1
|
Deng X, Zhou S, Hu Z, Gong F, Zhang J, Zhou C, Lan W, Gao X, Huang Y. Nicotinic Acid-Mediated Modulation of Metastasis-Associated Protein 1 Methylation and Inflammation in Brain Arteriovenous Malformation. Biomolecules 2023; 13:1495. [PMID: 37892177 PMCID: PMC10605296 DOI: 10.3390/biom13101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
We explored metastasis-associated protein 1 (MTA1) promoter methylation in the development of brain arteriovenous malformation (BAVM). The clinical data of 148 sex- and age-matched BAVMs and controls were collected, and the MTA1 DNA methylation in peripheral white blood cells (WBC) was assessed by bisulfite pyrosequencing. Among them, 18 pairs of case-control samples were used for WBC mRNA detection, 32 pairs were used for WBC MTA1 protein measurement, and 50 pairs were used for plasma inflammatory factor analysis. Lipopolysaccharide (LPS) treatment was used to induce an inflammatory injury cell model of human brain microvascular endothelial cells (BMECS). 5-Aza-2'-deoxycytidine (5-AZA), nicotinic acid (NA), and MTA1 siRNAs were used in functional experiments to examine BMECS behaviors. RT-qPCR, Western blot, and ELISA or cytometric bead arrays were used to measure the expression levels of MTA1, cytokines, and signaling pathway proteins in human blood or BMECS. The degree of MTA1 promoter methylation was reduced in BAVM compared with the control group and was inversely proportional to MTA1 expression. Plasma ApoA concentrations in BAVM patients were significantly lower than those in controls and correlated positively with MTA1 promoter methylation and negatively with MTA1 expression. The expression of cytokine was markedly higher in BAVM than in controls. Cell experiments showed that 5-AZA decreased the methylation level of MTA1 and increased the expression of MTA1 protein. LPS treatment significantly increased cytokine concentrations (p < 0.05). NA and MTA1 silencing could effectively reverse the LPS-mediated increase in IL-6 and TNF-α expression through the NF-κB pathway. Our study indicated that NA may regulate MTA1 expression by affecting promoter DNA methylation, improve vascular inflammation through the NF-κB pathway, and alleviate the pathological development of BAVM.
Collapse
Affiliation(s)
- Xinpeng Deng
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Shengjun Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Ziliang Hu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315302, China
| | - Fanyong Gong
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Junjun Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Chenhui Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Wenting Lan
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China;
| | - Xiang Gao
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China
| |
Collapse
|
2
|
Romhányi D, Szabó K, Kemény L, Groma G. Histone and Histone Acetylation-Related Alterations of Gene Expression in Uninvolved Psoriatic Skin and Their Effects on Cell Proliferation, Differentiation, and Immune Responses. Int J Mol Sci 2023; 24:14551. [PMID: 37833997 PMCID: PMC10572426 DOI: 10.3390/ijms241914551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Psoriasis is a chronic immune-mediated skin disease in which the symptom-free, uninvolved skin carries alterations in gene expression, serving as a basis for lesion formation. Histones and histone acetylation-related processes are key regulators of gene expression, controlling cell proliferation and immune responses. Dysregulation of these processes is likely to play an important role in the pathogenesis of psoriasis. To gain a complete overview of these potential alterations, we performed a meta-analysis of a psoriatic uninvolved skin dataset containing differentially expressed transcripts from nearly 300 individuals and screened for histones and histone acetylation-related molecules. We identified altered expression of the replication-dependent histones HIST2H2AA3 and HIST2H4A and the replication-independent histones H2AFY, H2AFZ, and H3F3A/B. Eight histone chaperones were also identified. Among the histone acetyltransferases, ELP3 and KAT5 and members of the ATAC, NSL, and SAGA acetyltransferase complexes are affected in uninvolved skin. Histone deacetylation-related alterations were found to affect eight HDACs and members of the NCOR/SMRT, NURD, SIN3, and SHIP HDAC complexes. In this article, we discuss how histone and histone acetylation-related expression changes may affect proliferation and differentiation, as well as innate, macrophage-mediated, and T cell-mediated pro- and anti-inflammatory responses, which are known to play a central role in the development of psoriasis.
Collapse
Affiliation(s)
- Dóra Romhányi
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
| | - Kornélia Szabó
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- Hungarian Centre of Excellence for Molecular Medicine-University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), H-6720 Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- Hungarian Centre of Excellence for Molecular Medicine-University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), H-6720 Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Gergely Groma
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| |
Collapse
|
3
|
Wang W, Ma M, Li L, Huang Y, Zhao G, Zhou Y, Yang Y, Yang Y, Wang B, Ye L. MTA1-TJP1 interaction and its involvement in non-small cell lung cancer metastasis. Transl Oncol 2022; 25:101500. [PMID: 35944414 PMCID: PMC9365954 DOI: 10.1016/j.tranon.2022.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
MTA1 was highly expressed in NSCLC tissues and was associated with tumor progression. MTA1 promoted NSCLC cell invasion and migration in vitro and in vivo. TJP1 was found to be an interacting protein of MTA1 involved in cell adhesion. MTA1 promoted NSCLC invasion and metastasis by inhibiting TJP1 protein expression and attenuating intercellular tight junctions. Targeting the MTA1-TJP1 axis may be a promising strategy for inhibiting NSCLC metastasis.
Distant metastasis is the main cause of death in non-small cell lung cancer (NSCLC) patients. The mechanism of metastasis-associated protein 1(MTA1) in NSCLC has not been fully elucidated. This study aimed to reveal the mechanism of MTA1 in the invasion and metastasis of NSCLC. Bioinformatics analysis and our previous results showed that MTA1 was highly expressed in NSCLC tissues and correlated with tumor progression. Knockout of MTA1 by CRISPR/Cas9 significantly inhibited the migration and invasion of H1299 cells, but enhanced cell adhesion. Stable overexpression of MTA1 by lentivirus transfection had opposite effects on migration, invasion and adhesion of A549 cells. The results of in vivo experiments in nude mouse lung metastases model confirmed the promotion of MTA1 on invasion and migration. Tight junction protein 1 (TJP1) was identified by immunoprecipitation and mass spectrometry as an interacting protein of MTA1 involved in cell adhesion. MTA1 inhibited the expression level of TJP1 protein and weakened the tight junctions between cells. More importantly, the rescue assays confirmed that the regulation of MTA1 on cell adhesion, migration and invasion was partially attenuated by TJP1. In Conclusion, MTA1 inhibits the expression level of TJP1 protein co-localized in the cytoplasm and membrane of NSCLC cells, weakens the tight junctions between cells, and changes the adhesion, migration and invasion capabilities of cells, which may be the mechanism of MTA1 promoting the invasion and metastasis of NSCLC. Thus, targeting the MTA1-TJP1 axis may be a promising strategy for inhibiting NSCLC metastasis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, China; Department of Thoracic Surgery, Taihe Hospital (Hubei University of Medicine), Shiyan, China
| | - Mingsheng Ma
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Li Li
- Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunchao Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, China
| | - Guangqiang Zhao
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, China
| | - Yongchun Zhou
- Molecular Diagnosis Center, Yunnan Cancer Hospital, Kunming, China
| | - Yantao Yang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, China
| | - Yichen Yang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, China
| | - Biying Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, China
| | - Lianhua Ye
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, China.
