1
|
Alvarez JA, Gas-Pascual E, Malhi S, Sánchez-Arcila JC, Njume FN, van der Wel H, Zhao Y, García-López L, Ceron G, Posada J, Souza SP, Yap GS, West CM, Jensen KDC. The GPI sidechain of Toxoplasma gondii inhibits parasite pathogenesis. mBio 2024; 15:e0052724. [PMID: 39302131 PMCID: PMC11481522 DOI: 10.1128/mbio.00527-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
Glycosylphosphatidylinositols (GPIs) are highly conserved anchors for eukaryotic cell surface proteins. The apicomplexan parasite, Toxoplasma gondii, is a widespread intracellular parasite of warm-blooded animals whose plasma membrane is covered with GPI-anchored proteins, and free GPIs called GIPLs. While the glycan portion is conserved, species differ in sidechains added to the triple mannose core. The functional significance of the Glcα1,4GalNAcβ1- sidechain reported in Toxoplasma gondii has remained largely unknown without understanding its biosynthesis. Here we identify and disrupt two glycosyltransferase genes and confirm their respective roles by serology and mass spectrometry. Parasites lacking the sidechain on account of deletion of the first glycosyltransferase, PIGJ, exhibit increased virulence during primary and secondary infections, suggesting it is an important pathogenesis factor. Cytokine responses, antibody recognition of GPI-anchored SAGs, and complement binding to PIGJ mutants are intact. By contrast, the scavenger receptor CD36 shows enhanced binding to PIGJ mutants, potentially explaining a subtle tropism for macrophages detected early in infection. Galectin-3, which binds GIPLs, exhibits an enhancement of binding to PIGJ mutants, and the protection of galectin-3 knockout mice from lethality suggests that Δpigj parasite virulence in this context is sidechain dependent. Parasite numbers are not affected by Δpigj early in the infection in wild-type mice, suggesting a breakdown of tolerance. However, increased tissue cysts in the brains of mice infected with Δpigj parasites indicate an advantage over wild-type strains. Thus, the GPI sidechain of T. gondii plays a crucial and diverse role in regulating disease outcomes in the infected host.IMPORTANCEThe functional significance of sidechain modifications to the glycosylphosphatidylinositol (GPI) anchor in parasites has yet to be determined because the glycosyltransferases responsible for these modifications have not been identified. Here we present identification and characterization of both Toxoplasmsa gondii GPI sidechain-modifying glycosyltransferases. Removal of the glycosyltransferase that adds the first GalNAc to the sidechain results in parasites without a sidechain on the GPI, and increased host susceptibility to infection. Loss of the second glycosyltransferase results in a sidechain with GalNAc alone, and no glucose added, and has negligible effect on disease outcomes. This indicates GPI sidechains are fundamental to host-parasite interactions.
Collapse
Affiliation(s)
- Julia A. Alvarez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
| | - Elisabet Gas-Pascual
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases, and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Sahil Malhi
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Juan C. Sánchez-Arcila
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Ferdinand Ngale Njume
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Hanke van der Wel
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases, and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Yanlin Zhao
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Laura García-López
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
| | - Gabriella Ceron
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Jasmine Posada
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Scott P. Souza
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
| | - George S. Yap
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Christopher M. West
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases, and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Health Sciences Research Institute, University of California, Merced, California, USA
| |
Collapse
|
2
|
Lv Y, Jiang G, Jiang Y, Peng C, Li W. TLR2-ERK signaling pathway regulates expression of galectin-3 in a murine model of OVA-induced allergic airway inflammation. Toxicol Lett 2024; 397:55-66. [PMID: 38754639 DOI: 10.1016/j.toxlet.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Toll-like receptor 2 (TLR2) and galectin-3 (Gal-3) are involved in the pathological process of asthma, but the underlying mechanism is not fully understood. We hypothesized that TLR2 pathway may regulate expression of Gal-3 in allergic airway inflammation. Wild-type (WT) and TLR2-/- mice were sensitized on day 0 and challenged with ovalbumin (OVA) on days 14-21 to establish a model of allergic airway inflammation, and were treated with a specific ERK inhibitor U0126. Histological changes in the lungs were analyzed by hematoxylin-eosin (HE) and Periodic Acid-Schiff (PAS) staining; cytokines and anti-OVA immunoglobulin E (IgE) were tested by ELISA; and related protein expression in lung tissues was measured by western blot. We found that the expression levels of TLR2 and Gal-3 markedly increased concomitantly with airway inflammation after OVA induction, while TLR2 deficiency significantly alleviated airway inflammation and reduced Gal-3 expression. Moreover, the expression levels of phosphorylated mitogen-activated protein kinases (p-MAPKs) were significantly elevated in OVA-challenged WT mice, while TLR2 deficiency only significantly decreased phosphorylated extracellular signal-regulated kinase (p-ERK) levels. Furthermore, we found that U0126 treatment significantly alleviated allergic airway inflammation and decreased Gal-3 levels in OVA-challenged WT mice, but had no further effect in OVA-challenged TLR2-/- mice. These above results suggested that TLR2 is an upstream signal molecule of ERK. We further demonstrated that TLR2 regulates Gal-3 expression through the ERK pathway in LTA-stimulated macrophages in vitro. Our findings showed that the TLR2-ERK signaling pathway regulates Gal-3 expression in a murine model of allergic airway inflammation.
Collapse
Affiliation(s)
- Yunxiang Lv
- Molecular Diagnosis Center, Bengbu, Anhui 233000, China; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu, Anhui 233000, China.
| | - Guiyun Jiang
- Department of Clinical laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China
| | - Yanru Jiang
- Molecular Diagnosis Center, Bengbu, Anhui 233000, China; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu, Anhui 233000, China
| | - Caiqiu Peng
- Molecular Diagnosis Center, Bengbu, Anhui 233000, China; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu, Anhui 233000, China
| | - Wei Li
- Molecular Diagnosis Center, Bengbu, Anhui 233000, China; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu, Anhui 233000, China.
| |
Collapse
|
3
|
Marsilia C, Batra M, Pokrovskaya ID, Wang C, Chaput D, Naumova DA, Lupashin VV, Suvorova ES. Essential role of the conserved oligomeric Golgi complex in Toxoplasma gondii. mBio 2023; 14:e0251323. [PMID: 37966241 PMCID: PMC10746232 DOI: 10.1128/mbio.02513-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE The Golgi is an essential eukaryotic organelle and a major place for protein sorting and glycosylation. Among apicomplexan parasites, Toxoplasma gondii retains the most developed Golgi structure and produces many glycosylated factors necessary for parasite survival. Despite its importance, Golgi function received little attention in the past. In the current study, we identified and characterized the conserved oligomeric Golgi complex and its novel partners critical for protein transport in T. gondii tachyzoites. Our results suggest that T. gondii broadened the role of the conserved elements and reinvented the missing components of the trafficking machinery to accommodate the specific needs of the opportunistic parasite T. gondii.
Collapse
Affiliation(s)
- Clem Marsilia
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Mrinalini Batra
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Irina D. Pokrovskaya
- Department of Physiology and Cell Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Changqi Wang
- College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Dale Chaput
- Proteomics Core, College of Arts and Sciences, University of South Florida, Tampa, Florida, USA
| | - Daria A. Naumova
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Vladimir V. Lupashin
- Department of Physiology and Cell Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Elena S. Suvorova
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
4
|
Gómez-Chávez F, Murrieta-Coxca JM, Caballero-Ortega H, Morales-Prieto DM, Markert UR. Host-pathogen interactions mediated by extracellular vesicles in Toxoplasma gondii infection during pregnancy. J Reprod Immunol 2023; 158:103957. [PMID: 37253287 DOI: 10.1016/j.jri.2023.103957] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
Molecular communication between a pathogen and its host is crucial for a successful interplay. Extracellular vesicles (EVs) act as mediators for the delivery of molecular signals among pathogens or between pathogens and the host. Toxoplasma gondii (T. gondii), an intracellular parasite with a worldwide presence, produces EVs itself, or induces the secretion of EVs from infected host cells potentially having capacities to modulate the host immune response. T. gondii infection is particularly important during pregnancy. Depending on the gestational age at the time of infection, the parasite can be transmitted through the placenta to the fetus, causing clinical complications such as jaundice, hepatosplenomegaly, chorioretinitis, cranioencephalic abnormalities, or even death. T. gondii infection is related to a pro-inflammatory immune response in both mother and fetus, which may enhance parasite transmission, but the implication of EV signaling in this process remains unclear. In this review, we summarize the current knowledge on EV release from T. gondii and its human host cells in regard to the immunological consequences and the passage through the placenta.
