1
|
Sobh A, Encinas E, Patel A, Surapaneni G, Bonilla E, Kaestner C, Poullard J, Clerio M, Vasan K, Freeman T, Lv D, Dupéré-Richer D, Riva A, Barwick BG, Zhou D, Boise LH, Mitsiades CS, Kim B, Bennett RL, Chandel NS, Licht JD. NSD2 drives t(4;14) myeloma cell dependence on adenylate kinase 2 by diverting one-carbon metabolism to the epigenome. Blood 2024; 144:283-295. [PMID: 38598835 DOI: 10.1182/blood.2023022859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
ABSTRACT Chromosomal translocation (4;14), an adverse prognostic factor in multiple myeloma (MM), drives overexpression of the histone methyltransferase nuclear receptor binding SET domain protein 2 (NSD2). A genome-wide CRISPR screen in MM cells identified adenylate kinase 2 (AK2), an enzyme critical for high-energy phosphate transfer from the mitochondria, as an NSD2-driven vulnerability. AK2 suppression in t(4;14) MM cells decreased nicotinamide adenine dinucleotide phosphate (NADP[H]) critical for conversion of ribonucleotides to deoxyribonucleosides, leading to replication stress, DNA damage, and apoptosis. Driving a large genome-wide increase in chromatin methylation, NSD2 overexpression depletes S-adenosylmethionine, compromising the synthesis of creatine from its precursor, guanidinoacetate. Creatine supplementation restored NADP(H) levels, reduced DNA damage, and rescued AK2-deficient t(4;14) MM cells. As the creatine phosphate shuttle constitutes an alternative means for mitochondrial high-energy phosphate transport, these results indicate that NSD2-driven creatine depletion underlies the hypersensitivity of t(4;14) MM cells to AK2 loss. Furthermore, AK2 depletion in t(4;14) cells impaired protein folding in the endoplasmic reticulum, consistent with impaired use of mitochondrial adenosine triphosphate (ATP). Accordingly, AK2 suppression increased the sensitivity of MM cells to proteasome inhibition. These findings delineate a novel mechanism in which aberrant transfer of carbon to the epigenome creates a metabolic vulnerability, with direct therapeutic implications for t(4;14) MM.
Collapse
Affiliation(s)
- Amin Sobh
- Division of Hematology/Oncology, University of Florida Health Cancer Center, University of Florida, Gainesville, FL
| | - Elena Encinas
- Division of Hematology/Oncology, University of Florida Health Cancer Center, University of Florida, Gainesville, FL
| | - Alisha Patel
- Division of Hematology/Oncology, University of Florida Health Cancer Center, University of Florida, Gainesville, FL
| | - Greeshma Surapaneni
- Division of Hematology/Oncology, University of Florida Health Cancer Center, University of Florida, Gainesville, FL
| | - Emilie Bonilla
- Division of Hematology/Oncology, University of Florida Health Cancer Center, University of Florida, Gainesville, FL
| | - Charlotte Kaestner
- Division of Hematology/Oncology, University of Florida Health Cancer Center, University of Florida, Gainesville, FL
| | - Janai Poullard
- Division of Hematology/Oncology, University of Florida Health Cancer Center, University of Florida, Gainesville, FL
| | - Monica Clerio
- Division of Hematology/Oncology, University of Florida Health Cancer Center, University of Florida, Gainesville, FL
| | - Karthik Vasan
- Department of Medicine, Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Tzipporah Freeman
- Center for ViroScience and Cure, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Dongwen Lv
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center San Antonio, San Antonio, TX
| | - Daphné Dupéré-Richer
- Division of Hematology/Oncology, University of Florida Health Cancer Center, University of Florida, Gainesville, FL
| | - Alberto Riva
- Interdisciplinary Center for Biotechnology Research, The University of Florida, Gainesville, FL
| | - Benjamin G Barwick
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| | - Daohong Zhou
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center San Antonio, San Antonio, TX
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| | - Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Baek Kim
- Center for ViroScience and Cure, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Richard L Bennett
- Division of Hematology/Oncology, University of Florida Health Cancer Center, University of Florida, Gainesville, FL
| | - Navdeep S Chandel
- Department of Medicine, Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jonathan D Licht
- Division of Hematology/Oncology, University of Florida Health Cancer Center, University of Florida, Gainesville, FL
| |
Collapse
|
2
|
Wang B, Chen W, Huang Q, Chen Y, Wang Y. Targeting Cancer Mitochondria by Inducing an Abnormal Mitochondrial Unfolded Protein Response Leads to Tumor Suppression. Int J Med Sci 2024; 21:1204-1212. [PMID: 38818479 PMCID: PMC11134587 DOI: 10.7150/ijms.95624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/05/2024] [Indexed: 06/01/2024] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is a pivotal cellular mechanism that ensures mitochondrial homeostasis and cellular survival under stress conditions. This study investigates the role of UPRmt in modulating the response of nasopharyngeal carcinoma cells to cisplatin-induced stress. We report that the inhibition of UPRmt via AEB5F exacerbates cisplatin cytotoxicity, as evidenced by increased lactate dehydrogenase (LDH) release and apoptosis, characterized by a surge in TUNEL-positive cells. Conversely, the activation of UPRmt with oligomycin attenuates these effects, preserving cell viability and reducing apoptotic markers. Immunofluorescence assays reveal that UPRmt activation maintains mitochondrial membrane potential and ATP production in the presence of cisplatin, countering the rise in reactive oxygen species (ROS) and inhibiting caspase-9 activation. These findings suggest that UPRmt serves as a cytoprotective mechanism in cancer cells, mitigating cisplatin-induced mitochondrial dysfunction and apoptosis. The data underscore the therapeutic potential of modulating UPRmt to improve the efficacy and reduce the side effects of cisplatin chemotherapy. This study provides a foundation for future research on the exploitation of UPRmt in cancer treatment, with the aim of enhancing patient outcomes by leveraging the cellular stress response pathways.
Collapse
Affiliation(s)
- Baoxiao Wang
- Department of Otolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenjun Chen
- Department of Otolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiqi Huang
- Department of Otolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ye Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yajing Wang
- Department of Otolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Regulation of Adenine Nucleotide Metabolism by Adenylate Kinase Isozymes: Physiological Roles and Diseases. Int J Mol Sci 2023; 24:ijms24065561. [PMID: 36982634 PMCID: PMC10056885 DOI: 10.3390/ijms24065561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Adenylate kinase (AK) regulates adenine nucleotide metabolism and catalyzes the ATP + AMP ⇌ 2ADP reaction in a wide range of organisms and bacteria. AKs regulate adenine nucleotide ratios in different intracellular compartments and maintain the homeostasis of the intracellular nucleotide metabolism necessary for growth, differentiation, and motility. To date, nine isozymes have been identified and their functions have been analyzed. Moreover, the dynamics of the intracellular energy metabolism, diseases caused by AK mutations, the relationship with carcinogenesis, and circadian rhythms have recently been reported. This article summarizes the current knowledge regarding the physiological roles of AK isozymes in different diseases. In particular, this review focused on the symptoms caused by mutated AK isozymes in humans and phenotypic changes arising from altered gene expression in animal models. The future analysis of intracellular, extracellular, and intercellular energy metabolism with a focus on AK will aid in a wide range of new therapeutic approaches for various diseases, including cancer, lifestyle-related diseases, and aging.
Collapse
|
4
|
Non-Histone Lysine Crotonylation Is Involved in the Regulation of White Fat Browning. Int J Mol Sci 2022; 23:ijms232112733. [PMID: 36361522 PMCID: PMC9658748 DOI: 10.3390/ijms232112733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
Lysine crotonylation modification is a novel acylation modification that is similar to acetylation modification. Studies have found that protein acetylation plays an important regulatory part in the occurrence and prevention of obesity and is involved in the regulation of glucose metabolism, tricarboxylic acid cycle, white fat browning and fatty acid metabolism. Therefore, we speculate that protein crotonylation may also play a more vital role in regulating the browning of white fat. To verify this conjecture, we identified 7254 crotonyl modification sites and 1629 modified proteins in iWAT of white fat browning model mice by affinity enrichment and liquid chromatography-mass spectrometry (LC-MS/MS). We selected five representative proteins in the metabolic process, namely glycerol-3-phosphate dehydrogenase 1 (GPD1), fatty acid binding protein 4 (FABP4), adenylate kinase 2 (AK2), triosephosphate isomerase 1 (TPI1) and NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 8 (NDUFA8). Through qPCR, Western blotting, immunofluorescence staining, Oil Red O staining and HE staining, we demonstrated that GPD1 and FABP4 inhibited white fat browning, while AK2, TPI1 and NDUFA8 promoted white fat browning. GPD1 and FABP4 proteins were downregulated by crotonylation modification, while AK2, TPI1 and NDUFA8 proteins were upregulated by crotonylation modification. Further detection found that the crotonylation modification of GPD1, FABP4, AK2, TPI1 and NDUFA8 promoted white fat browning, which was consistent with the sequencing results. These results indicate that the protein crotonylation is involved in regulating white fat browning, which is of great significance for controlling obesity and treating obesity-related diseases.
Collapse
|
5
|
Vieira JCS, de Oliveira G, Cavallini NG, Braga CP, Adamec J, Zara LF, Buzalaf MAR, de Magalhães Padilha P. Investigation of Protein Biomarkers and Oxidative Stress in Pinirampus pirinampu Exposed to Mercury Species from the Madeira River, Amazon-Brazil. Biol Trace Elem Res 2022; 200:1872-1882. [PMID: 34482504 DOI: 10.1007/s12011-021-02805-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/18/2021] [Indexed: 12/27/2022]
Abstract
In recent decades, the scientific community has widely debated the contamination of fish in the Amazon region by mercury species. As the diet of riverside populations in the Amazon region is based mainly on fish, these populations are exposed to mercurial species that can cause serious and irreversible damage to their health. The risks of consuming fish exposed to mercurial species in the Amazon region have motivated toxicological investigations. However, the effect of mercurial species on protein and enzyme levels is still controversial. In this work, analytical and bioanalytical techniques Two-dimensional polyacrylamide gel electrophoresis [2D-PAGE] Graphite Furnace Atomic Absorption Spectrometry [GFAAS], and Mass Spectrometry in Sequence with Electrospray Ionization [ESI-MS/MS] were used to identify proteins associated with mercury (metal-binding protein) in muscle and liver tissues of the fish species Pinirampus pirinampu from the Madeira River, in the Brazilian Amazon. Enzymatic and lipid peroxidation analyses were also used to assess changes related to oxidative stress. Determinations of total mercury by GFAAS indicated higher concentrations in liver tissue (555 ± 19.0 µg kg-1) when compared to muscle tissue (60 ± 2.0 µg kg-1). The fractionation process of tissue proteomes by 2D-PAGE and subsequent mapping of mercury by GFAAS in the protein spots of the gels identified the presence of mercury in three spots of the liver tissue (concentrations in the range of 0.800 to 1.90 mg kg-1). The characterization of protein spots associated with mercury by ESI-MS/MS identified the enzymes triosephosphate isomerase A, adenylate kinase 2 mitochondrial, and glyceraldehyde-3-phosphate dehydrogenase as possible candidates for mercury exposure biomarkers. The muscle tissue did not show protein spots associated with mercury. Enzymatic activity decreased proportionally to the increase in mercury concentrations in the tissues.