| |
Collapse
|
4
|
Levenson AS. Metastasis-associated protein 1-mediated antitumor and anticancer activity of dietary stilbenes for prostate cancer chemoprevention and therapy. Semin Cancer Biol 2022; 80:107-117. [PMID: 32126261 PMCID: PMC7483334 DOI: 10.1016/j.semcancer.2020.02.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Dietary bioactive polyphenols that demonstrate beneficial biological functions including antioxidant, anti-inflammatory, and anticancer activity hold immense promise as effective and safe chemopreventive and chemosensitizing natural anticancer agents. The underlying molecular mechanisms of polyphenols' multiple effects are complex and these molecules are considered promising targets for chemoprevention and therapy. However, the development of novel personalized targeted chemopreventive and therapeutic strategies is essential for successful therapeutic outcomes. In this review, we highlight the potential of metastasis-associated protein 1 (MTA1)-targeted anticancer and antitumor effects of three dietary stilbenes, namely resveratrol, pterostilbene, and gnetin C, for prostate cancer management. MTA1, an epigenetic reader and master transcriptional regulator, plays a key role in all stages of prostate cancer progression and metastasis. Stilbenes inhibit MTA1 expression, disrupt the MTA1/histone deacetylase complex, modulate MTA1-associated Epi-miRNAs and reduce MTA1-dependent inflammation, cell survival, and metastasis in prostate cancer in vitro and in vivo. Overall, the MTA1-targeted strategies involving dietary stilbenes may be valuable for effective chemoprevention in selected subpopulations of early stage prostate cancer patients and for combinatorial strategies with conventional chemotherapeutic drugs against advanced metastatic prostate cancer.
Collapse
Affiliation(s)
- Anait S Levenson
- Department of Biomedical Sciences, School of Veterinary Medicine, Long Island University, Brookville, NY, 11548, USA.
| |
Collapse
|
5
|
Vattem C, Pakala SB. Metastasis-associated protein 1: A potential driver and regulator of the hallmarks of cancer. J Biosci 2022. [DOI: 10.1007/s12038-022-00263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Ishikawa M, Osaki M, Uno N, Ohira T, Kugoh H, Okada F. MTA1, a metastasis‑associated protein, in endothelial cells is an essential molecule for angiogenesis. Mol Med Rep 2021; 25:11. [PMID: 34779499 PMCID: PMC8600423 DOI: 10.3892/mmr.2021.12527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/14/2021] [Indexed: 11/12/2022] Open
Abstract
Our previous study revealed that metastasis-associated protein 1 (MTA1), which is expressed in vascular endothelial cells, acts as a tube formation promoting factor. The present study aimed to clarify the importance of MTA1 expression in tube formation using MTA1-knockout (KO) endothelial cells (MTA1-KO MSS31 cells). Tube formation was significantly suppressed in MTA1-KO MSS31 cells, whereas MTA1-overexpression MTA1-KO MSS31 cells regained the ability to form tube-like structures. In addition, western blotting analysis revealed that MTA1-KO MSS31 cells showed significantly higher levels of phosphorylation of non-muscle myosin heavy chain IIa, which resulted in suppression of tube formation. This effect was attributed to a decrease of MTA1/S100 calcium-binding protein A4 complex formation. Moreover, inhibition of tube formation in MTA1-KO MSS31 cells could not be rescued by stimulation with vascular endothelial growth factor (VEGF). These results demonstrated that MTA1 may serve as an essential molecule for angiogenesis in endothelial cells and be involved in different steps of the angiogenic process compared with the VEGF/VEGF receptor 2 pathway. The findings showed that endothelial MTA1 and its pathway may serve as promising targets for inhibiting tumor angiogenesis, further supporting the development of MTA1-based antiangiogenic therapies.
Collapse
Affiliation(s)
- Mizuho Ishikawa
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori 683‑8503, Japan
| | - Mitsuhiko Osaki
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori 683‑8503, Japan
| | - Narumi Uno
- Chromosome Engineering Research Center, Faculty of Medicine, Tottori University, Yonago, Tottori 683‑8503, Japan
| | - Takahito Ohira
- Chromosome Engineering Research Center, Faculty of Medicine, Tottori University, Yonago, Tottori 683‑8503, Japan
| | - Hiroyuki Kugoh
- Chromosome Engineering Research Center, Faculty of Medicine, Tottori University, Yonago, Tottori 683‑8503, Japan
| | - Futoshi Okada
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori 683‑8503, Japan
| |
Collapse
|
7
|
Kitamoto S, Nagao-Kitamoto H, Jiao Y, Gillilland MG, Hayashi A, Imai J, Sugihara K, Miyoshi M, Brazil JC, Kuffa P, Hill BD, Rizvi SM, Wen F, Bishu S, Inohara N, Eaton KA, Nusrat A, Lei YL, Giannobile WV, Kamada N. The Intermucosal Connection between the Mouth and Gut in Commensal Pathobiont-Driven Colitis. Cell 2020; 182:447-462.e14. [PMID: 32758418 DOI: 10.1016/j.cell.2020.05.048] [Citation(s) in RCA: 339] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 04/22/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
Abstract
The precise mechanism by which oral infection contributes to the pathogenesis of extra-oral diseases remains unclear. Here, we report that periodontal inflammation exacerbates gut inflammation in vivo. Periodontitis leads to expansion of oral pathobionts, including Klebsiella and Enterobacter species, in the oral cavity. Amassed oral pathobionts are ingested and translocate to the gut, where they activate the inflammasome in colonic mononuclear phagocytes, triggering inflammation. In parallel, periodontitis results in generation of oral pathobiont-reactive Th17 cells in the oral cavity. Oral pathobiont-reactive Th17 cells are imprinted with gut tropism and migrate to the inflamed gut. When in the gut, Th17 cells of oral origin can be activated by translocated oral pathobionts and cause development of colitis, but they are not activated by gut-resident microbes. Thus, oral inflammation, such as periodontitis, exacerbates gut inflammation by supplying the gut with both colitogenic pathobionts and pathogenic T cells.
