. Within the PPR proteins, the E domains in addition to PPR elements contact MORF proteins. In chimeric PPR proteins, different E domains alter the specificity of the interaction with MORF proteins. The selective interactions between E domain containing PPR and MORF proteins suggest that the E domains and MORF proteins play a key role for specific protein complexes to assemble at different RNA editing sites.
Collapse
Affiliation(s)
| | - Sascha Haag
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany
| | - Anja Jörg
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany
| | | | | | - Toshihiro Obata
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam, Golm, Germany
| | - Etienne H Meyer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam, Golm, Germany
| | | | | |
Collapse
|
14
|
Chen X, Feng F, Qi W, Xu L, Yao D, Wang Q, Song R. Dek35 Encodes a PPR Protein that Affects cis-Splicing of Mitochondrial nad4 Intron 1 and Seed Development in Maize. MOLECULAR PLANT 2017; 10:427-441. [PMID: 27596292 DOI: 10.1016/j.molp.2016.08.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/19/2016] [Accepted: 08/26/2016] [Indexed: 05/20/2023]
Abstract
In higher plants, the splicing of organelle-encoded mRNA involves a complex collaboration with nuclear-encoded proteins. Pentatricopeptide repeat (PPR) proteins have been implicated in these RNA-protein interactions. In this study, we performed the cloning and functional characterization of maize Defective kernel 35 (Dek35). The dek35-ref mutant is a lethal-seed mutant with developmental deficiency. Dek35 was cloned through Mutator tag isolation and further confirmed by four additional independent mutant alleles. Dek35 encodes an P-type PPR protein that targets the mitochondria. The dek35 mutation causes significant reduction in the accumulation of DEK35 proteins and reduced splicing efficiency of mitochondrial nad4 intron 1. Analysis of mitochondrial complex in dek35 immature seeds indicated severe deficiency in the complex I assembly and NADH dehydrogenase activity. Transcriptome analysis of dek35 endosperm revealed enhanced expression of genes involved in the alternative respiratory pathway and extensive differentially expressed genes related to mitochondrial function and activity. Collectively, these results indicate that Dek35 encodes an PPR protein that affects the cis-splicing of mitochondrial nad4 intron 1 and is required for mitochondrial function and seed development.
Collapse
Affiliation(s)
- Xinze Chen
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Fan Feng
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China; Coordinated Crop Biology Research Center (CBRC), Beijing 100193, China
| | - Liming Xu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Dongsheng Yao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qun Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China; National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China; Coordinated Crop Biology Research Center (CBRC), Beijing 100193, China.
| |
Collapse
|
15
|
Schallenberg-Rüdinger M, Oldenkott B, Hiss M, Trinh PL, Knoop V, Rensing SA. A Single-Target Mitochondrial RNA Editing Factor of Funaria hygrometrica Can Fully Reconstitute RNA Editing at Two Sites in Physcomitrella patens. PLANT & CELL PHYSIOLOGY 2017; 58:496-507. [PMID: 28394399 DOI: 10.1093/pcp/pcw229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/21/2016] [Indexed: 05/26/2023]
Abstract
Nuclear-encoded pentatricopeptide repeat (PPR) proteins are key factors for site-specific RNA editing, converting cytidines into uridines in plant mitochondria and chloroplasts. All editing factors in the model moss Physcomitrella patens have a C-terminal DYW domain with similarity to cytidine deaminase. However, numerous editing factors in flowering plants lack such a terminal DYW domain, questioning its immediate role in the pyrimidine base conversion process. Here we further investigate the Physcomitrella DYW-type PPR protein PPR_78, responsible for mitochondrial editing sites cox1eU755SL and rps14eU137SL. Complementation assays with truncated proteins demonstrate that the DYW domain is essential for full PPR_78 editing functionality. The DYW domain can be replaced, however, with its counterpart from another editing factor, PPR_79. The PPR_78 ortholog of the related moss Funaria hygrometrica fully complements the Physcomitrella mutant for editing at both sites, although the editing site in rps14 is lacking in Funaria. Editing factor orthologs in different taxa may thus retain editing capacity for multiple sites despite the absence of editing requirement.
Collapse
Affiliation(s)
- Mareike Schallenberg-Rüdinger
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str, Marburg, Germany
- IZMB-Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee, Bonn, Germany
| | - Bastian Oldenkott
- IZMB-Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee, Bonn, Germany
| | - Manuel Hiss
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str, Marburg, Germany
| | - Phuong Le Trinh
- IZMB-Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee, Bonn, Germany
- Key Laboratory of Enzyme and Protein Technology (KLEPT), VNU University of Science, Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Volker Knoop
- IZMB-Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee, Bonn, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str, Marburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Identification of Symmetrical RNA Editing Events in the Mitochondria of Salvia miltiorrhiza by Strand-specific RNA Sequencing. Sci Rep 2017; 7:42250. [PMID: 28186130 PMCID: PMC5301482 DOI: 10.1038/srep42250] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/08/2017] [Indexed: 01/08/2023] Open
Abstract
Salvia miltiorrhiza is one of the most widely-used medicinal plants. Here, we systematically analyzed the RNA editing events in its mitochondria. We developed a pipeline using REDItools to predict RNA editing events from stand-specific RNA-Seq data. The predictions were validated using reverse transcription, RT-PCR amplification and Sanger sequencing experiments. Putative sequences motifs were characterized. Comparative analyses were carried out between S. miltiorrhiza, Arabidopsis thaliana and Oryza sativa. We discovered 1123 editing sites, including 225 “C to U” sites in the protein-coding regions. Fourteen of sixteen (87.5%) sites were validated. Three putative DNA motifs were identified around the predicted sites. The nucleotides on both strands at 115 of the 225 sites had undergone RNA editing, which we called symmetrical RNA editing (SRE). Four of six these SRE sites (66.7%) were experimentally confirmed. Re-examination of strand-specific RNA-Seq data from A. thaliana and O. sativa identified 327 and 369 SRE sites respectively. 78, 20 and 13 SRE sites were found to be conserved among A. thaliana, O. sativa and S. miltiorrhiza respectively. This study provides a comprehensive picture of RNA editing events in the mitochondrial genome of S. miltiorrhiza. We identified SREs for the first time, which may represent a universal phenomenon.
Collapse
|
17
|
Zhang Z, Cui X, Wang Y, Wu J, Gu X, Lu T. The RNA Editing Factor WSP1 Is Essential for Chloroplast Development in Rice. MOLECULAR PLANT 2017; 10:86-98. [PMID: 27622591 DOI: 10.1016/j.molp.2016.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 05/10/2023]
Abstract
Although the multiple organellar RNA editing factors (MORFs) in the plastids of Arabidopsis thaliana have been extensively studied, molecular details underlying how MORFs affect plant development in other species, particularly in rice, remain largely unknown. Here we describe the characterization of wsp1, a rice mutant with white-stripe leaves and panicles. Notably, wsp1 exhibited nearly white immature panicles at the heading stage. Transmission electron microscopy analysis and chlorophyll content measurement revealed a chloroplast developmental defect and reduced chlorophyll accumulation in wsp1. Positional cloning of WSP1 found a point mutation in Os04g51280, whose putative product shares high sequence similarity with MORF proteins. Complementation experiments demonstrated that WSP1 was responsible for the variegated phenotypes of wsp1. WSP1 is localized to chloroplasts and the point mutation in wsp1 affected the editing of multiple organellar RNA sites. Owing to the defect in plastid RNA editing, chloroplast ribosome biogenesis and ndhA splicing were also impaired in wsp1, which may affect normal chloroplast development in the leaves and panicles at the heading stage. Together, our results demonstrate the importance of rice WSP1 protein in chloroplast development and broaden our knowledge about MORF family members in rice.