Collapse
Affiliation(s)
| | - Grasieli de Oliveira
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - Jiri Adamec
- University of Nebraska (UNL), Lincoln, NE, USA
| | - Luiz Fabrício Zara
- College of Planaltina, University of Brasília (UNB), Brasília, Distrito Federal, Brazil
| | | | | |
Collapse
|
6
|
Adenylate kinase 2 expression and addiction in T-ALL. Blood Adv 2021; 5:700-710. [PMID: 33560378 DOI: 10.1182/bloodadvances.2020002700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/16/2020] [Indexed: 01/03/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) represents the malignant expansion of immature T cells blocked in their differentiation. T-ALL is still associated with a poor prognosis, mainly related to occurrence of relapse or refractory disease. A critical medical need therefore exists for new therapies to improve the disease prognosis. Adenylate kinase 2 (AK2) is a mitochondrial kinase involved in adenine nucleotide homeostasis recently reported as essential in normal T-cell development, as defective AK2 signaling pathway results in a severe combined immunodeficiency with a complete absence of T-cell differentiation. In this study, we show that AK2 is constitutively expressed in T-ALL to varying levels, irrespective of the stage of maturation arrest or the underlying oncogenetic features. T-ALL cell lines and patient T-ALL-derived xenografts present addiction to AK2, whereas B-cell precursor ALL cells do not. Indeed, AK2 knockdown leads to early and massive apoptosis of T-ALL cells that could not be rescued by the cytosolic isoform AK1. Mechanistically, AK2 depletion results in mitochondrial dysfunction marked by early mitochondrial depolarization and reactive oxygen species production, together with the depletion of antiapoptotic molecules (BCL-2 and BCL-XL). Finally, T-ALL exposure to a BCL-2 inhibitor (ABT-199 [venetoclax]) significantly enhances the cytotoxic effects of AK2 depletion. We also show that AK2 depletion disrupts the oxidative phosphorylation pathway. Combined with pharmaceutical inhibition of glycolysis, AK2 silencing prevents T-ALL metabolic adaptation, resulting in dramatic apoptosis. Altogether, we pinpoint AK2 as a genuine and promising therapeutic target in T-ALL.
Collapse
|
7
|
Cai J, Zang X, Wu Z, Liu J, Wang D. Altered protein S-glutathionylation depicts redox imbalance triggered by transition metal oxide nanoparticles in a breastfeeding system. NANOIMPACT 2021; 22:100305. [PMID: 35559962 DOI: 10.1016/j.impact.2021.100305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/25/2021] [Accepted: 02/19/2021] [Indexed: 06/15/2023]
Abstract
Nanosafety has become a public concern following nanotechnology development. By now, attention has seldom been paid to breastfeeding system, which is constructed by mammary physiological structure and derived substances (endogenous or exogenous), cells, tissues, organs, and individuals (mother and child), connecting environment and organism, and spans across mother-child dyad. Thus, breastfeeding system is a center of nutrients transport and a unique window of toxic susceptibility in the mother-child dyad. We applied metabolomics combined with redox proteomics to depict how nanoparticles cause metabolic burden via their spontaneous redox cycling in lactating mammary glands. Two widely used nanoparticles [titanium dioxide (nTiO2) and zinc oxide (nZnO)] were exposed to lactating mice via intranasal administration. Biodistribution and biopersistence of nTiO2 and nZnO in mammary glands destroyed its structure, reflective of significantly reduced claudin-3 protein level by 32.1% (P < 0.01) and 47.8% (P < 0.01), and significantly increased apoptosis index by 85.7 (P < 0.01) and 100.3 (P < 0.01) fold change, respectively. Airway exposure of nTiO2 trended to reduced milk production by 22.7% (P = 0.06), while nZnO significantly reduced milk production by 33.0% (P < 0.01). Metabolomics analysis revealed a metabolic shift by nTiO2 or nZnO, such as increased glycolysis (nTiO2: fold enrichment = 3.31, P < 0.05; nZnO: fold enrichment = 3.68, P < 0.05), glutathione metabolism (nTiO2: fold enrichment = 5.57, P < 0.01; nZnO: fold enrichment = 4.43, P < 0.05), and fatty acid biosynthesis (nTiO2: fold enrichment = 3.52, P < 0.05; nZnO: fold enrichment = 3.51, P < 0.05) for tissue repair at expense of lower milk fat synthesis (35.7% reduction by nTiO2; 51.8% reduction by nZnO), and finally led to oxidative stress of mammary glands. The increased GSSG/GSH ratio (57.5% increase by nTiO2; 105% increase by nZnO) with nanoparticle exposure confirmed an alteration in the redox state and a metabolic shift in mammary glands. Redox proteomics showed that nanoparticles induced S-glutathionylation (SSG) modification at Cys sites of proteins in a nanoparticle type-dependent manner. The nTiO2 induced more protein SSG modification sites (nTiO2: 21; nZnO:16), whereas nZnO induced fewer protein SSG modification sites but at deeper SSG levels (26.6% higher in average of nZnO than that of nTiO2). In detail, SSG modification by nTiO2 was characterized by Ltf at Cys423 (25.3% increase), and Trf at Cys386;395;583 (42.3%, 42.3%, 22.8% increase) compared with control group. While, SSG modification by nZnO was characterized by Trfc at Cys365 (71.3% increase) and Fasn at Cys1010 (41.0% increase). The discovery of SSG-modified proteins under airway nanoparticle exposure further supplemented the oxidative stress index and mammary injury index, and deciphered precise mechanisms of nanotoxicity into a molecular level. The unique quantitative site-specific redox proteomics and metabolomics can serve as a new technique to identify nanotoxicity and provide deep insights into nanoparticle-triggered oxidative stress, contributing to a healthy breastfeeding environment.
Collapse
Affiliation(s)
- Jie Cai
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, PR China.
| | - Xinwei Zang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, PR China.
| | - Zezhong Wu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, PR China
| | - Jianxin Liu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, PR China.
| | - Diming Wang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, PR China.
| |
Collapse
|
8
|
Chukai Y, Iwamoto T, Itoh K, Tomita H, Ozaki T. Characterization of mitochondrial calpain-5. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118989. [PMID: 33607190 DOI: 10.1016/j.bbamcr.2021.118989] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/21/2021] [Accepted: 02/09/2021] [Indexed: 01/08/2023]
Abstract
Calpain, a Ca2+-dependent cysteine protease, plays a significant role in gene expression, signal transduction, and apoptosis. Mutations in human calpain-5 cause autosomal dominant neovascular inflammatory vitreoretinopathy and the inhibition of calpain-5 activity may constitute an effective therapeutic strategy for this condition. Although calpain-5 is ubiquitously expressed in mammalian tissues and was recently found to be present in the mitochondria as well as in the cytosol, its physiological function and enzymological properties require further elucidation. The objective of the current study was to determine the characteristics of mitochondrial calpain-5 in porcine retinas, human HeLa cells, and C57BL/6J mice using subcellular fractionation. We found that mitochondrial calpain-5 was proteolyzed/autolyzed at low Ca2+ concentrations in mitochondria isolated from porcine retinas and by thapsigargin-induced endoplasmic reticulum (ER) stress in HeLa cells. Further, mitochondrial calpain-5, as opposed to cytosolic calpain-5, was activated during the early stages of ER stress in C57BL/6J mice. These results showed that mitochondrial calpain-5 was activated at low Ca2+ concentrations in vitro and in response to ER stress in vivo. The present study provides new insights into a novel calpain system in the mitochondria that includes stress responses during the early phases of ER stress. Further, activation of mitochondrial calpain-5 by treatment using low-molecular-weight compounds may have therapeutic potential for diseases related to ER stress, including neurodegenerative diseases, metabolic syndromes, diabetes, and cancer.
Collapse
Affiliation(s)
- Yusaku Chukai
- Laboratory of Cell Biochemistry, Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Takeshi Iwamoto
- Laboratory of Cell Biochemistry, Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifuchou, Hirosaki, Aomori 036-8562, Japan
| | - Hiroshi Tomita
- Laboratory of Visual Neuroscience, Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Taku Ozaki
- Laboratory of Cell Biochemistry, Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan.
| |
Collapse
|
9
|
Kim YY, Kim JS, Che JH, Ku SY, Kang BC, Yun JW. Comparison of Genetically Engineered Immunodeficient Animal Models for Nonclinical Testing of Stem Cell Therapies. Pharmaceutics 2021; 13:130. [PMID: 33498509 PMCID: PMC7909568 DOI: 10.3390/pharmaceutics13020130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022] Open
Abstract
For the recovery or replacement of dysfunctional cells and tissue-the goal of stem cell research-successful engraftment of transplanted cells and tissues are essential events. The event is largely dependent on the immune rejection of the recipient; therefore, the immunogenic evaluation of candidate cells or tissues in immunodeficient animals is important. Understanding the immunodeficient system can provide insights into the generation and use of immunodeficient animal models, presenting a unique system to explore the capabilities of the innate immune system. In this review, we summarize various immunodeficient animal model systems with different target genes as valuable tools for biomedical research. There have been numerous immunodeficient models developed by different gene defects, resulting in many different features in phenotype. More important, mice, rats, and other large animals exhibit very different immunological and physiological features in tissue and organs, including genetic background and a representation of human disease conditions. Therefore, the findings from this review may guide researchers to select the most appropriate immunodeficient strain, target gene, and animal species based on the research type, mutant gene effects, and similarity to human immunological features for stem cell research.
Collapse
Affiliation(s)
- Yoon-Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea; (Y.-Y.K.); (S.-Y.K.)
| | - Jin-Soo Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea;
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea; (Y.-Y.K.); (S.-Y.K.)
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jun-Won Yun
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea;
| |
Collapse
|
10
|
Finger Y, Habich M, Gerlich S, Urbanczyk S, van de Logt E, Koch J, Schu L, Lapacz KJ, Ali M, Petrungaro C, Salscheider SL, Pichlo C, Baumann U, Mielenz D, Dengjel J, Brachvogel B, Hofmann K, Riemer J. Proteasomal degradation induced by DPP9-mediated processing competes with mitochondrial protein import. EMBO J 2020; 39:e103889. [PMID: 32815200 PMCID: PMC7527813 DOI: 10.15252/embj.2019103889] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Plasticity of the proteome is critical to adapt to varying conditions. Control of mitochondrial protein import contributes to this plasticity. Here, we identified a pathway that regulates mitochondrial protein import by regulated N-terminal processing. We demonstrate that dipeptidyl peptidases 8/9 (DPP8/9) mediate the N-terminal processing of adenylate kinase 2 (AK2) en route to mitochondria. We show that AK2 is a substrate of the mitochondrial disulfide relay, thus lacking an N-terminal mitochondrial targeting sequence and undergoing comparatively slow import. DPP9-mediated processing of AK2 induces its rapid proteasomal degradation and prevents cytosolic accumulation of enzymatically active AK2. Besides AK2, we identify more than 100 mitochondrial proteins with putative DPP8/9 recognition sites and demonstrate that DPP8/9 influence the cellular levels of a number of these proteins. Collectively, we provide in this study a conceptual framework on how regulated cytosolic processing controls levels of mitochondrial proteins as well as their dual localization to mitochondria and other compartments.