Collapse
Affiliation(s)
- Sho Kitamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Hiroko Nagao-Kitamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yizu Jiao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Merritt G Gillilland
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Atsushi Hayashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Research Laboratory, Miyarisan Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Jin Imai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kohei Sugihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mao Miyoshi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Peter Kuffa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Brett D Hill
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Syed M Rizvi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shrinivas Bishu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Naohiro Inohara
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Kathryn A Eaton
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yu L Lei
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - William V Giannobile
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Xu Z, Zou C, Guo M, Bian H, Zhao W, Wang J. Metastasis-associated protein 1 (MTA1) regulates the catecholamine production homeostasis via transcriptional repression of aromatic l-amino acid decarboxylase (Aadc) in the interstitial cells of Cajal of mouse prostate. Biochem Biophys Res Commun 2020; 528:732-739. [PMID: 32522342 DOI: 10.1016/j.bbrc.2020.05.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 12/30/2022]
Abstract
Based on the lately identified role for the interstitial cells of Cajal (ICCs) of mouse prostate in catecholamine production, as well as the well-established role for the master coregulator metastasis-associated protein 1 (MTA1) in inflammation, we probed into the functional link between aberrant MTA1 expression and pathogenesis of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) using both a MTA1-/- mouse model of experimental autoimmune prostatitis (EAP) and an in vitro chronic prostatitis model in cultured murine ICCs. EAP-induced MTA1 expression was enriched in ICCs of mouse prostate. EAP resulted in a higher increase in the pelvic pain response in MTA1-/- mice compared to WT mice. Consistently, the ICCs from MTA1-/- mice produced higher levels of catecholamines upon induction of in vitro chronic prostatitis. Mechanistically, MTA1 could directly suppress the transcription of Aadc, a rate-limiting enzyme during catecholamine synthesis, in a HDAC2-depdendent manner. Importantly, treatment with AADC inhibitor NSD-1015 significantly ameliorated EAP-elicited pain response and catecholamine overactivity in MTA1-/- mice. Taken together, our findings reveal an inherent regulatory role of the MTA1/AADC pathway in the maintenance of catecholamine production homeostasis in prostate ICCs, and also point to a potential use of HDAC inhibitors and/or AADC inhibitors to treat CP/CPPS.
Collapse
Affiliation(s)
- Zhibin Xu
- Department of Urology, Taizhou People's Hospital, Taizhou, 225300, Jiangsu Province, PR China
| | - Chunbo Zou
- Department of Urology, Taizhou People's Hospital, Taizhou, 225300, Jiangsu Province, PR China
| | - MaoMao Guo
- Department of Urology, Taizhou People's Hospital, Taizhou, 225300, Jiangsu Province, PR China
| | - Hao Bian
- Department of Urology, Taizhou People's Hospital, Taizhou, 225300, Jiangsu Province, PR China
| | - Wenchao Zhao
- Department of Urology, Taizhou People's Hospital, Taizhou, 225300, Jiangsu Province, PR China
| | - Jiangping Wang
- Department of Urology, Taizhou People's Hospital, Taizhou, 225300, Jiangsu Province, PR China.
| |
Collapse
|
9
|
Guddeti RK, Bali P, Karyala P, Pakala SB. MTA1 coregulator regulates LDHA expression and function in breast cancer. Biochem Biophys Res Commun 2019; 520:54-59. [PMID: 31570164 DOI: 10.1016/j.bbrc.2019.09.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
Abstract
Metastasis Associated Protein1 (MTA1) is a chromatin modifier and its expression is significantly associated with prognosis of many cancers. However, its role in glucose metabolism remains unexplored. Here, we report that MTA1 has a significant role in glucose metabolism where MTA1 regulates the LDHA expression and activity and subsequently its function in breast cancer motility. The results showed that MTA1 expression is positively correlated with the LDHA expression levels in breast cancer patients. Further, it was found that MTA1 is necessary for the optimal expression of LDHA. The underlying molecular mechanism involves the interaction of MTA1 with c-Myc and recruitment of MTA1-c-Myc complex on to the LDHA promoter to regulate its transcription. Consequently, the LDHA knock down using LDHA specific siRNA in MCF7 cells stably expressing MTA1 reduced the migration of MCF7 cells. Altogether these findings revealed the regulatory role for MTA1 in LDHA expression and its resulting biological function.
Collapse
Affiliation(s)
- Rohith Kumar Guddeti
- Biology Division, Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Mangalam, Tirupati, 517507, Andhra Pradesh, India
| | - Prerna Bali
- Biology Division, Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Mangalam, Tirupati, 517507, Andhra Pradesh, India
| | - Prashanthi Karyala
- Department of Biochemistry, Indian Academy Degree College Autonomous, Hennur Main Road, Bengaluru, 560043, Karnataka, India
| | - Suresh B Pakala
- Biology Division, Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Mangalam, Tirupati, 517507, Andhra Pradesh, India.
| |
Collapse
|
10
|
Duan L, Zhang XD, Miao WY, Sun YJ, Xiong G, Wu Q, Li G, Yang P, Yu H, Li H, Wang Y, Zhang M, Hu LY, Tong X, Zhou WH, Yu X. PDGFRβ Cells Rapidly Relay Inflammatory Signal from the Circulatory System to Neurons via Chemokine CCL2. Neuron 2018; 100:183-200.e8. [PMID: 30269986 DOI: 10.1016/j.neuron.2018.08.030] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/30/2018] [Accepted: 08/20/2018] [Indexed: 01/19/2023]
Abstract
Acute infection, if not kept in check, can lead to systemic inflammatory responses in the brain. Here, we show that within 2 hr of systemic inflammation, PDGFRβ mural cells of blood vessels rapidly secrete chemokine CCL2, which in turn increases total neuronal excitability by promoting excitatory synaptic transmission in glutamatergic neurons of multiple brain regions. By single-cell RNA sequencing, we identified Col1a1 and Rgs5 subgroups of PDGFRβ cells as the main source of CCL2. Lipopolysaccharide (LPS)- or Poly(I:C)-treated pericyte culture medium induced similar effects in a CCL2-dependent manner. Importantly, in Pdgfrb-Cre;Ccl2fl/fl mice, LPS-induced increase in excitatory synaptic transmission was significantly attenuated. These results demonstrate in vivo that PDGFRβ cells function as initial sensors of external insults by secreting CCL2, which relays the signal to the central nervous system. Through their gateway position in the brain, PDGFRβ cells are ideally positioned to respond rapidly to environmental changes and to coordinate responses.