Collapse
Affiliation(s)
- Fernando Gómez-Chávez
- Sección de Estudios de Posgrado e Investigación, Escuela Nacional de Medicina y Homeopatía-Instituto Politécnico Nacional, Mexico City, Mexico; Programa de Posgrado en Ciencia y Tecnología de Vacunas y Bioterapéuticos, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Heriberto Caballero-Ortega
- Secretaría de Salud, Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | - Udo R Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
5
|
Müller GA, Müller TD. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins I: Localization at Plasma Membranes and Extracellular Compartments. Biomolecules 2023; 13:biom13050855. [PMID: 37238725 DOI: 10.3390/biom13050855] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of plasma membranes (PMs) of all eukaryotic organisms studied so far by covalent linkage to a highly conserved glycolipid rather than a transmembrane domain. Since their first description, experimental data have been accumulating for the capability of GPI-APs to be released from PMs into the surrounding milieu. It became evident that this release results in distinct arrangements of GPI-APs which are compatible with the aqueous milieu upon loss of their GPI anchor by (proteolytic or lipolytic) cleavage or in the course of shielding of the full-length GPI anchor by incorporation into extracellular vesicles, lipoprotein-like particles and (lyso)phospholipid- and cholesterol-harboring micelle-like complexes or by association with GPI-binding proteins or/and other full-length GPI-APs. In mammalian organisms, the (patho)physiological roles of the released GPI-APs in the extracellular environment, such as blood and tissue cells, depend on the molecular mechanisms of their release as well as the cell types and tissues involved, and are controlled by their removal from circulation. This is accomplished by endocytic uptake by liver cells and/or degradation by GPI-specific phospholipase D in order to bypass potential unwanted effects of the released GPI-APs or their transfer from the releasing donor to acceptor cells (which will be reviewed in a forthcoming manuscript).
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| |
Collapse
|
6
|
Ducournau C, Cantin P, Alerte V, Quintard B, Popelin-Wedlarski F, Wedlarski R, Ollivet-Courtois F, Ferri-Pisani Maltot J, Herkt C, Fasquelle F, Sannier M, Berthet M, Fretay V, Aubert D, Villena I, Betbeder D, Moiré N, Dimier-Poisson I. Vaccination of squirrel monkeys (Saimiri spp.) with nanoparticle based-Toxoplasma gondii antigens: new hope for captive susceptible species. Int J Parasitol 2023; 53:333-346. [PMID: 36997082 DOI: 10.1016/j.ijpara.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 03/31/2023]
Abstract
Squirrel monkeys (Saimiri spp.), new world primates from South America, are very susceptible to toxoplasmosis. Numerous outbreaks of fatal toxoplasmosis in zoos have been identified around the world, resulting in acute respiratory distress and sudden death. To date, preventive hygiene measures or available treatments are not able to significantly reduce this mortality in zoos. Therefore, vaccination seems to be the best long-term solution to control acute toxoplasmosis. Recently, we developed a nasal vaccine composed of total extract of soluble proteins of Toxoplasma gondii associated with muco-adhesive maltodextrin-nanoparticles. The vaccine, which generated specific cellular immune responses, demonstrated efficacy against toxoplasmosis in murine and ovine experimental models. In collaboration with six French zoos, our vaccine was used as a last resort in 48 squirrel monkeys to prevent toxoplasmosis. The full protocol of vaccination includes two intranasal sprays followed by combined intranasal and s.c. administration. No local or systemic side-effects were observed irrespective of the route of administration. Blood samples were collected to study systemic humoral and cellular immune responses up to 1 year after the last vaccination. Vaccination induced a strong and lasting systemic cellular immune response mediated by specific IFN-γ secretion by peripheral blood mononuclear cells. Since the introduction of vaccination, no deaths of squirrel monkeys due to T. gondii has been observed for more than 4 years suggesting the promising usage of our vaccine. Moreover, to explain the high susceptibility of naive squirrel monkeys to toxoplasmosis, their innate immune sensors were investigated. It was observed that Toll-like and Nod-like receptors appear to be functional following T. gondii recognition suggesting that the extreme susceptibility to toxoplasmosis may not be linked to innate detection of the parasite.
Collapse
|
7
|
Recent advances on the piezoelectric, electrochemical, and optical biosensors for the detection of protozoan pathogens. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Banerjee P, Silva DV, Lipowsky R, Santer M. The importance of side branches of glycosylphosphatidylinositol anchors: a molecular dynamics perspective. Glycobiology 2022; 32:933-948. [PMID: 36197124 PMCID: PMC9620968 DOI: 10.1093/glycob/cwac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
Many proteins are anchored to the cell surface of eukaryotes using a unique family of glycolipids called glycosylphosphatidylinositol (GPI) anchors. These glycolipids also exist without a covalently bound protein, in particular on the cell surfaces of protozoan parasites where they are densely populated. GPIs and GPI-anchored proteins participate in multiple cellular processes such as signal transduction, cell adhesion, protein trafficking and pathogenesis of Malaria, Toxoplasmosis, Trypanosomiasis and prion diseases, among others. All GPIs share a common conserved glycan core modified in a cell-dependent manner with additional side glycans or phosphoethanolamine residues. Here, we use atomistic molecular dynamic simulations and perform a systematic study to evaluate the structural properties of GPIs with different side chains inserted in lipid bilayers. Our results show a flop-down orientation of GPIs with respect to the membrane surface and the presentation of the side chain residues to the solvent. This finding agrees well with experiments showing the role of the side residues as active epitopes for recognition of GPIs by macrophages and induction of GPI-glycan-specific immune responses. Protein-GPI interactions were investigated by attaching parasitic GPIs to Green Fluorescent Protein. GPIs are observed to recline on the membrane surface and pull down the attached protein close to the membrane facilitating mutual contacts between protein, GPI and the lipid bilayer. This model is efficient in evaluating the interaction of GPIs and GPI-anchored proteins with membranes and can be extended to study other parasitic GPIs and proteins and develop GPI-based immunoprophylaxis to treat infectious diseases.
Collapse
Affiliation(s)
- Pallavi Banerjee
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany.,Mathematisch-Naturwissenschaftlichen Fakultät, University of Potsdam, Potsdam 14476, Germany
| | - Daniel Varon Silva
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| | - Reinhard Lipowsky
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany.,Mathematisch-Naturwissenschaftlichen Fakultät, University of Potsdam, Potsdam 14476, Germany
| | - Mark Santer
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| |
Collapse
|
9
|
Galectin-3, a rising star in modulating microglia activation under conditions of neurodegeneration. Cell Death Dis 2022; 13:628. [PMID: 35859075 PMCID: PMC9300700 DOI: 10.1038/s41419-022-05058-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 01/21/2023]
Abstract
The advent of high-throughput single-cell transcriptomic analysis of microglia has revealed different phenotypes that are inherently associated with disease conditions. A common feature of some of these activated phenotypes is the upregulation of galectin-3. Representative examples of these phenotypes include disease-associated microglia (DAM) and white-associated microglia (WAM), whose role(s) in neuroprotection/neurotoxicity is a matter of high interest in the microglia community. In this review, we summarise the main findings that demonstrate the ability of galectin-3 to interact with key pattern recognition receptors, including, among others, TLR4 and TREM2 and the importance of galectin-3 in the regulation of microglia activation. Finally, we discuss increasing evidence supporting the involvement of this lectin in the main neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, traumatic brain injury, and stroke.
