1
|
Chen H, Wang Y, Wang W, Cao T, Zhang L, Wang Z, Chi X, Shi T, Wang H, He X, Liang M, Yang M, Jiang W, Lv D, Yu J, Zhu G, Xie Y, Gao B, Wang X, Liu X, Li Y, Ouyang L, Zhang J, Liu H, Li Z, Tong Y, Xia X, Tan GY, Zhang L. High-yield porphyrin production through metabolic engineering and biocatalysis. Nat Biotechnol 2024:10.1038/s41587-024-02267-3. [PMID: 38839873 DOI: 10.1038/s41587-024-02267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 04/26/2024] [Indexed: 06/07/2024]
Abstract
Porphyrins and their derivatives find extensive applications in medicine, food, energy and materials. In this study, we produced porphyrin compounds by combining Rhodobacter sphaeroides as an efficient cell factory with enzymatic catalysis. Genome-wide CRISPRi-based screening in R. sphaeroides identifies hemN as a target for improved coproporphyrin III (CPIII) production, and exploiting phosphorylation of PrrA further improves the production of bioactive CPIII to 16.5 g L-1 by fed-batch fermentation. Subsequent screening and engineering high-activity metal chelatases and coproheme decarboxylase results in the synthesis of various metalloporphyrins, including heme and the anti-tumor agent zincphyrin. After pilot-scale fermentation (200 L) and setting up the purification process for CPIII (purity >95%), we scaled up the production of heme and zincphyrin through enzymatic catalysis in a 5-L bioreactor, with CPIII achieving respective enzyme conversion rates of 63% and 98% and yielding 10.8 g L-1 and 21.3 g L-1, respectively. Our strategy offers a solution for high-yield bioproduction of heme and other valuable porphyrins with substantial industrial and medical applications.
Collapse
Affiliation(s)
- Haihong Chen
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yaohong Wang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ting Cao
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Lu Zhang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Zhengduo Wang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xuran Chi
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Tong Shi
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Huangwei Wang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xinwei He
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Mindong Liang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Mengxue Yang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Wenyi Jiang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Dongyuan Lv
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jiaming Yu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yongtao Xie
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xinye Wang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Youyuan Li
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Huimin Liu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yaojun Tong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuekui Xia
- Key Biosensor Laboratory of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China.
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
2
|
Aftab H, Donegan RK. Regulation of heme biosynthesis via the coproporphyrin dependent pathway in bacteria. Front Microbiol 2024; 15:1345389. [PMID: 38577681 PMCID: PMC10991733 DOI: 10.3389/fmicb.2024.1345389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Heme biosynthesis in the Gram-positive bacteria occurs mostly via a pathway that is distinct from that of eukaryotes and Gram-negative bacteria in the three terminal heme synthesis steps. In many of these bacteria heme is a necessary cofactor that fulfills roles in respiration, gas sensing, and detoxification of reactive oxygen species. These varying roles for heme, the requirement of iron and glutamate, as glutamyl tRNA, for synthesis, and the sharing of intermediates with the synthesis of other porphyrin derivatives necessitates the need for many points of regulation in response to nutrient availability and metabolic state. In this review we examine the regulation of heme biosynthesis in these bacteria via heme, iron, and oxygen species. We also discuss our perspective on emerging roles of protein-protein interactions and post-translational modifications in regulating heme biosynthesis.
Collapse
|
3
|
Shleeva MO, Linge IA, Gligonov IA, Vostroknutova GN, Shashin DM, Tsedilin AM, Apt AS, Kaprelyants AS, Savitsky AP. Acquiring of photosensitivity by Mycobacterium tuberculosis in vitro and inside infected macrophages is associated with accumulation of endogenous Zn-porphyrins. Sci Rep 2024; 14:846. [PMID: 38191600 PMCID: PMC10774309 DOI: 10.1038/s41598-024-51227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is able to transition into a dormant state, causing the latent state of tuberculosis. Dormant mycobacteria acquire resistance to all known antibacterial drugs and can survive in the human body for decades before becoming active. In the dormant forms of M. tuberculosis, the synthesis of porphyrins and its Zn-complexes significantly increased when 5-aminolevulinic acid (ALA) was added to the growth medium. Transcriptome analysis revealed an activation of 8 genes involved in the metabolism of tetrapyrroles during the Mtb transition into a dormant state, which may lead to the observed accumulation of free porphyrins. Dormant Mtb viability was reduced by more than 99.99% under illumination for 30 min (300 J/cm2) with 565 nm light that correspond for Zn-porphyrin and coproporphyrin absorptions. We did not observe any PDI effect in vitro using active bacteria grown without ALA. However, after accumulation of active cells in lung macrophages and their persistence within macrophages for several days in the presence of ALA, a significant sensitivity of active Mtb cells (ca. 99.99%) to light exposure was developed. These findings create a perspective for the treatment of latent and multidrug-resistant tuberculosis by the eradication of the pathogen in order to prevent recurrence of this disease.
Collapse
Affiliation(s)
- Margarita O Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia.
| | - Irina A Linge
- Laboratory for Immunogenetics, Central Tuberculosis Research Institute, Moscow, Russia
| | - Ivan A Gligonov
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Galina N Vostroknutova
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Denis M Shashin
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey M Tsedilin
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Apt
- Laboratory for Immunogenetics, Central Tuberculosis Research Institute, Moscow, Russia
| | - Arseny S Kaprelyants
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander P Savitsky
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
4
|
Perez-Ortiz G, Sidda JD, Peate J, Ciccarelli D, Ding Y, Barry SM. Production of copropophyrin III, biliverdin and bilirubin by the rufomycin producer, Streptomyces atratus. Front Microbiol 2023; 14:1092166. [PMID: 37007481 PMCID: PMC10060970 DOI: 10.3389/fmicb.2023.1092166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/31/2023] [Indexed: 03/18/2023] Open
Abstract
Heme is best known for its role as a versatile prosthetic group in prokaryotic and eukaryotic proteins with diverse biological functions including gas and electron transport, as well as a wide array of redox chemistry. However, free heme and related tetrapyrroles also have important roles in the cell. In several bacterial strains, heme biosynthetic precursors and degradation products have been proposed to function as signaling molecules, ion chelators, antioxidants and photoprotectants. While the uptake and degradation of heme by bacterial pathogens is well studied, less is understood about the physiological role of these processes and their products in non-pathogenic bacteria. Streptomyces are slow growing soil bacteria known for their extraordinary capacity to produce complex secondary metabolites, particularly many clinically used antibiotics. Here we report the unambiguous identification of three tetrapyrrole metabolites from heme metabolism, coproporphyrin III, biliverdin and bilirubin, in culture extracts of the rufomycin antibiotic producing Streptomyces atratus DSM41673. We propose that biliverdin and bilirubin may combat oxidative stress induced by nitric oxide production during rufomycin biosynthesis, and indicate the genes involved in their production. This is, to our knowledge, the first report of the production of all three of these tetrapyrroles by a Streptomycete.
Collapse
Affiliation(s)
| | | | | | | | | | - Sarah M. Barry
- Department of Chemistry, Faculty of Natural & Mathematical Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
5
|
Donegan RK, Fu Y, Copeland J, Idga S, Brown G, Hale OF, Mitra A, Yang H, Dailey HA, Niederweis M, Jain P, Reddi AR. Exogenously Scavenged and Endogenously Synthesized Heme Are Differentially Utilized by Mycobacterium tuberculosis. Microbiol Spectr 2022; 10:e0360422. [PMID: 36169423 PMCID: PMC9604157 DOI: 10.1128/spectrum.03604-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023] Open
Abstract
Heme is both an essential cofactor and an abundant source of nutritional iron for the human pathogen Mycobacterium tuberculosis. While heme is required for M. tuberculosis survival and virulence, it is also potentially cytotoxic. Since M. tuberculosis can both synthesize and take up heme, the de novo synthesis of heme and its acquisition from the host may need to be coordinated in order to mitigate heme toxicity. However, the mechanisms employed by M. tuberculosis to regulate heme uptake, synthesis, and bioavailability are poorly understood. By integrating ratiometric heme sensors with mycobacterial genetics, cell biology, and biochemistry, we determined that de novo-synthesized heme is more bioavailable than exogenously scavenged heme, and heme availability signals the downregulation of heme biosynthetic enzyme gene expression. Ablation of heme synthesis does not result in the upregulation of known heme import proteins. Moreover, we found that de novo heme synthesis is critical for survival from macrophage assault. Altogether, our data suggest that mycobacteria utilize heme from endogenous and exogenous sources differently and that targeting heme synthesis may be an effective therapeutic strategy to treat mycobacterial infections. IMPORTANCE Mycobacterium tuberculosis infects ~25% of the world's population and causes tuberculosis (TB), the second leading cause of death from infectious disease. Heme is an essential metabolite for M. tuberculosis, and targeting the unique heme biosynthetic pathway of M. tuberculosis could serve as an effective therapeutic strategy. However, since M. tuberculosis can both synthesize and scavenge heme, it was unclear if inhibiting heme synthesis alone could serve as a viable approach to suppress M. tuberculosis growth and virulence. The importance of this work lies in the development and application of genetically encoded fluorescent heme sensors to probe bioavailable heme in M. tuberculosis and the discovery that endogenously synthesized heme is more bioavailable than exogenously scavenged heme. Moreover, it was found that heme synthesis protected M. tuberculosis from macrophage killing, and bioavailable heme in M. tuberculosis is diminished during macrophage infection. Altogether, these findings suggest that targeting M. tuberculosis heme synthesis is an effective approach to combat M. tuberculosis infections.
Collapse
Affiliation(s)
- Rebecca K. Donegan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Chemistry, Barnard College, New York, New York, USA
| | - Yibo Fu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jacqueline Copeland
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Stanzin Idga
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Gabriel Brown
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Owen F. Hale
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Avishek Mitra
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hui Yang
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Harry A. Dailey
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paras Jain
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Cell Therapy and Cell Engineering Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Amit R. Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Donegan RK. The role of host heme in bacterial infection. Biol Chem 2022; 403:1017-1029. [PMID: 36228088 DOI: 10.1515/hsz-2022-0192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022]
Abstract
Heme is an indispensable cofactor for almost all aerobic life, including the human host and many bacterial pathogens. During infection, heme and hemoproteins are the largest source of bioavailable iron, and pathogens have evolved various heme acquisition pathways to satisfy their need for iron and heme. Many of these pathways are regulated transcriptionally by intracellular iron levels, however, host heme availability and intracellular heme levels have also been found to regulate heme uptake in some species. Knowledge of these pathways has helped to uncover not only how these bacteria incorporate host heme into their metabolism but also provided insight into the importance of host heme as a nutrient source during infection. Within this review is covered multiple aspects of the role of heme at the host pathogen interface, including the various routes of heme biosynthesis, how heme is sequestered by the host, and how heme is scavenged by bacterial pathogens. Also discussed is how heme and hemoproteins alter the behavior of the host immune system and bacterial pathogens. Finally, some unanswered questions about the regulation of heme uptake and how host heme is integrated into bacterial metabolism are highlighted.