Collapse
Affiliation(s)
- Lihui Duan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Di Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan-Ying Miao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun-Jun Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guoliang Xiong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuzi Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangying Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ping Yang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Hang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Humingzhu Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yue Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Min Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li-Yuan Hu
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiaoping Tong
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Hao Zhou
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
11
|
Umasuthan N, Bathige SDNK, Thulasitha WS, Jayasooriya RGPT, Shin Y, Lee J. Identification of a gene encoding a membrane-anchored toll-like receptor 5 (TLR5M) in Oplegnathus fasciatus that responds to flagellin challenge and activates NF-κB. FISH & SHELLFISH IMMUNOLOGY 2017; 62:276-290. [PMID: 28111358 DOI: 10.1016/j.fsi.2017.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/12/2016] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
Toll-like receptor 5 (TLR5) recognizes bacterial flagellin and induces the downstream signaling through the myeloid differentiation primary response gene 88 (MyD88) protein to produce proinflammatory cytokines. In this study, we describe a TLR5 membrane form (OfTLR5M) and its adaptor protein MyD88 (OfMyD88) in rock bream, Oplegnathus fasciatus. Both Oftlr5m (6.7 kb) and Ofmyd88 (3.7 kb) genes displayed a quinquepartite structure with five exons and four introns. Protein structure of OfTLR5M revealed the conventional architecture of TLRs featured by an extracellular domain with 22 leucine rich repeats (LRR), a transmembrane domain and an endodomain with TIR motif. Primary OfTLR5M sequence shared a higher homology with teleost TLR5M. The evolutional analysis confirmed that TLR5 identified in the current study is a membrane receptor and the data further suggested the co-evolution of the membrane-anchored and soluble forms of TLR5 in teleosts. Inter-lineage comparison of gene structures in vertebrates indicated that the tlr5m gene has evolved with extensive rearrangement; whereas, the myd88 gene has maintained a stable structure throughout the evolution. Inspection of 5' flanking region of these genes disclosed the presence of several transcription factor binding sites including NF-κB. Quantitative real-time PCR (qPCR) detected Oftlr5m mRNA in eleven tissues with the highest abundance in liver. In vivo flagellin administration strongly induced the transcripts of both Oftlr5m and Ofmyd88 in gills and head kidney tissues suggesting their ligand-mediated upregulation. In a luciferase assay, HEK293T cells transiently transfected with Oftlr5m and Ofmyd88 demonstrated a higher NF-κB activity than the mock control, and the luciferase activity was intensified when cells were stimulated with flagellin. Collectively, our study represents the genomic, evolutional, expressional and functional insights into a receptor and adaptor molecules of teleost origin that are involved in flagellin sensing.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-8570, Japan
| | - S D N K Bathige
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - William Shanthakumar Thulasitha
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - R G P T Jayasooriya
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Younhee Shin
- Insilicogen Inc., Giheung-gu, Yongin-si, Gyeonggi-do, 16954, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
12
|
Tunçer S, Tunçay Çağatay S, Keşküş AG, Çolakoğlu M, Konu Ö, Banerjee S. Interplay between 15-lipoxygenase-1 and metastasis-associated antigen 1 in the metastatic potential of colorectal cancer. Cell Prolif 2016; 49:448-59. [PMID: 27320813 PMCID: PMC6495825 DOI: 10.1111/cpr.12267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/03/2016] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Metastasis-associated antigen 1 (MTA1) is implicated in metastasis while 15-lipoxygenase-1 (15-LOX-1) reduces cell motility, when re-expressed in colorectal cancer (CRC). We aimed to understand any potential interplay between MTA1 and 15-LOX-1 in CRC metastasis. MATERIALS AND METHODS ALOX15 and MTA1 expression in tumour and normal samples were analysed from TCGA RNA-seq data, microarray data sets and a human CRC cDNA array. Western blots, chromatin immunoprecipitation (ChIP), luciferase assays and electrophoretic mobility shift assays (EMSA) were carried out in HT-29 and LoVo cells re-expressing 15-LOX-1 to determine NF- κB activity at the MTA1 promoter. Functional assays in cells ectopically expressing either 15-LOX-1, MTA-1 or both, were carried out to determine adhesion and cell motility. RESULTS Significantly higher expression of MTA1 was observed in tumours compared to normal tissues; MTA1 overexpression resulted in reduced adhesion in CRC cell lines. Re-expression of 15-LOX-1 in the CRC cell lines reduced expression of endogenous MTA1, corroborated by negative correlation between the two genes in two independent human CRC microarray data sets, with greater significance in specific subsets of patients. DNA binding and transcriptional activity of NF-κB at the MTA1 promoter was significantly lower in cells re-expressing 15-LOX-1. Functionally, the same cells had reduced motility, which was rescued when they overexpressed MTA1, and further corroborated by expressions of E-cadherin and vimentin. CONCLUSIONS Expression of MTA1 and 15-LOX-1 negatively correlated in specific subsets of CRC. Mechanistically, this is at least in part through reduced recruitment of NF-κB to the MTA1 promoter.
Collapse
Affiliation(s)
- S Tunçer
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - S Tunçay Çağatay
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - A G Keşküş
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - M Çolakoğlu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ö Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - S Banerjee
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
13
|
Kishibe M, Griffin TM, Radek KA. Keratinocyte nicotinic acetylcholine receptor activation modulates early TLR2-mediated wound healing responses. Int Immunopharmacol 2015; 29:63-70. [PMID: 26071220 DOI: 10.1016/j.intimp.2015.05.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/18/2015] [Accepted: 05/29/2015] [Indexed: 12/23/2022]
Abstract
The cholinergic anti-inflammatory pathway spans several macro- and micro-environments to control inflammation via α7 nicotinic acetylcholine receptors (nAChRs). Physiologic inflammation is necessary for normal wound repair and is triggered, in part, via Toll-like receptors (TLRs). Here, we demonstrate that keratinocyte nAChR activation dampens TLR2-mediated migration and pro-inflammatory cytokine and antimicrobial peptide (AMP) production, which is restored by a α7-selective nAChR antagonist. The mechanism of this response occurs by blocking the NF-κB and Erk1/2 pathway during early and late wound healing. In a mouse model of Staphylococcus aureus wound infection, topical nAChR activation reduces wound AMP and TLR2 production to augment bacterial survival in wild-type mice. These findings suggest that aberrant α7 nAChR activation may impair normal wound healing responses, and that pharmacologic administration of topical nAChR antagonists may improve wound healing outcomes in wounds necessitating a more robust inflammatory response.
Collapse
Affiliation(s)
- Mari Kishibe
- The Burn and Shock Trauma Research Institute, Loyola University Chicago, Health Science Division, Maywood, IL, USA; Department of Surgery, Loyola University Chicago, Health Science Division, Maywood, IL, USA.
| | - Tina M Griffin
- The Burn and Shock Trauma Research Institute, Loyola University Chicago, Health Science Division, Maywood, IL, USA; Department of Surgery, Loyola University Chicago, Health Science Division, Maywood, IL, USA
| | - Katherine A Radek
- The Burn and Shock Trauma Research Institute, Loyola University Chicago, Health Science Division, Maywood, IL, USA; Department of Surgery, Loyola University Chicago, Health Science Division, Maywood, IL, USA; Infectious Disease and Immunology Research Institute in the Department of Microbiology and Immunology, Loyola University Chicago, Health Science Division, Maywood, IL, USA; Stritch School of Medicine, Loyola University Chicago, Health Science Division, Maywood, IL, USA
| |
Collapse
|
14
|
Abstract
Since the initial recognition of the metastasis-associated protein 1 (MTA1) as a metastasis-relevant gene approximately 20 years ago, our appreciation for the complex role of the MTA family of coregulatory proteins in human cancer has profoundly grown. MTA proteins consist of six family members with similar structural units and act as central signaling nodes for integrating upstream signals into regulatory chromatin-remodeling networks, leading to regulation of gene expression in cancer cells. Substantial experimental and clinical evidence demonstrates that MTA proteins, particularly MTA1, are frequently deregulated in a wide range of human cancers. The MTA family governs cell survival, the invasive and metastatic phenotypes of cancer cells, and the aggressiveness of cancer and the prognosis of patients with MTA1 overexpressing cancers. Our discussion here highlights our current understanding of the regulatory mechanisms and functional roles of MTA proteins in cancer progression and expands upon the potential implications of MTA proteins in cancer biology and cancer therapeutics.