Collapse
Affiliation(s)
- Yannik Finger
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Markus Habich
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Sarah Gerlich
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Sophia Urbanczyk
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Erik van de Logt
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Julian Koch
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Laura Schu
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Kim Jasmin Lapacz
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Muna Ali
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Carmelina Petrungaro
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | | | - Christian Pichlo
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Joern Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Kay Hofmann
- Institute of Genetics, University of Cologne, Cologne, Germany
| | - Jan Riemer
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Brunes LC, Baldi F, Lopes FB, Lôbo RB, Espigolan R, Costa MFO, Stafuzza NB, Magnabosco CU. Weighted single-step genome-wide association study and pathway analyses for feed efficiency traits in Nellore cattle. J Anim Breed Genet 2020; 138:23-44. [PMID: 32654373 DOI: 10.1111/jbg.12496] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023]
Abstract
The aim was to conduct a weighted single-step genome-wide association study to detect genomic regions and putative candidate genes related to residual feed intake, dry matter intake, feed efficiency (FE), feed conversion ratio, residual body weight gain, residual intake and weight gain in Nellore cattle. Several protein-coding genes were identified within the genomic regions that explain more than 0.5% of the additive genetic variance for these traits. These genes were associated with insulin, leptin, glucose, protein and lipid metabolisms; energy balance; heat and oxidative stress; bile secretion; satiety; feed behaviour; salivation; digestion; and nutrient absorption. Enrichment analysis revealed functional pathways (p-value < .05) such as neuropeptide signalling (GO:0007218), negative regulation of canonical Wingless/Int-1 (Wnt) signalling (GO:0090090), bitter taste receptor activity (GO:0033038), neuropeptide hormone activity (GO:0005184), bile secretion (bta04976), taste transduction (bta0742) and glucagon signalling pathway (bta04922). The identification of these genes, pathways and their respective functions should contribute to a better understanding of the genetic and physiological mechanisms regulating Nellore FE-related traits.
Collapse
Affiliation(s)
- Ludmilla C Brunes
- Department of Animal Science, Federal University of Goiás (UFG), Goiânia, Brazil.,Embrapa Rice and Beans, Santo Antônio de Goiás, Brazil
| | - Fernando Baldi
- Department of Animal Science, São Paulo State University (UNESP), Jaboticabal, Brazil
| | | | - Raysildo B Lôbo
- National Association of Breeders and Researchers (ANCP), Ribeirão Preto, Brazil
| | - Rafael Espigolan
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil
| | | | - Nedenia B Stafuzza
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, Brazil
| | | |
Collapse
|
12
|
Kurdrid P, Phuengcharoen P, Senachak J, Saree S, Hongsthong A. Revealing the key point of the temperature stress response of Arthrospira platensis C1 at the interconnection of C- and N- metabolism by proteome analyses and PPI networking. BMC Mol Cell Biol 2020; 21:43. [PMID: 32532219 PMCID: PMC7291507 DOI: 10.1186/s12860-020-00285-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/28/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Growth-temperature stress causes biochemical changes in the cells and reduction of biomass yield. Quantitative proteome of Arthrospira platensis C1 in response to low- and high temperature stresses was previously analysed to elucidate the stress response mechanism. The data highlighted the linkage of signaling proteins and proteins involved in nitrogen and ammonia assimilation, photosynthesis and oxidative stress. RESULTS After phosphoproteome analysis was carried out in this study, the tentative temperature response cascade of A. platensis C1 was drawn based on data integration of quantitative proteome and phosphoproteome analysis and protein-protein interaction (PPI) networks. The integration revealed 31 proteins regulated at the protein-expression and post-translational levels; thus, this group of proteins was designated bi-level regulated proteins. PPI networks were then constructed based on A. platensis C1 gene inference from publicly available interaction data. The key two-component system (TCS) proteins, SPLC1_S082010 and SPLC1_S230960, were identified as bi-level regulated proteins and were linked to SPLC1_S270380 or glutamate synthase, an important enzyme in nitrogen assimilation that synthesizes glutamate from 2-oxoglutarate, which is known as the signal compound that regulates the carbon/nitrogen (C/N) balance of cells. Moreover, the role of the p-site in the PPIs of some phosphoproteins of interest was determined using site-directed mutagenesis and a yeast two-hybrid system. Evidence showing the critical role of the p-site in the PPI was observed for the multi-sensor histidine kinase SPLC1_S041070 (Hik28) and glutamate synthase. PPI subnetwork also showed that the Hik28 involved with the enzymes in fatty acid desaturation and nitrogen metabolism. The effect of Hik28-deletion was validated by fatty acid analysis and measurement of photosynthetic activity under nitrogen depletion. CONCLUSIONS Taken together, the data clearly represents (i) the multi-level regulation of proteins involved in the stress response mechanism and (ii) the key point of the temperature stress response at the interconnection of C- and N- metabolism.
Collapse
Affiliation(s)
- Pavinee Kurdrid
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut's University of Technology Thonburi, Mailing Address: IBEG/BIOTEC@KMUTT, 49 Soi Thian Thale 25, Tha Kham, Bang Khun Thian, Bangkok, 10150, Thailand
| | - Phutnichar Phuengcharoen
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, 49 Soi Thian Thale 25, Tha Kham, Bang Khun Thian, Bangkok, 10150, Thailand
| | - Jittisak Senachak
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut's University of Technology Thonburi, Mailing Address: IBEG/BIOTEC@KMUTT, 49 Soi Thian Thale 25, Tha Kham, Bang Khun Thian, Bangkok, 10150, Thailand
| | - Sirilak Saree
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, 49 Soi Thian Thale 25, Tha Kham, Bang Khun Thian, Bangkok, 10150, Thailand
| | - Apiradee Hongsthong
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut's University of Technology Thonburi, Mailing Address: IBEG/BIOTEC@KMUTT, 49 Soi Thian Thale 25, Tha Kham, Bang Khun Thian, Bangkok, 10150, Thailand.
| |
Collapse
|
13
|
Rissone A, Jimenez E, Bishop K, Carrington B, Slevin C, Wincovitch SM, Sood R, Candotti F, Burgess SM. A model for reticular dysgenesis shows impaired sensory organ development and hair cell regeneration linked to cellular stress. Dis Model Mech 2019; 12:dmm040170. [PMID: 31727854 PMCID: PMC6955229 DOI: 10.1242/dmm.040170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
Mutations in the gene AK2 are responsible for reticular dysgenesis (RD), a rare and severe form of primary immunodeficiency in children. RD patients have a severely shortened life expectancy and without treatment die, generally from sepsis soon after birth. The only available therapeutic option for RD is hematopoietic stem cell transplantation (HSCT). To gain insight into the pathophysiology of RD, we previously created zebrafish models for Ak2 deficiencies. One of the clinical features of RD is hearing loss, but its pathophysiology and causes have not been determined. In adult mammals, sensory hair cells of the inner ear do not regenerate; however, their regeneration has been observed in several non-mammalian vertebrates, including zebrafish. Therefore, we used our RD zebrafish models to determine whether Ak2 deficiency affects sensory organ development and/or hair cell regeneration. Our studies indicated that Ak2 is required for the correct development, survival and regeneration of sensory hair cells. Interestingly, Ak2 deficiency induces the expression of several oxidative stress markers and it triggers an increased level of cell death in the hair cells. Finally, we show that glutathione treatment can partially rescue hair cell development in the sensory organs in our RD models, pointing to the potential use of antioxidants as a therapeutic treatment supplementing HSCT to prevent or ameliorate sensorineural hearing deficits in RD patients.
Collapse
Affiliation(s)
- Alberto Rissone
- Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Erin Jimenez
- Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kevin Bishop
- NHGRI Zebrafish Core, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Blake Carrington
- NHGRI Zebrafish Core, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Claire Slevin
- Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Raman Sood
- Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
- NHGRI Zebrafish Core, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
14
|
Abstract
Adenylate kinase is a small, usually monomeric, enzyme found in every living thing due to its crucial role in energetic metabolism. This paper outlines the most relevant data about adenylate kinases isoforms, and the connection between dysregulation or mutation of human adenylate kinase and medical conditions. The following datadases were consulted: National Centre for Biotechnology Information, Protein Data Bank, and Mouse Genomic Informatics. The SmartBLAST tool, EMBOSS Needle Program, and Clustal Omega Program were used to analyze the best protein match, and to perform pairwise sequence alignment and multiple sequence alignment. Human adenylate kinase genes are located on different chromosomes, six of them being on the chromosomes 1 and 9. The adenylate kinases' intracellular localization and organ distribution explain their dysregulation in many diseases. The cytosolic isoenzyme 1 and the mitochondrial isoenzyme 2 are the main adenylate kinases that are integrated in the vast network of inflammatory modulators. The cytosolic isoenzyme 5 is correlated with limbic encephalitis and Leu673Pro mutation of the isoenzyme 7 leads to primary male infertility due to impairment of the ciliary function. The impairment of the mitochondrial isoenzymes 2 and 4 is demonstrated in neuroblastoma or glioma. The adenylate kinases are disease modifier that can assess the risk of diseases where oxidative stress plays a crucial role in pathogenesis like metabolic syndrome or neurodegenerative diseases. Because adenylate kinases has ATP as substrate, they are integrated in the global network of energetic process of any organism therefore are valid target for new pharmaceutical compounds.
Collapse
Affiliation(s)
- Mihaela Ileana Ionescu
- Department of Microbiology, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 6 Louis Pasteur, Cluj-Napoca, 400349, Romania. .,County Emergency Clinical Hospital, Cluj-Napoca, Romania.
| |
Collapse
|
15
|
Ghaloul-Gonzalez L, Mohsen AW, Karunanidhi A, Seminotti B, Chong H, Madan-Khetarpal S, Sebastian J, Vockley CW, Reyes-Múgica M, Vander Lugt MT, Vockley J. Reticular Dysgenesis and Mitochondriopathy Induced by Adenylate Kinase 2 Deficiency with Atypical Presentation. Sci Rep 2019; 9:15739. [PMID: 31673062 PMCID: PMC6823482 DOI: 10.1038/s41598-019-51922-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 10/10/2019] [Indexed: 01/31/2023] Open
Abstract
Reticular dysgenesis is an autosomal recessive form of severe combined immunodeficiency (SCID) that usually manifests in newborns. It is a unique example of an immune deficiency that is linked to dysfunctional mitochondrial energy metabolism and caused by adenylate kinase 2 (AK2) deficiency. It is characterized by an early differentiation arrest in the myeloid lineage, impaired lymphoid maturation, and sensorineural hearing loss. In this study, a novel AK2 homozygous mutation, c.622 T > C [p.Ser208Pro], was identified in an Old Order Amish patient through whole exome sequencing. Functional studies showed that the patient’s cells have no detectable AK2 protein, as well as low oxygen consumption rate (OCR), extracellular acidification rate (ECAR) and proton production rate (PPR). An increased production of reactive oxygen species, mitochondrial membrane permeability, and mitochondrial mass, and decreased ATP production, were also observed. The results confirm the pathogenicity of the AK2 mutation and demonstrate that reticular dysgenesis should be considered in Amish individuals presenting with immune deficiency. We also describe other pathophysiological aspects of AK2 deficiency not previously reported.