Collapse
Affiliation(s)
- Rebecca K Donegan
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
| |
Collapse
|
7
|
Cryptic specialized metabolites drive Streptomyces exploration and provide a competitive advantage during growth with other microbes. Proc Natl Acad Sci U S A 2022; 119:e2211052119. [PMID: 36161918 DOI: 10.1073/pnas.2211052119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptomyces bacteria have a complex life cycle that is intricately linked with their remarkable metabolic capabilities. Exploration is a recently discovered developmental innovation of these bacteria, that involves the rapid expansion of a structured colony on solid surfaces. Nutrient availability impacts exploration dynamics, and we have found that glycerol can dramatically increase exploration rates and alter the metabolic output of exploring colonies. We show here that glycerol-mediated growth acceleration is accompanied by distinct transcriptional signatures and by the activation of otherwise cryptic metabolites including the orange-pigmented coproporphyrin, the antibiotic chloramphenicol, and the uncommon, alternative siderophore foroxymithine. Exploring cultures are also known to produce the well-characterized desferrioxamine siderophore. Mutational studies of single and double siderophore mutants revealed functional redundancy when strains were cultured on their own; however, loss of the alternative foroxymithine siderophore imposed a more profound fitness penalty than loss of desferrioxamine during coculture with the yeast Saccharomyces cerevisiae. Notably, the two siderophores displayed distinct localization patterns, with desferrioxamine being confined within the colony area, and foroxymithine diffusing well beyond the colony boundary. The relative fitness advantage conferred by the alternative foroxymithine siderophore was abolished when the siderophore piracy capabilities of S. cerevisiae were eliminated (S. cerevisiae encodes a ferrioxamine-specific transporter). Our work suggests that exploring Streptomyces colonies can engage in nutrient-targeted metabolic arms races, deploying alternative siderophores that allow them to successfully outcompete other microbes for the limited bioavailable iron during coculture.
Collapse
|
8
|
Abstract
Heme (protoheme IX) is an essential cofactor for a large variety of proteins whose functions vary from one electron reactions to binding gases. While not ubiquitous, heme is found in the great majority of known life forms. Unlike most cofactors that are acquired from dietary sources, the vast majority of organisms that utilize heme possess a complete pathway to synthesize the compound. Indeed, dietary heme is most frequently utilized as an iron source and not as a source of heme. In Nature there are now known to exist three pathways to synthesize heme. These are the siroheme dependent (SHD) pathway which is the most ancient, but least common of the three; the coproporphyrin dependent (CPD) pathway which with one known exception is found only in gram positive bacteria; and the protoporphyrin dependent (PPD) pathway which is found in gram negative bacteria and all eukaryotes. All three pathways share a core set of enzymes to convert the first committed intermediate, 5-aminolevulinate (ALA) into uroporphyrinogen III. In the current review all three pathways are reviewed as well as the two known pathways to synthesize ALA. In addition, interesting features of some heme biosynthesis enzymes are discussed as are the regulation and disorders of heme biosynthesis.
Collapse
Affiliation(s)
- Harry A Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-1111, USA
- Department of Microbiology, University of Georgia, Athens, GA 30602-1111, USA
| | - Amy E Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-1111, USA
- Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, USA
| |
Collapse
|
9
|
Weerth RS, Medlock AE, Dailey HA. Ironing out the distribution of [2Fe-2S] motifs in ferrochelatases. J Biol Chem 2021; 297:101017. [PMID: 34582890 PMCID: PMC8529089 DOI: 10.1016/j.jbc.2021.101017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Heme, a near ubiquitous cofactor, is synthesized by most organisms. The essential step of insertion of iron into the porphyrin macrocycle is mediated by the enzyme ferrochelatase. Several ferrochelatases have been characterized, and it has been experimentally shown that a fraction of them contain [2Fe-2S] clusters. It has been suggested that all metazoan ferrochelatases have such clusters, but among bacteria, these clusters have been most commonly identified in Actinobacteria and a few other bacteria. Despite this, the function of the [2Fe-2S] cluster remains undefined. With the large number of sequenced genomes currently available, we comprehensively assessed the distribution of putative [2Fe-2S] clusters throughout the ferrochelatase protein family. We discovered that while rare within the bacterial ferrochelatase family, this cluster is prevalent in a subset of phyla. Of note is that genomic data show that the cluster is not common in Actinobacteria, as is currently thought based on the small number of actinobacterial ferrochelatases experimentally examined. With available physiological data for each genome included, we identified a correlation between the presence of the microbial cluster and aerobic metabolism. Additionally, our analysis suggests that Firmicute ferrochelatases are the most ancient and evolutionarily preceded the Alphaproteobacterial precursor to eukaryotic mitochondria. These findings shed light on distribution and evolution of the [2Fe-2S] cluster in ferrochelatases and will aid in determining the function of the cluster in heme synthesis.
Collapse
Affiliation(s)
- R Sophia Weerth
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Amy E Medlock
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA; Augusta University/University of Georgia Medical Partnership, Athens, Georgia, USA
| | - Harry A Dailey
- Department of Microbiology, University of Georgia, Athens, Georgia, USA; Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
10
|
Tian G, Hao G, Chen X, Liu Y. Tyrosyl Radical-Mediated Sequential Oxidative Decarboxylation of Coproporphyrinogen III through PCET: Theoretical Insights into the Mechanism of Coproheme Decarboxylase ChdC. Inorg Chem 2021; 60:13539-13549. [PMID: 34382397 DOI: 10.1021/acs.inorgchem.1c01864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The peroxide-dependent coproheme decarboxylase ChdC from Geobacillus stearothermophilus catalyzes two key steps in the synthesis of heme b, i.e., two sequential oxidative decarboxylations of coproporphyrinogen III (coproheme III) at propionate groups P2 and P4. In the binding site of coproheme III, P2 and P4 are anchored by different residues (Tyr144, Arg217, and Ser222 for P2 and Tyr113, Lys148, and Trp156 for P4); however, strong experimental evidence supports that the generated Tyr144 radical acts as an unique intermediary for hydrogen atom transfer (HAT) from both reactive propionates. So far, the reaction details are still unclear. Herein, we carried out quantum mechanics/molecular mechanics calculations to explore the decarboxylation mechanism of coproheme III. In our calculations, the coproheme Cpd I, Fe(IV) = O coupled to a porphyrin radical cation (por•+) with four propionate groups, was used as a reactant model. Our calculations reveal that Tyr144 is directly involved in the decarboxylation of propionate group P2. First, the proton-coupled electron transfer (PCET) occurs from Tyr144 to P2, generating a Tyr144 radical, which then abstracts a hydrogen atom from the Cβ of P2. The β-H extraction was calculated to be the rate-limiting step of decarboxylation. It is the porphyrin radical cation (por•+) that makes the PCET from Tyr144 to P2 to be quite easy to initiate the decarboxylation. Finally, the electron transfers from the Cβ• through the porphyrin to the iron center, leading to the decarboxylation of P2. Importantly, the decarboxylation of P4 mediated by Lys148 was calculated to be very difficult, which suggests that after the P2 decarboxylation, the generated harderoheme III intermediate should rebind or rotate in the active site so that the propionate P4 occupies the binding site of P2, and Tyr144 again mediates the decarboxylation of P4. Thus, our calculations support the fact that Tyr144 is responsible for the decarboxylation of both P2 and P4.
Collapse
Affiliation(s)
- Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China.,School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Gangping Hao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xiaohua Chen
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
11
|
Kořený L, Oborník M, Horáková E, Waller RF, Lukeš J. The convoluted history of haem biosynthesis. Biol Rev Camb Philos Soc 2021; 97:141-162. [PMID: 34472688 DOI: 10.1111/brv.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023]
Abstract
The capacity of haem to transfer electrons, bind diatomic gases, and catalyse various biochemical reactions makes it one of the essential biomolecules on Earth and one that was likely used by the earliest forms of cellular life. Since the description of haem biosynthesis, our understanding of this multi-step pathway has been almost exclusively derived from a handful of model organisms from narrow taxonomic contexts. Recent advances in genome sequencing and functional studies of diverse and previously neglected groups have led to discoveries of alternative routes of haem biosynthesis that deviate from the 'classical' pathway. In this review, we take an evolutionarily broad approach to illuminate the remarkable diversity and adaptability of haem synthesis, from prokaryotes to eukaryotes, showing the range of strategies that organisms employ to obtain and utilise haem. In particular, the complex evolutionary histories of eukaryotes that involve multiple endosymbioses and horizontal gene transfers are reflected in the mosaic origin of numerous metabolic pathways with haem biosynthesis being a striking case. We show how different evolutionary trajectories and distinct life strategies resulted in pronounced tensions and differences in the spatial organisation of the haem biosynthesis pathway, in some cases leading to a complete loss of a haem-synthesis capacity and, rarely, even loss of a requirement for haem altogether.
Collapse
Affiliation(s)
- Luděk Kořený
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| |
Collapse
|
12
|
Centurion VB, Lacerda-Júnior GV, Duarte AWF, Silva TR, Silva LJ, Rosa LH, Oliveira VM. Dynamics of microbial stress responses driven by abiotic changes along a temporal gradient in Deception Island, Maritime Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143671. [PMID: 33248775 DOI: 10.1016/j.scitotenv.2020.143671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/21/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Whalers Bay (WB), Deception Island, is an environment that can drastically change its temperature within a few meters. The main forms of life inhabiting this environment are microorganisms, which, due to the high diversity and their adaptive potential, can survive and thrive under harsh stress conditions. However, the genetic potential and mechanisms to cope with fluctuating adverse conditions as well as what extent environmental variations shape the microbial community over the years it is still unknown in Antarctic environments. In this work, sediments collected in a transect in Whalers Bay, Deception Island, during the Austral Summers of 2014, 2015 and 2017 were analyzed using shotgun metagenomics. Sequence data were further processed with the SqueezeMeta tool for assembly, gene prediction, mapping, taxonomic and functional annotations. Results showed that stress-related functions had the influence of temperatures and solar radiation observed in the years of 2015 and 2017. The most differentiated functions were the ones related to oxidative stress, comparing 2014 vs 2015 and 2014 vs 2017. The genes coding for HSP20 and oxidoreductases (nrdH, grxA, korC and korD), as well as the genes clpE, cspL, and operons mtrAB and vicKR, were differentially enriched between the years, most of them found in gram-positive bacteria. The selective pressures of temperature and radiation may have favored the growth of gram-positive bacteria in 2017, with emphasis on Arthrobacter genus. Data gathered in this work showed that temperature and solar radiation could potentially be the primary driving forces shaping the repertoire of stress-response genes for the maintenance of microbial diversity in WB Antarctic sediments.
Collapse
Affiliation(s)
- V B Centurion
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil; Biology Institute, State University of Campinas - UNICAMP, Campinas, SP CEP: 13083-862, Brazil.
| | - G V Lacerda-Júnior
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil; Brazilian Agricultural Research Corporation - EMBRAPA, Jaguariúna, SP CEP 13820-000, Brazil
| | - A W F Duarte
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil; Federal University of Alagoas, Campus Arapiraca - UFAL, Arapiraca, AL CEP 57309-005, Brazil
| | - T R Silva
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil
| | - L J Silva
- Brazilian Agricultural Research Corporation - EMBRAPA, Jaguariúna, SP CEP 13820-000, Brazil
| | - L H Rosa
- Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG CEP 31270-901, Brazil.
| | - V M Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil.
| |
Collapse
|
13
|
Layer G. Heme biosynthesis in prokaryotes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118861. [PMID: 32976912 DOI: 10.1016/j.bbamcr.2020.118861] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022]
Abstract
The cyclic tetrapyrrole heme is used as a prosthetic group in a broad variety of different proteins in almost all organisms. Often, it is essential for vital biochemical processes such as aerobic and anaerobic respiration as well as photosynthesis. In Nature, heme is made from the common tetrapyrrole precursor 5-aminolevulinic acid, and for a long time it was assumed that heme is biosynthesized by a single, common pathway in all organisms. However, although this is indeed the case in eukaryotes, heme biosynthesis is more diverse in the prokaryotic world, where two additional pathways exist. The final elucidation of the two 'alternative' heme biosynthesis routes operating in some bacteria and archaea was achieved within the last decade. This review summarizes the three different heme biosynthesis pathways with a special emphasis on the two 'new' prokaryotic routes.