Collapse
Affiliation(s)
- Da-Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Epigenetics in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Rakesh Kumar
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Cellular Oncology, University of Texas M.D., Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
15
|
Nagaraj SRM, Shilpa P, Rachaiah K, Salimath BP. Crosstalk between VEGF and MTA1 signaling pathways contribute to aggressiveness of breast carcinoma. Mol Carcinog 2015; 54:333-50. [PMID: 24265228 DOI: 10.1002/mc.22104] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 09/09/2013] [Accepted: 10/15/2013] [Indexed: 11/11/2022]
Abstract
The expression of metastasis associated protein (MTA1) correlates well with tumor metastasis; however its role as a proangiogenic protein and the molecular mechanisms underlying the same are not fully understood. In this study the MTA1 protein was expressed and purified to evaluate its angiogenic potential. In both MCF-7 and MDA-MB-231 cells, endogenous MTA1 protein was localized in the nucleus; while added recombinant MTA1 protein was bound to cell membrane as per immunofluorescence data. MTA1 was detected both in conditioned media and in human serum samples. Recombinant MTA1 regulated cellular functions of HUVEC's such as, proliferation, tube formation, and migration. MTA1 was more potent than VEGF in inducing invasion of breast cancer cells. Analogous to VEGF, MTA1 could induce angiogenesis in both non-tumor and tumor context, as verified by rat cornea, shell less CAM and xenograft models respectively. However MTA-1 was more potent an inducer of angiogenesis. VEGF or Flt-1 gene promoter, luciferase gene reporter analysis revealed that MTA1 up regulates the expression of VEGF and its receptor Flt-1 genes. Kinetics of VEGF-induced expression of MTA1 and qPCR studies showed that there is an increased expression of MTA1 in tumor cells. VEGF induced phosphorylation of endogenous MTA1 on tyrosine residues; phosphorylation was mediated through VEGFR2 and p38-MAP kinase. Recombinant MTA1 activated signaling, in MCF-7 and MDA-MB-231 cells, involved ERK and JNK pathways. In conclusion, MTA1 is a potent angiogenic molecule and cross talk between VEGF and MTA1 protein regulates tumor angiogenesis and metastasis.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blotting, Western
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Chorioallantoic Membrane
- Female
- Fluorescent Antibody Technique
- Gene Expression Regulation, Neoplastic
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Immunoenzyme Techniques
- Immunoprecipitation
- Melanoma, Experimental/genetics
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Neovascularization, Pathologic
- Phosphorylation
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Rats
- Rats, Wistar
- Real-Time Polymerase Chain Reaction
- Repressor Proteins/antagonists & inhibitors
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Trans-Activators
- Vascular Endothelial Growth Factor A/antagonists & inhibitors
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Wound Healing
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Sachin Raj M Nagaraj
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore, India
| | | | | | | |
Collapse
|
16
|
Ning Z, Gan J, Chen C, Zhang D, Zhang H. Molecular functions and significance of the MTA family in hormone-independent cancer. Cancer Metastasis Rev 2014; 33:901-19. [PMID: 25341508 DOI: 10.1007/s10555-014-9517-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The members of the metastasis-associated protein (MTA) family play pivotal roles in both physiological and pathophysiological processes, especially in cancer development and metastasis, and their role as master regulators has come to light. Due to the fact that they were first identified as crucial factors in estrogen receptor-mediated breast cancer metastasis, most of the early studies focused on their hormone-dependent functions. However, the accumulating evidence shows that the members of MTA family are deregulated in most, if not all, the cancers studied so far. Therefore, the levels as well as the activities of the MTA family members are widely accepted as potential biomarkers for diagnosis, prognosis, and predictors of overall survival. They function differently in different cancers with specific mechanisms. p53 and HIF-1α appear to be the respectively common upstream and downstream regulator of the MTA family in both development and metastasis of a wide spectrum of cancers. Here, we review the expression and clinical significance of the MTA family, focusing on hormone-independent cancers. To illustrate the molecular mechanisms, we analyze the MTA family-related signaling pathways in different cancers. Finally, targeting the MTA family directly or the pathways involved in the MTA family indirectly could be invaluable strategies in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Zhifeng Ning
- Laboratory for Translational Oncology, Basic Medicine College, Hubei University of Science and Technology, Xianning, Hubei Province, 437100, China
| | | | | | | | | |
Collapse
|
17
|
Abstract
MicroRNAs (miRNAs) are a class of 20-24 nt small non-coding RNAs that regulate a wide range of biological processes through changing the stability and translation of their target messenger RNA (mRNA) genes. Shortly after their identification, many miRNA genes have been found dysregulated in a variety of human cancers, indicating a pathological function of this gene class in mediating cancer progression. Over the past decade, accumulated literature has shown that miRNAs participate in numerous cancer-relevant processes including cell proliferation, apoptosis, differentiation, metabolism, and importantly, metastasis, which accounts for the mortality of approximately 90 % of cancer patients. Several recent publications have linked miRNAs with metastasis-associated protein (MTA) family members. Given the fact that the MTA family members are widely overexpressed in human cancers and their nature of serving as both corepressor and coactivator in gene regulation, it is intriguing to study whether certain miRNAs regulate cancer progression through modulating the expression of MTA family members. In this review, we will focus on recent advances in understanding the regulatory relationship between certain miRNAs and MTA family members.
Collapse
Affiliation(s)
- Yun Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | |
Collapse
|
18
|
Abstract
Although the functional significance of the metastasic tumor antigen (MTA) family of chromatin remodeling proteins in the pathobiology of cancer is fairly well recognized, the physiological role of MTA proteins continues to be an understudied research area and is just beginning to be recognized. Similar to cancer cells, MTA1 also modulates the expression of target genes in normal cells either by acting as a corepressor or coactivator. In addition, physiological functions of MTA proteins are likely to be influenced by its differential expression, subcellular localization, and regulation by upstream modulators and extracellular signals. This review summarizes our current understanding of the physiological functions of the MTA proteins in model systems. In particular, we highlight recent advances of the role MTA proteins play in the brain, eye, circadian rhythm, mammary gland biology, spermatogenesis, liver, immunomodulation and inflammation, cellular radio-sensitivity, and hematopoiesis and differentiation. Based on the growth of knowledge regarding the exciting new facets of the MTA family of proteins in biology and medicine, we speculate that the next burst of findings in this field may reveal further molecular regulatory insights of non-redundant functions of MTA coregulators in the normal physiology as well as in pathological conditions outside cancer.