Collapse
|
10
|
Abstract
Outbreaks of trichinellosis caused by Trichinella papuae have been reported in South-East Asia. Mebendazole and thiabendazole are the treatments of choice for trichinellosis; however, both drugs result in significant side effects and are less effective for muscle-stage larvae (L1). An alternative therapeutic agent is needed to improve treatment. Information on lipid composition and metabolic pathways may bridge gaps in our knowledge and lead to new antiparasitics. The T. papuae L1 lipidome was analysed using a mass spectrometry-based approach, and 403 lipid components were identified. Eight lipid classes were found and glycerophospholipids were dominant, corresponding to 63% of total lipids, of which the glycerolipid DG (20:1[11Z]/22:4[7Z,10Z,13Z,16Z]/0:0) (iso2) was the most abundant. Overall, 57% of T. papuae lipids were absent in humans; therefore, lipid metabolism may be dissimilar in the two species. Proteins involved T. papuae lipid metabolism were explored using bioinformatics. We found that 4-hydroxybutyrate coenzyme A transferase, uncharacterized protein (A0A0V1MCB5) and ML-domain-containing protein are not present in humans. T. papuae glycerophospholipid metabolic and phosphatidylinositol dephosphorylation processes contain several proteins that are dissimilar to those in humans. These findings provide insights into T. papuae lipid composition and metabolism, which may facilitate the development of novel trichinellosis treatments.
Collapse
|
11
|
Li FY, Wang SF, Bernardes ES, Liu FT. Galectins in Host Defense Against Microbial Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:141-167. [DOI: 10.1007/978-981-15-1580-4_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Debierre-Grockiego F, Smith TK, Delbecq S, Ducournau C, Lantier L, Schmidt J, Brès V, Dimier-Poisson I, Schwarz RT, Cornillot E. Babesia divergens glycosylphosphatidylinositols modulate blood coagulation and induce Th2-biased cytokine profiles in antigen presenting cells. Biochimie 2019; 167:135-144. [PMID: 31585151 PMCID: PMC7079338 DOI: 10.1016/j.biochi.2019.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/29/2019] [Indexed: 01/08/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) are glycolipids described as toxins of protozoan parasites due to their inflammatory properties in mammalian hosts characterized by the production of interleukin (IL)-1, IL-12 and tumor necrosis factor (TNF)-α. In the present work, we studied the cytokines produced by antigen presenting cells in response to ten different GPI species extracted from Babesia divergens, responsible for babesiosis. Interestingly, B. divergens GPIs induced the production of anti-inflammatory cytokines (IL-2, IL-5) and of the regulatory cytokine IL-10 by macrophages and dendritic cells. In contrast to all protozoan GPIs studied until now, GPIs from B. divergens did not stimulate the production of TNF-α and IL-12, leading to a unique Th1/Th2 profile. Analysis of the carbohydrate composition of the B. divergens GPIs indicated that the di-mannose structure was different from the evolutionary conserved tri-mannose structure, which might explain the particular cytokine profile they induce. Expression of major histocompatibility complex (MHC) molecules on dendritic cells and apoptosis of mouse peritoneal cells were also analysed. B. divergens GPIs did not change expression of MHC class I, but decreased expression of MHC class II at the cell surface, while GPIs slightly increased the percentages of apoptotic cells. During pathogenesis of babesiosis, the inflammation-coagulation auto-amplification loop can lead to thrombosis and the effect of GPIs on coagulation parameters was investigated. Incubation of B. divergens GPIs with rat plasma ex vivo led to increase of fibrinogen levels and to prolonged activated partial thromboplastin time, suggesting a direct modulation of the extrinsic coagulation pathway by GPIs.
Collapse
Affiliation(s)
| | - Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, Scotland, KY16 9ST, UK
| | - Stéphane Delbecq
- Vaccination Antiparasitaire, Université de Montpellier, 34093, Montpellier, France
| | | | | | - Jörg Schmidt
- Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Virginie Brès
- Vaccination Antiparasitaire, Université de Montpellier, 34093, Montpellier, France
| | | | - Ralph T Schwarz
- Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, 35043, Marburg, Germany; Univ. Lille, CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, 59655, Villeneuve d'Ascq, France
| | - Emmanuel Cornillot
- Institut de Biologie Computationnelle, 34095, Montpellier, France; Institut de Recherche en Cancérologie de Montpellier (IRCM - INSERM U1194), Institut Régional du Cancer de Montpellier (ICM), Université de Montpellier, 34095, Montpellier, France
| |
Collapse
|
13
|
Debierre-Grockiego F, Smith TK, Delbecq S, Ducournau C, Lantier L, Schmidt J, Brès V, Dimier-Poisson I, Schwarz RT, Cornillot E. WITHDRAWN: Babesia divergens glycosylphosphatidylinositols modulate blood coagulation and induce Th2-biased cytokine profiles in antigen presenting cells. BIOCHIMIE OPEN 2019. [DOI: 10.1016/j.biopen.2019.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Biglycan is a new high-affinity ligand for CD14 in macrophages. Matrix Biol 2019; 77:4-22. [DOI: 10.1016/j.matbio.2018.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
|
15
|
Gas-Pascual E, Ichikawa HT, Sheikh MO, Serji MI, Deng B, Mandalasi M, Bandini G, Samuelson J, Wells L, West CM. CRISPR/Cas9 and glycomics tools for Toxoplasma glycobiology. J Biol Chem 2018; 294:1104-1125. [PMID: 30463938 DOI: 10.1074/jbc.ra118.006072] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/12/2018] [Indexed: 01/25/2023] Open
Abstract
Infection with the protozoan parasite Toxoplasma gondii is a major health risk owing to birth defects, its chronic nature, ability to reactivate to cause blindness and encephalitis, and high prevalence in human populations. Unlike most eukaryotes, Toxoplasma propagates in intracellular parasitophorous vacuoles, but like nearly all other eukaryotes, Toxoplasma glycosylates many cellular proteins and lipids and assembles polysaccharides. Toxoplasma glycans resemble those of other eukaryotes, but species-specific variations have prohibited deeper investigations into their roles in parasite biology and virulence. The Toxoplasma genome encodes a suite of likely glycogenes expected to assemble N-glycans, O-glycans, a C-glycan, GPI-anchors, and polysaccharides, along with their precursors and membrane transporters. To investigate the roles of specific glycans in Toxoplasma, here we coupled genetic and glycomics approaches to map the connections between 67 glycogenes, their enzyme products, the glycans to which they contribute, and cellular functions. We applied a double-CRISPR/Cas9 strategy, in which two guide RNAs promote replacement of a candidate gene with a resistance gene; adapted MS-based glycomics workflows to test for effects on glycan formation; and infected fibroblast monolayers to assess cellular effects. By editing 17 glycogenes, we discovered novel Glc0-2-Man6-GlcNAc2-type N-glycans, a novel HexNAc-GalNAc-mucin-type O-glycan, and Tn-antigen; identified the glycosyltransferases for assembling novel nuclear O-Fuc-type and cell surface Glc-Fuc-type O-glycans; and showed that they are important for in vitro growth. The guide sequences, editing constructs, and mutant strains are freely available to researchers to investigate the roles of glycans in their favorite biological processes.
Collapse
Affiliation(s)
- Elisabet Gas-Pascual
- Department of Biochemistry and Molecular Biology, Athens, Georgia 30602; Center for Tropical and Emerging Global Diseases, Athens, Georgia 30602
| | | | | | | | - Bowen Deng
- Department of Biochemistry and Molecular Biology, Athens, Georgia 30602; Center for Tropical and Emerging Global Diseases, Athens, Georgia 30602
| | - Msano Mandalasi
- Department of Biochemistry and Molecular Biology, Athens, Georgia 30602; Center for Tropical and Emerging Global Diseases, Athens, Georgia 30602
| | - Giulia Bandini
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts 02118
| | - John Samuelson
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts 02118
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Athens, Georgia 30602; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Christopher M West
- Department of Biochemistry and Molecular Biology, Athens, Georgia 30602; Center for Tropical and Emerging Global Diseases, Athens, Georgia 30602; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
16
|
Robinson BS, Arthur CM, Kamili NA, Stowell SR. Galectin Regulation of Host Microbial Interactions. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1738.1se] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Brian S. Robinson
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine
| | - Connie M. Arthur
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine
| | - Nourine A. Kamili
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine
| | - Sean R. Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine
| |
Collapse
|
17
|
Gao X, Liu J, Liu X, Li L, Zheng J. Cleavage and phosphorylation: important post-translational modifications of galectin-3. Cancer Metastasis Rev 2018; 36:367-374. [PMID: 28378189 DOI: 10.1007/s10555-017-9666-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As the unique chimeric member of the β-galactoside-binding protein family, galectin-3 is a multivalent and multifunctional oncogenic protein involved in multiple physiological and pathological processes, including cell growth, cell differentiation, cell adhesion, RNA splicing, cell apoptosis, and malignant transformation. Post-translational modifications can effectively increase a protein's functional diversity, either by degradation or adding chemical modifications, thus regulating activity, localization, and ligand interaction. In order to clearly understand the functional mechanisms of galectin-3 involved in normal cell biology and pathogenesis, here, we have summarized the previously reported post-translational modifications of galectin-3, including cleavage and phosphorylation. Cleavage of galectin-3 by MMPs, PSA, and proteases from parasites generated intact carbohydrate-recognition domain and N-terminal peptides of varying lengths that retained lectin binding activity but lost multivalence. Serine and tyrosine phosphorylation of galectin-3 by c-Abl, CKI, and GSK-3β could regulate its localization and associated signal transduction. Accordingly, cleavage and phosphorylation play an important role in regulating galectin-3 function via altering its multivalence, localization, and ligand interaction.