Collapse
Affiliation(s)
- Zhiguo Zhang
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Xuean Cui
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Yanwei Wang
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Jinxia Wu
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Xiaofeng Gu
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China.
| | - Tiegang Lu
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China.
| |
Collapse
|
18
|
Hu Z, Vanderhaeghen R, Cools T, Wang Y, De Clercq I, Leroux O, Nguyen L, Belt K, Millar AH, Audenaert D, Hilson P, Small I, Mouille G, Vernhettes S, Van Breusegem F, Whelan J, Höfte H, De Veylder L. Mitochondrial Defects Confer Tolerance against Cellulose Deficiency. THE PLANT CELL 2016; 28:2276-2290. [PMID: 27543091 PMCID: PMC5059812 DOI: 10.1105/tpc.16.00540] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/08/2016] [Accepted: 08/19/2016] [Indexed: 05/03/2023]
Abstract
Because the plant cell wall provides the first line of defense against biotic and abiotic assaults, its functional integrity needs to be maintained under stress conditions. Through a phenotype-based compound screening approach, we identified a novel cellulose synthase inhibitor, designated C17. C17 administration depletes cellulose synthase complexes from the plasma membrane in Arabidopsis thaliana, resulting in anisotropic cell elongation and a weak cell wall. Surprisingly, in addition to mutations in CELLULOSE SYNTHASE1 (CESA1) and CESA3, a forward genetic screen identified two independent defective genes encoding pentatricopeptide repeat (PPR)-like proteins (CELL WALL MAINTAINER1 [CWM1] and CWM2) as conferring tolerance to C17. Functional analysis revealed that mutations in these PPR proteins resulted in defective cytochrome c maturation and activation of mitochondrial retrograde signaling, as evidenced by the induction of an alternative oxidase. These mitochondrial perturbations increased tolerance to cell wall damage induced by cellulose deficiency. Likewise, administration of antimycin A, an inhibitor of mitochondrial complex III, resulted in tolerance toward C17. The C17 tolerance of cwm2 was partially lost upon depletion of the mitochondrial retrograde regulator ANAC017, demonstrating that ANAC017 links mitochondrial dysfunction with the cell wall. In view of mitochondria being a major target of a variety of stresses, our data indicate that plant cells might modulate mitochondrial activity to maintain a functional cell wall when subjected to stresses.
Collapse
Affiliation(s)
- Zhubing Hu
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
- College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Rudy Vanderhaeghen
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Toon Cools
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Yan Wang
- Department of Botany, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora 3086, Victoria, Australia
| | - Inge De Clercq
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Olivier Leroux
- Department of Biology, Ghent University, B-9000 Gent, Belgium
| | - Long Nguyen
- Compound Screening Facility, VIB, B-9052 Gent, Belgium
| | - Katharina Belt
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Australia
| | | | - Pierre Hilson
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
- Institut Jean-Pierre Bourgin, INRA, Centre National pour la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, 78026 Versailles Cedex, France
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Australia
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, INRA, Centre National pour la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, 78026 Versailles Cedex, France
| | - Samantha Vernhettes
- Institut Jean-Pierre Bourgin, INRA, Centre National pour la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, 78026 Versailles Cedex, France
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - James Whelan
- Department of Botany, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora 3086, Victoria, Australia
| | - Herman Höfte
- Institut Jean-Pierre Bourgin, INRA, Centre National pour la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, 78026 Versailles Cedex, France
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| |
Collapse
|
19
|
Hillung J, García-García F, Dopazo J, Cuevas JM, Elena SF. The transcriptomics of an experimentally evolved plant-virus interaction. Sci Rep 2016; 6:24901. [PMID: 27113435 PMCID: PMC4845063 DOI: 10.1038/srep24901] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/07/2016] [Indexed: 01/14/2023] Open
Abstract
Models of plant-virus interaction assume that the ability of a virus to infect a host genotype depends on the matching between virulence and resistance genes. Recently, we evolved tobacco etch potyvirus (TEV) lineages on different ecotypes of Arabidopsis thaliana, and found that some ecotypes selected for specialist viruses whereas others selected for generalists. Here we sought to evaluate the transcriptomic basis of such relationships. We have characterized the transcriptomic responses of five ecotypes infected with the ancestral and evolved viruses. Genes and functional categories differentially expressed by plants infected with local TEV isolates were identified, showing heterogeneous responses among ecotypes, although significant parallelism existed among lineages evolved in the same ecotype. Although genes involved in immune responses were altered upon infection, other functional groups were also pervasively over-represented, suggesting that plant resistance genes were not the only drivers of viral adaptation. Finally, the transcriptomic consequences of infection with the generalist and specialist lineages were compared. Whilst the generalist induced very similar perturbations in the transcriptomes of the different ecotypes, the perturbations induced by the specialist were divergent. Plant defense mechanisms were activated when the infecting virus was specialist but they were down-regulated when infecting with generalist.
Collapse
Affiliation(s)
- Julia Hillung
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain
| | - Francisco García-García
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Eduardo Primo Yúfera 3, 46012 València, Spain
| | - Joaquín Dopazo
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Eduardo Primo Yúfera 3, 46012 València, Spain
- Bioinformatics of Rare Diseases (BIER), CIBER de Enfermedades Raras (CIBERER), 46012 València, Spain
- Functional Genomics Node, INB at CIPF, 46012 València, Spain
| | - José M. Cuevas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, USA
| |
Collapse
|
20
|
Mei S, Liu T, Wang Z. Comparative Transcriptome Profile of the Cytoplasmic Male Sterile and Fertile Floral Buds of Radish (Raphanus sativus L.). Int J Mol Sci 2016; 17:E42. [PMID: 26751440 PMCID: PMC4730287 DOI: 10.3390/ijms17010042] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 11/16/2022] Open
Abstract
Radish cytoplasmic male sterility (CMS) has been widely used for breeding in Raphanus and Brassica genera. However, the detailed regulation network of the male sterility remains to be determined. Our previous work has shown that the abnormalities in a CMS radish appeared shortly after the tetrad stage when microspores were malformed and the tapetal cells grew abnormally large. In this work, histological analysis shows that anthers are at the tetrad stage when the radish buds are about 1.5 mm in length. Furthermore, a high throughput RNA sequencing technology was employed to characterize the transcriptome of radish buds with length about 1.5 mm from two CMS lines possessing the CMS-inducing orf138 gene and corresponding near-isogenic maintainer lines. A total of 67,140 unigenes were functionally annotated. Functional terms for these genes are significantly enriched in 55 Gene Ontology (GO) groups and 323 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The transcriptome detected transcripts for 72 out of a total of 79 protein genes encoded in the chloroplast genome from radish. In contrast, the radish mitochondrial genome contains 34 protein genes, but only 16 protein transcripts were detected from the transcriptome. The transcriptome comparison between CMS and near-isogenic maintainer lines revealed 539 differentially expressed genes (DEGs), indicating that the false positive rate for comparative transcriptome profiling was clearly decreased using two groups of CMS/maintainer lines with different nuclear background. The level of 127 transcripts was increased and 412 transcripts were decreased in the CMS lines. No change in levels of transcripts except CMS-inducing orf138 was identified from the mitochondrial and chloroplast genomes. Some DEGs which would be associated with the CMS, encoding MYB and bHLH transcription factors, pentatricopeptide repeat (PPR) proteins, heat shock transcription factors (HSFs) and heat shock proteins (HSPs), are discussed. The transcriptome dataset and comparative analysis will provide an important resource for further understanding anther development, the CMS mechanism and to improve molecular breeding in radish.
Collapse
Affiliation(s)
- Shiyong Mei
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Touming Liu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Zhiwei Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
21
|
Shi X, Germain A, Hanson MR, Bentolila S. RNA Recognition Motif-Containing Protein ORRM4 Broadly Affects Mitochondrial RNA Editing and Impacts Plant Development and Flowering. PLANT PHYSIOLOGY 2016; 170:294-309. [PMID: 26578708 PMCID: PMC4704580 DOI: 10.1104/pp.15.01280] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/13/2015] [Indexed: 05/02/2023]
Abstract
Plant RNA editosomes modify cytidines (C) to uridines (U) at specific sites in plastid and mitochondrial transcripts. Members of the RNA-editing factor interacting protein (RIP) family and Organelle RNA Recognition Motif-containing (ORRM) family are essential components of the Arabidopsis (Arabidopsis thaliana) editosome. ORRM2 and ORRM3 have been recently identified as minor mitochondrial editing factors whose silencing reduces editing efficiency at ∼6% of the mitochondrial C targets. Here we report the identification of ORRM4 (for organelle RRM protein 4) as a novel, major mitochondrial editing factor that controls ∼44% of the mitochondrial editing sites. C-to-U conversion is reduced, but not eliminated completely, at the affected sites. The orrm4 mutant exhibits slower growth and delayed flowering time. ORRM4 affects editing in a site-specific way, though orrm4 mutation affects editing of the entire transcript of certain genes. ORRM4 contains an RRM domain at the N terminus and a Gly-rich domain at the C terminus. The RRM domain provides the editing activity of ORRM4, whereas the Gly-rich domain is required for its interaction with ORRM3 and with itself. The presence of ORRM4 in the editosome is further supported by its interaction with RIP1 in a bimolecular fluorescence complementation assay. The identification of ORRM4 as a major mitochondrial editing factor further expands our knowledge of the composition of the RNA editosome and reveals that adequate mitochondrial editing is necessary for normal plant development.