Collapse
Affiliation(s)
- Nirmalya Sen
- Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, 20037, USA
| | | | | |
Collapse
|
19
|
Abstract
Among the genes that were found to be abundantly overexpressed in highly metastatic rat cell lines compared to poorly metastatic cell lines, we identified a completely novel complementary DNA (cDNA) without any homologous or related genes in the database in 1994. The full-length cDNA of this rat gene was cloned, sequenced, and named metastasis-associated gene 1 (mta1), and eventually, its human cDNA counterpart, MTA1, was also cloned and sequenced by our group. MTA1 has now been identified as one of the members of a gene family (MTA gene family) and the products of the MTA genes, the MTA proteins, are transcriptional co-regulators that function in histone deacetylation and nucleosome remodeling and have been found in nuclear histone remodeling complexes. Furthermore, MTA1 along with its protein product MTA1 has been repeatedly and independently reported to be overexpressed in a vast range of human cancers and cancer cell lines compared to non-cancerous tissues and cell lines. The expression levels of MTA1 correlate well with the malignant properties of human cancers, strongly suggesting that MTA1 and possibly other MTA proteins (and their genes) could be a new class of molecular targets for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yasushi Toh
- Department of Gastroenterological Surgery, National Kyushu Cancer Center, 3-1-1 Notame, Minami-ku, Fukuoka, 811-1395, Japan,
| | | |
Collapse
|
20
|
Ryu SH, Jang MK, Kim WJ, Lee D, Chung YH. Metastatic tumor antigen in hepatocellular carcinoma: golden roads toward personalized medicine. Cancer Metastasis Rev 2014; 33:965-80. [PMID: 25325987 DOI: 10.1007/s10555-014-9522-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC), a prototype of hypervascular tumors, is one of the most common malignancies in the world, especially hyperendemic in the Far East where chronic hepatitis B virus (HBV) infection is highly prevalent. It is characterized by the clinical feature of a poor prognosis or a high mortality due to its already far advanced stages at diagnosis. It is so multifactorial that hepatocarcinogenesis cannot be explained by a single molecular mechanism. To date, a number of pathways have been known to contribute to the development, growth, angiogenesis, and even metastasis of HCC. Among the various factors, metastatic tumor antigens (MTAs) or metastasis-associated proteins have been vigorously investigated as an intriguing target in the field of hepatocarcinogenesis. According to recent studies including ours, MTAs are not only involved in the HCC development and growth (molecular carcinogenesis), but also closely associated with the post-operative recurrence and a poor prognosis or a worse response to post-operative anti-cancer therapy (clinical significance). Herein, we review MTAs in light of their essential structure, functions, and molecular mechanism in hepatocarcinogenesis. We will also focus in detail on the interaction between hepatitis B x protein (HBx) of HBV and MTA in order to clarify the HBV-associated HCC development. Finally, we will discuss the prognostic significance and clinical application of MTA in HCC. We believe that this review will help clinicians to understand the meaning and use of the detection of MTA in order to more effectively manage their HCC patients.
Collapse
Affiliation(s)
- Soo Hyung Ryu
- Department of Internal Medicine, Inje University College of Medicine, Seoul Paik Hospital, Seoul, South Korea
| | | | | | | | | |
Collapse
|
21
|
Abstract
Metastasis-associated gene or metastasis tumor antigen 1 (MTA1) is a new member of cancer progression-related gene family. It was first identified in rat mammary adenocarcinoma and later recognized as an important constituent of nucleosomal remodeling complex (NuRD), displaying dual regulatory functions as a co-repressor and co-activator for a large number of genes. Chromatin remodelers are ATP-dependent multi-protein chromatin modifying machines. These complexes alter the nucleosome positioning regulating the accessibility of genomic DNA to various transcription factors and thus modulate eukaryotic gene transcription. Since its identification two decades ago, MTA1 has been reported to be overexpressed in many cancers. Moreover, its overexpression has also been correlated with transformation and tumor progression. Furthermore, MTA1 has been shown to modulate the response of several tumor suppressor genes like p53 and oncogenes like c-myc. Taken together, current literature suggests that MTA proteins, especially MTA1, act as a master co-regulatory molecule involved in the carcinogenesis and progression of various malignant tumors. The primary focus of this review is to provide an overview of the MTA proteins with special emphasis on its role in cancer and use as a marker for cancer progression and potential target for therapy.
Collapse
Affiliation(s)
- Ekjot Kaur
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | | | | |
Collapse
|
22
|
Abstract
The subcellular localization of a protein is closely linked to and indicates its function. The metastatic tumor antigen (MTA) family has been under continuous investigation since its identification two decades ago. MTA1, MTA2, and MTA3 are the main members of the MTA family. MTA1, as the representative member of this family, has been shown to be widely expressed in both embryonic and adult tissues, as well as in normal and cancerous conditions, indicating that MTA1 has functions both in physiological and pathological contexts. MTA1 is expressed at a higher level in most cancers than in their normal tissue counterparts. Even in normal cells, MTA1 levels vary a great deal from tissue to tissue. Importantly, MTA1 shows a multiple localization pattern in the cell, as do MTA2 and MTA3. Different MTA components in different subcellular compartments may exert different molecular functions in the cell. Previous studies revealed that MTA1 and MTA2 are predominately localized to the nucleus, while MTA3 is observed in both the nucleus and cytoplasm. Recent studies have reported that MTA1 is located in the nucleus, cytoplasm, and the nuclear envelope. In the nucleus, MTA1 dynamically interacts with chromatin in a MTA1-K532 methylation-dependent manner, whereas cytoplasmic MTA1 binds to the microtubule skeleton. MTA1 also shows a dynamic distribution during the cell cycle. Further investigations are needed to identify the exact subcellular localizations of MTA proteins. We review the sub-cellular localization patterns of the MTA family members and give a comprehensive overview of their respective molecular activities in multiple contexts.
Collapse
Affiliation(s)
- Jian Liu
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | | | | | | |
Collapse
|
23
|
Levenson AS, Kumar A, Zhang X. MTA family of proteins in prostate cancer: biology, significance, and therapeutic opportunities. Cancer Metastasis Rev 2014; 33:929-42. [PMID: 25332143 DOI: 10.1007/s10555-014-9519-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review summarizes our current understanding of the role of MTA family members, particularly MTA1, with a special emphasis on prostate cancer. The interest for the role of MTA1 in prostate cancer was boosted from our initial findings of MTA1 as a component of "vicious cycle" and a member of bone metastatic signature. Analysis of human prostate tissues, xenograft and transgenic mouse models of prostate cancer, and prostate cancer cell lines has provided support for the role of MTA1 in advanced disease and its potential role in initial stages of prostate tumor progression. Recent discoveries have highlighted a critical role for MTA1 in inflammation-triggered prostate tumorigenesis, epithelial-to-mesenchymal transition, prostate cancer survival pathways, and site metastasis. Evidence for MTA1 as an upstream negative regulator of tumor suppressor genes such as p53 and PTEN has also emerged. MTA1 is involved in prostate tumor angiogenesis by regulating several pro-angiogenic factors. Evidence for MTA1 as a prognostic marker for aggressive prostate cancer and disease recurrence has been described. Importantly, pharmacological dietary agents, namely resveratrol and its analogs, are potentially applicable to prostate cancer prevention, treatment, and control of cancer progression due to their potent inhibitory effects on MTA proteins.