Collapse
Affiliation(s)
- Xiaoge Gao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China
| | - Jingjie Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China
| | - Xiangye Liu
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China
| | - Liantao Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China.
| |
Collapse
|
18
|
Tamai R, Kobayashi-Sakamoto M, Kiyoura Y. Extracellular galectin-1 enhances adhesion to and invasion of oral epithelial cells by Porphyromonas gingivalis. Can J Microbiol 2018; 64:465-471. [PMID: 29544077 DOI: 10.1139/cjm-2017-0461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Galectin-1 and galectin-3 are C-type lectin receptors that bind to lipopolysaccharide in the cell wall of gram-negative bacteria. In this study, we investigated the effects of galectin-1 and galectin-3 on adhesion to and invasion of the human gingival epithelial cell line Ca9-22 by Porphyromonas gingivalis, a periodontal pathogenic gram-negative bacterium. Recombinant galectin-1, but not galectin-3, enhanced P. gingivalis adhesion and invasion, although both galectins bound similarly to P. gingivalis. Flow cytometry also revealed that Ca9-22 cells express low levels of galectin-1 and moderate levels of galectin-3. Ca9-22 cells in which galectin-3 was knocked-down did not exhibit enhanced P. gingivalis adhesion and invasion. Similarly, specific antibodies to galectin-1 and galectin-3 did not inhibit P. gingivalis adhesion and invasion. These results suggest that soluble galectin-1, but not galectin-3, may exacerbate periodontal disease by enhancing the adhesion to and invasion of host cells by periodontal pathogenic bacteria.
Collapse
Affiliation(s)
- Riyoko Tamai
- Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan.,Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Michiyo Kobayashi-Sakamoto
- Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan.,Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Yusuke Kiyoura
- Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan.,Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| |
Collapse
|
19
|
Santos JC, Dick MS, Lagrange B, Degrandi D, Pfeffer K, Yamamoto M, Meunier E, Pelczar P, Henry T, Broz P. LPS targets host guanylate-binding proteins to the bacterial outer membrane for non-canonical inflammasome activation. EMBO J 2018; 37:embj.201798089. [PMID: 29459437 DOI: 10.15252/embj.201798089] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 01/08/2023] Open
Abstract
Pathogenic and commensal Gram-negative bacteria produce and release outer membrane vesicles (OMVs), which present several surface antigens and play an important role for bacterial pathogenesis. OMVs also modulate the host immune system, which makes them attractive as vaccine candidates. At the cellular level, OMVs are internalized by macrophages and deliver lipopolysaccharide (LPS) into the host cytosol, thus activating the caspase-11 non-canonical inflammasome. Here, we show that OMV-induced inflammasome activation requires TLR4-TRIF signaling, the production of type I interferons, and the action of guanylate-binding proteins (GBPs), both in macrophages and in vivo Mechanistically, we find that isoprenylated GBPs associate with the surface of OMVs or with transfected LPS, indicating that the key factor that determines GBP recruitment to the Gram-negative bacterial outer membranes is LPS itself. Our findings provide new insights into the mechanism by which GBPs target foreign surfaces and reveal a novel function for GBPs in controlling the intracellular detection of LPS derived from extracellular bacteria in the form of OMVs, thus extending their function as a hub between cell-autonomous immunity and innate immunity.
Collapse
Affiliation(s)
- José Carlos Santos
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland.,Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Mathias S Dick
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Brice Lagrange
- Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR 5308, Université Claude Bernard Lyon-1 Ecole Normale Supérieure, Lyon, France
| | - Daniel Degrandi
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Etienne Meunier
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, Toulouse Cedex 04, France
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - Thomas Henry
- Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR 5308, Université Claude Bernard Lyon-1 Ecole Normale Supérieure, Lyon, France
| | - Petr Broz
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland .,Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
20
|
The roles of galectins in parasitic infections. Acta Trop 2018; 177:97-104. [PMID: 28986248 DOI: 10.1016/j.actatropica.2017.09.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/10/2017] [Accepted: 09/29/2017] [Indexed: 12/18/2022]
Abstract
Galectins is a family of multifunctional lectins. Fifteen galectins have been identified from a variety of cells and tissues of vertebrates and invertebrates. Galectins have been shown to play pivotal roles in host-pathogen interaction such as adhesion of pathogens to host cells and activation of host innate and adaptive immunity. In recent years, the roles of galectins during parasite infections have gained increasing attention. Galectins produced by different hosts can act as pattern recognition receptors detecting conserved pathogen-associated molecular patterns of parasites, while galectins produced by parasites can modulate host responses. This review summarizes some recent studies on the roles of galectins produced by parasitic protozoa, nematodes, and trematodes and their hosts. Understanding the roles of galectins in host-parasite interactions may provide targets for immune intervention and therapies of parasitic infections.
Collapse
|
21
|
Kamili NA, Arthur CM, Gerner-Smidt C, Tafesse E, Blenda A, Dias-Baruffi M, Stowell SR. Key regulators of galectin-glycan interactions. Proteomics 2017; 16:3111-3125. [PMID: 27582340 DOI: 10.1002/pmic.201600116] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/15/2016] [Accepted: 08/29/2016] [Indexed: 11/08/2022]
Abstract
Protein-ligand interactions serve as fundamental regulators of numerous biological processes. Among protein-ligand pairs, glycan binding proteins (GBPs) and the glycans they recognize represent unique and highly complex interactions implicated in a broad range of regulatory activities. With few exceptions, cell surface receptors and secreted proteins are heavily glycosylated. As these glycans often represent highly regulatable post-translational modifications, alterations in glycosylation can fundamentally impact GBP recognition. Among GBPs, galectins in particular appear to engage a diverse set of glycan determinants to impact a broad range of biological processes. In this review, we will explore factors that impact galectin activity, including the effect of glycan modification on galectin-glycan interactions.
Collapse
Affiliation(s)
- Nourine A Kamili
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Connie M Arthur
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christian Gerner-Smidt
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Eden Tafesse
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna Blenda
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Biology, Erskine College, Due West, SC, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Sean R Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
22
|
Wujcicka W, Wilczyński J, Nowakowska D. Genetic alterations within TLR genes in development of Toxoplasma gondii infection among Polish pregnant women. Adv Med Sci 2017; 62:216-222. [PMID: 28500897 DOI: 10.1016/j.advms.2017.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/03/2017] [Accepted: 02/19/2017] [Indexed: 12/15/2022]
Abstract
PURPOSE The research was conducted to evaluate the role of genotypes, haplotypes and multiple-SNP variants in the range of TLR2, TLR4 and TLR9 single nucleotide polymorphisms (SNPs) in the development of Toxoplasma gondii infection among Polish pregnant women. MATERIAL AND METHODS The study was performed for 116 Polish pregnant women, including 51 patients infected with T. gondii, and 65 age-matched control pregnant individuals. Genotypes in TLR2 2258 G>A, TLR4 896 A>G, TLR4 1196 C>T and TLR9 2848 G>A SNPs were estimated by self-designed, nested PCR-RFLP assays. Randomly selected PCR products, representative for distinct genotypes in the studied polymorphisms, were confirmed by sequencing. All the genotypes were calculated for Hardy-Weinberg (H-W) equilibrium and TLR4 variants were tested for linkage disequilibrium. Relationships were assessed between alleles, genotypes, haplotypes or multiple-SNP variants in TLR polymorphisms and the occurrence of T. gondii infection in pregnant women, using a logistic regression model. RESULTS All the analyzed genotypes preserved the H-W equilibrium among the studied groups of patients (P>0.050). Similar distribution of distinct alleles and individual genotypes in TLR SNPs, as well as of haplotypes in TLR4 polymorphisms, were observed in T. gondii infected and control uninfected pregnant women. However, the GACG multiple-SNP variant, within the range of all the four studied polymorphisms, was correlated with a decreased risk of the parasitic infection (OR 0.52, 95% CI 0.28-0.97; P≤0.050). CONCLUSIONS The polymorphisms, located within TLR2, TLR4 and TLR9 genes, may be involved together in occurrence of T. gondii infection among Polish pregnant women.