Collapse
Affiliation(s)
- Xiaowen Shi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853 (X.S., A.G., M.R.H., S.B.)
| | - Arnaud Germain
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853 (X.S., A.G., M.R.H., S.B.)
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853 (X.S., A.G., M.R.H., S.B.)
| | - Stéphane Bentolila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853 (X.S., A.G., M.R.H., S.B.)
| |
Collapse
|
22
|
Brehme N, Bayer-Császár E, Glass F, Takenaka M. The DYW Subgroup PPR Protein MEF35 Targets RNA Editing Sites in the Mitochondrial rpl16, nad4 and cob mRNAs in Arabidopsis thaliana. PLoS One 2015; 10:e0140680. [PMID: 26470017 PMCID: PMC4607164 DOI: 10.1371/journal.pone.0140680] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/29/2015] [Indexed: 11/30/2022] Open
Abstract
RNA editing in plant mitochondria and plastids alters specific nucleotides from cytidine (C) to uridine (U) mostly in mRNAs. A number of PLS-class PPR proteins have been characterized as RNA recognition factors for specific RNA editing sites, all containing a C-terminal extension, the E domain, and some an additional DYW domain, named after the characteristic C-terminal amino acid triplet of this domain. Presently the recognition factors for more than 300 mitochondrial editing sites are still unidentified. In order to characterize these missing factors, the recently proposed computational prediction tool could be of use to assign target RNA editing sites to PPR proteins of yet unknown function. Using this target prediction approach we identified the nuclear gene MEF35 (Mitochondrial Editing Factor 35) to be required for RNA editing at three sites in mitochondria of Arabidopsis thaliana. The MEF35 protein contains eleven PPR repeats and E and DYW extensions at the C-terminus. Two T-DNA insertion mutants, one inserted just upstream and the other inside the reading frame encoding the DYW domain, show loss of editing at a site in each of the mRNAs for protein 16 in the large ribosomal subunit (site rpl16-209), for cytochrome b (cob-286) and for subunit 4 of complex I (nad4-1373), respectively. Editing is restored upon introduction of the wild type MEF35 gene in the reading frame mutant. The MEF35 protein interacts in Y2H assays with the mitochondrial MORF1 and MORF8 proteins, mutation of the latter also influences editing at two of the three MEF35 target sites. Homozygous mutant plants develop indistinguishably from wild type plants, although the RPL16 and COB/CYTB proteins are essential and the amino acids encoded after the editing events are conserved in most plant species. These results demonstrate the feasibility of the computational target prediction to screen for target RNA editing sites of E domain containing PLS-class PPR proteins.
Collapse
Affiliation(s)
- Nadja Brehme
- Molekulare Botanik, Universität Ulm, Ulm, Germany
| | | | | | | |
Collapse
|
23
|
Glass F, Härtel B, Zehrmann A, Verbitskiy D, Takenaka M. MEF13 Requires MORF3 and MORF8 for RNA Editing at Eight Targets in Mitochondrial mRNAs in Arabidopsis thaliana. MOLECULAR PLANT 2015; 8:1466-77. [PMID: 26048647 DOI: 10.1016/j.molp.2015.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/07/2015] [Accepted: 05/17/2015] [Indexed: 05/02/2023]
Abstract
RNA editing sites in plant mitochondria and plastids are addressed by pentatricopeptide repeat (PPR) proteins with E or E and DYW domains, which recognize a specific nucleotide motif upstream of the edited nucleotide. In addition, some sites require MORF proteins for efficient RNA editing. Here, we assign the novel E domain-containing PPR protein, MEF13, as being required for editing at eight sites in Arabidopsis thaliana. A SNP in ecotype C24 altering the editing level at only one of the eight target sites was located by genomic mapping. An EMS mutant allele of the gene for MEF13 was identified in a SNaPshot screen of a mutated plant population. At all eight target sites of MEF13, editing levels are reduced in both morf3 and morf8 mutants, but at only one site in morf1 mutants, suggesting that specific MEF13-MORF interactions are required. Yeast two-hybrid analyses detect solid connections of MEF13 with MORF1 and weak contact with MORF3 proteins. Yeast three-hybrid (Y3H) analysis shows that the presence of MORF8 enhances the connection between MEF13 and MORF3, suggesting that a MORF3-MORF8 heteromer may form stably or transiently to establish interaction with MEF13.
Collapse
Affiliation(s)
| | | | - Anja Zehrmann
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany
| | | | | |
Collapse
|
24
|
Sun F, Wang X, Bonnard G, Shen Y, Xiu Z, Li X, Gao D, Zhang Z, Tan BC. Empty pericarp7 encodes a mitochondrial E-subgroup pentatricopeptide repeat protein that is required for ccmFN editing, mitochondrial function and seed development in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:283-95. [PMID: 26303363 DOI: 10.1111/tpj.12993] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/07/2015] [Accepted: 08/13/2015] [Indexed: 05/02/2023]
Abstract
RNA editing, converting cytidines (C) to uridines (U) at specific sites in the transcripts of mitochondria and plastids, plays a critical role in organelle gene expression in land plants. Recently pentatricopeptide repeat (PPR) proteins were identified as site-specific recognition factors for RNA editing. In this study, we characterized an empty pericarp7 mutant (emp7) in Zea mays (maize), which confers an embryo-lethal phenotype. In emp7 mutants, mitochondrial functions are seriously perturbed, resulting in a strikingly reduced respiration rate. Emp7 encodes an E-subgroup PPR protein that is localized exclusively in the mitochondrion. Null mutation of Emp7 abolishes the C → U editing of ccmF(N) transcript solely at position 1553. CcmF(N) is coding for a subunit of heme lyase complex in the cytochrome c maturation pathway. The resulting Phe → Ser substitution in CcmF(N) leads to the loss of CcmF(N) protein and a strikingly reduced c-type cytochrome. Consequently, the mitochondrial cytochrome-linked respiratory chain is impaired as a result of the disassembly of complex III in the emp7 mutant. These results indicate that the PPR-E subgroup protein EMP7 is required for C → U editing of ccmF(N) -1553 at a position essential for cytochrome c maturation and mitochondrial oxidative phosphorylation, and hence is essential to embryo and endosperm development in maize.
Collapse
Affiliation(s)
- Feng Sun
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Géraldine Bonnard
- Institut de biologie moléculaire des plantes CNRS, Associé à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Yun Shen
- School of Life Sciences, The Chinese University of Hong Kong, N.T, Hong Kong
| | - Zhihui Xiu
- School of Life Sciences, The Chinese University of Hong Kong, N.T, Hong Kong
| | - Xiaojie Li
- School of Life Sciences, The Chinese University of Hong Kong, N.T, Hong Kong
| | - Dahai Gao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhonghang Zhang
- School of Life Sciences, The Chinese University of Hong Kong, N.T, Hong Kong
| | - Bao-Cai Tan
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| |
Collapse
|
25
|
Ransbotyn V, Yeger-Lotem E, Basha O, Acuna T, Verduyn C, Gordon M, Chalifa-Caspi V, Hannah MA, Barak S. A combination of gene expression ranking and co-expression network analysis increases discovery rate in large-scale mutant screens for novel Arabidopsis thaliana abiotic stress genes. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:501-13. [PMID: 25370817 DOI: 10.1111/pbi.12274] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/29/2014] [Accepted: 08/28/2014] [Indexed: 05/20/2023]
Abstract
As challenges to food security increase, the demand for lead genes for improving crop production is growing. However, genetic screens of plant mutants typically yield very low frequencies of desired phenotypes. Here, we present a powerful computational approach for selecting candidate genes for screening insertion mutants. We combined ranking of Arabidopsis thaliana regulatory genes according to their expression in response to multiple abiotic stresses (Multiple Stress [MST] score), with stress-responsive RNA co-expression network analysis to select candidate multiple stress regulatory (MSTR) genes. Screening of 62 T-DNA insertion mutants defective in candidate MSTR genes, for abiotic stress germination phenotypes yielded a remarkable hit rate of up to 62%; this gene discovery rate is 48-fold greater than that of other large-scale insertional mutant screens. Moreover, the MST score of these genes could be used to prioritize them for screening. To evaluate the contribution of the co-expression analysis, we screened 64 additional mutant lines of MST-scored genes that did not appear in the RNA co-expression network. The screening of these MST-scored genes yielded a gene discovery rate of 36%, which is much higher than that of classic mutant screens but not as high as when picking candidate genes from the co-expression network. The MSTR co-expression network that we created, AraSTressRegNet is publicly available at http://netbio.bgu.ac.il/arnet. This systems biology-based screening approach combining gene ranking and network analysis could be generally applicable to enhancing identification of genes regulating additional processes in plants and other organisms provided that suitable transcriptome data are available.