Collapse
Affiliation(s)
- Lina Ghaloul-Gonzalez
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Al-Walid Mohsen
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anuradha Karunanidhi
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bianca Seminotti
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hey Chong
- Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Suneeta Madan-Khetarpal
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica Sebastian
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Catherine Walsh Vockley
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Miguel Reyes-Múgica
- Division of Pediatric Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark T Vander Lugt
- Division of Blood and Marrow Transplantation and Cellular Therapies, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jerry Vockley
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Lacombe J, Brengues M, Mangé A, Bourgier C, Gourgou S, Pèlegrin A, Ozsahin M, Solassol J, Azria D. Quantitative proteomic analysis reveals AK2 as potential biomarker for late normal tissue radiotoxicity. Radiat Oncol 2019; 14:142. [PMID: 31399108 PMCID: PMC6688300 DOI: 10.1186/s13014-019-1351-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022] Open
Abstract
Background Biomarkers for predicting late normal tissue toxicity to radiotherapy are necessary to personalize treatments and to optimize clinical benefit. Many radiogenomic studies have been published on this topic. Conversely, proteomics approaches are not much developed, despite their advantages. Methods We used the isobaric tags for relative and absolute quantitation (iTRAQ) proteomic approach to analyze differences in protein expression levels in ex-vivo irradiated (8 Gy) T lymphocytes from patients with grade ≥ 2 radiation-induced breast fibrosis (grade ≥ 2 bf+) and patients with grade < 2 bf + after curative intent radiotherapy. Patients were selected from two prospective clinical trials (COHORT and PHRC 2005) and were used as discovery and confirmation cohorts. Results Among the 1979 quantified proteins, 23 fulfilled our stringent biological criteria. Immunoblotting analysis of four of these candidate proteins (adenylate kinase 2, AK2; annexin A1; heat shock cognate 71 kDa protein; and isocitrate dehydrogenase 2) confirmed AK2 overexpression in 8 Gy-irradiated T lymphocytes from patients with grade ≥ 2 bf + compared with patients with grade < 2 bf+. As these candidate proteins are involved in oxidative stress regulation, we also evaluated radiation-induced reactive oxygen species (ROS) production in peripheral blood mononuclear cells from patients with grade ≥ 2 bf + and grade < 2 bf+. Total ROS level, and especially superoxide anion level, increased upon ex-vivo 8 Gy-irradiation in all patients. Analysis of NADPH oxidases (NOXs), a major source of superoxide ion in the cell, showed a significant increase of NOX4 mRNA and protein levels after irradiation in both patient groups. Conversely, only NOX4 mRNA level was significantly different between groups (grade ≥ 2 bf + and grade < 2 bf+). Conclusion These findings identify AK2 as a potential radiosensitivity candidate biomarker. Overall, our proteomic approach highlights the important role of oxidative stress in late radiation-induced toxicity, and paves the way for additional studies on NOXs and superoxide ion metabolism. Electronic supplementary material The online version of this article (10.1186/s13014-019-1351-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jérôme Lacombe
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | - Muriel Brengues
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | - Alain Mangé
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | - Céline Bourgier
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | | | - André Pèlegrin
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | | | - Jérôme Solassol
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France.,Department of Pathology and Onco-Biology, CHU Montpellier, Montpellier, France
| | - David Azria
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France. .,Department of Radiation Oncology, ICM, 34298, Montpellier Cedex 5, France.
| |
Collapse
|
17
|
Musci RV, Hamilton KL, Linden MA. Exercise-Induced Mitohormesis for the Maintenance of Skeletal Muscle and Healthspan Extension. Sports (Basel) 2019; 7:E170. [PMID: 31336753 PMCID: PMC6681340 DOI: 10.3390/sports7070170] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022] Open
Abstract
Oxidative damage is one mechanism linking aging with chronic diseases including the progressive loss of skeletal muscle mass and function called sarcopenia. Thus, mitigating oxidative damage is a potential avenue to prevent or delay the onset of chronic disease and/or extend healthspan. Mitochondrial hormesis (mitohormesis) occurs when acute exposure to stress stimulates adaptive mitochondrial responses that improve mitochondrial function and resistance to stress. For example, an acute oxidative stress via mitochondrial superoxide production stimulates the activation of endogenous antioxidant gene transcription regulated by the redox sensitive transcription factor Nrf2, resulting in an adaptive hormetic response. In addition, acute stresses such as aerobic exercise stimulate the expansion of skeletal muscle mitochondria (i.e., mitochondrial biogenesis), constituting a mitohormetic response that protects from sarcopenia through a variety of mechanisms. This review summarized the effects of age-related declines in mitochondrial and redox homeostasis on skeletal muscle protein homeostasis and highlights the mitohormetic mechanisms by which aerobic exercise mitigates these age-related declines and maintains function. We discussed the potential efficacy of targeting the Nrf2 signaling pathway, which partially mediates adaptation to aerobic exercise, to restore mitochondrial and skeletal muscle function. Finally, we highlight knowledge gaps related to improving redox signaling and make recommendations for future research.
Collapse
Affiliation(s)
- Robert V Musci
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA.
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Melissa A Linden
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
18
|
Modulation of phospho-proteins by interferon-alpha and valproic acid in acute myeloid leukemia. J Cancer Res Clin Oncol 2019; 145:1729-1749. [PMID: 31111215 PMCID: PMC6571093 DOI: 10.1007/s00432-019-02931-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Valproic acid (VPA) is suggested to be therapeutically beneficial in combination with interferon-alpha (IFNα) in various cancers. Therefore, we examined IFNα and VPA alone and in combinations in selected AML models, examining immune regulators and intracellular signaling mechanisms involved in phospho-proteomics. METHODS The anti-leukemic effects of IFNα and VPA were examined in vitro and in vivo. We mapped the in vitro phosphoprotein modulation by IFNα-2b and human IFNα-Le in MOLM-13 cells by IMAC/2D DIGE/MS analysis and phospho-flow cytometry, and in primary healthy and AML patient-derived PBMCs by CyTOF. In vivo, IFNα-Le and VPA efficacy were investigated in the immunodeficient NOD/Scid IL2γ-/- MOLM-13Luc+ mouse model and the syngeneic immunocompetent BNML rat model. RESULTS IFNα-2b and IFNα-Le differed in the modulation of phospho-proteins involved in protein folding, cell stress, cell death and p-STAT6 Y641, whereas VPA and IFNα-Le shared signaling pathways involving phosphorylation of Akt (T308), ERK1/2 (T202/T204), p38 (T180/Y182), and p53 (S15). Both IFNα compounds induced apoptosis synergistically with VPA in vitro. However, in vivo, VPA monotherapy increased survival, but no benefit was observed by IFNα-Le treatment. CyTOF analysis of primary human PBMCs indicated that lack of immune-cell activation could be a reason for the absence of response to IFNα in the animal models investigated. CONCLUSIONS IFNα-2b and IFNα-Le showed potent and synergistic anti-leukemic effects with VPA in vitro but not in leukemic mouse and rat models in vivo. The absence of IFNα immune activation in lymphocyte subsets may potentially explain the limited in vivo anti-leukemic effect of IFNα-monotherapy in AML.
Collapse
|
19
|
Oshima K, Saiki N, Tanaka M, Imamura H, Niwa A, Tanimura A, Nagahashi A, Hirayama A, Okita K, Hotta A, Kitayama S, Osawa M, Kaneko S, Watanabe A, Asaka I, Fujibuchi W, Imai K, Yabe H, Kamachi Y, Hara J, Kojima S, Tomita M, Soga T, Noma T, Nonoyama S, Nakahata T, Saito MK. Human AK2 links intracellular bioenergetic redistribution to the fate of hematopoietic progenitors. Biochem Biophys Res Commun 2018; 497:719-725. [PMID: 29462620 DOI: 10.1016/j.bbrc.2018.02.139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/15/2018] [Indexed: 12/27/2022]
Abstract
AK2 is an adenylate phosphotransferase that localizes at the intermembrane spaces of the mitochondria, and its mutations cause a severe combined immunodeficiency with neutrophil maturation arrest named reticular dysgenesis (RD). Although the dysfunction of hematopoietic stem cells (HSCs) has been implicated, earlier developmental events that affect the fate of HSCs and/or hematopoietic progenitors have not been reported. Here, we used RD-patient-derived induced pluripotent stem cells (iPSCs) as a model of AK2-deficient human cells. Hematopoietic differentiation from RD-iPSCs was profoundly impaired. RD-iPSC-derived hemoangiogenic progenitor cells (HAPCs) showed decreased ATP distribution in the nucleus and altered global transcriptional profiles. Thus, AK2 has a stage-specific role in maintaining the ATP supply to the nucleus during hematopoietic differentiation, which affects the transcriptional profiles necessary for controlling the fate of multipotential HAPCs. Our data suggest that maintaining the appropriate energy level of each organelle by the intracellular redistribution of ATP is important for controlling the fate of progenitor cells.