Collapse
Affiliation(s)
- Wioletta Wujcicka
- Scientific Laboratory of the Center of Medical Laboratory Diagnostics and Screening, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland; Department of Perinatology and Gynecology, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland.
| | - Jan Wilczyński
- 2nd Chair of Obstetrics and Gynecology, Duchess Anna Mazowiecka Public Teaching Hospital, Warsaw, Poland
| | - Dorota Nowakowska
- Department of Perinatology and Gynecology, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| |
Collapse
|
23
|
Arthur CM, Patel SR, Mener A, Kamili NA, Fasano RM, Meyer E, Winkler AM, Sola-Visner M, Josephson CD, Stowell SR. Innate immunity against molecular mimicry: Examining galectin-mediated antimicrobial activity. Bioessays 2016; 37:1327-37. [PMID: 26577077 DOI: 10.1002/bies.201500055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adaptive immunity provides the unique ability to respond to a nearly infinite range of antigenic determinants. Given the inherent plasticity of the adaptive immune system, a series of tolerance mechanisms exist to reduce reactivity toward self. While this reduces the probability of autoimmunity, it also creates an important gap in adaptive immunity: the ability to recognize microbes that look like self. As a variety of microbes decorate themselves in self-like carbohydrate antigens and tolerance reduces the ability of adaptive immunity to react with self-like structures, protection against molecular mimicry likely resides within the innate arm of immunity. In this review, we will explore the potential consequences of microbial molecular mimicry, including factors within innate immunity that appear to specifically target microbes expressing self-like antigens, and therefore provide protection against molecular mimicry.
Collapse
Affiliation(s)
- Connie M Arthur
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Seema R Patel
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Amanda Mener
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Nourine A Kamili
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Ross M Fasano
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Erin Meyer
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Annie M Winkler
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Martha Sola-Visner
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Cassandra D Josephson
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Sean R Stowell
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
24
|
Possible role of TLR4 and TLR9 SNPs in protection against congenital toxoplasmosis. Eur J Clin Microbiol Infect Dis 2015; 34:2121-9. [PMID: 26254559 PMCID: PMC4565873 DOI: 10.1007/s10096-015-2461-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/20/2015] [Indexed: 12/22/2022]
Abstract
The purpose of this investigation was the determination of the distribution of genotypes at single nucleotide polymorphisms (SNPs) of the toll-like receptor 4 (TLR4) and the toll-like receptor 9 (TLR9) in fetuses and newborns congenitally infected with Toxoplasma gondii and the identification of genetic changes predisposing to infection development. The study involved 20 fetuses and newborns with congenital toxoplasmosis and 50 uninfected controls. The levels of IgG and IgM antibodies against T. gondii, as well as IgG avidity, were estimated by enzyme-linked fluorescent assay (ELFA) tests. T. gondii DNA loads in amniotic fluids were assayed by the real-time (RT) quantitative polymerase chain reaction (Q PCR) technique for parasitic B1 gene. TLR4 and TLR9 SNPs were identified using a self-designed multiplex nested PCR-restriction fragment length polymorphism (RFLP) assay. Randomly selected genotypes at SNPs were confirmed by sequencing. All the genotypes were tested for Hardy–Weinberg equilibrium and TLR4 genotypes were analyzed for linkage disequilibrium. A correlation was studied between the genotypes or haplotypes and the development of congenital toxoplasmosis using a logistic regression model. Single SNP analysis showed no statistically significant differences in the distribution of distinct genotypes at the analyzed TLR4 and TLR9 SNPs between T. gondii-infected fetuses and newborns and the controls. Taking into account the prevalence of alleles residing within polymorphic sites, similar prevalence rates were observed in both of the studied groups. The multiple SNP analysis indicated GTG variants at the TLR4 and TLR9 SNPs to be significantly less frequent in offspring with congenital toxoplasmosis than in uninfected offspring (p ≤ 0.0001). TLR4 and TLR9 SNPs seem to be involved in protection against congenital toxoplasmosis.
Collapse
|
25
|
Weight CM, Jones EJ, Horn N, Wellner N, Carding SR. Elucidating pathways of Toxoplasma gondii invasion in the gastrointestinal tract: involvement of the tight junction protein occludin. Microbes Infect 2015; 17:698-709. [PMID: 26183539 DOI: 10.1016/j.micinf.2015.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/17/2015] [Accepted: 07/02/2015] [Indexed: 01/28/2023]
Abstract
Toxoplasma gondii is an obligate intracellular parasite infecting one third of the world's population. The small intestine is the parasite's primary route of infection, although the pathway of epithelium transmigration remains unclear. Using an in vitro invasion assay and live imaging we showed that T. gondii (RH) tachyzoites infect and transmigrate between adjacent intestinal epithelial cells in polarized monolayers without altering barrier integrity, despite eliciting the production of specific inflammatory mediators and chemokines. During invasion, T. gondii co-localized with occludin. Reducing the levels of endogenous cellular occludin with specific small interfering RNAs significantly reduced the ability of T. gondii to penetrate between and infect epithelial cells. Furthermore, an in vitro invasion and binding assays using recombinant occludin fragments established the capacity of the parasite to bind occludin and in particular to the extracellular loops of the protein. These findings provide evidence for occludin playing a role in the invasion of T. gondii in small intestinal epithelial cells.
Collapse
Affiliation(s)
- Caroline M Weight
- Gut Health and Food Safety Institute Strategic Programme, Norwich Research Park, Norwich, NR4 7UA, UK; Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Emily J Jones
- Gut Health and Food Safety Institute Strategic Programme, Norwich Research Park, Norwich, NR4 7UA, UK; Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Nikki Horn
- Gut Health and Food Safety Institute Strategic Programme, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Nikolaus Wellner
- Analytical Sciences Unit, Institute of Food Research, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Simon R Carding
- Gut Health and Food Safety Institute Strategic Programme, Norwich Research Park, Norwich, NR4 7UA, UK; Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UA, UK.
| |
Collapse
|
26
|
Burguillos MA, Svensson M, Schulte T, Boza-Serrano A, Garcia-Quintanilla A, Kavanagh E, Santiago M, Viceconte N, Oliva-Martin MJ, Osman AM, Salomonsson E, Amar L, Persson A, Blomgren K, Achour A, Englund E, Leffler H, Venero JL, Joseph B, Deierborg T. Microglia-Secreted Galectin-3 Acts as a Toll-like Receptor 4 Ligand and Contributes to Microglial Activation. Cell Rep 2015; 10:1626-1638. [PMID: 25753426 DOI: 10.1016/j.celrep.2015.02.012] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/23/2015] [Accepted: 02/01/2015] [Indexed: 12/14/2022] Open
Abstract
Inflammatory response induced by microglia plays a critical role in the demise of neuronal populations in neuroinflammatory diseases. Although the role of toll-like receptor 4 (TLR4) in microglia's inflammatory response is fully acknowledged, little is known about endogenous ligands that trigger TLR4 activation. Here, we report that galectin-3 (Gal3) released by microglia acts as an endogenous paracrine TLR4 ligand. Gal3-TLR4 interaction was further confirmed in a murine neuroinflammatory model (intranigral lipopolysaccharide [LPS] injection) and in human stroke subjects. Depletion of Gal3 exerted neuroprotective and anti-inflammatory effects following global brain ischemia and in the neuroinflammatory LPS model. These results suggest that Gal3-dependent-TLR4 activation could contribute to sustained microglia activation, prolonging the inflammatory response in the brain.