Collapse
Affiliation(s)
- Vanessa Ransbotyn
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang GH, Ma CH, Zhang JJ, Chen JW, Tang QY, He MH, Xu XZ, Jiang NH, Yang SC. Transcriptome analysis of Panax vietnamensis var. fuscidicus discovers putative ocotillol-type ginsenosides biosynthesis genes and genetic markers. BMC Genomics 2015; 16:159. [PMID: 25765814 PMCID: PMC4355973 DOI: 10.1186/s12864-015-1332-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 02/09/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND P. vietnamensis var. fuscidiscus, called "Yesanqi" in Chinese, is a new variety of P. vietnamensis, which was first found in Jinping County, the southern part of Yunnan Province, China. Compared with other Panax plants, this species contains higher content of ocotillol-type saponin, majonoside R2. Despite the pharmacological importance of ocotillol-type saponins, little is known about their biosynthesis in plants. Hence, P. vietnamensis var. fuscidiscus is a suitable medicinal herbal plant species to study biosynthesis of ocotillol-type saponins. In addition, the available genomic information of this important herbal plant is lacking. RESULTS To investigate the P. vietnamensis var. fuscidiscus transcriptome, Illumina HiSeq™ 2000 sequencing platform was employed. We produced 114,703,210 clean reads, assembled into 126,758 unigenes, with an average length of 1,304 bp and N50 of 2,108 bp. Among these 126,758 unigenes, 85,214 unigenes (67.23%) were annotated based on the information available from the public databases. The transcripts encoding the known enzymes involved in triterpenoid saponins biosynthesis were identified in our Illumina dataset. A full-length cDNA of three Squalene epoxidase (SE) genes were obtained using reverse transcription PCR (RT-PCR) and the expression patterns of ten unigenes were analyzed by reverse transcription quantitative real-time PCR (RT-qPCR). Furthermore, 15 candidate cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely to involve in triterpenoid saponins biosynthesis pathway were discovered from transcriptome sequencing of P. vietnamensis var. fuscidiscus. We further analyzed the data and found 21,320 simple sequence repeats (SSRs), 30 primer pairs for SSRs were randomly selected for validation of the amplification and polymorphism in 13 P. vietnamensis var. fuscidiscus accessions. Meanwhile, five major triterpene saponins in roots of P. vietnamensis var. fuscidicus were determined using high performance liquid chromatography (HPLC) and evaporative light scattering detector (ELSD). CONCLUSIONS The genomic resources generated from P. vietnamensis var. fuscidiscus provide new insights into the identification of putative genes involved in triterpenoid saponins biosynthesis pathway. This will facilitate our understanding of the biosynthesis of triterpenoid saponins at molecular level. The SSR markers identified and developed in this study show genetic diversity for this important crop and will contribute to marker-assisted breeding for P. vietnamensis var. fuscidiscus.
Collapse
Affiliation(s)
- Guang-Hui Zhang
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| | - Chun-Hua Ma
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| | - Jia-Jin Zhang
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| | - Jun-Wen Chen
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| | - Qing-Yan Tang
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| | - Mu-Han He
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| | - Xiang-Zeng Xu
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| | - Ni-Hao Jiang
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| | - Sheng-Chao Yang
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| |
Collapse
|
27
|
Yap A, Kindgren P, Colas des Francs-Small C, Kazama T, Tanz SK, Toriyama K, Small I. AEF1/MPR25 is implicated in RNA editing of plastid atpF and mitochondrial nad5, and also promotes atpF splicing in Arabidopsis and rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:661-9. [PMID: 25585673 DOI: 10.1111/tpj.12756] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 05/20/2023]
Abstract
RNA editing is an essential mechanism that modifies target cytidines to uridine in both mitochondrial and plastid mRNA. Target sites are recognized by pentatricopeptide repeat (PPR) proteins. Using bioinformatics predictions based on the code describing sequence recognition by PPR proteins, we have identified an Arabidopsis editing factor required for editing of atpF in plastids. A loss-of-function mutation in ATPF EDITING FACTOR 1 (AEF1, AT3G22150) results in severe variegation, presumably due to decreased plastid ATP synthase levels. Loss of editing at the atpF site is coupled with a large decrease in splicing of the atpF transcript, even though the editing site is within an exon and 53 nucleotides distant from the splice site. The rice orthologue of AEF1, MPR25, has been reported to be required for editing of a site in mitochondrial nad5 transcripts, and we confirm that editing of the same site is affected in the Arabidopsis aef1 mutant. We also show that splicing of chloroplast atpF transcripts is affected in the rice mpr25 mutant. AEF1 is thus highly unusual for an RNA editing specificity factor in that it has functions in both organelles.
Collapse
Affiliation(s)
- Aaron Yap
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | | | | | | | | | | | | |
Collapse
|
28
|
Zehrmann A, Härtel B, Glass F, Bayer-Császár E, Obata T, Meyer E, Brennicke A, Takenaka M. Selective homo- and heteromer interactions between the multiple organellar RNA editing factor (MORF) proteins in Arabidopsis thaliana. J Biol Chem 2015; 290:6445-56. [PMID: 25583991 DOI: 10.1074/jbc.m114.602086] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA editing in plastids and mitochondria of flowering plants requires pentatricopeptide repeat proteins (PPR proteins) for site recognition and proteins of the multiple organellar RNA editing factor (MORF) family as cofactors. Two MORF proteins, MORF5 and MORF8, are dual-targeted to plastids and mitochondria; two are targeted to plastids, and five are targeted to mitochondria. Pulldown assays from Arabidopsis thaliana tissue culture extracts with the mitochondrial MORF1 and the plastid MORF2 proteins, respectively, both identify the dual-targeted MORF8 protein, showing that these complexes can assemble in the organelles. We have now determined the scope of potential interactions between the various MORF proteins by yeast two-hybrid, in vitro pulldown, and bimolecular fluorescence complementation assays. The resulting MORF-MORF interactome identifies specific heteromeric MORF protein interactions in plastids and in mitochondria. Heteromers are observed for MORF protein combinations affecting a common site, suggesting their functional relevance. Most MORF proteins also undergo homomeric interactions. Submolecular analysis of the MORF1 protein reveals that the MORF-MORF protein connections require the C-terminal region of the central conserved MORF box. This domain has no similarity to known protein modules and may form a novel surface for protein-protein interactions.