Collapse
Affiliation(s)
- Gunhild Layer
- Albert-Ludwigs-Universität Freiburg, Institut für Pharmazeutische Wissenschaften, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany.
| |
Collapse
|
14
|
Michlits H, Lier B, Pfanzagl V, Djinović-Carugo K, Furtmüller PG, Oostenbrink C, Obinger C, Hofbauer S. Actinobacterial Coproheme Decarboxylases Use Histidine as a Distal Base to Promote Compound I Formation. ACS Catal 2020; 10:5405-5418. [PMID: 32440366 PMCID: PMC7235987 DOI: 10.1021/acscatal.0c00411] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/08/2020] [Indexed: 11/29/2022]
Abstract
![]()
Coproheme
decarboxylases (ChdCs) catalyze the final step in heme b biosynthesis of monoderm and some diderm bacteria. In
this reaction, coproheme is converted to heme b via
monovinyl monopropionate deuteroheme (MMD) in two consecutive decarboxylation
steps. In Firmicutes decarboxylation of propionates 2 and 4 of coproheme
depend on hydrogen peroxide and the presence of a catalytic tyrosine.
Here we demonstrate that ChdCs from Actinobacteria are unique in using
a histidine (H118 in ChdC from Corynebacterium diphtheriae, CdChdC) as a distal base in addition to the redox-active
tyrosine (Y135). We present the X-ray crystal structures of coproheme-CdChdC and MMD-CdChdC, which clearly show
(i) differences in the active site architecture between Firmicutes
and Actinobacteria and (ii) rotation of the redox-active reaction
intermediate (MMD) after formation of the vinyl group at position
2. Distal H118 is shown to catalyze the heterolytic cleavage of hydrogen
peroxide (kapp = (4.90 ± 1.25) ×
104 M–1 s–1). The resulting
Compound I is rapidly converted to a catalytically active Compound
I* (oxoiron(IV) Y135•) that initiates the radical
decarboxylation reactions. As a consequence of the more efficient
Compound I formation, actinobacterial ChdCs exhibit a higher catalytic
efficiency in comparison to representatives from Firmicutes. On the
basis of the kinetic data of wild-type CdChdC and
the variants H118A, Y135A, and H118A/Y135A together with high-resolution
crystal structures and molecular dynamics simulations, we present
a molecular mechanism for the hydrogen peroxide dependent conversion
of coproheme via MMD to heme b and discuss differences
between ChdCs from Actinobacteria and Firmicutes.
Collapse
Affiliation(s)
- Hanna Michlits
- Department of Chemistry, Institute of Biochemistry, BOKU−University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Bettina Lier
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, BOKU−University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Vera Pfanzagl
- Department of Chemistry, Institute of Biochemistry, BOKU−University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Kristina Djinović-Carugo
- Department for Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Paul G. Furtmüller
- Department of Chemistry, Institute of Biochemistry, BOKU−University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Chris Oostenbrink
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, BOKU−University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Institute of Biochemistry, BOKU−University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Stefan Hofbauer
- Department of Chemistry, Institute of Biochemistry, BOKU−University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| |
Collapse
|
15
|
Kampers LFC, van Heck RGA, Donati S, Saccenti E, Volkers RJM, Schaap PJ, Suarez-Diez M, Nikel PI, Martins Dos Santos VAP. In silico-guided engineering of Pseudomonas putida towards growth under micro-oxic conditions. Microb Cell Fact 2019; 18:179. [PMID: 31640713 PMCID: PMC6805499 DOI: 10.1186/s12934-019-1227-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/09/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Pseudomonas putida is a metabolically versatile, genetically accessible, and stress-robust species with outstanding potential to be used as a workhorse for industrial applications. While industry recognises the importance of robustness under micro-oxic conditions for a stable production process, the obligate aerobic nature of P. putida, attributed to its inability to produce sufficient ATP and maintain its redox balance without molecular oxygen, severely limits its use for biotechnology applications. RESULTS Here, a combination of genome-scale metabolic modelling and comparative genomics is used to pinpoint essential [Formula: see text]-dependent processes. These explain the inability of the strain to grow under anoxic conditions: a deficient ATP generation and an inability to synthesize essential metabolites. Based on this, several P. putida recombinant strains were constructed harbouring acetate kinase from Escherichia coli for ATP production, and a class I dihydroorotate dehydrogenase and a class III anaerobic ribonucleotide triphosphate reductase from Lactobacillus lactis for the synthesis of essential metabolites. Initial computational designs were fine-tuned by means of adaptive laboratory evolution. CONCLUSIONS We demonstrated the value of combining in silico approaches, experimental validation and adaptive laboratory evolution for microbial design by making the strictly aerobic Pseudomonas putida able to grow under micro-oxic conditions.
Collapse
Affiliation(s)
- Linde F C Kampers
- Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ruben G A van Heck
- Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Stefano Donati
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 16, 35043, Marburg, Germany
| | - Edoardo Saccenti
- Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Rita J M Volkers
- Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Peter J Schaap
- Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Kgs Lyngby, Denmark
| | - Vitor A P Martins Dos Santos
- Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708 WE, Wageningen, The Netherlands. .,LifeGlimmer GmbH, Berlin, Germany.
| |
Collapse
|
16
|
Seok J, Ko YJ, Lee ME, Hyeon JE, Han SO. Systems metabolic engineering of Corynebacterium glutamicum for the bioproduction of biliverdin via protoporphyrin independent pathway. J Biol Eng 2019; 13:28. [PMID: 30976317 PMCID: PMC6441180 DOI: 10.1186/s13036-019-0156-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/14/2019] [Indexed: 11/24/2022] Open
Abstract
Background Biliverdin, a prospective recyclable antioxidant and one of the most important precursors for optogenetics, has received growing attention. Biliverdin is currently produced by oxidation of bilirubin from mammalian bile using chemicals. However, unsustainable procedures of extraction, chemical oxidation, and isomer separation have prompted bio-based production using a microbial cell factory. Results In vitro thermodynamic analysis was performed to show potential candidates of bottleneck enzymes in the pathway to produce biliverdin. Among the candidates, hemA and hemL were overexpressed in Corynebacterium glutamicum to produce heme, precursor of biliverdin. To increase precursor supply, we suggested a novel hemQ-mediated coproporphyrin dependent pathway rather than noted hemN-mediated protoporphyrin dependent pathway in C. glutamicum. After securing precursors, hmuO was overexpressed to pull the carbon flow to produce biliverdin. Through modular optimization using gene rearrangements of hemA, hemL, hemQ, and hmuO, engineered C. glutamicum BV004 produced 11.38 ± 0.47 mg/L of biliverdin at flask scale. Fed-batch fermentations performed in 5 L bioreactor with minimal medium using glucose as a sole carbon source resulted in the accumulation of 68.74 ± 4.97 mg/L of biliverdin, the highest titer to date to the best of our knowledge. Conclusions We developed an eco-friendly microbial cell factory to produce biliverdin using C. glutamicum as a biosystem. Moreover, we suggested that C. glutamicum has the thermodynamically favorable coproporphyrin dependent pathway. This study indicated that C. glutamicum can work as a powerful platform to produce biliverdin as well as heme-related products based on the rational design with in vitro thermodynamic analysis. Electronic supplementary material The online version of this article (10.1186/s13036-019-0156-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiho Seok
- 1Department of Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Young Jin Ko
- 1Department of Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Myeong-Eun Lee
- 1Department of Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Jeong Eun Hyeon
- 1Department of Biotechnology, Korea University, Seoul, 02841 Republic of Korea.,2Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, 01133 Republic of Korea.,3Department of Food and Nutrition, College of Health & Wellness, Sungshin Women's University, Seoul, 01133 Republic of Korea
| | - Sung Ok Han
- 1Department of Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
17
|
Atashgahi S, Liebensteiner MG, Janssen DB, Smidt H, Stams AJM, Sipkema D. Microbial Synthesis and Transformation of Inorganic and Organic Chlorine Compounds. Front Microbiol 2018; 9:3079. [PMID: 30619161 PMCID: PMC6299022 DOI: 10.3389/fmicb.2018.03079] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022] Open
Abstract
Organic and inorganic chlorine compounds are formed by a broad range of natural geochemical, photochemical and biological processes. In addition, chlorine compounds are produced in large quantities for industrial, agricultural and pharmaceutical purposes, which has led to widespread environmental pollution. Abiotic transformations and microbial metabolism of inorganic and organic chlorine compounds combined with human activities constitute the chlorine cycle on Earth. Naturally occurring organochlorines compounds are synthesized and transformed by diverse groups of (micro)organisms in the presence or absence of oxygen. In turn, anthropogenic chlorine contaminants may be degraded under natural or stimulated conditions. Here, we review phylogeny, biochemistry and ecology of microorganisms mediating chlorination and dechlorination processes. In addition, the co-occurrence and potential interdependency of catabolic and anabolic transformations of natural and synthetic chlorine compounds are discussed for selected microorganisms and particular ecosystems.
Collapse
Affiliation(s)
- Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | | | - Dick B. Janssen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
18
|
Li B, Bridwell-Rabb J. Aerobic Enzymes and Their Radical SAM Enzyme Counterparts in Tetrapyrrole Pathways. Biochemistry 2018; 58:85-93. [PMID: 30365306 DOI: 10.1021/acs.biochem.8b00906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microorganisms have lifestyles and metabolism adapted to environmental niches, which can be very broad or highly restricted. Molecular oxygen (O2) is currently variably present in microenvironments and has driven adaptation and microbial differentiation over the course of evolution on Earth. Obligate anaerobes use enzymes and cofactors susceptible to low levels of O2 and are restricted to O2-free environments, whereas aerobes typically take advantage of O2 as a reactant in many biochemical pathways and may require O2 for essential biochemical reactions. In this Perspective, we focus on analogous enzymes found in tetrapyrrole biosynthesis, modification, and degradation that are catalyzed by O2-sensitive radical S-adenosylmethionine (SAM) enzymes and by O2-dependent metalloenzymes. We showcase four transformations for which aerobic organisms use O2 as a cosubstrate but anaerobic organisms do not. These reactions include oxidative decarboxylation, methyl and methylene oxidation, ring formation, and ring cleavage. Furthermore, we highlight biochemically uncharacterized enzymes implicated in reactions that resemble those catalyzed by the parallel aerobic and anaerobic enzymes. Intriguingly, several of these reactions require insertion of an oxygen atom into the substrate, which in aerobic enzymes is facilitated by activation of O2 but in anaerobic organisms requires an alternative mechanism.