Collapse
Affiliation(s)
- Koichi Oshima
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Kyoto, 6068507, Japan
| | - Norikazu Saiki
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Kyoto, 6068507, Japan
| | - Michihiro Tanaka
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Kyoto, 6068507, Japan
| | - Hiromi Imamura
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Kyoto, 6068501, Japan
| | - Akira Niwa
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Kyoto, 6068507, Japan
| | - Ayako Tanimura
- Department of Molecular Biology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Tokushima, 7708505, Japan
| | - Ayako Nagahashi
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Kyoto, 6068507, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 9970052, Japan
| | - Keisuke Okita
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Kyoto, 6068507, Japan
| | - Akitsu Hotta
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Kyoto, 6068507, Japan
| | - Shuichi Kitayama
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Kyoto, 6068507, Japan
| | - Mitsujiro Osawa
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Kyoto, 6068507, Japan
| | - Shin Kaneko
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Kyoto, 6068507, Japan
| | - Akira Watanabe
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Kyoto, 6068507, Japan
| | - Isao Asaka
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Kyoto, 6068507, Japan
| | - Wataru Fujibuchi
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Kyoto, 6068507, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University, Tokyo, Tokyo, 1130034, Japan
| | - Hiromasa Yabe
- Specialized Clinical Science, Pediatrics, Tokai University School of Medicine, Isehara, Kanagawa, 2591193, Japan
| | - Yoshiro Kamachi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Nagoya, 4668550, Japan
| | - Junichi Hara
- Department of Pediatric Hematology/Oncology, Children's Medical Center, Osaka City General Hospital, Osaka, Osaka, 5340021, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Nagoya, 4668550, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 9970052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 9970052, Japan
| | - Takafumi Noma
- Department of Molecular Biology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Tokushima, 7708505, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Saitama, 3590042, Japan
| | - Tatsutoshi Nakahata
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Kyoto, 6068507, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Kyoto, 6068507, Japan.
| |
Collapse
|
20
|
Hoenig M, Pannicke U, Gaspar HB, Schwarz K. Recent advances in understanding the pathogenesis and management of reticular dysgenesis. Br J Haematol 2017; 180:644-653. [PMID: 29270983 DOI: 10.1111/bjh.15045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Reticular Dysgenesis is a rare immunodeficiency which is clinically characterized by the combination of Severe Combined Immunodeficiency (SCID) with agranulocytosis and sensorineural deafness. Mutations in the gene encoding adenylate kinase 2 (AK2) were identified to cause this phenotype. In this review, we will demonstrate important clinical differences between reticular dysgenesis and other SCID entities and summarize recent concepts in the understanding of the pathophysiology of the disease and the management strategies for this difficult condition.
Collapse
Affiliation(s)
- Manfred Hoenig
- Department of Paediatrics, University Medical Centre Ulm, Ulm, Germany
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg, Hessen, Germany
| | - Hubert B Gaspar
- UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg, Hessen, Germany
| |
Collapse
|
21
|
Adenylate kinase hCINAP determines self-renewal of colorectal cancer stem cells by facilitating LDHA phosphorylation. Nat Commun 2017; 8:15308. [PMID: 28516914 PMCID: PMC5454382 DOI: 10.1038/ncomms15308] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/17/2017] [Indexed: 12/18/2022] Open
Abstract
Targeting the specific metabolic phenotypes of colorectal cancer stem cells (CRCSCs) is an innovative therapeutic strategy for colorectal cancer (CRC) patients with poor prognosis and relapse. However, the context-dependent metabolic traits of CRCSCs remain poorly elucidated. Here we report that adenylate kinase hCINAP is overexpressed in CRC tissues. Depletion of hCINAP inhibits invasion, self-renewal, tumorigenesis and chemoresistance of CRCSCs with a loss of mesenchymal signature. Mechanistically, hCINAP binds to the C-terminal domain of LDHA, the key regulator of glycolysis, and depends on its adenylate kinase activity to promote LDHA phosphorylation at tyrosine 10, resulting in the hyperactive Warburg effect and the lower cellular ROS level and conferring metabolic advantage to CRCSC invasion. Moreover, hCINAP expression is positively correlated with the level of Y10-phosphorylated LDHA in CRC patients. This study identifies hCINAP as a potent modulator of metabolic reprogramming in CRCSCs and a promising drug target for CRC invasion and metastasis.
Collapse
|
22
|
Suski M, Wiśniewska A, Stachowicz A, Olszanecki R, Kuś K, Białas M, Madej J, Korbut R. The influence of AICAR - direct activator of AMP-activated protein kinase (AMPK) - on liver proteome in apoE-knockout mice. Eur J Pharm Sci 2017; 104:406-416. [PMID: 28455001 DOI: 10.1016/j.ejps.2017.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/13/2017] [Accepted: 04/25/2017] [Indexed: 02/08/2023]
Abstract
There is a growing body of evidence that altered functioning of apoE may aggravate cellular energy homeostasis and stress response, leading to oxidative stress, mitochondrial dysfunction, endoplasmic reticulum (ER) stress and inflammation, leading to hypercholesterolemia, dyslipidemia, liver steatosis and neurodegeneration. One of the key cellular responses to mitochondria and ER-stress related processes and cellular energy imbalance is AMP-activated protein kinase (AMPK), considered as a cellular master energy sensor and critical regulator of mitochondrial homeostasis. The aim of our study was to use differential proteomics and transcriptomics approach to elucidate the effect of direct AMPK activator AICAR on liver proteome in apoE-/- mice - experimental model of atherosclerosis and moderate nonalcoholic steatosis. We applied Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) labeling and two-dimensional chromatography coupled with mass spectrometry (2DLC-MS/MS) MudPIT strategy, as well as RT-PCR to investigate the changes in mitochondrial and cytosolic proteins and transcripts expression in 6-month old AICAR-treated apoE-/-. AICAR elicited induction of proteins related to mitochondrial β-oxidation, protein degradation and energy producing pathways (i.a. tricarboxylic acid cycle members and mitochondrial adenylate kinase 2). On the other hand, AICAR repressed inflammatory and pro-apoptotic markers in the apoE-/- mice liver, alongside reduction in several peroxisomal proteins, possibly suggesting induction of anti-oxidative pexophagy.
Collapse
Affiliation(s)
- Maciej Suski
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Wiśniewska
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Aneta Stachowicz
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Rafał Olszanecki
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland.
| | - Katarzyna Kuś
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Białas
- Chair of Phatomorphology, Jagiellonian University Medical College, Krakow, Poland
| | - Józef Madej
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Ryszard Korbut
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
23
|
Simple oxygraphic analysis for the presence of adenylate kinase 1 and 2 in normal and tumor cells. J Bioenerg Biomembr 2016; 48:531-548. [PMID: 27854030 DOI: 10.1007/s10863-016-9687-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Abstract
The adenylate kinase (AK) isoforms network plays an important role in the intracellular energy transfer processes, the maintenance of energy homeostasis, and it is a major player in AMP metabolic signaling circuits in some highly-differentiated cells. For this purpose, a rapid and sensitive method was developed that enables to estimate directly and semi-quantitatively the distribution between cytosolic AK1 and mitochondrial AK2 localized in the intermembrane space, both in isolated cells and tissue samples (biopsy material). Experiments were performed on isolated rat mitochondria or permeabilized material, including undifferentiated and differentiated neuroblastoma Neuro-2a cells, HL-1 cells, isolated rat heart cardiomyocytes as well as on human breast cancer postoperative samples. In these samples, the presence of AK1 and AK2 could be detected by high-resolution respirometry due to the functional coupling of these enzymes with ATP synthesis. By eliminating extra-mitochondrial ADP with an excess of pyruvate kinase and its substrate phosphoenolpyruvate, the coupling of the AK reaction with mitochondrial ATP synthesis could be quantified for total AK and mitochondrial AK2 as a specific AK index. In contrast to the creatine kinase pathway, the AK phosphotransfer pathway is up-regulated in murine neuroblastoma and HL-1 sarcoma cells and in these malignant cells expression of AK2 is higher than AK1. Differentiated Neuro-2a neuroblastoma cells exhibited considerably higher OXPHOS capacity than undifferentiated cells, and this was associated with a remarkable decrease in their AK activity. The respirometric method also revealed a considerable difference in mitochondrial affinity for AMP between non-transformed cells and tumor cells.
Collapse
|
24
|
Zietek T, Rath E. Inflammation Meets Metabolic Disease: Gut Feeling Mediated by GLP-1. Front Immunol 2016; 7:154. [PMID: 27148273 PMCID: PMC4840214 DOI: 10.3389/fimmu.2016.00154] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/08/2016] [Indexed: 12/14/2022] Open
Abstract
Chronic diseases, such as obesity and diabetes, cardiovascular, and inflammatory bowel diseases (IBD) share common features in their pathology. Metabolic disorders exhibit strong inflammatory underpinnings and vice versa, inflammation is associated with metabolic alterations. Next to cytokines and cellular stress pathways, such as the unfolded protein response (UPR), alterations in the enteroendocrine system are intersections of various pathologies. Enteroendocrine cells (EEC) have been studied extensively for their ability to regulate gastrointestinal motility, secretion, and insulin release by release of peptide hormones. In particular, the L-cell-derived incretin hormone glucagon-like peptide 1 (GLP-1) has gained enormous attention due to its insulinotropic action and relevance in the treatment of type 2 diabetes (T2D). Yet, accumulating data indicate a critical role for EEC and in particular for GLP-1 in metabolic adaptation and in orchestrating immune responses beyond blood glucose control. EEC sense the lamina propria and luminal environment, including the microbiota via receptors and transporters. Subsequently, mediating signals by secreting hormones and cytokines, EEC can be considered as integrators of metabolic and inflammatory signaling. This review focuses on L cell and GLP-1 functions in the context of metabolic and inflammatory diseases. The effects of incretin-based therapies on metabolism and immune system are discussed and the interrelation and common features of metabolic and immune-mediated disorders are highlighted. Moreover, it presents data on the impact of inflammation, in particular of IBD on EEC and discusses the potential role of the microbiota as link between nutrients, metabolism, immunity, and disease.
Collapse
Affiliation(s)
- Tamara Zietek
- Department of Nutritional Physiology, Technische Universität München , Freising , Germany
| | - Eva Rath
- Chair of Nutrition and Immunology, Technische Universität München , Freising , Germany
| |
Collapse
|
25
|
Rissone A, Weinacht KG, la Marca G, Bishop K, Giocaliere E, Jagadeesh J, Felgentreff K, Dobbs K, Al-Herz W, Jones M, Chandrasekharappa S, Kirby M, Wincovitch S, Simon KL, Itan Y, DeVine A, Schlaeger T, Schambach A, Sood R, Notarangelo LD, Candotti F. Reticular dysgenesis-associated AK2 protects hematopoietic stem and progenitor cell development from oxidative stress. ACTA ACUST UNITED AC 2015; 212:1185-202. [PMID: 26150473 PMCID: PMC4516804 DOI: 10.1084/jem.20141286] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 06/01/2015] [Indexed: 12/23/2022]
Abstract
Rissone et al. demonstrate that adenylate kinase AK2, an enzyme mutated in reticular dysgenesis (RD) in humans, prevents oxidative stress during hematopoiesis. Using a zebrafish model, as well as induced pluripotent stem cells derived from an RD patient, they find that AK2 deficiency affects hematopoietic stem and progenitor development with increased oxidative stress. Antioxidant treatment rescues the hematopoietic phenotypes. Adenylate kinases (AKs) are phosphotransferases that regulate the cellular adenine nucleotide composition and play a critical role in the energy homeostasis of all tissues. The AK2 isoenzyme is expressed in the mitochondrial intermembrane space and is mutated in reticular dysgenesis (RD), a rare form of severe combined immunodeficiency (SCID) in humans. RD is characterized by a maturation arrest in the myeloid and lymphoid lineages, leading to early onset, recurrent, and overwhelming infections. To gain insight into the pathophysiology of RD, we studied the effects of AK2 deficiency using the zebrafish model and induced pluripotent stem cells (iPSCs) derived from fibroblasts of an RD patient. In zebrafish, Ak2 deficiency affected hematopoietic stem and progenitor cell (HSPC) development with increased oxidative stress and apoptosis. AK2-deficient iPSCs recapitulated the characteristic myeloid maturation arrest at the promyelocyte stage and demonstrated an increased AMP/ADP ratio, indicative of an energy-depleted adenine nucleotide profile. Antioxidant treatment rescued the hematopoietic phenotypes in vivo in ak2 mutant zebrafish and restored differentiation of AK2-deficient iPSCs into mature granulocytes. Our results link hematopoietic cell fate in AK2 deficiency to cellular energy depletion and increased oxidative stress. This points to the potential use of antioxidants as a supportive therapeutic modality for patients with RD.