Collapse
Affiliation(s)
- Anja Zehrmann
- From the Molekulare Botanik, Universität Ulm, 89069 Ulm and
| | - Barbara Härtel
- From the Molekulare Botanik, Universität Ulm, 89069 Ulm and
| | | | | | - Toshihiro Obata
- the Max-Planck-Institut für Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Etienne Meyer
- the Max-Planck-Institut für Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Axel Brennicke
- From the Molekulare Botanik, Universität Ulm, 89069 Ulm and
| | | |
Collapse
|
29
|
Wagoner JA, Sun T, Lin L, Hanson MR. Cytidine deaminase motifs within the DYW domain of two pentatricopeptide repeat-containing proteins are required for site-specific chloroplast RNA editing. J Biol Chem 2014; 290:2957-68. [PMID: 25512379 DOI: 10.1074/jbc.m114.622084] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In angiosperm organelles, cytidines are converted to uridines by a deamination reaction in the process termed RNA editing. The C targets of editing are recognized by members of the pentatricopeptide repeat (PPR) protein family. Although other members of the editosome have begun to be identified, the enzyme that catalyzes the C-U conversion is still unknown. The DYW motif at the C terminus of many PPR editing factors contains residues conserved with known cytidine deaminase active sites; however, some PPR editing factors lack a DYW motif. Furthermore, in many PPR-DYW editing factors, the truncation of the DYW motif does not affect editing efficiency, so the role of the DYW motif in RNA editing is unclear. Here, a chloroplast PPR-DYW editing factor, quintuple editing factor 1 (QED1), was shown to affect five different plastid editing sites, the greatest number of chloroplast C targets known to be affected by a single PPR protein. Loss of editing at the five sites resulted in stunted growth and accumulation of apparent photodamage. Adding a C-terminal protein tag to QED1 was found to severely inhibit editing function. QED1 and RARE1, another plastid PPR-DYW editing factor, were discovered to require their DYW motifs for efficient editing. To identify specific residues critical for editing, conserved deaminase residues in each PPR protein were mutagenized. The mutant PPR proteins, when expressed in qed1 or rare1 mutant protoplasts, could not complement the editing defect. Therefore, the DYW motif, and specifically, the deaminase residues, of QED1 and RARE1 are required for editing efficiency.
Collapse
Affiliation(s)
- Jessica A Wagoner
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Tao Sun
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Lin Lin
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Maureen R Hanson
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| |
Collapse
|
30
|
Arenas-M A, Zehrmann A, Moreno S, Takenaka M, Jordana X. The pentatricopeptide repeat protein MEF26 participates in RNA editing in mitochondrial cox3 and nad4 transcripts. Mitochondrion 2014; 19 Pt B:126-34. [PMID: 25173472 DOI: 10.1016/j.mito.2014.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/16/2014] [Accepted: 08/20/2014] [Indexed: 11/15/2022]
Abstract
In angiosperms most members of the large nuclear-encoded family of pentatricopeptide repeat (PPR) proteins are predicted to play relevant roles in the maturation of organellar RNAs. Here we report the novel Mitochondrial Editing Factor 26, a DYW-PPR protein involved in RNA editing at two sites. While at one site, cox3-311, editing is abolished in the absence of MEF26, the other site, nad4-166, is still partially edited. These sites share similar cis-elements and application of the recently proposed amino acid code for RNA recognition by PPR proteins ranks them at first and second positions of the most probable targets.
Collapse
Affiliation(s)
- Anita Arenas-M
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
| | - Anja Zehrmann
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany.
| | - Sebastian Moreno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
| | | | - Xavier Jordana
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
| |
Collapse
|
31
|
Hammani K, Giegé P. RNA metabolism in plant mitochondria. TRENDS IN PLANT SCIENCE 2014; 19:380-9. [PMID: 24462302 DOI: 10.1016/j.tplants.2013.12.008] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/11/2013] [Accepted: 12/19/2013] [Indexed: 05/02/2023]
Abstract
Mitochondria are essential for the eukaryotic cell and are derived from the endosymbiosis of an α-proteobacterial ancestor. Compared to other eukaryotes, RNA metabolism in plant mitochondria is complex and combines bacterial-like traits with novel features that evolved in the host cell. These complex RNA processes are regulated by families of nucleus-encoded RNA-binding proteins. Transcription is particularly relaxed and is initiated from multiple promoters covering the entire genome. The variety of RNA precursors accumulating in mitochondria highlights the importance of post-transcriptional processes to determine the size and abundance of transcripts. Here we review RNA metabolism in plant mitochondria, from RNA transcription to translation, with a special focus on their unique features that are controlled by trans-factors.
Collapse
Affiliation(s)
- Kamel Hammani
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Philippe Giegé
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| |
Collapse
|
32
|
Takenaka M, Zehrmann A, Verbitskiy D, Härtel B, Brennicke A. RNA editing in plants and its evolution. Annu Rev Genet 2014; 47:335-52. [PMID: 24274753 DOI: 10.1146/annurev-genet-111212-133519] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA editing alters the identity of nucleotides in RNA molecules such that the information for a protein in the mRNA differs from the prediction of the genomic DNA. In chloroplasts and mitochondria of flowering plants, RNA editing changes C nucleotides to U nucleotides; in ferns and mosses, it also changes U to C. The approximately 500 editing sites in mitochondria and 40 editing sites in plastids of flowering plants are individually addressed by specific proteins, genes for which are amplified in plant species with organellar RNA editing. These proteins contain repeat elements that bind to cognate RNA sequence motifs just 5' to the edited nucleotide. In flowering plants, the site-specific proteins interact selectively with individual members of a different, smaller family of proteins. These latter proteins may be connectors between the site-specific proteins and the as yet unknown deaminating enzymatic activity.
Collapse
Affiliation(s)
- Mizuki Takenaka
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany; , , , ,
| | | | | | | | | |
Collapse
|
33
|
Brehme N, Zehrmann A, Verbitskiy D, Härtel B, Takenaka M. Mitochondrial RNA editing PPR proteins can tolerate protein tags at E as well as at DYW domain termini. FRONTIERS IN PLANT SCIENCE 2014; 5:127. [PMID: 24772113 PMCID: PMC3982070 DOI: 10.3389/fpls.2014.00127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/17/2014] [Indexed: 05/29/2023]
|
34
|
Zhu Q, Dugardeyn J, Zhang C, Mühlenbock P, Eastmond PJ, Valcke R, De Coninck B, Oden S, Karampelias M, Cammue BPA, Prinsen E, Van Der Straeten D. The Arabidopsis thaliana RNA editing factor SLO2, which affects the mitochondrial electron transport chain, participates in multiple stress and hormone responses. MOLECULAR PLANT 2014; 7:290-310. [PMID: 23990142 DOI: 10.1093/mp/sst102] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Recently, we reported that the novel mitochondrial RNA editing factor SLO2 is essential for mitochondrial electron transport, and vital for plant growth through regulation of carbon and energy metabolism. Here, we show that mutation in SLO2 causes hypersensitivity to ABA and insensitivity to ethylene, suggesting a link with stress responses. Indeed, slo2 mutants are hypersensitive to salt and osmotic stress during the germination stage, while adult plants show increased drought and salt tolerance. Moreover, slo2 mutants are more susceptible to Botrytis cinerea infection. An increased expression of nuclear-encoded stress-responsive genes, as well as mitochondrial-encoded NAD genes of complex I and genes of the alternative respiratory pathway, was observed in slo2 mutants, further enhanced by ABA treatment. In addition, H2O2 accumulation and altered amino acid levels were recorded in slo2 mutants. We conclude that SLO2 is required for plant sensitivity to ABA, ethylene, biotic, and abiotic stress. Although two stress-related RNA editing factors were reported very recently, this study demonstrates a unique role of SLO2, and further supports a link between mitochondrial RNA editing events and stress response.
Collapse
Affiliation(s)
- Qiang Zhu
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hayes ML, Giang K, Berhane B, Mulligan RM. Identification of two pentatricopeptide repeat genes required for RNA editing and zinc binding by C-terminal cytidine deaminase-like domains. J Biol Chem 2013; 288:36519-29. [PMID: 24194514 DOI: 10.1074/jbc.m113.485755] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many transcripts expressed from plant organelle genomes are modified by C-to-U RNA editing. Nuclear encoded pentatricopeptide repeat (PPR) proteins are required as RNA binding specificity determinants in the RNA editing mechanism. Bioinformatic analysis has shown that most of the Arabidopsis PPR proteins necessary for RNA editing events include a C-terminal portion that shares structural characteristics with a superfamily of deaminases. The DYW deaminase domain includes a highly conserved zinc binding motif that shares characteristics with cytidine deaminases. The Arabidopsis PPR genes, ELI1 and DOT4, both have DYW deaminase domains and are required for single RNA editing events in chloroplasts. The ELI1 DYW deaminase domain was expressed as a recombinant protein in Escherichia coli and was shown to bind two zinc atoms per polypeptide. Thus, the DYW deaminase domain binds a zinc metal ion, as expected for a cytidine deaminase, and is potentially the catalytic component of an editing complex. Genetic complementation experiments demonstrate that large portions of the DYW deaminase domain of ELI1 may be eliminated, but the truncated genes retain the ability to restore editing site conversion in a mutant plant. These results suggest that the catalytic activity can be supplied in trans by uncharacterized protein(s) of the editosome.