Collapse
Affiliation(s)
- Bin Li
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Jennifer Bridwell-Rabb
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
19
|
Biosynthesis of organic photosensitizer Zn-porphyrin by diphtheria toxin repressor (DtxR)-mediated global upregulation of engineered heme biosynthesis pathway in Corynebacterium glutamicum. Sci Rep 2018; 8:14460. [PMID: 30262872 PMCID: PMC6160403 DOI: 10.1038/s41598-018-32854-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/14/2018] [Indexed: 01/16/2023] Open
Abstract
Zn-porphyrin is a promising organic photosensitizer in various fields including solar cells, interface and biomedical research, but the biosynthesis study has been limited, probably due to the difficulty of understanding complex biosynthesis pathways. In this study, we developed a Corynebacterium glutamicum platform strain for the biosynthesis of Zn-coproporphyrin III (Zn-CP III), in which the heme biosynthesis pathway was efficiently upregulated. The pathway was activated and reinforced by strong promoter-induced expression of hemAM (encoding mutated glutamyl-tRNA reductase) and hemL (encoding glutamate-1-semialdehyde aminotransferase) genes. This engineered strain produced 33.54 ± 3.44 mg/l of Zn-CP III, while the control strain produced none. For efficient global regulation of the complex pathway, the dtxR gene encoding the transcriptional regulator diphtheria toxin repressor (DtxR) was first overexpressed in C. glutamicum with hemAM and hemL genes, and its combinatorial expression was improved by using effective genetic tools. This engineered strain biosynthesized 68.31 ± 2.15 mg/l of Zn-CP III. Finally, fed-batch fermentation allowed for the production of 132.09 mg/l of Zn-CP III. This titer represents the highest in bacterial production of Zn-CP III reported to date, to our knowledge. This study demonstrates that engineered C. glutamicum can be a robust biotechnological model for the production of photosensitizer Zn-porphyrin.
Collapse
|
20
|
Milazzo L, Hofbauer S, Howes BD, Gabler T, Furtmüller PG, Obinger C, Smulevich G. Insights into the Active Site of Coproheme Decarboxylase from Listeria monocytogenes. Biochemistry 2018. [PMID: 29536725 PMCID: PMC5940323 DOI: 10.1021/acs.biochem.8b00186] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coproheme decarboxylases (ChdC) catalyze the hydrogen peroxide-mediated conversion of coproheme to heme b. This work compares the structure and function of wild-type (WT) coproheme decarboxylase from Listeria monocytogenes and its M149A, Q187A, and M149A/Q187A mutants. The UV-vis, resonance Raman, and electron paramagnetic resonance spectroscopies clearly show that the ferric form of the WT protein is a pentacoordinate quantum mechanically mixed-spin state, which is very unusual in biological systems. Exchange of the Met149 residue to Ala dramatically alters the heme coordination, which becomes a 6-coordinate low spin species with the amide nitrogen atom of the Q187 residue bound to the heme iron. The interaction between M149 and propionyl 2 is found to play an important role in keeping the Q187 residue correctly positioned for closure of the distal cavity. This is confirmed by the observation that in the M149A variant two CO conformers are present corresponding to open (A0) and closed (A1) conformations. The CO of the latter species, the only conformer observed in the WT protein, is H-bonded to Q187. In the absence of the Q187 residue or in the adducts of all the heme b forms of ChdC investigated herein (containing vinyls in positions 2 and 4), only the A0 conformer has been found. Moreover, M149 is shown to be involved in the formation of a covalent bond with a vinyl substituent of heme b at excess of hydrogen peroxide.
Collapse
Affiliation(s)
- Lisa Milazzo
- Dipartimento di Chimica "Ugo Schiff" , Università di Firenze , Via della Lastruccia 3-13 , 50019 Sesto Fiorentino (Fi) , Italy
| | - Stefan Hofbauer
- Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18 , A-1190 Vienna , Austria
| | - Barry D Howes
- Dipartimento di Chimica "Ugo Schiff" , Università di Firenze , Via della Lastruccia 3-13 , 50019 Sesto Fiorentino (Fi) , Italy
| | - Thomas Gabler
- Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18 , A-1190 Vienna , Austria
| | - Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18 , A-1190 Vienna , Austria
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18 , A-1190 Vienna , Austria
| | - Giulietta Smulevich
- Dipartimento di Chimica "Ugo Schiff" , Università di Firenze , Via della Lastruccia 3-13 , 50019 Sesto Fiorentino (Fi) , Italy
| |
Collapse
|
21
|
Geeraerts Z, Celis AI, Mayfield JA, Lorenz M, Rodgers KR, DuBois JL, Lukat-Rodgers GS. Distinguishing Active Site Characteristics of Chlorite Dismutases with Their Cyanide Complexes. Biochemistry 2018; 57:1501-1516. [PMID: 29406727 PMCID: PMC5849076 DOI: 10.1021/acs.biochem.7b01278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
O2-evolving chlorite dismutases (Clds) efficiently convert chlorite (ClO2-) to O2 and Cl-. Dechloromonas aromatica Cld ( DaCld) is a highly active chlorite-decomposing homopentameric enzyme, typical of Clds found in perchlorate- and chlorate-respiring bacteria. The Gram-negative, human pathogen Klebsiella pneumoniae contains a homodimeric Cld ( KpCld) that also decomposes ClO2-, albeit with an activity 10-fold lower and a turnover number lower than those of DaCld. The interactions between the distal pocket and heme ligand of the DaCld and KpCld active sites have been probed via kinetic, thermodynamic, and spectroscopic behaviors of their cyanide complexes for insight into active site characteristics that are deterministic for chlorite decomposition. At 4.7 × 10-9 M, the KD for the KpCld-CN- complex is 2 orders of magnitude smaller than that of DaCld-CN- and indicates an affinity for CN- that is greater than that of most heme proteins. The difference in CN- affinity between Kp- and DaClds is predominantly due to differences in koff. The kinetics of binding of cyanide to DaCld, DaCld(R183Q), and KpCld between pH 4 and 8.5 corroborate the importance of distal Arg183 and a p Ka of ∼7 in stabilizing complexes of anionic ligands, including the substrate. The Fe-C stretching and FeCN bending modes of the DaCld-CN- (νFe-C, 441 cm-1; δFeCN, 396 cm-1) and KpCld-CN- (νFe-C, 441 cm-1; δFeCN, 356 cm-1) complexes reveal differences in their FeCN angle, which suggest different distal pocket interactions with their bound cyanide. Conformational differences in their catalytic sites are also reported by the single ferrous KpCld carbonyl complex, which is in contrast to the two conformers observed for DaCld-CO.
Collapse
Affiliation(s)
- Zachary Geeraerts
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, USA
| | - Arianna I. Celis
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Jeffery A. Mayfield
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Megan Lorenz
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, USA
| | - Kenton R. Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, USA
| | - Jennifer L. DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Gudrun S. Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, USA
| |
Collapse
|
22
|
Pfanzagl V, Holcik L, Maresch D, Gorgone G, Michlits H, Furtmüller PG, Hofbauer S. Coproheme decarboxylases - Phylogenetic prediction versus biochemical experiments. Arch Biochem Biophys 2018; 640:27-36. [PMID: 29331688 DOI: 10.1016/j.abb.2018.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 01/08/2023]
Abstract
Coproheme decarboxylases (ChdCs) are enzymes responsible for the catalysis of the terminal step in the coproporphyrin-dependent heme biosynthesis pathway. Phylogenetic analyses confirm that the gene encoding for ChdCs is widespread throughout the bacterial world. It is found in monoderm bacteria (Firmicutes, Actinobacteria), diderm bacteria (e. g. Nitrospirae) and also in Archaea. In order to test phylogenetic prediction ChdC representatives from all clades were expressed and examined for their coproheme decarboxylase activity. Based on available biochemical data and phylogenetic analyses a sequence motif (-Y-P-M/F-X-K/R-) is defined for ChdCs. We show for the first time that in diderm bacteria an active coproheme decarboxylase is present and that the archaeal ChdC homolog from Sulfolobus solfataricus is inactive and its physiological role remains elusive. This shows the limitation of phylogenetic prediction of an enzymatic activity, since the identified sequence motif is equally conserved across all previously defined clades.
Collapse
Affiliation(s)
- Vera Pfanzagl
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Laurenz Holcik
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Daniel Maresch
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Giulia Gorgone
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Hanna Michlits
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Stefan Hofbauer
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.
| |
Collapse
|
23
|
Kosugi N, Araki T, Fujita J, Tanaka S, Fujiwara T. Growth phenotype analysis of heme synthetic enzymes in a halophilic archaeon, Haloferax volcanii. PLoS One 2017; 12:e0189913. [PMID: 29284023 PMCID: PMC5746218 DOI: 10.1371/journal.pone.0189913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 12/05/2017] [Indexed: 01/09/2023] Open
Abstract
Halophilic euryarchaea lack many of the genes necessary for the protoporphyrin-dependent heme biosynthesis pathway previously identified in animals and plants. Bioinformatic analysis suggested the presence of two heme biosynthetic processes, an Fe-coproporphyrinogen III (coproheme) decarboxylase (ChdC) pathway and an alternative heme biosynthesis (Ahb) pathway, in Haloferax volcanii. PitA is specific to the halophilic archaea and has a unique molecular structure in which the ChdC domain is joined to the antibiotics biosynthesis monooxygenase (ABM)-like domain by a histidine-rich linker sequence. The pitA gene deletion variant of H. volcanii showed a phenotype with a significant reduction of aerobic growth. Addition of a protoheme complemented the phenotype, supporting the assumption that PitA participates in the aerobic heme biosynthesis. Deletion of the ahbD gene caused a significant reduction of only anaerobic growth by denitrification or dimethylsulfoxide (DMSO) respiration, and the growth was also complemented by addition of a protoheme. The experimental results suggest that the two heme biosynthesis pathways are utilized selectively under aerobic and anaerobic conditions in H. volcanii. The molecular structure and physiological function of PitA are also discussed on the basis of the limited proteolysis and sequence analysis.
Collapse
Affiliation(s)
- Naoki Kosugi
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Takuma Araki
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Junpei Fujita
- Department of Biological Sciences, Faculty of Science, Shizuoka University, Shizuoka, Japan
| | - Satoru Tanaka
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Taketomo Fujiwara
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
- * E-mail:
| |
Collapse
|
24
|
Geeraerts Z, Rodgers KR, DuBois JL, Lukat-Rodgers GS. Active Sites of O 2-Evolving Chlorite Dismutases Probed by Halides and Hydroxides and New Iron-Ligand Vibrational Correlations. Biochemistry 2017; 56:4509-4524. [PMID: 28758386 DOI: 10.1021/acs.biochem.7b00572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
O2-evolving chlorite dismutases (Clds) fall into two subfamilies, which efficiently convert ClO2- to O2 and Cl-. The Cld from Dechloromonas aromatica (DaCld) represents the chlorite-decomposing homopentameric enzymes found in perchlorate- and chlorate-respiring bacteria. The Cld from the Gram-negative human pathogen Klebsiella pneumoniae (KpCld) is representative of the second subfamily, comprising homodimeric enzymes having truncated N-termini. Here steric and nonbonding properties of the DaCld and KpCld active sites have been probed via kinetic, thermodynamic, and spectroscopic behaviors of their fluorides, chlorides, and hydroxides. Cooperative binding of Cl- to KpCld drives formation of a hexacoordinate, high-spin aqua heme, whereas DaCld remains pentacoordinate and high-spin under analogous conditions. Fluoride coordinates to the heme iron in KpCld and DaCld, exhibiting ν(FeIII-F) bands at 385 and 390 cm-1, respectively. Correlation of these frequencies with their CT1 energies reveals strong H-bond donation to the F- ligand, indicating that atoms directly coordinated to heme iron are accessible to distal H-bond donation. New vibrational frequency correlations between either ν(FeIII-F) or ν(FeIII-OH) and ν(FeII-His) of Clds and other heme proteins are reported. These correlations orthogonalize proximal and distal effects on the bonding between iron and exogenous π-donor ligands. The axial Fe-X vibrations and the relationships between them illuminate both similarities and differences in the H-bonding and electrostatic properties of the distal and proximal heme environments in pentameric and dimeric Clds. Moreover, they provide general insight into the structural basis of reactivity toward substrates in heme-dependent enzymes and their mechanistic intermediates, especially those containing the ferryl moiety.