Collapse
Affiliation(s)
- Miguel Angel Burguillos
- Department of Oncology-Pathology, Cancer Centrum Karolinska, R8:03, Karolinska Institutet, Stockholm 171 76, Sweden; Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, Lund 221 84, Sweden.
| | - Martina Svensson
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, Lund 221 84, Sweden
| | - Tim Schulte
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm 17165, Sweden
| | - Antonio Boza-Serrano
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, Lund 221 84, Sweden
| | - Albert Garcia-Quintanilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41012, Spain
| | - Edel Kavanagh
- Department of Oncology-Pathology, Cancer Centrum Karolinska, R8:03, Karolinska Institutet, Stockholm 171 76, Sweden
| | - Martiniano Santiago
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41012, Spain
| | - Nikenza Viceconte
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41012, Spain
| | - Maria Jose Oliva-Martin
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41012, Spain
| | - Ahmed Mohamed Osman
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Q2:07, Stockholm 171 76, Sweden
| | - Emma Salomonsson
- Section MIG, Department of Laboratory Medicine, Solvegatan 23, Lund University, Lund 223 62, Sweden
| | - Lahouari Amar
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund 221 84, Sweden
| | - Annette Persson
- Department of Pathology, Division of Neuropathology, Lund University Hospital, Lund 221 85, Sweden
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Q2:07, Stockholm 171 76, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm 17165, Sweden
| | - Elisabet Englund
- Department of Pathology, Division of Neuropathology, Lund University Hospital, Lund 221 85, Sweden
| | - Hakon Leffler
- Section MIG, Department of Laboratory Medicine, Solvegatan 23, Lund University, Lund 223 62, Sweden
| | - Jose Luis Venero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41012, Spain
| | - Bertrand Joseph
- Department of Oncology-Pathology, Cancer Centrum Karolinska, R8:03, Karolinska Institutet, Stockholm 171 76, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, Lund 221 84, Sweden
| |
Collapse
|
27
|
Abstract
Galectins are an evolutionarily ancient family of glycan-binding proteins (GBPs) and are found in all animals. Although they were discovered over 30 years ago, ideas about their biological functions continue to evolve. Current evidence indicates that galectins, which are the only known GBPs that occur free in the cytoplasm and extracellularly, are involved in a variety of intracellular and extracellular pathways contributing to homeostasis, cellular turnover, cell adhesion, and immunity. Here we review evolving insights into galectin biology from a historical perspective and explore current evidence regarding biological roles of galectins.
Collapse
|
28
|
Han SJ, Melichar HJ, Coombes JL, Chan SW, Koshy AA, Boothroyd JC, Barton GM, Robey EA. Internalization and TLR-dependent type I interferon production by monocytes in response to Toxoplasma gondii. Immunol Cell Biol 2014; 92:872-81. [PMID: 25155465 PMCID: PMC4245188 DOI: 10.1038/icb.2014.70] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 12/20/2022]
Abstract
The classic anti-viral cytokine interferon (IFN)-β can be induced during parasitic infection, but relatively little is know about the cell types and signaling pathways involved. Here we show that inflammatory monocytes (IMs), but not neutrophils, produce IFN-β in response to T. gondii infection. This difference correlated with the mode of parasite entry into host cells, with phagocytic uptake predominating in IMs and active invasion predominating in neutrophils. We also show that expression of IFN-β requires phagocytic uptake of the parasite by IMs, and signaling through Toll-like receptors (TLRs) and MyD88. Finally, we show that IMs are major producers of IFN-β in mesenteric lymph nodes following in vivo oral infection of mice, and mice lacking the receptor for type I IFN-1 show higher parasite loads and reduced survival. Our data reveal a TLR and internalization-dependent pathway in IMs for IFN-β induction to a non-viral pathogen.
Collapse
Affiliation(s)
- Seong-Ji Han
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Heather J. Melichar
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Janine L. Coombes
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Shiao Wei Chan
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Anita A. Koshy
- Department of Medicine (Infectious Disease) and Department of Neurology, Stanford University School of Medicine, Stanford, California, USA
| | - John C. Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Gregory M. Barton
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ellen A. Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
29
|
Götze S, Azzouz N, Tsai YH, Groß U, Reinhardt A, Anish C, Seeberger PH, Varón Silva D. Toxoplasmose-Diagnose mithilfe eines synthetisch hergestellten Glycosylphosphatidylinositol-Glycans. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Götze S, Azzouz N, Tsai YH, Groß U, Reinhardt A, Anish C, Seeberger PH, Varón Silva D. Diagnosis of toxoplasmosis using a synthetic glycosylphosphatidylinositol glycan. Angew Chem Int Ed Engl 2014; 53:13701-5. [PMID: 25323101 DOI: 10.1002/anie.201406706] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Indexed: 12/12/2022]
Abstract
Around 2 billion people worldwide are infected with the apicomplexan parasite Toxoplasma gondii which induces a variety of medical conditions. For example, primary infection during pregnancy can result in fetal death or mental retardation of the child. Diagnosis of acute infections in pregnant women is challenging but crucially important as the drugs used to treat T. gondii infections are potentially harmful to the unborn child. Better, faster, more reliable, and cheaper means of diagnosis by using defined antigens for accurate serological tests are highly desirable. Synthetic pathogen-specific glycosylphosphatidylinositol (GPI) glycan antigens are diagnostic markers and have been used to distinguish between toxoplasmosis disease states using human sera.
Collapse
Affiliation(s)
- Sebastian Götze
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam (Germany); Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin (Germany)
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Baum LG, Garner OB, Schaefer K, Lee B. Microbe-Host Interactions are Positively and Negatively Regulated by Galectin-Glycan Interactions. Front Immunol 2014; 5:284. [PMID: 24995007 PMCID: PMC4061488 DOI: 10.3389/fimmu.2014.00284] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022] Open
Abstract
Microbe–host interactions are complex processes that are directly and indirectly regulated by a variety of factors, including microbe presentation of specific molecular signatures on the microbial surface, as well as host cell presentation of receptors that recognize these pathogen signatures. Cell surface glycans are one important class of microbial signatures that are recognized by a variety of host cell lectins. Host cell lectins that recognize microbial glycans include members of the galectin family of lectins that recognize specific glycan ligands on viruses, bacteria, fungi, and parasites. In this review, we will discuss the ways that the interactions of microbial glycans with host cell galectins positively and negatively regulate pathogen attachment, invasion, and survival, as well as regulate host responses that mitigate microbial pathogenesis.
Collapse
Affiliation(s)
- Linda G Baum
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles , Los Angeles, CA , USA
| | - Omai B Garner
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles , Los Angeles, CA , USA
| | - Katrin Schaefer
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles , Los Angeles, CA , USA
| | - Benhur Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles , Los Angeles, CA , USA ; Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California Los Angeles , Los Angeles, CA , USA
| |
Collapse
|
32
|
Zare-Bidaki M, Hakimi H, Abdollahi SH, Zainodini N, Kazemi Arababadi M, Kennedy D. TLR4 in Toxoplasmosis; friends or foe? Microb Pathog 2014; 69-70:28-32. [DOI: 10.1016/j.micpath.2014.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 01/15/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
|
33
|
Niehus S, Smith TK, Azzouz N, Campos MA, Dubremetz JF, Gazzinelli RT, Schwarz RT, Debierre-Grockiego F. Virulent and avirulent strains of Toxoplasma gondii which differ in their glycosylphosphatidylinositol content induce similar biological functions in macrophages. PLoS One 2014; 9:e85386. [PMID: 24489660 PMCID: PMC3904843 DOI: 10.1371/journal.pone.0085386] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/26/2013] [Indexed: 11/18/2022] Open
Abstract
Glycosylphosphatidylinositols (GPIs) from several protozoan parasites are thought to elicit a detrimental stimulation of the host innate immune system aside their main function to anchor surface proteins. Here we analyzed the GPI biosynthesis of an avirulent Toxoplasma gondii type 2 strain (PTG) by metabolic radioactive labeling. We determined the biological function of individual GPI species in the PTG strain in comparison with previously characterized GPI-anchors of a virulent strain (RH). The GPI intermediates of both strains were structurally similar, however the abundance of two of six GPI intermediates was significantly reduced in the PTG strain. The side-by-side comparison of GPI-anchor content revealed that the PTG strain had only ∼34% of the protein-free GPIs as well as ∼70% of the GPI-anchored proteins with significantly lower rates of protein N-glycosylation compared to the RH strain. All mature GPIs from both strains induced comparable secretion levels of TNF-α and IL-12p40, and initiated TLR4/MyD88-dependent NF-κBp65 activation in macrophages. Taken together, these results demonstrate that PTG and RH strains differ in their GPI biosynthesis and possess significantly different GPI-anchor content, while individual GPI species of both strains induce similar biological functions in macrophages.