Collapse
|
36
|
Surrogate mutants for studying mitochondrially encoded functions. Biochimie 2013; 100:234-42. [PMID: 23994752 DOI: 10.1016/j.biochi.2013.08.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/18/2013] [Indexed: 11/24/2022]
Abstract
Although chloroplast transformation is possible in some plant species, it is extremely difficult to create or select mutations in plant mitochondrial genomes, explaining why few genetic studies of mitochondrially encoded functions exist. In recent years it has become clear that many nuclear genes encode factors with key functions in organelle gene expression, and that often their action is restricted to a single organelle gene or transcript. Mutations in one of these nuclear genes thus leads to a specific primary defect in expression of a single organelle gene, and the nuclear mutation can be used as a surrogate for a phenotypically equivalent mutation in the organelle genome. These surrogate mutations often result in defective assembly of respiratory complexes, and lead to severe phenotypes including reduced growth and fertility, or even embryo-lethality. A wide collection of such mutants is now available, and this review summarises the progress in basic knowledge of mitochondrial biogenesis they have contributed to and points out areas where this resource has not been exploited yet.
Collapse
|
37
|
Härtel B, Zehrmann A, Verbitskiy D, Takenaka M. The longest mitochondrial RNA editing PPR protein MEF12 in Arabidopsis thaliana requires the full-length E domain. RNA Biol 2013; 10:1543-8. [PMID: 23845994 DOI: 10.4161/rna.25484] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial RNA editing factor 12 (MEF12) was identified in a screen for editing defects of a chemically mutated plant population in Arabidopsis thaliana. The MEF12 editing protein is required for the C to U change of nucleotide nad5-374. The MEF12 polypeptide is characterized by an exceptionally long stretch of 25 pentatricopeptide repeats (PPR) and a C-terminal extension domain. Editing is lost in mutant plants with a stop codon in the extending element. A T-DNA insertion substituting the 10 C-terminal amino acids of the extension domain reduces RNA editing to about 20% at the target site in a mutant plant. These results support the importance of the full-length extension module for functional RNA editing in plant mitochondria.
Collapse
|
38
|
Bentolila S, Oh J, Hanson MR, Bukowski R. Comprehensive high-resolution analysis of the role of an Arabidopsis gene family in RNA editing. PLoS Genet 2013; 9:e1003584. [PMID: 23818871 PMCID: PMC3688494 DOI: 10.1371/journal.pgen.1003584] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 05/01/2013] [Indexed: 11/19/2022] Open
Abstract
In flowering plants, mitochondrial and chloroplast mRNAs are edited by C-to-U base modification. In plant organelles, RNA editing appears to be generally a correcting mechanism that restores the proper function of the encoded product. Members of the Arabidopsis RNA editing-Interacting Protein (RIP) family have been recently shown to be essential components of the plant editing machinery. We report the use of a strand- and transcript-specific RNA-seq method (STS-PCRseq) to explore the effect of mutation or silencing of every RIP gene on plant organelle editing. We confirm RIP1 to be a major editing factor that controls the editing extent of 75% of the mitochondrial sites and 20% of the plastid C targets of editing. The quantitative nature of RNA sequencing allows the precise determination of overlapping effects of RIP factors on RNA editing. Over 85% of the sites under the influence of RIP3 and RIP8, two moderately important mitochondrial factors, are also controlled by RIP1. Previously uncharacterized RIP family members were found to have only a slight effect on RNA editing. The preferential location of editing sites controlled by RIP7 on some transcripts suggests an RNA metabolism function for this factor other than editing. In addition to a complete characterization of the RIP factors for their effect on RNA editing, our study highlights the potential of RNA-seq for studying plant organelle editing. Unlike previous attempts to use RNA-seq to analyze RNA editing extent, our methodology focuses on sequencing of organelle cDNAs corresponding to known transcripts. As a result, the depth of coverage of each editing site reaches unprecedented values, assuring a reliable measurement of editing extent and the detection of numerous new sites. This strategy can be applied to the study of RNA editing in any organism. RNA editing is a co- or post-transcriptional RNA processing reaction that changes the nucleotide sequence of the RNA substrate. In flowering plants, mRNA editing is confined to organelle transcripts, altering cytidine to uridine. Recently, some members of a small Arabidopsis gene family were found to be important for editing of chloroplast and mitochondrial transcripts. Several methods have been developed to measure the amount of edited transcripts at specific Cs, but most of these methods either lack sensitivity or are unable to determine the number and location of edited Cs in a particular transcript. While sensitive assays have been previously developed, they are costly and labor-intensive precluding their use on a large-scale. In order to characterize the role of an entire gene family in RNA editing, we have successfully adapted RNA sequencing technology to characterize the effect of mutation and silencing of family members on organelle RNA editing. Our method to measure editing extent is sensitive, reliable, and cost-effective. As well as detecting additional family members that play a role in RNA editing, we have detected numerous new editing sites. Our strategy should benefit the investigation of RNA editing in any organism.
Collapse
Affiliation(s)
- Stéphane Bentolila
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, New York, USA.
| | | | | | | |
Collapse
|
39
|
Takenaka M, Zehrmann A, Brennicke A, Graichen K. Improved computational target site prediction for pentatricopeptide repeat RNA editing factors. PLoS One 2013; 8:e65343. [PMID: 23762347 PMCID: PMC3675099 DOI: 10.1371/journal.pone.0065343] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/24/2013] [Indexed: 01/22/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins with an E domain have been identified as specific factors for C to U RNA editing in plant organelles. These PPR proteins bind to a unique sequence motif 5′ of their target editing sites. Recently, involvement of a combinatorial amino acid code in the P (normal length) and S type (short) PPR domains in sequence specific RNA binding was reported. PPR proteins involved in RNA editing, however, contain not only P and S motifs but also their long variants L (long) and L2 (long2) and the S2 (short2) motifs. We now find that inclusion of these motifs improves the prediction of RNA editing target sites. Previously overlooked RNA editing target sites are suggested from the PPR motif structures of known E-class PPR proteins and are experimentally verified. RNA editing target sites are assigned for the novel PPR protein MEF32 (mitochondrial editing factor 32) and are confirmed in the cDNA.
Collapse
|
40
|
Härtel B, Zehrmann A, Verbitskiy D, van der Merwe JA, Brennicke A, Takenaka M. MEF10 is required for RNA editing at nad2-842 in mitochondria of Arabidopsis thaliana and interacts with MORF8. PLANT MOLECULAR BIOLOGY 2013; 81:337-346. [PMID: 23288601 DOI: 10.1007/s11103-012-0003-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 12/15/2012] [Indexed: 06/01/2023]
Abstract
A forwards genetic screen of a chemically mutated plant population identified mitochondrial RNA editing factor 10 (MEF10) in Arabidopsis thaliana. MEF10 is a trans-factor required specifically for the C to U editing of site nad2-842. The MEF10 protein is characterized by a stretch of pentatricopeptide repeats (PPR) and a C-terminal extension domain ending with the amino acids DYW. Editing is lost in mutant plants but is recovered by transgenic introduction of an intact MEF10 gene. The MEF10 protein interacts with multiple organellar RNA editing factor 8 (MORF8) but not with other mitochondrial MORF proteins in yeast two hybrid assays. These results support the model that specific combinations of MORF and MEF proteins are involved in RNA editing in plant mitochondria.