Collapse
Affiliation(s)
- Zachary Geeraerts
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58102, United States
| | - Kenton R Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58102, United States
| | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59715, United States
| | - Gudrun S Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58102, United States
| |
Collapse
|
25
|
Antibacterial photosensitization through activation of coproporphyrinogen oxidase. Proc Natl Acad Sci U S A 2017; 114:E6652-E6659. [PMID: 28739897 DOI: 10.1073/pnas.1700469114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gram-positive bacteria cause the majority of skin and soft tissue infections (SSTIs), resulting in the most common reason for clinic visits in the United States. Recently, it was discovered that Gram-positive pathogens use a unique heme biosynthesis pathway, which implicates this pathway as a target for development of antibacterial therapies. We report here the identification of a small-molecule activator of coproporphyrinogen oxidase (CgoX) from Gram-positive bacteria, an enzyme essential for heme biosynthesis. Activation of CgoX induces accumulation of coproporphyrin III and leads to photosensitization of Gram-positive pathogens. In combination with light, CgoX activation reduces bacterial burden in murine models of SSTI. Thus, small-molecule activation of CgoX represents an effective strategy for the development of light-based antimicrobial therapies.
Collapse
|
26
|
Dailey HA, Dailey TA, Gerdes S, Jahn D, Jahn M, O'Brian MR, Warren MJ. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product. Microbiol Mol Biol Rev 2017; 81:e00048-16. [PMID: 28123057 PMCID: PMC5312243 DOI: 10.1128/mmbr.00048-16] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The advent of heme during evolution allowed organisms possessing this compound to safely and efficiently carry out a variety of chemical reactions that otherwise were difficult or impossible. While it was long assumed that a single heme biosynthetic pathway existed in nature, over the past decade, it has become clear that there are three distinct pathways among prokaryotes, although all three pathways utilize a common initial core of three enzymes to produce the intermediate uroporphyrinogen III. The most ancient pathway and the only one found in the Archaea converts siroheme to protoheme via an oxygen-independent four-enzyme-step process. Bacteria utilize the initial core pathway but then add one additional common step to produce coproporphyrinogen III. Following this step, Gram-positive organisms oxidize coproporphyrinogen III to coproporphyrin III, insert iron to make coproheme, and finally decarboxylate coproheme to protoheme, whereas Gram-negative bacteria first decarboxylate coproporphyrinogen III to protoporphyrinogen IX and then oxidize this to protoporphyrin IX prior to metal insertion to make protoheme. In order to adapt to oxygen-deficient conditions, two steps in the bacterial pathways have multiple forms to accommodate oxidative reactions in an anaerobic environment. The regulation of these pathways reflects the diversity of bacterial metabolism. This diversity, along with the late recognition that three pathways exist, has significantly slowed advances in this field such that no single organism's heme synthesis pathway regulation is currently completely characterized.
Collapse
Affiliation(s)
- Harry A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, and Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Tamara A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, and Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Svetlana Gerdes
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois, USA
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universitaet Braunschweig, Braunschweig, Germany
| | - Martina Jahn
- Institute of Microbiology, Technische Universitaet Braunschweig, Braunschweig, Germany
| | - Mark R O'Brian
- Department of Biochemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Martin J Warren
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| |
Collapse
|
27
|
Streit BR, Celis AI, Shisler K, Rodgers KR, Lukat-Rodgers GS, DuBois JL. Reactions of Ferrous Coproheme Decarboxylase (HemQ) with O 2 and H 2O 2 Yield Ferric Heme b. Biochemistry 2016; 56:189-201. [PMID: 27982566 DOI: 10.1021/acs.biochem.6b00958] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A recently discovered pathway for the biosynthesis of heme b ends in an unusual reaction catalyzed by coproheme decarboxylase (HemQ), where the Fe(II)-containing coproheme acts as both substrate and cofactor. Because both O2 and H2O2 are available as cellular oxidants, pathways for the reaction involving either can be proposed. Analysis of reaction kinetics and products showed that, under aerobic conditions, the ferrous coproheme-decarboxylase complex is rapidly and selectively oxidized by O2 to the ferric state. The subsequent second-order reaction between the ferric complex and H2O2 is slow, pH-dependent, and further decelerated by D2O2 (average kinetic isotope effect of 2.2). The observation of rapid reactivity with peracetic acid suggested the possible involvement of Compound I (ferryl porphyrin cation radical), consistent with coproheme and harderoheme reduction potentials in the range of heme proteins that heterolytically cleave H2O2. Resonance Raman spectroscopy nonetheless indicated a remarkably weak Fe-His interaction; how the active site structure may support heterolytic H2O2 cleavage is therefore unclear. From a cellular perspective, the use of H2O2 as an oxidant in a catalase-positive organism is intriguing, as is the unusual generation of heme b in the Fe(III) rather than Fe(II) state as the end product of heme synthesis.
Collapse
Affiliation(s)
- Bennett R Streit
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59715, United States
| | - Arianna I Celis
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59715, United States
| | - Krista Shisler
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59715, United States
| | - Kenton R Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58102, United States
| | - Gudrun S Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58102, United States
| | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59715, United States
| |
Collapse
|
28
|
McLean KJ, Munro AW. Drug targeting of heme proteins in Mycobacterium tuberculosis. Drug Discov Today 2016; 22:566-575. [PMID: 27856345 DOI: 10.1016/j.drudis.2016.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 01/08/2023]
Abstract
TB, caused by the human pathogen Mycobacterium tuberculosis (Mtb), causes more deaths than any other infectious disease. Iron is crucial for Mtb to infect the host and to sustain infection, with Mtb encoding large numbers of iron-binding proteins. Many of these are hemoproteins with key roles, including defense against oxidative stress, cellular signaling and regulation, host cholesterol metabolism, and respiratory processes. Various heme enzymes in Mtb are validated drug targets and/or products of genes essential for bacterial viability or survival in the host. Here, we review the structure, function, and druggability of key Mtb heme enzymes and strategies used for their inhibition.
Collapse
Affiliation(s)
- Kirsty J McLean
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
| | - Andrew W Munro
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
29
|
Hofbauer S, Mlynek G, Milazzo L, Pühringer D, Maresch D, Schaffner I, Furtmüller PG, Smulevich G, Djinović-Carugo K, Obinger C. Hydrogen peroxide-mediated conversion of coproheme to heme b by HemQ-lessons from the first crystal structure and kinetic studies. FEBS J 2016; 283:4386-4401. [PMID: 27758026 PMCID: PMC5157759 DOI: 10.1111/febs.13930] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 11/30/2022]
Abstract
Heme biosynthesis in Gram-positive bacteria follows a recently described coproporphyrin-dependent pathway with HemQ catalyzing the decarboxylation of coproheme to heme b. Here we present the first crystal structure of a HemQ (homopentameric coproheme-HemQ from Listeria monocytogenes) at 1.69 Å resolution and the conversion of coproheme to heme b followed by UV-vis and resonance Raman spectroscopy as well as mass spectrometry. The ferric five-coordinated coproheme iron of HemQ is weakly bound by a neutral proximal histidine H174. In the crystal structure of the resting state, the distal Q187 (conserved in Firmicutes HemQ) is H-bonded with propionate p2 and the hydrophobic distal cavity lacks solvent water molecules. Two H2 O2 molecules are shown to be necessary for decarboxylation of the propionates p2 and p4, thereby forming the corresponding vinyl groups of heme b. The overall reaction is relatively slow (kcat /KM = 1.8 × 102 m-1 ·s-1 at pH 7.0) and occurs in a stepwise manner with a three-propionate intermediate. We present the noncovalent interactions between coproheme and the protein and propose a two-step reaction mechanism. Furthermore, the structure of coproheme-HemQ is compared to that of the phylogenetically related heme b-containing chlorite dismutases. DATABASE Structural data are available in the PDB under the accession number 5LOQ.
Collapse
Affiliation(s)
- Stefan Hofbauer
- Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Austria
| | - Georg Mlynek
- Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Austria
| | - Lisa Milazzo
- Dipartimento di Chimica 'Ugo Schiff', Università di Firenze, Sesto Fiorentino (FI), Italy
| | - Dominic Pühringer
- Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Austria.,Division of Biochemistry, Department of Chemistry, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Maresch
- Division of Biochemistry, Department of Chemistry, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Irene Schaffner
- Division of Biochemistry, Department of Chemistry, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Paul G Furtmüller
- Division of Biochemistry, Department of Chemistry, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Giulietta Smulevich
- Dipartimento di Chimica 'Ugo Schiff', Università di Firenze, Sesto Fiorentino (FI), Italy
| | - Kristina Djinović-Carugo
- Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Austria.,Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Christian Obinger
- Division of Biochemistry, Department of Chemistry, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
30
|
Hofbauer S, Dalla Sega M, Scheiblbrandner S, Jandova Z, Schaffner I, Mlynek G, Djinović-Carugo K, Battistuzzi G, Furtmüller PG, Oostenbrink C, Obinger C. Chemistry and Molecular Dynamics Simulations of Heme b-HemQ and Coproheme-HemQ. Biochemistry 2016; 55:5398-412. [PMID: 27599156 PMCID: PMC5041162 DOI: 10.1021/acs.biochem.6b00701] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, a novel pathway for heme b biosynthesis in Gram-positive bacteria has been proposed. The final poorly understood step is catalyzed by an enzyme called HemQ and includes two decarboxylation reactions leading from coproheme to heme b. Coproheme has been suggested to act as both substrate and redox active cofactor in this reaction. In the study presented here, we focus on HemQs from Listeria monocytogenes (LmHemQ) and Staphylococcus aureus (SaHemQ) recombinantly produced as apoproteins in Escherichia coli. We demonstrate the rapid and two-phase uptake of coproheme by both apo forms and the significant differences in thermal stability of the apo forms, coproheme-HemQ and heme b-HemQ. Reduction of ferric high-spin coproheme-HemQ to the ferrous form is shown to be enthalpically favored but entropically disfavored with standard reduction potentials of -205 ± 3 mV for LmHemQ and -207 ± 3 mV for SaHemQ versus the standard hydrogen electrode at pH 7.0. Redox thermodynamics suggests the presence of a pronounced H-bonding network and restricted solvent mobility in the heme cavity. Binding of cyanide to the sixth coproheme position is monophasic but relatively slow (∼1 × 10(4) M(-1) s(-1)). On the basis of the available structures of apo-HemQ and modeling of both loaded forms, molecular dynamics simulation allowed analysis of the interaction of coproheme and heme b with the protein as well as the role of the flexibility at the proximal heme cavity and the substrate access channel for coproheme binding and heme b release. Obtained data are discussed with respect to the proposed function of HemQ in monoderm bacteria.