Collapse
Affiliation(s)
- Alberto Rissone
- Disorders of Immunity Section, Genetics and Molecular Biology Branch; Zebrafish Core and Oncogenesis and Development Section, Translational and Functional Genomics Branch; Genomics Core, Cancer Genetics and Comparative Genomics Branch; Division of Intramural Research Flow Cytometry Core; and Cytogenetics and Microscopy Core, Genetic Disease Research Branch; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Katja Gabriele Weinacht
- Division of Hematology/Oncology and Division of Immunology, Boston Children's Hospital, Boston, MA 02115 Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Giancarlo la Marca
- Department of Neurosciences, Psychology, Pharmacology, and Child Health, University of Florence, 51039 Florence, Italy Meyer Children's University Hospital, 50141 Florence, Italy
| | - Kevin Bishop
- Disorders of Immunity Section, Genetics and Molecular Biology Branch; Zebrafish Core and Oncogenesis and Development Section, Translational and Functional Genomics Branch; Genomics Core, Cancer Genetics and Comparative Genomics Branch; Division of Intramural Research Flow Cytometry Core; and Cytogenetics and Microscopy Core, Genetic Disease Research Branch; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Jayashree Jagadeesh
- Disorders of Immunity Section, Genetics and Molecular Biology Branch; Zebrafish Core and Oncogenesis and Development Section, Translational and Functional Genomics Branch; Genomics Core, Cancer Genetics and Comparative Genomics Branch; Division of Intramural Research Flow Cytometry Core; and Cytogenetics and Microscopy Core, Genetic Disease Research Branch; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kerstin Felgentreff
- Division of Hematology/Oncology and Division of Immunology, Boston Children's Hospital, Boston, MA 02115
| | - Kerry Dobbs
- Division of Hematology/Oncology and Division of Immunology, Boston Children's Hospital, Boston, MA 02115
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, 13110 Kuwait City, Kuwait Allergy and Clinical Immunology Unit, Pediatric Department, Al-Sabah Hospital, 70459 Kuwait City, Kuwait
| | - Marypat Jones
- Disorders of Immunity Section, Genetics and Molecular Biology Branch; Zebrafish Core and Oncogenesis and Development Section, Translational and Functional Genomics Branch; Genomics Core, Cancer Genetics and Comparative Genomics Branch; Division of Intramural Research Flow Cytometry Core; and Cytogenetics and Microscopy Core, Genetic Disease Research Branch; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Settara Chandrasekharappa
- Disorders of Immunity Section, Genetics and Molecular Biology Branch; Zebrafish Core and Oncogenesis and Development Section, Translational and Functional Genomics Branch; Genomics Core, Cancer Genetics and Comparative Genomics Branch; Division of Intramural Research Flow Cytometry Core; and Cytogenetics and Microscopy Core, Genetic Disease Research Branch; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Martha Kirby
- Disorders of Immunity Section, Genetics and Molecular Biology Branch; Zebrafish Core and Oncogenesis and Development Section, Translational and Functional Genomics Branch; Genomics Core, Cancer Genetics and Comparative Genomics Branch; Division of Intramural Research Flow Cytometry Core; and Cytogenetics and Microscopy Core, Genetic Disease Research Branch; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Stephen Wincovitch
- Disorders of Immunity Section, Genetics and Molecular Biology Branch; Zebrafish Core and Oncogenesis and Development Section, Translational and Functional Genomics Branch; Genomics Core, Cancer Genetics and Comparative Genomics Branch; Division of Intramural Research Flow Cytometry Core; and Cytogenetics and Microscopy Core, Genetic Disease Research Branch; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Karen Lyn Simon
- Disorders of Immunity Section, Genetics and Molecular Biology Branch; Zebrafish Core and Oncogenesis and Development Section, Translational and Functional Genomics Branch; Genomics Core, Cancer Genetics and Comparative Genomics Branch; Division of Intramural Research Flow Cytometry Core; and Cytogenetics and Microscopy Core, Genetic Disease Research Branch; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yuval Itan
- St. Giles Laboratory of Human Genetics of Infectious Disease, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Alex DeVine
- Division of Hematology/Oncology and Division of Immunology, Boston Children's Hospital, Boston, MA 02115
| | - Thorsten Schlaeger
- Division of Hematology/Oncology and Division of Immunology, Boston Children's Hospital, Boston, MA 02115
| | - Axel Schambach
- Division of Hematology/Oncology and Division of Immunology, Boston Children's Hospital, Boston, MA 02115 Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Raman Sood
- Disorders of Immunity Section, Genetics and Molecular Biology Branch; Zebrafish Core and Oncogenesis and Development Section, Translational and Functional Genomics Branch; Genomics Core, Cancer Genetics and Comparative Genomics Branch; Division of Intramural Research Flow Cytometry Core; and Cytogenetics and Microscopy Core, Genetic Disease Research Branch; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892 Disorders of Immunity Section, Genetics and Molecular Biology Branch; Zebrafish Core and Oncogenesis and Development Section, Translational and Functional Genomics Branch; Genomics Core, Cancer Genetics and Comparative Genomics Branch; Division of Intramural Research Flow Cytometry Core; and Cytogenetics and Microscopy Core, Genetic Disease Research Branch; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Luigi D Notarangelo
- Division of Hematology/Oncology and Division of Immunology, Boston Children's Hospital, Boston, MA 02115 Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Fabio Candotti
- Disorders of Immunity Section, Genetics and Molecular Biology Branch; Zebrafish Core and Oncogenesis and Development Section, Translational and Functional Genomics Branch; Genomics Core, Cancer Genetics and Comparative Genomics Branch; Division of Intramural Research Flow Cytometry Core; and Cytogenetics and Microscopy Core, Genetic Disease Research Branch; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892 Division of Immunology and Allergy, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
26
|
Proteomic Analysis of Extracellular Vesicles Released by Adipocytes of Otsuka Long-Evans Tokushima Fatty (OLETF) Rats. Protein J 2015; 34:220-35. [DOI: 10.1007/s10930-015-9616-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Horiguchi T, Fuka M, Fujisawa K, Tanimura A, Miyoshi K, Murakami R, Noma T. Adenylate kinase 2 deficiency limits survival and regulates various genes during larval stages of Drosophila melanogaster. THE JOURNAL OF MEDICAL INVESTIGATION 2015; 61:137-50. [PMID: 24705759 DOI: 10.2152/jmi.61.137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Adenylate kinase isozyme 2 (AK2) is located in mitochondrial intermembrane space and regulates energy metabolism by reversibly converting ATP and AMP to 2 ADPs. We previously demonstrated that disruption of the Drosophila melanogaster AK2 gene (Dak2) resulted in growth arrest during the larval stage and subsequent death. Two other groups found that human AK2 mutations cause reticular dysgenesis, a form of severe combined immunodeficiency (SCID) that is associated with severe hematopoietic defects and sensorineural deafness. However, the mechanisms underlying differential outcomes of AK2 deficiency in Drosophila and human systems remain unknown. In this study, effects of tissue-specific inactivation of the Dak2 gene on Drosophila development were analyzed using RNAi-mediated gene knockdown. In addition, to investigate the roles of AK2 in the regulation of gene expression during development, microarray analysis was performed using RNA from first and second instar larvae of Dak2-deficient mutant and wild-type D. melanogaster. Knockdown of Dak2 in all germ layers caused cessation of growth and subsequent death of flies. Microarray analysis revealed that Dak2 deficiency downregulates various genes, particularly those involved in the proteasomal function and in mitochondrial translation machinery. These data indicate that adenine nucleotide interconversion by Dak2 is crucial for developmental processes of Drosophila melanogaster.
Collapse
Affiliation(s)
- Taigo Horiguchi
- Department of Molecular Biology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | | | | | | | | | | | | |
Collapse
|
28
|
Vaitheesvaran B, Hartil K, Navare A, Zheng, ÓBroin P, Golden A, Guha, Lee WN, Kurland I, Bruce JE. Role of the tumor suppressor IQGAP2 in metabolic homeostasis: Possible link between diabetes and cancer. Metabolomics 2014; 10:920-937. [PMID: 25254002 PMCID: PMC4169985 DOI: 10.1007/s11306-014-0639-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Deficiency of IQGAP2, a scaffolding protein expressed primarily in liver leads to rearrangements of hepatic protein compartmentalization and altered regulation of enzyme functions predisposing development of hepatocellular carcinoma and diabetes. Employing a systems approach with proteomics, metabolomics and fluxes characterizations, we examined the effects of IQGAP2 deficient proteomic changes on cellular metabolism and the overall metabolic phenotype. Iqgap2-/- mice demonstrated metabolic inflexibility, fasting hyperglycemia and obesity. Such phenotypic characteristics were associated with aberrant hepatic regulations of glycolysis/gluconeogenesis, glycogenolysis, lipid homeostasis and futile cycling corroborated with corresponding proteomic changes in cytosolic and mitochondrial compartments. IQGAP2 deficiency also led to truncated TCA-cycle, increased anaplerosis, increased supply of acetyl-CoA for de novo lipogenesis, and increased mitochondrial methyl-donor metabolism necessary for nucleotides synthesis. Our results suggest that changes in metabolic networks in IQGAP2 deficiency create a hepatic environment of a 'pre-diabetic' phenotype and a predisposition to non-alcoholic fatty liver disease (NAFLD) which has been linked to the development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- B. Vaitheesvaran
- Department of Medicine, Diabetes Center, Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - K. Hartil
- Department of Medicine, Diabetes Center, Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - A. Navare
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98109
| | - Zheng
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98109
| | - P. ÓBroin
- Department of Medicine, Diabetes Center, Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, Bronx, New York, 10461
- Department of Genetics., Division of Computational Genetics, Albert Einstein College of Medicine, Bronx, NewYork, 10461
| | - A. Golden
- Department of Genetics., Division of Computational Genetics, Albert Einstein College of Medicine, Bronx, NewYork, 10461
| | - Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - WN. Lee
- Department of Pediatrics, Division of Endocrinology and Metabolism, University of California, Los Angeles, California 90502
| | - I.J Kurland
- Department of Medicine, Diabetes Center, Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - J. E. Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98109
- Corresponding author: James E. Bruce. Department of Genome Sciences, University of Washington, Seattle, Washington, 98109., , Phone: 206-543-0220, Fax: 206-616-0008
| |
Collapse
|
29
|
Parvaneh N, Quartier P, Rostami P, Casanova JL, de Lonlay P. Inborn errors of metabolism underlying primary immunodeficiencies. J Clin Immunol 2014; 34:753-71. [PMID: 25081841 DOI: 10.1007/s10875-014-0076-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/02/2014] [Indexed: 01/19/2023]
Abstract
A number of inborn errors of metabolism (IEM) have been shown to result in predominantly immunologic phenotypes, manifesting in part as inborn errors of immunity. These phenotypes are mostly caused by defects that affect the (i) quality or quantity of essential structural building blocks (e.g., nucleic acids, and amino acids), (ii) cellular energy economy (e.g., glucose metabolism), (iii) post-translational protein modification (e.g., glycosylation) or (iv) mitochondrial function. Presenting as multisystemic defects, they also affect innate or adaptive immunity, or both, and display various types of immune dysregulation. Specific and potentially curative therapies are available for some of these diseases, whereas targeted treatments capable of inducing clinical remission are available for others. We will herein review the pathogenesis, diagnosis, and treatment of primary immunodeficiencies (PIDs) due to underlying metabolic disorders.