Collapse
Affiliation(s)
- Anait S Levenson
- Cancer Institute, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA,
| | | | | |
Collapse
|
24
|
Zhang C, Lai JH, Hu B, Zhang S, Zhao J, Li W. A chromatin modifier regulates Sertoli cell response to mono-(2-ethylhexyl) phthalate (MEHP) via tissue inhibitor of metalloproteinase 2 (TIMP2) signaling. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1170-82. [DOI: 10.1016/j.bbagrm.2014.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/03/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
|
25
|
Ferreira AE, Sisti F, Sônego F, Wang S, Filgueiras LR, Brandt S, Serezani APM, Du H, Cunha FQ, Alves-Filho JC, Serezani CH. PPAR-γ/IL-10 axis inhibits MyD88 expression and ameliorates murine polymicrobial sepsis. THE JOURNAL OF IMMUNOLOGY 2014; 192:2357-65. [PMID: 24489087 DOI: 10.4049/jimmunol.1302375] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polymicrobial sepsis induces organ failure and is accompanied by overwhelming inflammatory response and impairment of microbial killing. Peroxisome proliferator-activated receptor (PPAR)-γ is a nuclear receptor with pleiotropic effects on lipid metabolism, inflammation, and cell proliferation. The insulin-sensitizing drugs thiazolidinediones (TZDs) are specific PPAR-γ agonists. TZDs exert anti-inflammatory actions in different disease models, including polymicrobial sepsis. The TZD pioglitazone, which has been approved by the U.S. Food and Drug Administration, improves sepsis outcome; however, the molecular programs that mediate its effect have not been determined. In a murine model of sepsis, we now show that pioglitazone treatment improves microbial clearance and enhances neutrophil recruitment to the site of infection. We also observed reduced proinflammatory cytokine production and high IL-10 levels in pioglitazone-treated mice. These effects were associated with a decrease in STAT-1-dependent expression of MyD88 in vivo and in vitro. IL-10R blockage abolished PPAR-γ-mediated inhibition of MyD88 expression. These data demonstrate that the primary mechanism by which pioglitazone protects against polymicrobial sepsis is through the impairment of MyD88 responses. This appears to represent a novel regulatory program. In this regard, pioglitazone provides advantages as a therapeutic tool, because it improves different aspects of host defense during sepsis, ultimately enhancing survival.
Collapse
Affiliation(s)
- Ana Elisa Ferreira
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tang JR, Michaelis KA, Nozik-Grayck E, Seedorf GJ, Hartman-Filson M, Abman SH, Wright CJ. The NF-κB inhibitory proteins IκBα and IκBβ mediate disparate responses to inflammation in fetal pulmonary endothelial cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:2913-23. [PMID: 23418625 DOI: 10.4049/jimmunol.1202670] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exposure to intrauterine inflammation impairs lung growth but paradoxically protects the neonatal pulmonary vasculature from hyperoxic injury. The mechanisms mediating these contradictory effects are unknown. The objective is to identify the role of NF-κB in mediating cytoprotective and proinflammatory responses to inflammation in the fetal pulmonary endothelium. In newborn rats exposed to intra-amniotic LPS, we found increased expression of the NF-κB target gene manganese superoxide dismutase (MnSOD) in the pulmonary endothelium. Supporting these in vivo findings, LPS induced NF-κB activation and MnSOD expression in isolated fetal pulmonary arterial endothelial cells. In addition, LPS exposure caused apoptosis and suppressed cellular growth and induced P-selectin expression. LPS-induced NF-κB activation that proceeded through specific isoforms of the inhibitory protein IκB mediated these diverse responses; NF-κB signaling through IκBα degradation resulted in MnSOD upregulation and preserved cell growth, whereas NF-κB signaling through IκBβ degradation mediated apoptosis and P-selectin expression. These findings suggest that selective inhibition of NF-κB activation that results from IκBβ degradation preserves the enhanced antioxidant defense and protects the developing pulmonary vascular endothelium from ongoing inflammatory injury.
Collapse
Affiliation(s)
- Jen-Ruey Tang
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Guo SJ, Sun ZJ, Li W. New insights about the early diagnosis of fertility impairment in varicoceles: the DNA repair gene example. Med Hypotheses 2012; 78:536-8. [PMID: 22305334 DOI: 10.1016/j.mehy.2012.01.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 01/16/2012] [Indexed: 12/15/2022]
Abstract
Of all men consulted for infertility, around 30% appear to have a varicocele, therefore, this male dysfunction has been considered as a potential cause of infertility in many patients. Emerging studies point out spermatozoa progressive motility as the most important predictor of fertility provided that the analysis was carried out with infertility duration, thus leaving unsolved problem to evaluate the spontaneous testicular damage during the very early phase in varicoceles. Given the deterioration of testicular function caused by varicoceles is progressive, the early and efficient evaluation of testicular damage would be of great importance for the future medical intervention in this population. The resultant mechanism by which varicoceles affect testicular function remains unclear, but the increase in testicular temperature is most commonly accepted aetiology. In this context, we hypothesize that metastasis-associated protein 1 (MTA1), an intrinsic DNA damage response component, possessing transient protective effect in primary spermatocytes against heat stress, bears the potential to be a diagnostic biomarker for the assessment of early testicular damage in varicoceles. The facet that the decrease of MTA1 expression appears much earlier than the beginning of apoptotic wave after heat stress warrants its theoretical rationality and technical accessibility for biochemical application. Basically, MTA1 participates in the maintenance of early apoptotic balance induced by hyperthermal stimulation by elevating the deacetylation level of p53, a master regulator responsible for the initial phase of germ cell apoptosis induced by hyperthermia. These knowledges collectively promote our belief that information from future experiments designed to further study MTA1 during spermatogenesis will provide a scientific basis for the development of a novel biomarker for early diagnosis of testicular detriment in varicoceles, which should lead to improved outcomes in this progressive pathology.
Collapse
Affiliation(s)
- Sheng-jie Guo
- Department of Urology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, PR China
| | | | | |
Collapse
|
28
|
Sankaran D, Pakala SB, Nair VS, Sirigiri DNR, Cyanam D, Ha NH, Li DQ, Santhoshkumar TR, Pillai MR, Kumar R. Mechanism of MTA1 protein overexpression-linked invasion: MTA1 regulation of hyaluronan-mediated motility receptor (HMMR) expression and function. J Biol Chem 2012; 287:5483-91. [PMID: 22203674 PMCID: PMC3285325 DOI: 10.1074/jbc.m111.324632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/27/2011] [Indexed: 11/06/2022] Open
Abstract
Even though the hyaluronan-mediated motility receptor (HMMR), a cell surface oncogenic protein, is widely up-regulated in human cancers and correlates well with cell motility and invasion, the underlying molecular and nature of its putative upstream regulation remain unknown. Here, we found for the first time that MTA1 (metastatic tumor antigen 1), a master chromatin modifier, regulates the expression of HMMR and, consequently, its function in breast cancer cell motility and invasiveness. We recognized a positive correlation between the levels of MTA1 and HMMR in human cancer. Furthermore, MTA1 is required for optimal expression of HMMR. The underlying mechanism includes interaction of the MTA1·RNA polymerase II·c-Jun coactivator complex with the HMMR promoter to stimulates its transcription. Accordingly, selective siRNA-mediated knockdown of HMMR in breast cancer cells substantially reduces the invasion and migration of cells. These findings reveal a regulatory role for MTA1 as an upstream coactivator of HMMR expression and resulting biological phenotypes.