Collapse
Affiliation(s)
- Stefan Hofbauer
- Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna , A-1030 Vienna, Austria
| | - Marco Dalla Sega
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, BOKU-University of Natural Resources and Life Sciences , A-1190 Vienna, Austria
| | - Stefan Scheiblbrandner
- Department of Food Science and Technology, Food Biotechnology Laboratory, BOKU-University of Natural Resources and Life Sciences , A-1190 Vienna, Austria
| | - Zuzana Jandova
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, BOKU-University of Natural Resources and Life Sciences , A-1190 Vienna, Austria
| | - Irene Schaffner
- Department of Chemistry, Division of Biochemistry, VIBT-Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences , A-1190 Vienna, Austria
| | - Georg Mlynek
- Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna , A-1030 Vienna, Austria
| | - Kristina Djinović-Carugo
- Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna , A-1030 Vienna, Austria.,Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana , 1000 Ljubljana, Slovenia
| | - Gianantonio Battistuzzi
- Department of Chemistry and Geology, University of Modena and Reggio Emilia , 41125 Modena, Italy
| | - Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, VIBT-Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences , A-1190 Vienna, Austria
| | - Chris Oostenbrink
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, BOKU-University of Natural Resources and Life Sciences , A-1190 Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry, VIBT-Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences , A-1190 Vienna, Austria
| |
Collapse
|
31
|
The HemQ coprohaem decarboxylase generates reactive oxygen species: implications for the evolution of classical haem biosynthesis. Biochem J 2016; 473:3997-4009. [PMID: 27597779 PMCID: PMC5095920 DOI: 10.1042/bcj20160696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/05/2016] [Indexed: 12/26/2022]
Abstract
Bacteria require a haem biosynthetic pathway for the assembly of a variety of protein complexes, including cytochromes, peroxidases, globins, and catalase. Haem is synthesised via a series of tetrapyrrole intermediates, including non-metallated porphyrins, such as protoporphyrin IX, which is well known to generate reactive oxygen species in the presence of light and oxygen. Staphylococcus aureus has an ancient haem biosynthetic pathway that proceeds via the formation of coproporphyrin III, a less reactive porphyrin. Here, we demonstrate, for the first time, that HemY of S. aureus is able to generate both protoporphyrin IX and coproporphyrin III, and that the terminal enzyme of this pathway, HemQ, can stimulate the generation of protoporphyrin IX (but not coproporphyrin III). Assays with hydrogen peroxide, horseradish peroxidase, superoxide dismutase, and catalase confirm that this stimulatory effect is mediated by superoxide. Structural modelling reveals that HemQ enzymes do not possess the structural attributes that are common to peroxidases that form compound I [FeIV==O]+, which taken together with the superoxide data leaves Fenton chemistry as a likely route for the superoxide-mediated stimulation of protoporphyrinogen IX oxidase activity of HemY. This generation of toxic free radicals could explain why HemQ enzymes have not been identified in organisms that synthesise haem via the classical protoporphyrin IX pathway. This work has implications for the divergent evolution of haem biosynthesis in ancestral microorganisms, and provides new structural and mechanistic insights into a recently discovered oxidative decarboxylase reaction.
Collapse
|
32
|
Choby JE, Skaar EP. Heme Synthesis and Acquisition in Bacterial Pathogens. J Mol Biol 2016; 428:3408-28. [PMID: 27019298 PMCID: PMC5125930 DOI: 10.1016/j.jmb.2016.03.018] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 02/06/2023]
Abstract
Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host sources, particularly hemoglobin, and both heme acquisition and synthesis are important for pathogenesis. Paradoxically, excess heme is toxic to bacteria and pathogens must rely on heme detoxification strategies. Heme is a key nutrient in the struggle for survival between host and pathogen, and its study has offered significant insight into the molecular mechanisms of bacterial pathogenesis.
Collapse
Affiliation(s)
- Jacob E Choby
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA; Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN, USA.
| |
Collapse
|
33
|
Marreiros BC, Calisto F, Castro PJ, Duarte AM, Sena FV, Silva AF, Sousa FM, Teixeira M, Refojo PN, Pereira MM. Exploring membrane respiratory chains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1039-1067. [PMID: 27044012 DOI: 10.1016/j.bbabio.2016.03.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 01/20/2023]
Abstract
Acquisition of energy is central to life. In addition to the synthesis of ATP, organisms need energy for the establishment and maintenance of a transmembrane difference in electrochemical potential, in order to import and export metabolites or to their motility. The membrane potential is established by a variety of membrane bound respiratory complexes. In this work we explored the diversity of membrane respiratory chains and the presence of the different enzyme complexes in the several phyla of life. We performed taxonomic profiles of the several membrane bound respiratory proteins and complexes evaluating the presence of their respective coding genes in all species deposited in KEGG database. We evaluated 26 quinone reductases, 5 quinol:electron carriers oxidoreductases and 18 terminal electron acceptor reductases. We further included in the analyses enzymes performing redox or decarboxylation driven ion translocation, ATP synthase and transhydrogenase and we also investigated the electron carriers that perform functional connection between the membrane complexes, quinones or soluble proteins. Our results bring a novel, broad and integrated perspective of membrane bound respiratory complexes and thus of the several energetic metabolisms of living systems. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Bruno C Marreiros
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Paulo J Castro
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Afonso M Duarte
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Andreia F Silva
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal.
| |
Collapse
|
34
|
From chlorite dismutase towards HemQ - the role of the proximal H-bonding network in haeme binding. Biosci Rep 2016; 36:BSR20150330. [PMID: 26858461 PMCID: PMC4793301 DOI: 10.1042/bsr20150330] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/21/2016] [Indexed: 12/31/2022] Open
Abstract
Chlorite dismutase (Cld) and HemQ are structurally and phylogenetically closely related haeme enzymes differing fundamentally in their enzymatic properties. Clds are able to convert chlorite into chloride and dioxygen, whereas HemQ is proposed to be involved in the haeme b synthesis of Gram-positive bacteria. A striking difference between these protein families concerns the proximal haeme cavity architecture. The pronounced H-bonding network in Cld, which includes the proximal ligand histidine and fully conserved glutamate and lysine residues, is missing in HemQ. In order to understand the functional consequences of this clearly evident difference, specific hydrogen bonds in Cld from 'Candidatus Nitrospira defluvii' (NdCld) were disrupted by mutagenesis. The resulting variants (E210A and K141E) were analysed by a broad set of spectroscopic (UV-vis, EPR and resonance Raman), calorimetric and kinetic methods. It is demonstrated that the haeme cavity architecture in these protein families is very susceptible to modification at the proximal site. The observed consequences of such structural variations include a significant decrease in thermal stability and also affinity between haeme b and the protein, a partial collapse of the distal cavity accompanied by an increased percentage of low-spin state for the E210A variant, lowered enzymatic activity concomitant with higher susceptibility to self-inactivation. The high-spin (HS) ligand fluoride is shown to exhibit a stabilizing effect and partially restore wild-type Cld structure and function. The data are discussed with respect to known structure-function relationships of Clds and the proposed function of HemQ as a coprohaeme decarboxylase in the last step of haeme biosynthesis in Firmicutes and Actinobacteria.
Collapse
|
35
|
Celis AI, Streit BR, Moraski GC, Kant R, Lash TD, Lukat-Rodgers GS, Rodgers KR, DuBois JL. Unusual Peroxide-Dependent, Heme-Transforming Reaction Catalyzed by HemQ. Biochemistry 2015; 54:4022-32. [PMID: 26083961 DOI: 10.1021/acs.biochem.5b00492] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A recently proposed pathway for heme b biosynthesis, common to diverse bacteria, has the conversion of two of the four propionates on coproheme III to vinyl groups as its final step. This reaction is catalyzed in a cofactor-independent, H2O2-dependent manner by the enzyme HemQ. Using the HemQ from Staphylococcus aureus (SaHemQ), the initial decarboxylation step was observed to rapidly and obligately yield the three-propionate harderoheme isomer III as the intermediate, while the slower second decarboxylation appeared to control the overall rate. Both synthetic harderoheme isomers III and IV reacted when bound to HemQ, the former more slowly than the latter. While H2O2 is the assumed biological oxidant, either H2O2 or peracetic acid yielded the same intermediates and products, though amounts significantly greater than the expected 2 equiv were required in both cases and peracetic acid reacted faster. The ability of peracetic acid to substitute for H2O2 suggests that, despite the lack of catalytic residues conventionally present in heme peroxidase active sites, reaction pathways involving high-valent iron intermediates cannot be ruled out.
Collapse
Affiliation(s)
- Arianna I Celis
- †Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715-3400, United States
| | - Bennett R Streit
- †Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715-3400, United States
| | - Garrett C Moraski
- †Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715-3400, United States
| | - Ravi Kant
- †Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715-3400, United States
| | - Timothy D Lash
- ‡Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Gudrun S Lukat-Rodgers
- §Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102-6050, United States
| | - Kenton R Rodgers
- §Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102-6050, United States
| | - Jennifer L DuBois
- †Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715-3400, United States
| |
Collapse
|
36
|
Liebensteiner MG, Oosterkamp MJ, Stams AJM. Microbial respiration with chlorine oxyanions: diversity and physiological and biochemical properties of chlorate- and perchlorate-reducing microorganisms. Ann N Y Acad Sci 2015; 1365:59-72. [PMID: 26104311 DOI: 10.1111/nyas.12806] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chlorine oxyanions are valuable electron acceptors for microorganisms. Recent findings have shed light on the natural formation of chlorine oxyanions in the environment. These suggest a permanent introduction of respective compounds on Earth, long before their anthropogenic manufacture. Microorganisms that are able to grow by the reduction of chlorate and perchlorate are affiliated with phylogenetically diverse lineages, spanning from the Proteobacteria to the Firmicutes and archaeal microorganisms. Microbial reduction of chlorine oxyanions can be found in diverse environments and different environmental conditions (temperature, salinities, pH). It commonly involves the enzymes perchlorate reductase (Pcr) or chlorate reductase (Clr) and chlorite dismutase (Cld). Horizontal gene transfer seems to play an important role for the acquisition of functional genes. Novel and efficient Clds were isolated from microorganisms incapable of growing on chlorine oxyanions. Archaea seem to use a periplasmic Nar-type reductase (pNar) for perchlorate reduction and lack a functional Cld. Chlorite is possibly eliminated by alternative (abiotic) reactions. This was already demonstrated for Archaeoglobus fulgidus, which uses reduced sulfur compounds to detoxify chlorite. A broad biochemical diversity of the trait, its environmental dispersal, and the occurrence of relevant enzymes in diverse lineages may indicate early adaptations of life toward chlorine oxyanions on Earth.
Collapse
Affiliation(s)
| | - Margreet J Oosterkamp
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands.,Energy Biosciences Institute, University of Illinois, Urbana, Illinois
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands.,Department of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
37
|
Lobo SAL, Scott A, Videira MAM, Winpenny D, Gardner M, Palmer MJ, Schroeder S, Lawrence AD, Parkinson T, Warren MJ, Saraiva LM. Staphylococcus aureushaem biosynthesis: characterisation of the enzymes involved in final steps of the pathway. Mol Microbiol 2015; 97:472-87. [DOI: 10.1111/mmi.13041] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Susana A. L. Lobo
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa, Avenida da República (EAN); 2780-157 Oeiras Portugal
| | - Alan Scott
- School of Biosciences; University of Kent; Giles Lane Canterbury Kent CT2 7NJ UK
| | - Marco A. M. Videira
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa, Avenida da República (EAN); 2780-157 Oeiras Portugal
| | - David Winpenny
- Pfizer Global Research and Development; Sandwich Kent UK
| | - Mark Gardner
- Pfizer Global Research and Development; Sandwich Kent UK
| | - Mike J. Palmer
- Pfizer Global Research and Development; Sandwich Kent UK
| | - Susanne Schroeder
- School of Biosciences; University of Kent; Giles Lane Canterbury Kent CT2 7NJ UK
| | - Andrew D. Lawrence
- School of Biosciences; University of Kent; Giles Lane Canterbury Kent CT2 7NJ UK
| | | | - Martin J. Warren
- School of Biosciences; University of Kent; Giles Lane Canterbury Kent CT2 7NJ UK
| | - Lígia M. Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa, Avenida da República (EAN); 2780-157 Oeiras Portugal
| |
Collapse
|
38
|
Celis AI, DuBois JL. Substrate, product, and cofactor: The extraordinarily flexible relationship between the CDE superfamily and heme. Arch Biochem Biophys 2015; 574:3-17. [PMID: 25778630 PMCID: PMC4414885 DOI: 10.1016/j.abb.2015.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/06/2015] [Accepted: 03/08/2015] [Indexed: 12/21/2022]
Abstract
PFam Clan 0032, also known as the CDE superfamily, is a diverse group of at least 20 protein families sharing a common α,β-barrel domain. Of these, six different groups bind heme inside the barrel's interior, using it alternately as a cofactor, substrate, or product. Focusing on these six, an integrated picture of structure, sequence, taxonomy, and mechanism is presented here, detailing how a single structural motif might be able to mediate such an array of functions with one of nature's most important small molecules.