Collapse
Affiliation(s)
- Nima Parvaneh
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran,
| | | | | | | | | |
Collapse
|
30
|
Pagano G, Shyamsunder P, Verma RS, Lyakhovich A. Damaged mitochondria in Fanconi anemia - an isolated event or a general phenomenon? Oncoscience 2014; 1:287-95. [PMID: 25594021 PMCID: PMC4278298 DOI: 10.18632/oncoscience.29] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/20/2014] [Indexed: 12/21/2022] Open
Abstract
Fanconi anemia (FA) is known as an inherited bone marrow failure syndrome associated with cancer predisposition and susceptibility to a number of DNA damaging stimuli, along with a number of clinical features such as upper limb malformations, increased diabetes incidence and typical anomalies in skin pigmentation. The proteins encoded by FA-defective genes (FANC proteins) display well-established roles in DNA damage and repair pathways. Moreover, some independent studies have revealed that mitochondrial dysfunction (MDF) is also involved in FA phenotype. Unconfined to FA, we have shown that other syndromes featuring DNA damage and repair (such as ataxia-telangiectasia, AT, and Werner syndrome, WS) display MDF-related phenotypes, along with oxidative stress (OS) that, altogether, may play major roles in these diseases. Experimental and clinical studies are warranted in the prospect of future therapies to be focused on compounds scavenging reactive oxygen species (ROS) as well as protecting mitochondrial functions.
Collapse
Affiliation(s)
- Giovanni Pagano
- Italian National Cancer Institute, G Pascale Foundation, CROM, Mercogliano, AV, Italy
| | - Pavithra Shyamsunder
- Stem Cell and Molecular Biology laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai
| | - Rama S Verma
- Stem Cell and Molecular Biology laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai
| | - Alex Lyakhovich
- Duke-NUS Graduate Medical School, Singapore ; Novosibirsk Institute of Molecular Biology and Biophysics, Russian Federation ; Queen's University Belfast, UK
| |
Collapse
|
31
|
Differential expression of adenine nucleotide converting enzymes in mitochondrial intermembrane space: a potential role of adenylate kinase isozyme 2 in neutrophil differentiation. PLoS One 2014; 9:e89916. [PMID: 24587121 PMCID: PMC3934953 DOI: 10.1371/journal.pone.0089916] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/29/2014] [Indexed: 02/06/2023] Open
Abstract
Adenine nucleotide dynamics in the mitochondrial intermembrane space (IMS) play a key role in oxidative phosphorylation. In a previous study, Drosophila adenylate kinase isozyme 2 (Dak2) knockout was reported to cause developmental lethality at the larval stage in Drosophila melanogaster. In addition, two other studies reported that AK2 is a responsible gene for reticular dysgenesis (RD), a human disease that is characterized by severe combined immunodeficiency and deafness. Therefore, mitochondrial AK2 may play an important role in hematopoietic differentiation and ontogenesis. Three additional adenine nucleotide metabolizing enzymes, including mitochondrial creatine kinases (CKMT1 and CKMT2) and nucleoside diphosphate kinase isoform D (NDPK-D), have been found in IMS. Although these kinases generate ADP for ATP synthesis, their involvement in RD remains unclear and still an open question. In this study, mRNA and protein expressions of these mitochondrial kinases were firstly examined in mouse ES cells, day 8 embryos, and 7-week-old adult mice. It was found that their expressions are spatiotemporally regulated, and Ak2 is exclusively expressed in bone marrow, which is a major hematopoietic tissue in adults. In subsequent experiments, we identified increased expression of both AK2 and CKMT1 during macrophage differentiation and exclusive production of AK2 during neutrophil differentiation using HL-60 cells as an in vitro model of hematopoietic differentiation. Furthermore, AK2 knockdown specifically inhibited neutrophil differentiation without affecting macrophage differentiation. These data suggest that AK2 is indispensable for neutrophil differentiation and indicate a possible causative link between AK2 deficiency and neutropenia in RD.
Collapse
|
32
|
Zhang B, Shen XL, Liang R, Li Y, Huang K, Zhao C, Luo Y, Xu W. Protective role of the mitochondrial Lon protease 1 in ochratoxin A-induced cytotoxicity in HEK293 cells. J Proteomics 2014; 101:154-68. [PMID: 24565693 DOI: 10.1016/j.jprot.2014.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/29/2014] [Accepted: 02/15/2014] [Indexed: 11/26/2022]
Abstract
UNLABELLED Ochratoxin A (OTA) is a common kind of mycotoxin and food contaminant, which has various toxicological effects, especially nephrotoxicity. Our previous work about OTA-induced renal cytotoxicity indicated that mitochondrial Lon Protease 1 (Lonp1) might play a protective role. Lonp1 is a multifunctional ATP-dependent protease which mainly participates in mitochondrial proteolysis and protein quality control. The study aimed at probing how Lonp1 functioned in OTA-induced renal cytotoxicity. By means of RNA interference, we down-regulated the expression of Lonp1 in HEK293 cells. Cell viability results revealed that cells with Lonp1 deficiency were more vulnerable to OTA. Then we identified differentially expressed proteins between Lonp1 knock-down cells and scrambled control both in the absence and presence of OTA, using iTRAQ-based quantitative proteomics approach. Thirty-four proteins were differentially expressed as a result of Lonp1 deficiency, while forty-four proteins were differentially expressed in response to both Lonp1 deficiency and OTA treatment. By function summary and pathway analysis, we presumed that Lonp1 realized its protective function in the resistance to OTA-induced renal cytotoxicity via 4 processes: defensing against OTA-induced oxidative stress in the mitochondria; regulating protein synthesis, modification and repair; maintaining the balance of carbohydrate metabolism; and assisting in mtDNA maintenance. BIOLOGICAL SIGNIFICANCE OTA is a kind of mycotoxin that seriously threatens human health and has various toxicological effects. However, the mechanisms of its toxicity have not been exactly elucidated yet. The method of combination of RNAi and iTRAQ-based quantitative proteomics paves the way to gain a better understanding of the toxicity mechanisms of OTA. The present study, for the first time, verified the protective role of Lonp1 in OTA-induced renal cytotoxicity and clarified the defensive mechanism. Proteomic changes in Lonp1 deficient cells induced by OTA added new knowledge to OTA cytotoxicity.
Collapse
Affiliation(s)
- Boyang Zhang
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xiao Li Shen
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563003, PR China
| | - Rui Liang
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yuzhe Li
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Kunlun Huang
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Changhui Zhao
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Yunbo Luo
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wentao Xu
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
33
|
Adenylate Kinase Isoform Network: A Major Hub in Cell Energetics and Metabolic Signaling. SYSTEMS BIOLOGY OF METABOLIC AND SIGNALING NETWORKS 2014. [DOI: 10.1007/978-3-642-38505-6_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
34
|
Hara T. [110th Scientific Meeting of the Japanese Society of Internal Medicine: Symposium: 2. Diseases originated from stem cell abnormalities; 1) Abnormalities in hematopoietic stem cells: congenital immunodeficiencies]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2013; 102:2255-2261. [PMID: 24228408 DOI: 10.2169/naika.102.2255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Toshiro Hara
- Department of Pediatrics, Graduate School of Medical Sciences, Kyusyu University, Japan
| |
Collapse
|
35
|
Bravo R, Parra V, Gatica D, Rodriguez AE, Torrealba N, Paredes F, Wang ZV, Zorzano A, Hill JA, Jaimovich E, Quest AFG, Lavandero S. Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:215-90. [PMID: 23317820 DOI: 10.1016/b978-0-12-407704-1.00005-1] [Citation(s) in RCA: 418] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is a dynamic intracellular organelle with multiple functions essential for cellular homeostasis, development, and stress responsiveness. In response to cellular stress, a well-established signaling cascade, the unfolded protein response (UPR), is activated. This intricate mechanism is an important means of re-establishing cellular homeostasis and alleviating the inciting stress. Now, emerging evidence has demonstrated that the UPR influences cellular metabolism through diverse mechanisms, including calcium and lipid transfer, raising the prospect of involvement of these processes in the pathogenesis of disease, including neurodegeneration, cancer, diabetes mellitus and cardiovascular disease. Here, we review the distinct functions of the ER and UPR from a metabolic point of view, highlighting their association with prevalent pathologies.
Collapse
Affiliation(s)
- Roberto Bravo
- Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The underlying causes of nonalcoholic fatty liver disease are unclear, although recent evidence has implicated the endoplasmic reticulum in both the development of steatosis and progression to nonalcoholic steatohepatitis. Disruption of endoplasmic reticulum homeostasis, often termed ER stress, has been observed in liver and adipose tissue of humans with nonalcoholic fatty liver disease and/or obesity. Importantly, the signaling pathway activated by disruption of endoplasmic reticulum homeostasis, the unfolded protein response, has been linked to lipid and membrane biosynthesis, insulin action, inflammation, and apoptosis. Therefore, understanding the mechanisms that disrupt endoplasmic reticulum homeostasis in nonalcoholic fatty liver disease and the role of the unfolded protein response in the broader context of chronic, metabolic diseases have become topics of intense investigation. The present review examines the endoplasmic reticulum and the unfolded protein response in the context of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Michael J Pagliassotti
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
37
|
Zhu G, Ye R, Jung DY, Barron E, Friedline RH, Benoit VM, Hinton DR, Kim JK, Lee AS. GRP78 plays an essential role in adipogenesis and postnatal growth in mice. FASEB J 2012. [PMID: 23180827 DOI: 10.1096/fj.12-213330] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To investigate the role of GRP78 in adipogenesis and metabolic homeostasis, we knocked down GRP78 in mouse embryonic fibroblasts and 3T3-L1 preadipocytes induced to undergo differentiation into adipocytes. We also created an adipose Grp78-knockout mouse utilizing the aP2 (fatty acid binding protein 4) promoter-driven Cre-recombinase. Adipogenesis was monitored by molecular markers and histology. Tissues were analyzed by micro-CT and electron microscopy. Glucose homeostasis and cytokine analysis were performed. Our results indicate that GRP78 is essential for adipocyte differentiation in vitro. aP2-cre-mediated GRP78 deletion leads to lipoatrophy with ∼90% reduction in gonadal and subcutaneous white adipose tissue and brown adipose tissue, severe growth retardation, and bone defects. Despite severe abnormality in adipose mass and function, adipose Grp78-knockout mice showed normal plasma triglyceride levels, and plasma glucose and insulin levels were reduced by 40-60% compared to wild-type mice, suggesting enhanced insulin sensitivity. The endoplasmic reticulum is grossly expanded in the residual mutant white adipose tissue. Thus, these studies establish that GRP78 is required for adipocyte differentiation, glucose homeostasis, and balanced secretion of adipokines. Unexpectedly, the phenotypes and metabolic parameters of the mutant mice, which showed early postnatal mortality, are uniquely distinct from previously characterized lipodystrophic mouse models.