Collapse
Affiliation(s)
- Barbara Härtel
- Molekulare Botanik, Universität Ulm, 89069, Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Arenas-M A, Takenaka M, Moreno S, Gómez I, Jordana X. Contiguous RNA editing sites in the mitochondrialnad1transcript ofArabidopsis thalianaare recognized by different proteins. FEBS Lett 2013; 587:887-91. [PMID: 23416303 DOI: 10.1016/j.febslet.2013.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
|
42
|
Toda T, Fujii S, Noguchi K, Kazama T, Toriyama K. Rice MPR25 encodes a pentatricopeptide repeat protein and is essential for RNA editing of nad5 transcripts in mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:450-60. [PMID: 22747551 DOI: 10.1111/j.1365-313x.2012.05091.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are involved in the modification of organelle transcripts. In this study, we investigated the molecular function in rice of the mitochondrial PPR-encoding gene MITOCHONDRIAL PPR25 (MPR25), which belongs to the E subgroup of the PPR family. A Tos17 knockout mutant of MPR25 exhibited growth retardation and pale-green leaves with reduced chlorophyll content during the early stages of plant development. The photosynthetic rate in the mpr25 mutant was significantly decreased, especially under strong light conditions, although the respiration rate did not differ from that of wild-type plants. MPR25 was preferentially expressed in leaves. FLAG-tagged MPR25 accumulated in mitochondria but not in chloroplasts. Direct sequencing revealed that the mpr25 mutant fails to edit a C-U RNA editing site at nucleotide 1580 of nad5, which encodes a subunit of complex I (NADH dehydrogenase) of the respiratory chain in mitochondria. RNA editing of this site is responsible for a change in amino acid from serine to leucine. Recombinant MPR25 directly interacted with the proximal region of the editing site of nad5 transcripts. However, the NADH dehydrogenase activity of complex I was not affected in the mutant. By contrast, genes encoding alternative NADH dehydrogenases and alternative oxidase were up-regulated. The mpr25 mutant may therefore provide new information on the coordinated interaction between mitochondria and chloroplasts.
Collapse
MESH Headings
- Amino Acid Substitution
- Cell Respiration
- Chloroplasts/genetics
- Chloroplasts/metabolism
- Gene Expression Regulation, Plant/genetics
- Gene Knockout Techniques
- Light
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Mutagenesis, Insertional
- NADH Dehydrogenase/genetics
- NADH Dehydrogenase/metabolism
- Oryza/enzymology
- Oryza/genetics
- Oryza/growth & development
- Oryza/radiation effects
- Oxidoreductases/genetics
- Oxidoreductases/metabolism
- Phenotype
- Photosynthesis
- Plant Components, Aerial/enzymology
- Plant Components, Aerial/genetics
- Plant Components, Aerial/growth & development
- Plant Components, Aerial/radiation effects
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Roots/enzymology
- Plant Roots/genetics
- Plant Roots/growth & development
- Plant Roots/radiation effects
- Protein Transport
- RNA Editing
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Recombinant Fusion Proteins
- Seedlings/enzymology
- Seedlings/genetics
- Seedlings/growth & development
- Seedlings/radiation effects
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Takushi Toda
- Laboratory of Environmental Plant Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai 981-8555, Japan
| | | | | | | | | |
Collapse
|
43
|
Takenaka M, Brennicke A. Using multiplex single-base extension typing to screen for mutants defective in RNA editing. Nat Protoc 2012; 7:1931-45. [PMID: 23037308 DOI: 10.1038/nprot.2012.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA editing is an RNA maturation process that changes the nucleotide present at particular positions (editing sites) in specific RNAs; in plant organelles, the most common nucleotide change is from cytidine (C) to uridine (U). In a mutant suspected of affecting RNA editing, all known editing sites have to be analyzed. Therefore, to screen a population of mutants, all individuals must be analyzed at every editing site. We describe a multiplex single-nucleotide polymorphism (SNP)-typing procedure to economically screen a mutant individual or population for differences at hundreds of nucleotide positions in RNA or DNA. By using this protocol, we have previously identified mutants defective in RNA editing in a randomly mutated population of Arabidopsis thaliana. The procedure requires 2-3 weeks to identify the individual plant in the mutant population. The time required to locate the mutated gene is between 3 and 24 months in Arabidopsis. Although this procedure has been developed to study RNA editing in plants, it could also be used to investigate other RNA modification processes. It could also be adapted to investigate RNA editing in other organisms.
Collapse
|
44
|
Verbitskiy D, Zehrmann A, Härtel B, Brennicke A, Takenaka M. Two related RNA-editing proteins target the same sites in mitochondria of Arabidopsis thaliana. J Biol Chem 2012; 287:38064-72. [PMID: 22977245 DOI: 10.1074/jbc.m112.397992] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The facilitators for specific cytosine-to-uridine RNA-editing events in plant mitochondria and plastids are pentatricopeptide repeat (PPR)-containing proteins with specific additional C-terminal domains. Here we report the related PPR proteins mitochondrial editing factor 8 (MEF8) and MEF8S with only five such repeats each to be both involved in RNA editing at the same two sites in mitochondria of Arabidopsis thaliana. Mutants of MEF8 show diminished editing in leaves but not in pollen, whereas mutants of the related protein MEF8S show reduced RNA editing in pollen but not in leaves. Overexpressed MEF8 or MEF8S both increase editing at the two target sites in a mef8 mutant. Double mutants of MEF8 and MEF8S are not viable although both identified target sites are in mRNAs for nonessential proteins. This suggests that MEF8 and MEF8S may have other essential functions beyond these two editing sites in complex I mRNAs.
Collapse
|
45
|
Zhu Q, Dugardeyn J, Zhang C, Takenaka M, Kühn K, Craddock C, Smalle J, Karampelias M, Denecke J, Peters J, Gerats T, Brennicke A, Eastmond P, Meyer EH, Van Der Straeten D. SLO2, a mitochondrial pentatricopeptide repeat protein affecting several RNA editing sites, is required for energy metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:836-49. [PMID: 22540321 DOI: 10.1111/j.1365-313x.2012.05036.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins belong to a family of approximately 450 members in Arabidopsis, of which few have been characterized. We identified loss of function alleles of SLO2, defective in a PPR protein belonging to the E+ subclass of the P-L-S subfamily. slo2 mutants are characterized by retarded leaf emergence, restricted root growth, and late flowering. This phenotype is enhanced in the absence of sucrose, suggesting a defect in energy metabolism. The slo2 growth retardation phenotypes are largely suppressed by supplying sugars or increasing light dosage or the concentration of CO₂. The SLO2 protein is localized in mitochondria. We identified four RNA editing defects and reduced editing at three sites in slo2 mutants. The resulting amino acid changes occur in four mitochondrial proteins belonging to complex I of the electron transport chain. Both the abundance and activity of complex I are highly reduced in the slo2 mutants, as well as the abundance of complexes III and IV. Moreover, ATP, NAD+, and sugar contents were much lower in the mutants. In contrast, the abundance of alternative oxidase was significantly enhanced. We propose that SLO2 is required for carbon energy balance in Arabidopsis by maintaining the abundance and/or activity of complexes I, III, and IV of the mitochondrial electron transport chain.
Collapse
Affiliation(s)
- Qiang Zhu
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, K L Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Murayama M, Hayashi S, Nishimura N, Ishide M, Kobayashi K, Yagi Y, Asami T, Nakamura T, Shinozaki K, Hirayama T. Isolation of Arabidopsis ahg11, a weak ABA hypersensitive mutant defective in nad4 RNA editing. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5301-10. [PMID: 22821940 PMCID: PMC3430999 DOI: 10.1093/jxb/ers188] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The phytohormone abscisic acid (ABA) plays pivotal roles in the regulation of developmental and environmental responses in plants. Identification of cytoplasmic ABA receptors enabled the elucidation of the main ABA signalling pathway, connecting ABA perception to either nuclear events or the action of several transporters. However, the physiological functions of ABA in cellular processes largely remain unknown. To obtain greater insight into the ABA response, genetic screening was performed to isolate ABA-related mutants of Arabidopsis and several novel ABA-hypersensitive mutants were isolated. One of those mutants--ahg11--was characterized further. Map-based cloning showed that AHG11 encodes a PPR type protein, which has potential roles in RNA editing. An AHG11-GFP fusion protein indicated that AHG11 mainly localized to the mitochondria. Consistent with this observation, the nad4 transcript, which normally undergoes RNA editing, lacks a single RNA editing event conferring a conversion of an amino acid residue in ahg11 mutants. The geminating ahg11 seeds have higher levels of reactive-oxygen-species-responsive genes. Presumably, partial impairment of mitochondrial function caused by an amino acid conversion in one of the complex I components induces redox imbalance which, in turn, confers an abnormal response to the plant hormone.