Collapse
Affiliation(s)
- Sebastian Niehus
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany
- UPR 9022 CNRS, Institute of Molecular and Cellular Biology, Strasbourg, France
- * E-mail:
| | - Terry K. Smith
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Nahid Azzouz
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany
| | - Marco A. Campos
- Research Center René Rachou, Oswaldo Cruz Foundation, Laboratory of Immunopathology, Belo Horizonte, Brazil
| | | | - Ricardo T. Gazzinelli
- Research Center René Rachou, Oswaldo Cruz Foundation, Laboratory of Immunopathology, Belo Horizonte, Brazil
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ralph T. Schwarz
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany
- UMR 8576 CNRS, Unit of Structural and Functional Glycobiology, University of, Lille, France
| | - Françoise Debierre-Grockiego
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany
- UMR 1282 Infectiology and Public Health, University of Tours, Tours, France and INRA, Nouzilly, France
| |
Collapse
|
34
|
Quattroni P, Li Y, Lucchesi D, Lucas S, Hood DW, Herrmann M, Gabius HJ, Tang CM, Exley RM. Galectin-3 binds Neisseria meningitidis and increases interaction with phagocytic cells. Cell Microbiol 2012; 14:1657-75. [PMID: 22827322 PMCID: PMC3749814 DOI: 10.1111/j.1462-5822.2012.01838.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 11/27/2022]
Abstract
Galectin-3 is expressed and secreted by immune cells and has been implicated in multiple aspects of the inflammatory response. It is a glycan binding protein which can exert its functions within cells or exogenously by binding cell surface ligands, acting as a molecular bridge or activating signalling pathways. In addition, this lectin has been shown to bind to microorganisms. In this study we investigated the interaction between galectin-3 and Neisseria meningitidis, an important extracellular human pathogen, which is a leading cause of septicaemia and meningitis. Immunohistochemical analysis indicated that galectin-3 is expressed during meningococcal disease and colocalizes with bacterial colonies in infected tissues from patients. We show that galectin-3 binds to N. meningitidis and we demonstrate that this interaction requiresfull-length, intact lipopolysaccharide molecules. We found that neither exogenous nor endogenous galectin-3 contributes to phagocytosis of N. meningitidis; instead exogenous galectin-3 increases adhesion to monocytes and macrophages but not epithelial cells. Finally we used galectin-3 deficient (Gal-3(-/-) ) mice to evaluate the contribution of galectin-3 to meningococcal bacteraemia. We found that Gal-3(-/-) mice had significantly lower levels of bacteraemia compared with wild-type mice after challenge with live bacteria, indicating that galectin-3 confers an advantage to N. meningitidis during systemic infection.
Collapse
Affiliation(s)
- Paola Quattroni
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| | - Yanwen Li
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| | - Davide Lucchesi
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| | - Sebastian Lucas
- Department of Histopathology, KCL School of Medicine, North Wing, St. Thomas’s Hospital, Lambeth Palace Road, London SE1 7EH, United Kingdom
| | - Derek W. Hood
- Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Martin Herrmann
- Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nuremberg, Krankenhausstrasse 12, 91054 Erlangen, Germany
| | - Hans-Joachim Gabius
- Chair of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstrasse 13, D-80539 Munich, Germany
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, United Kingdom
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| | - Rachel M. Exley
- Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, United Kingdom
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| |
Collapse
|
35
|
Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury. J Neurosci 2012; 32:10383-95. [PMID: 22836271 DOI: 10.1523/jneurosci.1498-12.2012] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Growing evidence suggests that galectin-3 is involved in fine tuning of the inflammatory responses at the periphery, however, its role in injured brain is far less clear. Our previous work demonstrated upregulation and coexpression of galectin-3 and IGF-1 in a subset of activated/proliferating microglial cells after stroke. Here, we tested the hypothesis that galectin-3 plays a pivotal role in mediating injury-induced microglial activation and proliferation. By using a galectin-3 knock-out mouse (Gal-3KO), we demonstrated that targeted disruption of the galectin-3 gene significantly alters microglia activation and induces ∼4-fold decrease in microglia proliferation. Defective microglia activation/proliferation was further associated with significant increase in the size of ischemic lesion, ∼2-fold increase in the number of apoptotic neurons, and a marked deregulation of the IGF-1 levels. Next, our results revealed that contrary to WT cells, the Gal3-KO microglia failed to proliferate in response to IGF-1. Moreover, the IGF-1-mediated mitogenic microglia response was reduced by N-glycosylation inhibitor tunicamycine while coimmunoprecipitation experiments revealed galectin-3 binding to IGF-receptor 1 (R1), thus suggesting that interaction of galectin-3 with the N-linked glycans of receptors for growth factors is involved in IGF-R1 signaling. While the canonical IGF-1 signaling pathways were not affected, we observed an overexpression of IL-6 and SOCS3, suggesting an overactivation of JAK/STAT3, a shared signaling pathway for IGF-1/IL-6. Together, our findings suggest that galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury.
Collapse
|
36
|
Tsai YH, Liu X, Seeberger PH. Chemical biology of glycosylphosphatidylinositol anchors. Angew Chem Int Ed Engl 2012; 51:11438-56. [PMID: 23086912 DOI: 10.1002/anie.201203912] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Indexed: 01/21/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) are complex glycolipids that are covalently linked to the C-terminus of proteins as a posttranslational modification. They anchor the attached protein to the cell membrane and are essential for normal functioning of eukaryotic cells. GPI-anchored proteins are structurally and functionally diverse. Many GPIs have been structurally characterized but comprehension of their biological functions, beyond the simple physical anchoring, remains largely speculative. Work on functional elucidation at a molecular level is still limited. This Review focuses on the roles of GPI unraveled by using synthetic molecules and summarizes the structural diversity of GPIs, as well as their biological and chemical syntheses.
Collapse
Affiliation(s)
- Yu-Hsuan Tsai
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | | | | |
Collapse
|
37
|
Tsai YH, Liu X, Seeberger PH. Chemische Biologie der Glycosylphosphatidylinosit-Anker. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203912] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Galectin-3 is essential for reactive oxygen species production by peritoneal neutrophils from mice infected with a virulent strain ofToxoplasma gondii. Parasitology 2012; 140:210-9. [DOI: 10.1017/s0031182012001473] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SUMMARYToxoplasma gondiistimulates a potent pro-inflammatory response and neutrophils are involved in early infection. Galectin-3 (Gal-3) is an endogenous modulator of inflammatory processes and anti-infective agents, but its interaction with neutrophils inT. gondiiinfection is still unclear. Here, we evaluated the role of Gal-3 in peritoneal inflammation, reactive oxygen species (ROS) production by neutrophils and survival, afterin vivo T. gondiiinfection with virulent RH strain, using Gal-3 deficient and wild type mice. Animals were inoculated with thioglycollate or tachyzoites, and peritoneal cells were harvested for analysis of the influx of leukocytes. Neutrophils were isolated from peritoneal exudates from infected mice and stimulated with phorbol myristate acetate (PMA) to evaluate ROS production by luminol-dependent chemiluminescence assay. Our results showed that: (1) Gal-3 upregulates peritoneal inflammation, with enhanced recruitment of neutrophils and lymphocytes after thioglycollate stimulation, but does not influence the enhanced neutrophil influx after earlyT. gondiiinfection; (2) Gal-3 upregulates ROS generation by inflammatory peritoneal neutrophils from infected mice, but downregulates its production in non-infected mice and (3) Gal-3 does not influence the survival of mice after infection with the virulentT. gondiistrain. In conclusion, Gal-3 is essential for ROS generation by neutrophils in the initial acute phase ofT. gondiiinfection and this phenomenon may constitute an attempt to control parasite growth duringin vivoinfection with theT. gondiivirulent strain.