Collapse
Affiliation(s)
- Genyuan Zhu
- Department of Biochemistry and Molecular Biology, USC Norris Comprehensive Cancer Center, 1441 Eastlake Ave., Rm. 5308, Los Angeles, CA 90089-9176, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chen RP, Liu CY, Shao HL, Zheng WW, Wang JX, Zhao XF. Adenylate kinase 2 (AK2) promotes cell proliferation in insect development. BMC Mol Biol 2012; 13:31. [PMID: 23020757 PMCID: PMC3583204 DOI: 10.1186/1471-2199-13-31] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 09/20/2012] [Indexed: 11/25/2022] Open
Abstract
Background Adenylate kinase 2 (AK2) is a phosphotransferase that catalyzes the reversible reaction 2ADP(GDP) ↔ ATP(GTP) + AMP and influences cellular energy homeostasis. However, the role of AK2 in regulating cell proliferation remains unclear because AK2 has been reported to be involved in either cell proliferation or cell apoptosis in different cell types of various organisms. Results This study reports AK2 promotion of cell proliferation using the lepidopteran insect Helicoverpa armigera and its epidermal cell line HaEpi as models. Western blot analysis indicates that AK2 constitutively expresses in various tissues during larval development. Immunocytochemistry analysis indicates that AK2 localizes in the mitochondria. The recombinant expressed AK2 in E. coli promotes cell growth and viability of HaEpi cell line by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. AK2 knockdown in larvae by RNA interference causes larval growth defects, including body weight decrease and development delay. AK2 knockdown in larvae also decreases the number of circulating haemocytes. The mechanism for such effects might be the suppression of gene transcription involved in insect development caused by AK2 knockdown. Conclusion These results show that AK2 regulates cell growth, viability, and proliferation in insect growth and development.
Collapse
Affiliation(s)
- Ru-Ping Chen
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, Shandong University, Shandong, Jinan, 250100, China
| | | | | | | | | | | |
Collapse
|
39
|
Halle C, Andersen E, Lando M, Aarnes EK, Hasvold G, Holden M, Syljuåsen RG, Sundfør K, Kristensen GB, Holm R, Malinen E, Lyng H. Hypoxia-Induced Gene Expression in Chemoradioresistant Cervical Cancer Revealed by Dynamic Contrast-Enhanced MRI. Cancer Res 2012; 72:5285-95. [DOI: 10.1158/0008-5472.can-12-1085] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Rath E, Haller D. Mitochondria at the interface between danger signaling and metabolism: role of unfolded protein responses in chronic inflammation. Inflamm Bowel Dis 2012; 18:1364-77. [PMID: 22183876 DOI: 10.1002/ibd.21944] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 10/19/2011] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel diseases (IBDs), like many other chronic diseases, feature multiple cellular stress responses including endoplasmic reticulum (ER) unfolded protein response (UPR). Maintaining protein homeostasis is indispensable for cell survival and, consequently, distinct signaling pathways have evolved to transmit organelle stress. While the ER UPR, aiming to restore ER homeostasis after challenges to ER function, has been extensively studied in the context of chronic diseases, only recently the related mitochondrial UPR (mtUPR), induced by disturbances of mitochondrial proteostasis, has drawn some attention. ER and mitochondria are in close contact and interact physically and functionally. Accumulating data have placed mitochondria at the center of diverse cellular functions and suggest mitochondria as integrators of signaling pathways such as autophagy and inflammation. Consequently, it is likely that mitochondrial stress and ER stress cannot be regarded separately and that mitochondrial stress, as well as ER stress, participates in the pathology of IBD. Protein homeostasis is particularly sensitive toward infections, oxidative stress, and energy deficiency. Thus, environmental disturbances impacting organelle function lead to the concerted activation of distinct UPRs. The metabolic status might therefore serve as an innate mechanism to sense the epithelial environment, including luminal-derived and host-derived factors. This review highlights mtUPR and its interrelation with ER UPR, focuses on recent studies identifying mitochondria as integrators of cellular danger signaling, and, furthermore, illustrates the importance ER UPR and mitochondrial dysfunction in IBD.
Collapse
Affiliation(s)
- Eva Rath
- Technische Universität München, Chair for Biofunctionality, ZIEL, Research Center for Nutrition and Food Science, CDD, Center for Diet and Disease, Freising-Weihenstephan, Germany
| | | |
Collapse
|
41
|
Mitochondrial stress: a bridge between mitochondrial dysfunction and metabolic diseases? Cell Signal 2011; 23:1528-33. [PMID: 21616143 DOI: 10.1016/j.cellsig.2011.05.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/09/2011] [Indexed: 12/16/2022]
Abstract
Under pathophysiological conditions such as obesity, excessive oxidation of nutrients may induce mitochondrial stress, leading to mitochondrial unfolded protein response (UPR(mt)) and initiation of a retrograde stress signaling pathway. Defects in the UPR(mt) and the retrograde signaling pathways may disrupt the integrity and homeostasis of the mitochondria, resulting in endoplasmic reticulum stress and insulin resistance. Improving the capacity of mitochondria to reduce stress may be an effective approach to improve mitochondria function and to suppress obesity-induced metabolic disorders such as insulin resistance and type 2 diabetes.
Collapse
|
42
|
Inflammation and cellular stress: a mechanistic link between immune-mediated and metabolically driven pathologies. Eur J Nutr 2011; 50:219-33. [PMID: 21547407 DOI: 10.1007/s00394-011-0197-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/04/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND Multiple cellular stress responses have been implicated in chronic diseases such as obesity, diabetes, cardiovascular, and inflammatory bowel diseases. Even though phenotypically different, chronic diseases share cellular stress signaling pathways, in particular endoplasmic reticulum (ER) unfolded protein response (UPR). RESULTS AND METHODS The purpose of the ER UPR is to restore ER homeostasis after challenges of the ER function. Among the triggers of ER UPR are changes in the redox status, elevated protein synthesis, accumulation of unfolded or misfolded proteins, energy deficiency and glucose deprivation, cholesterol depletion, and microbial signals. Numerous mouse models have been used to characterize the contribution of ER UPR to several pathologies, and ER UPR-associated signaling has also been demonstrated to be relevant in humans. Additionally, recent evidence suggests that the ER UPR is interrelated with metabolic and inflammatory pathways, autophagy, apoptosis, and mitochondrial stress signaling. Furthermore, microbial as well as nutrient sensing is integrated into the ER-associated signaling network. CONCLUSION The data discussed in the present review highlight the interaction of ER UPR with inflammatory pathways, metabolic processes and mitochondrial function, and their interrelation in the context of chronic diseases.
Collapse
|
43
|
Dzeja PP, Chung S, Faustino RS, Behfar A, Terzic A. Developmental enhancement of adenylate kinase-AMPK metabolic signaling axis supports stem cell cardiac differentiation. PLoS One 2011; 6:e19300. [PMID: 21556322 PMCID: PMC3083437 DOI: 10.1371/journal.pone.0019300] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 03/28/2011] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Energetic and metabolic circuits that orchestrate cell differentiation are largely unknown. Adenylate kinase (AK) and associated AMP-activated protein kinase (AMPK) constitute a major metabolic signaling axis, yet the role of this system in guiding differentiation and lineage specification remains undefined. METHODS AND RESULTS Cardiac stem cell differentiation is the earliest event in organogenesis, and a suitable model of developmental bioenergetics. Molecular profiling of embryonic stem cells during cardiogenesis revealed here a distinct expression pattern of adenylate kinase and AMPK genes that encode the AK-AMP-AMPK metabolic surveillance axis. Cardiac differentiation upregulated cytosolic AK1 isoform, doubled AMP-generating adenylate kinase activity, and increased AMP/ATP ratio. At cell cycle initiation, AK1 translocated into the nucleus and associated with centromeres during energy-consuming metaphase. Concomitantly, the cardiac AMP-signal receptor AMPKα2 was upregulated and redistributed to the nuclear compartment as signaling-competent phosphorylated p-AMPKα(Thr172). The cardiogenic growth factor TGF-β promoted AK1 expression, while knockdown of AK1, AK2 and AK5 activities with siRNA or suppression by hyperglycemia disrupted cardiogenesis compromising mitochondrial and myofibrillar network formation and contractile performance. Induction of creatine kinase, the alternate phosphotransfer pathway, compensated for adenylate kinase-dependent energetic deficits. CONCLUSIONS Developmental deployment and upregulation of the adenylate kinase/AMPK tandem provides a nucleocytosolic energetic and metabolic signaling vector integral to execution of stem cell cardiac differentiation. Targeted redistribution of the adenylate kinase-AMPK circuit associated with cell cycle and asymmetric cell division uncovers a regulator for cardiogenesis and heart tissue regeneration.
Collapse
Affiliation(s)
- Petras P. Dzeja
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (PPD); (AT)
| | - Susan Chung
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Randolph S. Faustino
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Atta Behfar
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Andre Terzic
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (PPD); (AT)
| |
Collapse
|
44
|
Horiguchi T, Fuka M, Fujisawa K, Tanimura A, Miyoshi K, Murakami R, Noma T. <b>Adenylate kinase 2 deficiency limits survival and </b><b>regulates various genes during larval stages of </b><b><i>Drosophila melanogaster </i></b>. THE JOURNAL OF MEDICAL INVESTIGATION 2000. [DOI: 10.2152/jmi.40.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Taigo Horiguchi
- Department of Molecular Biology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Miyuki Fuka
- Department of Applied Molecular Bioscience, Yamaguchi University
| | - Koichi Fujisawa
- Department of Molecular Biology, Institute of Health Biosciences, the University of Tokushima Graduate School
- Center for Reparative Medicine, Yamaguchi University School of Medicine
| | - Ayako Tanimura
- Department of Molecular Biology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Keiko Miyoshi
- Department of Molecular Biology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Ryutaro Murakami
- Department of Applied Molecular Bioscience, Yamaguchi University
| | - Takafumi Noma
- Department of Molecular Biology, Institute of Health Biosciences, the University of Tokushima Graduate School
| |
Collapse
|