Collapse
Affiliation(s)
- Maki Murayama
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nuclear DYW-type PPR gene families diversify with increasing RNA editing frequencies in liverwort and moss mitochondria. J Mol Evol 2012; 74:37-51. [PMID: 22302222 DOI: 10.1007/s00239-012-9486-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
Abstract
RNA editing in mitochondria and chloroplasts of land plants alters transcript sequences by site-specific conversions of cytidines into uridines. RNA editing frequencies vary extremely between land plant clades, ranging from zero in some liverworts to more than 2,000 sites in lycophytes. Unique pentatricopeptide repeat (PPR) proteins with variable domain extension (E/E+/DYW) have recently been identified as specific editing site recognition factors in model plants. The distinctive functions of these PPR protein domain additions have remained unclear, although deaminase function has been proposed for the DYW domain. To shed light on diversity of RNA editing and DYW proteins at the origin of land plant evolution, we investigated editing patterns of the mitochondrial nad5, nad4, and nad2 genes in a wide sampling of more than 100 liverworts and mosses using the recently developed PREPACT program (www.prepact.de) and exemplarily confirmed predicted RNA editing sites in selected taxa. Extreme variability in RNA editing frequency is seen both in liverworts and mosses. Only few editings exist in the liverwort Lejeunea cavifolia or the moss Pogonatum urnigerum whereas up to 20% of cytidines are edited in the liverwort Haplomitrium mnioides or the moss Takakia lepidozioides. Interestingly, the latter are taxa that branch very early within their respective clades. Amplicons targeting the E/E+/DYW domains and subsequent random clone sequencing show DYW domains among bryophytes to be highly conserved in comparison with their angiosperm counterparts and to correlate well with RNA editing frequencies regarding their diversities. We propose that DYW proteins are the key players of RNA editing at the origin of land plants.
Collapse
|
48
|
RIP1, a member of an Arabidopsis protein family, interacts with the protein RARE1 and broadly affects RNA editing. Proc Natl Acad Sci U S A 2012; 109:E1453-61. [PMID: 22566615 DOI: 10.1073/pnas.1121465109] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transcripts of plant organelle genes are modified by cytidine-to-uridine (C-to-U) RNA editing, often changing the encoded amino acid predicted from the DNA sequence. Members of the PLS subclass of the pentatricopeptide repeat (PPR) motif-containing family are site-specific recognition factors for either chloroplast or mitochondrial C targets of editing. However, other than PPR proteins and the cis-elements on the organelle transcripts, no other components of the editing machinery in either organelle have previously been identified. The Arabidopsis chloroplast PPR protein Required for AccD RNA Editing 1 (RARE1) specifies editing of a C in the accD transcript. RARE1 was detected in a complex of >200 kDa. We immunoprecipitated epitope-tagged RARE1, and tandem MS/MS analysis identified a protein of unknown function lacking PPR motifs; we named it RNA-editing factor interacting protein 1 (RIP1). Yeast two-hybrid analysis confirmed RIP1 interaction with RARE1, and RIP1-GFP fusions were found in both chloroplasts and mitochondria. Editing assays for all 34 known Arabidopsis chloroplast targets in a rip1 mutant revealed altered efficiency of 14 editing events. In mitochondria, 266 editing events were found to have reduced efficiency, with major loss of editing at 108 C targets. Virus-induced gene silencing of RIP1 confirmed the altered editing efficiency. Transient introduction of a WT RIP1 allele into rip1 improved the defective RNA editing. The presence of RIP1 in a protein complex along with chloroplast editing factor RARE1 indicates that RIP1 is an important component of the RNA editing apparatus that acts on many chloroplast and mitochondrial C targets.
Collapse
|
49
|
Garzón-Martínez GA, Zhu ZI, Landsman D, Barrero LS, Mariño-Ramírez L. The Physalis peruviana leaf transcriptome: assembly, annotation and gene model prediction. BMC Genomics 2012; 13:151. [PMID: 22533342 PMCID: PMC3488962 DOI: 10.1186/1471-2164-13-151] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/25/2012] [Indexed: 11/16/2022] Open
Abstract
Background Physalis peruviana commonly known as Cape gooseberry is a member of the Solanaceae family that has an increasing popularity due to its nutritional and medicinal values. A broad range of genomic tools is available for other Solanaceae, including tomato and potato. However, limited genomic resources are currently available for Cape gooseberry. Results We report the generation of a total of 652,614 P. peruviana Expressed Sequence Tags (ESTs), using 454 GS FLX Titanium technology. ESTs, with an average length of 371 bp, were obtained from a normalized leaf cDNA library prepared using a Colombian commercial variety. De novo assembling was performed to generate a collection of 24,014 isotigs and 110,921 singletons, with an average length of 1,638 bp and 354 bp, respectively. Functional annotation was performed using NCBI’s BLAST tools and Blast2GO, which identified putative functions for 21,191 assembled sequences, including gene families involved in all the major biological processes and molecular functions as well as defense response and amino acid metabolism pathways. Gene model predictions in P. peruviana were obtained by using the genomes of Solanum lycopersicum (tomato) and Solanum tuberosum (potato). We predict 9,436 P. peruviana sequences with multiple-exon models and conserved intron positions with respect to the potato and tomato genomes. Additionally, to study species diversity we developed 5,971 SSR markers from assembled ESTs. Conclusions We present the first comprehensive analysis of the Physalis peruviana leaf transcriptome, which will provide valuable resources for development of genetic tools in the species. Assembled transcripts with gene models could serve as potential candidates for marker discovery with a variety of applications including: functional diversity, conservation and improvement to increase productivity and fruit quality. P. peruviana was estimated to be phylogenetically branched out before the divergence of five other Solanaceae family members, S. lycopersicum, S. tuberosum, Capsicum spp, S. melongena and Petunia spp.
Collapse
Affiliation(s)
- Gina A Garzón-Martínez
- Plant Molecular Genetics Laboratory, Center of Biotechnology and Bioindustry (CBB), Colombian Corporation for Agricultural Research (CORPOICA), Bogota, Colombia
| | | | | | | | | |
Collapse
|
50
|
Law SR, Narsai R, Taylor NL, Delannoy E, Carrie C, Giraud E, Millar AH, Small I, Whelan J. Nucleotide and RNA metabolism prime translational initiation in the earliest events of mitochondrial biogenesis during Arabidopsis germination. PLANT PHYSIOLOGY 2012; 158:1610-27. [PMID: 22345507 PMCID: PMC3320173 DOI: 10.1104/pp.111.192351] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 02/13/2012] [Indexed: 05/18/2023]
Abstract
Mitochondria play a crucial role in germination and early seedling growth in Arabidopsis (Arabidopsis thaliana). Morphological observations of mitochondria revealed that mitochondrial numbers, typical size, and oval morphology were evident after 12 h of imbibition in continuous light (following 48 h of stratification). The transition from a dormant to an active metabolic state was punctuated by an early molecular switch, characterized by a transient burst in the expression of genes encoding mitochondrial proteins. Factors involved in mitochondrial transcription and RNA processing were overrepresented among these early-expressed genes. This was closely followed by an increase in the transcript abundance of genes encoding proteins involved in mitochondrial DNA replication and translation. This burst in the expression of factors implicated in mitochondrial RNA and DNA metabolism was accompanied by an increase in transcripts encoding components required for nucleotide biosynthesis in the cytosol and increases in transcript abundance of specific members of the mitochondrial carrier protein family that have previously been associated with nucleotide transport into mitochondria. Only after these genes peaked in expression and largely declined were typical mitochondrial numbers and morphology observed. Subsequently, there was an increase in transcript abundance for various bioenergetic and metabolic functions of mitochondria. The coordination of nucleus- and organelle-encoded gene expression was also examined by quantitative reverse transcription-polymerase chain reaction, specifically for components of the mitochondrial electron transport chain and the chloroplastic photosynthetic machinery. Analysis of protein abundance using western-blot analysis and mass spectrometry revealed that for many proteins, patterns of protein and transcript abundance changes displayed significant positive correlations. A model for mitochondrial biogenesis during germination is proposed, in which an early increase in the abundance of transcripts encoding biogenesis functions (RNA metabolism and import components) precedes a later cascade of gene expression encoding the bioenergetic and metabolic functions of mitochondria.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology (S.R.L., R.N., N.L.T., E.D., C.C., E.G., A.H.M., I.S., J.W.), Centre for Computational Systems Biology (R.N., I.S.), and Centre for Comparative Analysis of Biomolecular Networks (N.L.T., A.H.M.), University of Western Australia, Crawley 6009, Western Australia, Australia
| |
Collapse
|