Collapse
|
39
|
Weight CM, Carding SR. The protozoan pathogen Toxoplasma gondii targets the paracellular pathway to invade the intestinal epithelium. Ann N Y Acad Sci 2012; 1258:135-42. [PMID: 22731726 DOI: 10.1111/j.1749-6632.2012.06534.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abstract Toxoplasma gondii is a ubiquitous parasite found within all mammals and birds worldwide that can cause fatal infections in immunocompromised persons and fetuses. The parasite causes chronic infections by residing in long-living tissues of the muscle and brain. T. gondii infects the host through contaminated meat and water consumption with the gastrointestinal tract (GI tract) being the first point of contact with the host. The mechanisms by which the parasite invades the host through the GI tract are unknown, although it has been suggested that the paracellular pathway is important for parasite dissemination. Studies indicate that epithelial tight junction-associated proteins are affected by T. gondii, although which junctional proteins are affected and the nature of host protein-parasite interactions have not been established. We have uncovered evidence that T. gondii influences the cellular distribution of occludin to transmigrate the intestinal epithelium and suggest how candidate binding partners can be identified.
Collapse
Affiliation(s)
- Caroline M Weight
- Institute of Food Research Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | | |
Collapse
|
40
|
Oliveira-Nascimento L, Massari P, Wetzler LM. The Role of TLR2 in Infection and Immunity. Front Immunol 2012; 3:79. [PMID: 22566960 PMCID: PMC3342043 DOI: 10.3389/fimmu.2012.00079] [Citation(s) in RCA: 485] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/28/2012] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptors (TLRs) are recognition molecules for multiple pathogens, including bacteria, viruses, fungi, and parasites. TLR2 forms heterodimers with TLR1 and TLR6, which is the initial step in a cascade of events leading to significant innate immune responses, development of adaptive immunity to pathogens and protection from immune sequelae related to infection with these pathogens. This review will discuss the current status of TLR2 mediated immune responses by recognition of pathogen-associated molecular patterns (PAMPS) on these organisms. We will emphasize both canonical and non-canonical responses to TLR2 ligands with emphasis on whether the inflammation induced by these responses contributes to the disease state or to protection from diseases.
Collapse
Affiliation(s)
- Laura Oliveira-Nascimento
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine Boston, MA, USA
| | | | | |
Collapse
|
41
|
Lepur A, Carlsson MC, Novak R, Dumić J, Nilsson UJ, Leffler H. Galectin-3 endocytosis by carbohydrate independent and dependent pathways in different macrophage like cell types. Biochim Biophys Acta Gen Subj 2012; 1820:804-18. [PMID: 22450157 DOI: 10.1016/j.bbagen.2012.02.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/27/2012] [Accepted: 02/24/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Galectin-3 (the Mac-2 antigen) is abundantly expressed in both macrophage like cells and certain non-macrophage cells. We have studied endocytosis of galectin-3 as one important step relevant for its function, and compared it between variants of a macrophage like cell line, and non-macrophage cells. METHODS Endocytosis of galectin-3 was observed by fluorescence microscopy and measured by flow cytometry. The endocytosis mechanism was analysed using galectin-3 mutants, galectin-3 inhibitors and endocytic pathways inhibitors in the human leukaemia THP-1 cell line differentiated into naïve (M0), classical (M1) or alternatively activated (M2) macrophage like cells, and the non-macrophage cell lines HFL-1 fibroblasts and SKBR3 breast carcinoma. RESULTS Galectin-3 endocytosis in non-macrophage cells and M2 cells was blocked by lactose and a potent galectin-3 inhibitor TD139, and also by the R186S mutation in the galectin-3 carbohydrate recognition domain (CRD). In M1 cells galectin-3 endocytosis could be inhibited only by chlorpromazine and by interference with the non-CRD N-terminal part of galectin-3. In all the cell types galectin-3 entered early endosomes within 5-10 min, to be subsequently targeted mainly to non-degradative vesicles, where it remained even after 24 h. CONCLUSIONS Galectin-3 endocytosis in M1 cells is receptor mediated and carbohydrate independent, while in M2 cells it is CRD mediated, although the non-CRD galectin-3 domain is also involved. General significance The demonstration that galectin-3 endocytosis in M1 macrophages is carbohydrate independent and different from M2 macrophages and non-macrophage cells, suggests novel, immunologically significant interactions between phagocytic cells, galectin-3 and its ligands.
Collapse
Affiliation(s)
- Adriana Lepur
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 223 62 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
42
|
Marchant J, Cowper B, Liu Y, Lai L, Pinzan C, Marq JB, Friedrich N, Sawmynaden K, Liew L, Chai W, Childs RA, Saouros S, Simpson P, Roque Barreira MC, Feizi T, Soldati-Favre D, Matthews S. Galactose recognition by the apicomplexan parasite Toxoplasma gondii. J Biol Chem 2012; 287:16720-33. [PMID: 22399295 DOI: 10.1074/jbc.m111.325928] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toxosplasma gondii is the model parasite of the phylum Apicomplexa, which contains numerous obligate intracellular parasites of medical and veterinary importance, including Eimeria, Sarcocystis, Cryptosporidium, Cyclospora, and Plasmodium species. Members of this phylum actively enter host cells by a multistep process with the help of microneme protein (MIC) complexes that play important roles in motility, host cell attachment, moving junction formation, and invasion. T. gondii (Tg)MIC1-4-6 complex is the most extensively investigated microneme complex, which contributes to host cell recognition and attachment via the action of TgMIC1, a sialic acid-binding adhesin. Here, we report the structure of TgMIC4 and reveal its carbohydrate-binding specificity to a variety of galactose-containing carbohydrate ligands. The lectin is composed of six apple domains in which the fifth domain displays a potent galactose-binding activity, and which is cleaved from the complex during parasite invasion. We propose that galactose recognition by TgMIC4 may compromise host protection from galectin-mediated activation of the host immune system.
Collapse
Affiliation(s)
- Jan Marchant
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Niehus S, Elass E, Coddeville B, Guérardel Y, Schwarz RT, Debierre-Grockiego F. Glycosylphosphatidylinositols of Toxoplasma gondii induce matrix metalloproteinase-9 production and degradation of galectin-3. Immunobiology 2012; 217:61-4. [DOI: 10.1016/j.imbio.2011.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 11/25/2022]
|
44
|
Membrane lipidomics for the discovery of new antiparasitic drug targets. Trends Parasitol 2011; 27:496-504. [DOI: 10.1016/j.pt.2011.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/21/2011] [Accepted: 07/26/2011] [Indexed: 01/04/2023]
|
45
|
Cerliani JP, Stowell SR, Mascanfroni ID, Arthur CM, Cummings RD, Rabinovich GA. Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity. J Clin Immunol 2010; 31:10-21. [PMID: 21184154 DOI: 10.1007/s10875-010-9494-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/03/2010] [Indexed: 12/31/2022]
Abstract
Effective immunity relies on the recognition of pathogens and tumors by innate immune cells through diverse pattern recognition receptors (PRRs) that lead to initiation of signaling processes and secretion of pro- and anti-inflammatory cytokines. Galectins, a family of endogenous lectins widely expressed in infected and neoplastic tissues have emerged as part of the portfolio of soluble mediators and pattern recognition receptors responsible for eliciting and controlling innate immunity. These highly conserved glycan-binding proteins can control immune cell processes through binding to specific glycan structures on pathogens and tumors or by acting intracellularly via modulation of selective signaling pathways. Recent findings demonstrate that various galectin family members influence the fate and physiology of different innate immune cells including polymorphonuclear neutrophils, mast cells, macrophages, and dendritic cells. Moreover, several pathogens may actually utilize galectins as a mechanism of host invasion. In this review, we aim to highlight and integrate recent discoveries that have led to our current understanding of the role of galectins in host-pathogen interactions and innate immunity. Challenges for the future will embrace the rational manipulation of galectin-glycan interactions to instruct and shape innate immunity during microbial infections, inflammation, and cancer.
Collapse
Affiliation(s)
- Juan P Cerliani
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|