Collapse
Affiliation(s)
- Arianna I Celis
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States.
| |
Collapse
|
39
|
Hofbauer S, Hagmüller A, Schaffner I, Mlynek G, Krutzler M, Stadlmayr G, Pirker KF, Obinger C, Daims H, Djinović-Carugo K, Furtmüller PG. Structure and heme-binding properties of HemQ (chlorite dismutase-like protein) from Listeria monocytogenes. Arch Biochem Biophys 2015; 574:36-48. [PMID: 25602700 PMCID: PMC4420033 DOI: 10.1016/j.abb.2015.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 11/17/2022]
Abstract
Chlorite dismutase-like proteins are structurally closely related to functional chlorite dismutases which are heme b-dependent oxidoreductases capable of reducing chlorite to chloride with simultaneous production of dioxygen. Chlorite dismutase-like proteins are incapable of performing this reaction and their biological role is still under discussion. Recently, members of this large protein family were shown to be involved in heme biosynthesis in Gram-positive bacteria, and thus the protein was renamed HemQ in these organisms. In the present work the structural and heme binding properties of the chlorite dismutase-like protein from the Gram-positive pathogen Listeria monocytogenes (LmCld) were analyzed in order to evaluate its potential role as a regulatory heme sensing protein. The homopentameric crystal structure (2.0Å) shows high similarity to chlorite-degrading chlorite dismutases with an important difference in the structure of the putative substrate and heme entrance channel. In solution LmCld is a stable hexamer able to bind the low-spin ligand cyanide. Heme binding is reversible with KD-values determined to be 7.2μM (circular dichroism spectroscopy) and 16.8μM (isothermal titration calorimetry) at pH 7.0. Both acidic and alkaline conditions promote heme release. Presented biochemical and structural data reveal that the chlorite dismutase-like protein from L. monocytogenes could act as a potential regulatory heme sensing and storage protein within heme biosynthesis.
Collapse
Affiliation(s)
- Stefan Hofbauer
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Andreas Hagmüller
- Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Irene Schaffner
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Georg Mlynek
- Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Michael Krutzler
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Gerhard Stadlmayr
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Katharina F Pirker
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Holger Daims
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, A-1090 Vienna, Austria
| | - Kristina Djinović-Carugo
- Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria; Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.
| |
Collapse
|
40
|
Zámocký M, Hofbauer S, Schaffner I, Gasselhuber B, Nicolussi A, Soudi M, Pirker KF, Furtmüller PG, Obinger C. Independent evolution of four heme peroxidase superfamilies. Arch Biochem Biophys 2015; 574:108-19. [PMID: 25575902 PMCID: PMC4420034 DOI: 10.1016/j.abb.2014.12.025] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 01/19/2023]
Abstract
Four heme peroxidase superfamilies (peroxidase-catalase, peroxidase-cyclooxygenase, peroxidase-chlorite dismutase and peroxidase-peroxygenase superfamily) arose independently during evolution, which differ in overall fold, active site architecture and enzymatic activities. The redox cofactor is heme b or posttranslationally modified heme that is ligated by either histidine or cysteine. Heme peroxidases are found in all kingdoms of life and typically catalyze the one- and two-electron oxidation of a myriad of organic and inorganic substrates. In addition to this peroxidatic activity distinct (sub)families show pronounced catalase, cyclooxygenase, chlorite dismutase or peroxygenase activities. Here we describe the phylogeny of these four superfamilies and present the most important sequence signatures and active site architectures. The classification of families is described as well as important turning points in evolution. We show that at least three heme peroxidase superfamilies have ancient prokaryotic roots with several alternative ways of divergent evolution. In later evolutionary steps, they almost always produced highly evolved and specialized clades of peroxidases in eukaryotic kingdoms with a significant portion of such genes involved in coding various fusion proteins with novel physiological functions.
Collapse
Affiliation(s)
- Marcel Zámocký
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia.
| | - Stefan Hofbauer
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Irene Schaffner
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Bernhard Gasselhuber
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Andrea Nicolussi
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Monika Soudi
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Katharina F Pirker
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
41
|
Schaffner I, Hofbauer S, Krutzler M, Pirker KF, Bellei M, Stadlmayr G, Mlynek G, Djinovic-Carugo K, Battistuzzi G, Furtmüller PG, Daims H, Obinger C. Dimeric chlorite dismutase from the nitrogen-fixing cyanobacterium Cyanothece sp. PCC7425. Mol Microbiol 2015; 96:1053-68. [PMID: 25732258 PMCID: PMC4973843 DOI: 10.1111/mmi.12989] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2015] [Indexed: 11/28/2022]
Abstract
It is demonstrated that cyanobacteria (both azotrophic and non-azotrophic) contain heme b oxidoreductases that can convert chlorite to chloride and molecular oxygen (incorrectly denominated chlorite 'dismutase', Cld). Beside the water-splitting manganese complex of photosystem II, this metalloenzyme is the second known enzyme that catalyses the formation of a covalent oxygen-oxygen bond. All cyanobacterial Clds have a truncated N-terminus and are dimeric (i.e. clade 2) proteins. As model protein, Cld from Cyanothece sp. PCC7425 (CCld) was recombinantly produced in Escherichia coli and shown to efficiently degrade chlorite with an activity optimum at pH 5.0 [kcat 1144 ± 23.8 s(-1), KM 162 ± 10.0 μM, catalytic efficiency (7.1 ± 0.6) × 10(6) M(-1) s(-1)]. The resting ferric high-spin axially symmetric heme enzyme has a standard reduction potential of the Fe(III)/Fe(II) couple of -126 ± 1.9 mV at pH 7.0. Cyanide mediates the formation of a low-spin complex with k(on) = (1.6 ± 0.1) × 10(5) M(-1) s(-1) and k(off) = 1.4 ± 2.9 s(-1) (KD ∼ 8.6 μM). Both, thermal and chemical unfolding follows a non-two-state unfolding pathway with the first transition being related to the release of the prosthetic group. The obtained data are discussed with respect to known structure-function relationships of Clds. We ask for the physiological substrate and putative function of these O2 -producing proteins in (nitrogen-fixing) cyanobacteria.
Collapse
Affiliation(s)
- Irene Schaffner
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Stefan Hofbauer
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria.,Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Michael Krutzler
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Katharina F Pirker
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Marzia Bellei
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Gerhard Stadlmayr
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Georg Mlynek
- Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Kristina Djinovic-Carugo
- Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria.,Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Gianantonio Battistuzzi
- Department of Chemistry and Geology, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Holger Daims
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| |
Collapse
|
42
|
Lechowicz J, Krawczyk-Balska A. An update on the transport and metabolism of iron in Listeria monocytogenes: the role of proteins involved in pathogenicity. Biometals 2015; 28:587-603. [PMID: 25820385 PMCID: PMC4481299 DOI: 10.1007/s10534-015-9849-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/17/2015] [Indexed: 12/21/2022]
Abstract
Listeria monocytogenes is a Gram-positive bacterium that causes a rare but severe human disease with high mortality rate. The microorganism is widespread in the natural environment where it shows a saprophytic lifestyle. In the human body it infects many different cell types, where it lives intracellularly, however it may also temporarily live extracellularly. The ability to survive and grow in such diverse niches suggests that this bacterium has a wide range of mechanisms for both the acquisition of various sources of iron and effective management of this microelement. In this review, data about the mechanisms of transport, metabolism and regulation of iron, including recent findings in these areas, are summarized with focus on the importance of these mechanisms for the virulence of L. monocytogenes. These data indicate the key role of haem transport and maintenance of intracellular iron homeostasis for the pathogenesis of L. monocytogenes. Furthermore, some of the proteins involved in iron homeostasis like Fri and FrvA seem to deserve special attention due to their potential use in the development of new therapeutic antilisterial strategies.
Collapse
Affiliation(s)
- Justyna Lechowicz
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | | |
Collapse
|
43
|
Dailey HA, Gerdes S. HemQ: An iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria. Arch Biochem Biophys 2015; 574:27-35. [PMID: 25711532 DOI: 10.1016/j.abb.2015.02.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 02/05/2023]
Abstract
Genes for chlorite dismutase-like proteins are found widely among heme-synthesizing bacteria and some Archaea. It is now known that among the Firmicutes and Actinobacteria these proteins do not possess chlorite dismutase activity but instead are essential for heme synthesis. These proteins, named HemQ, are iron-coproporphyrin (coproheme) decarboxylases that catalyze the oxidative decarboxylation of coproheme III into protoheme IX. As purified, HemQs do not contain bound heme, but readily bind exogeneously supplied heme with low micromolar affinity. The heme-bound form of HemQ has low peroxidase activity and in the presence of peroxide the bound heme may be destroyed. Thus, it is possible that HemQ may serve a dual role as a decarboxylase in heme biosynthesis and a regulatory protein in heme homeostasis.
Collapse
Affiliation(s)
- Harry A Dailey
- Biomedical and Health Sciences Institute, Department of Microbiology and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| | - Svetlana Gerdes
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
44
|
Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin. Proc Natl Acad Sci U S A 2015; 112:2210-5. [PMID: 25646457 DOI: 10.1073/pnas.1416285112] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been generally accepted that biosynthesis of protoheme (heme) uses a common set of core metabolic intermediates that includes protoporphyrin. Herein, we show that the Actinobacteria and Firmicutes (high-GC and low-GC Gram-positive bacteria) are unable to synthesize protoporphyrin. Instead, they oxidize coproporphyrinogen to coproporphyrin, insert ferrous iron to make Fe-coproporphyrin (coproheme), and then decarboxylate coproheme to generate protoheme. This pathway is specified by three genes named hemY, hemH, and hemQ. The analysis of 982 representative prokaryotic genomes is consistent with this pathway being the most ancient heme synthesis pathway in the Eubacteria. Our results identifying a previously unknown branch of tetrapyrrole synthesis support a significant shift from current models for the evolution of bacterial heme and chlorophyll synthesis. Because some organisms that possess this coproporphyrin-dependent branch are major causes of human disease, HemQ is a novel pharmacological target of significant therapeutic relevance, particularly given high rates of antimicrobial resistance among these pathogens.
Collapse
|
45
|
Celis AI, Geeraerts Z, Ngmenterebo D, Machovina MM, Kurker RC, Rajakumar K, Ivancich A, Rodgers KR, Lukat-Rodgers GS, DuBois JL. A dimeric chlorite dismutase exhibits O2-generating activity and acts as a chlorite antioxidant in Klebsiella pneumoniae MGH 78578. Biochemistry 2014; 54:434-46. [PMID: 25437493 PMCID: PMC4303309 DOI: 10.1021/bi501184c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Chlorite
dismutases (Clds) convert chlorite to O2 and
Cl–, stabilizing heme in the presence of strong
oxidants and forming the O=O bond with high efficiency. The
enzyme from the pathogen Klebsiella pneumoniae (KpCld) represents a subfamily of Clds that share most of
their active site structure with efficient O2-producing
Clds, even though they have a truncated monomeric structure, exist
as a dimer rather than a pentamer, and come from Gram-negative bacteria
without a known need to degrade chlorite. We hypothesized that KpCld, like others in its subfamily, should be able to make
O2 and may serve an in vivo antioxidant
function. Here, it is demonstrated that it degrades chlorite with
limited turnovers relative to the respiratory Clds, in part because
of the loss of hypochlorous acid from the active site and destruction
of the heme. The observation of hypochlorous acid, the expected leaving
group accompanying transfer of an oxygen atom to the ferric heme,
is consistent with the more open, solvent-exposed heme environment
predicted by spectroscopic measurements and inferred from the crystal
structures of related proteins. KpCld is more susceptible
to oxidative degradation under turnover conditions than the well-characterized
Clds associated with perchlorate respiration. However, wild-type K. pneumoniae has a significant growth advantage in the
presence of chlorate relative to a Δcld knockout
strain, specifically under nitrate-respiring conditions. This suggests
that a physiological function of KpCld may be detoxification
of endogenously produced chlorite.
Collapse
Affiliation(s)
- Arianna I Celis
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59715, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bali S, Palmer DJ, Schroeder S, Ferguson SJ, Warren MJ. Recent advances in the biosynthesis of modified tetrapyrroles: the discovery of an alternative pathway for the formation of heme and heme d 1. Cell Mol Life Sci 2014; 71:2837-63. [PMID: 24515122 PMCID: PMC11113276 DOI: 10.1007/s00018-014-1563-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/19/2013] [Accepted: 01/10/2014] [Indexed: 02/05/2023]
Abstract
Hemes (a, b, c, and o) and heme d 1 belong to the group of modified tetrapyrroles, which also includes chlorophylls, cobalamins, coenzyme F430, and siroheme. These compounds are found throughout all domains of life and are involved in a variety of essential biological processes ranging from photosynthesis to methanogenesis. The biosynthesis of heme b has been well studied in many organisms, but in sulfate-reducing bacteria and archaea, the pathway has remained a mystery, as many of the enzymes involved in these characterized steps are absent. The heme pathway in most organisms proceeds from the cyclic precursor of all modified tetrapyrroles uroporphyrinogen III, to coproporphyrinogen III, which is followed by oxidation of the ring and finally iron insertion. Sulfate-reducing bacteria and some archaea lack the genetic information necessary to convert uroporphyrinogen III to heme along the "classical" route and instead use an "alternative" pathway. Biosynthesis of the isobacteriochlorin heme d 1, a cofactor of the dissimilatory nitrite reductase cytochrome cd 1, has also been a subject of much research, although the biosynthetic pathway and its intermediates have evaded discovery for quite some time. This review focuses on the recent advances in the understanding of these two pathways and their surprisingly close relationship via the unlikely intermediate siroheme, which is also a cofactor of sulfite and nitrite reductases in many organisms. The evolutionary questions raised by this discovery will also be discussed along with the potential regulation required by organisms with overlapping tetrapyrrole biosynthesis pathways.
Collapse
Affiliation(s)
- Shilpa Bali
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - David J. Palmer
- School of Biosciences, University of Kent, Kent, Canterbury, CT2 7NZ UK
| | - Susanne Schroeder
- School of Biosciences, University of Kent, Kent, Canterbury, CT2 7NZ UK
| | - Stuart J. Ferguson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Martin J. Warren
- School of Biosciences, University of Kent, Kent, Canterbury, CT2 7NZ UK
| |
Collapse
|
47
|
Hofbauer S, Schaffner I, Furtmüller PG, Obinger C. Chlorite dismutases - a heme enzyme family for use in bioremediation and generation of molecular oxygen. Biotechnol J 2014; 9:461-73. [PMID: 24519858 PMCID: PMC4162996 DOI: 10.1002/biot.201300210] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/06/2013] [Accepted: 01/14/2014] [Indexed: 11/09/2022]
Abstract
Chlorite is a serious environmental concern, as rising concentrations of this harmful anthropogenic compound have been detected in groundwater, drinking water, and soil. Chlorite dismutases (Clds) are therefore important molecules in bioremediation as Clds catalyze the degradation of chlorite to chloride and molecular oxygen. Clds are heme b-containing oxidoreductases present in numerous bacterial and archaeal phyla. This review presents the phylogeny of functional Clds and Cld-like proteins, and demonstrates the close relationship of this novel enzyme family to the recently discovered dye-decolorizing peroxidases. The available X-ray structures, biophysical and enzymatic properties, as well as a proposed reaction mechanism, are presented and critically discussed. Open questions about structure-function relationships are addressed, including the nature of the catalytically relevant redox and reaction intermediates and the mechanism of inactivation of Clds during turnover. Based on analysis of currently available data, chlorite dismutase from "Candidatus Nitrospira defluvii" is suggested as a model Cld for future application in biotechnology and bioremediation. Additionally, Clds can be used in various applications as local generators of molecular oxygen, a reactivity already exploited by microbes that must perform aerobic metabolic pathways in the absence of molecular oxygen. For biotechnologists in the field of chemical engineering and bioremediation, this review provides the biochemical and biophysical background of the Cld enzyme family as well as critically assesses Cld's technological potential.
Collapse
Affiliation(s)
- Stefan Hofbauer
- Department of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology, BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | |
Collapse
|
48
|
Mayfield JA, Hammer ND, Kurker RC, Chen TK, Ojha S, Skaar EP, DuBois JL. The chlorite dismutase (HemQ) from Staphylococcus aureus has a redox-sensitive heme and is associated with the small colony variant phenotype. J Biol Chem 2013; 288:23488-504. [PMID: 23737523 PMCID: PMC5395028 DOI: 10.1074/jbc.m112.442335] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 05/23/2013] [Indexed: 01/17/2023] Open
Abstract
The chlorite dismutases (C-family proteins) are a widespread family of heme-binding proteins for which chemical and biological roles remain unclear. An association of the gene with heme biosynthesis in Gram-positive bacteria was previously demonstrated by experiments involving introduction of genes from two Gram-positive species into heme biosynthesis mutant strains of Escherichia coli, leading to the gene being renamed hemQ. To assess the gene product's biological role more directly, a Staphylococcus aureus strain with an inactivated hemQ gene was generated and shown to be a slow growing small colony variant under aerobic but not anaerobic conditions. The small colony variant phenotype is rescued by the addition of exogenous heme despite an otherwise wild type heme biosynthetic pathway. The ΔhemQ mutant accumulates coproporphyrin specifically under aerobic conditions. Although its sequence is highly similar to functional chlorite dismutases, the HemQ protein has no steady state reactivity with chlorite, very modest reactivity with H2O2 or peracetic acid, and no observable transient intermediates. HemQ's equilibrium affinity for heme is in the low micromolar range. Holo-HemQ reconstituted with heme exhibits heme lysis after <50 turnovers with peroxide and <10 turnovers with chlorite. The heme-free apoprotein aggregates or unfolds over time. IsdG-like proteins and antibiotic biosynthesis monooxygenases are close sequence and structural relatives of HemQ that use heme or porphyrin-like organic molecules as substrates. The genetic and biochemical data suggest a similar substrate role for heme or porphyrin, with possible sensor-regulator functions for the protein. HemQ heme could serve as the means by which S. aureus reversibly adopts an SCV phenotype in response to redox stress.
Collapse
Affiliation(s)
- Jeffrey A. Mayfield
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Neal D. Hammer
- the Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Richard C. Kurker
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Thomas K. Chen
- the Division of Biological Sciences, SRI International, Harrisonburg, Virginia 22802, and
- the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718
| | - Sunil Ojha
- the Division of Biological Sciences, SRI International, Harrisonburg, Virginia 22802, and
| | - Eric P. Skaar
- the Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Jennifer L. DuBois
- the Division of Biological Sciences, SRI International, Harrisonburg, Virginia 22802, and
- the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718
| |
Collapse
|
49
|
Farhana A, Saini V, Kumar A, Lancaster JR, Steyn AJ. Environmental heme-based sensor proteins: implications for understanding bacterial pathogenesis. Antioxid Redox Signal 2012; 17:1232-45. [PMID: 22494151 PMCID: PMC3430476 DOI: 10.1089/ars.2012.4613] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/11/2012] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Heme is an important prosthetic group required in a wide array of functions, including respiration, photosynthesis, metabolism, O(2) transport, xenobiotic detoxification, and peroxide production and destruction, and is an essential cofactor in proteins such as catalases, peroxidases, and members of the cytochrome P450 superfamily. Importantly, bacterial heme-based sensor proteins exploit the redox chemistry of heme to sense environmental gases and the intracellular redox state of the cell. RECENT ADVANCES The bacterial proteins FixL (Rhizobium ssp.), CooA (Rhodospirillum rubrum), EcDos (Escherichia. coli), RcoM (Burkholderia xenovorans), and particularly Mycobacterium tuberculosis (Mtb) DosS and DosT have emerged as model paradigms of environmental heme-based sensors capable of detecting multiple gases including NO, CO, and O(2). CRITICAL ISSUES How the diatomic gases NO, CO, or O(2) bind to heme iron to generate Fe-NO, Fe-CO, and Fe-O(2) bonds, respectively, and how the oxidation of heme iron by O(2) serves as a sensing mechanism that controls the activity of key proteins is complex and largely unclear. This is particularly important as many bacterial pathogens, including Mtb, encounters three overlapping host gases (NO, CO, and O(2)) during human infection. FUTURE DIRECTIONS Heme is an important prosthetic group that monitors the microbe's internal and external surroundings to alter signal transduction or enzymatic activation. Modern expression, metabolomic and biochemical technologies combined with in vivo pathogenesis studies should provide fresh insights into the mechanism of action of heme-based redox sensors.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ashwani Kumar
- Institute of Microbial Technology, Chandigarh, India
| | - Jack R. Lancaster
- Department of Anesthesiology, Physiology and Biophysics, and Environmental Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Adrie J.C. Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Centers for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Durban, South Africa
- Department of Pathology, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
50
|
Tanaka K, Henry CS, Zinner JF, Jolivet E, Cohoon MP, Xia F, Bidnenko V, Ehrlich SD, Stevens RL, Noirot P. Building the repertoire of dispensable chromosome regions in Bacillus subtilis entails major refinement of cognate large-scale metabolic model. Nucleic Acids Res 2012; 41:687-99. [PMID: 23109554 PMCID: PMC3592452 DOI: 10.1093/nar/gks963] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The nonessential regions in bacterial chromosomes are ill-defined due to incomplete functional information. Here, we establish a comprehensive repertoire of the genome regions that are dispensable for growth of Bacillus subtilis in a variety of media conditions. In complex medium, we attempted deletion of 157 individual regions ranging in size from 2 to 159 kb. A total of 146 deletions were successful in complex medium, whereas the remaining regions were subdivided to identify new essential genes (4) and coessential gene sets (7). Overall, our repertoire covers ∼76% of the genome. We screened for viability of mutant strains in rich defined medium and glucose minimal media. Experimental observations were compared with predictions by the iBsu1103 model, revealing discrepancies that led to numerous model changes, including the large-scale application of model reconciliation techniques. We ultimately produced the iBsu1103V2 model and generated predictions of metabolites that could restore the growth of unviable strains. These predictions were experimentally tested and demonstrated to be correct for 27 strains, validating the refinements made to the model. The iBsu1103V2 model has improved considerably at predicting loss of viability, and many insights gained from the model revisions have been integrated into the Model SEED to improve reconstruction of other microbial models.
Collapse
Affiliation(s)
- Kosei Tanaka
- INRA, UMR 1319 Micalis, AgroParisTech, UMR Micalis, Jouy-en-Josas F-78350, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|