Collapse
Affiliation(s)
- Deivendran Sankaran
- From the Integrated Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India and
| | - Suresh B. Pakala
- the Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, D. C. 20037
| | - Vasudha S. Nair
- the Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, D. C. 20037
| | - Divijendra Natha Reddy Sirigiri
- the Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, D. C. 20037
| | - Dinesh Cyanam
- the Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, D. C. 20037
| | - Ngoc-Han Ha
- the Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, D. C. 20037
| | - Da-Qiang Li
- the Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, D. C. 20037
| | - T. R. Santhoshkumar
- From the Integrated Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India and
| | - M. Radhakrishna Pillai
- From the Integrated Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India and
| | - Rakesh Kumar
- From the Integrated Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India and
- the Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, D. C. 20037
| |
Collapse
|
29
|
Li DQ, Pakala SB, Nair SS, Eswaran J, Kumar R. Metastasis-associated protein 1/nucleosome remodeling and histone deacetylase complex in cancer. Cancer Res 2012; 72:387-94. [PMID: 22253283 PMCID: PMC3261506 DOI: 10.1158/0008-5472.can-11-2345] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer cells frequently exhibit deregulation of coregulatory molecules to drive the process of growth and metastasis. One such group of ubiquitously expressed coregulators is the metastasis-associated protein (MTA) family, a critical component of the nucleosome remodeling and histone deacetylase (NuRD) complex. MTA1 occupies a special place in cancer biology because of its dual corepressor or coactivator nature and widespread overexpression in human cancers. Here, we highlight recent advances in our understanding of the vital roles of MTA1 on transformation, epithelial-mesenchymal transition, and the functions of key cancer-relevant molecules such as a nexus of multiple oncogenes and tumor suppressors. In addition to its paramount role in oncogenesis, we reveal several new physiologic functions of MTA1 related to DNA damage, inflammatory responses, and infection, in which MTA1 functions as a permissive "gate keeper" for cancer-causing parasites. Further, these discoveries unraveled the versatile multidimensional modes of action of MTA1, which are independent of the NuRD complex and/or transcription. Given the emerging roles of MTA1 in DNA repair, inflammation, and parasitism, we discuss the possibility of MTA1-targeted therapy for use not only in combating cancer but also in other inflammation and pathogen-driven pathologic conditions.
Collapse
Affiliation(s)
- Da-Qiang Li
- Department of Biochemistry and Molecular Biology, George Washington University, Washington, DC 20037, USA
| | - Suresh B. Pakala
- Department of Biochemistry and Molecular Biology, George Washington University, Washington, DC 20037, USA
| | - Sujit S. Nair
- Department of Biochemistry and Molecular Biology, George Washington University, Washington, DC 20037, USA
| | - Jeyanthy Eswaran
- Department of Biochemistry and Molecular Biology, George Washington University, Washington, DC 20037, USA
- McCormick Genomic and Proteomic Center, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Rakesh Kumar
- Department of Biochemistry and Molecular Biology, George Washington University, Washington, DC 20037, USA
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| |
Collapse
|
30
|
Nair SS, Bommana A, Pakala SB, Ohshiro K, Lyon AJ, Suttiprapa S, Periago MV, Laha T, Hotez PJ, Bethony JM, Sripa B, Brindley PJ, Kumar R. Inflammatory response to liver fluke Opisthorchis viverrini in mice depends on host master coregulator MTA1, a marker for parasite-induced cholangiocarcinoma in humans. Hepatology 2011; 54:1388-97. [PMID: 21725997 PMCID: PMC3184196 DOI: 10.1002/hep.24518] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/12/2011] [Indexed: 12/26/2022]
Abstract
UNLABELLED Based on the recently established role for the master coregulator MTA1 and MTA1-containing nuclear remodeling complexes in oncogenesis and inflammation, we explored the links between parasitism by the carcinogenic liver fluke Opisthorchis viverrini and this coregulator using both an Mta1(-/-) mouse model of infection and a tissue microarray of liver fluke-induced human cholangiocarcinomas (CCAs). Intense foci of inflammation and periductal fibrosis in the liver and kidneys of wild-type Mta1(+/+) mice were evident at 23 days postinfection with O. viverrini. In contrast, little inflammatory response was observed in the same organs of infected Mta1(-/-) mice. Livers of infected Mta1(+/+) mice revealed strong up-regulation of fibrosis-associated markers such as cytokeratins 18 and 19 and annexin 2, as determined both by immunostaining and by reverse-transcription polymerase chain reaction compared with infected Mta1(-/-) mice. CD4 expression was up-regulated by infection in the livers of both experimental groups; however, its levels were several-fold higher in the Mta1(+/+) mice than in infected Mta1(-/-) mice. Mta1(-/-) infected mice also exhibited significantly higher systemic and hepatic levels of host cytokines such as interleukin (IL)-12p70, IL-10, and interferon-γ compared with the levels of these cytokines in the Mta1(+/+) mice, suggesting an essential role of MTA1 in the cross-regulation of the Th1 and Th2 responses, presumably due to chromatin remodeling of the target chromatin genes. Immunohistochemical analysis of ≈ 300 liver tissue cores from confirmed cases of O. viverrini-induced CCA showed that MTA1 expression was elevated in >80% of the specimens. CONCLUSION These findings suggest that MTA1 status plays an important role in conferring an optimal cytokine response in mice following infection with O. viverrini and is a major player in parasite-induced CCA in humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Sutas Suttiprapa
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC, 20037, USA
| | - Maria V Periago
- Human Hookworm Vaccine Initiative Laboratório de Imunologia Celular Molecular, Belo Horizonte-MG, CEP 30190-002, Brazil
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Peter J. Hotez
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC, 20037, USA
| | - Jeffrey M Bethony
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC, 20037, USA
- Human Hookworm Vaccine Initiative Laboratório de Imunologia Celular Molecular, Belo Horizonte-MG, CEP 30190-002, Brazil
| | - Banchob Sripa
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC, 20037, USA
| | | |
Collapse
|
31
|
Nair SS, Bommana A, Bethony JM, Lyon AJ, Ohshiro K, Pakala SB, Rinaldi G, Keegan B, Suttiprapa S, Periago MV, Hotez PJ, Brindley PJ, Kumar R. The metastasis-associated protein-1 gene encodes a host permissive factor for schistosomiasis, a leading global cause of inflammation and cancer. Hepatology 2011; 54:285-95. [PMID: 21488078 PMCID: PMC3125413 DOI: 10.1002/hep.24354] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 04/03/2011] [Indexed: 01/07/2023]
Abstract
UNLABELLED Schistosoma haematobium is responsible for two-thirds of the world's 200 million to 400 million cases of human schistosomiasis. It is a group 1 carcinogen and a leading cause of bladder cancer that occurs after years of chronic inflammation, fibrosis, and hyperproliferation in the host liver. The coevolution of blood flukes of the genus Schistosoma and their human hosts is paradigmatic of long-term parasite development, survival, and maintenance in mammals. However, the contribution of host genes, especially those discrete from the immune system, necessary for parasite establishment and development remains poorly understood. This study investigated the role of metastasis-associated protein-1 gene (Mta1) product in the survival of S. haematobium and productive infection in the host. Using a Mta-1 null mouse model, here we provide genetic evidence to suggest that MTA1 expression positively influences survival and/or maturation of schistosomes in the host to patency, as we reproducibly recovered significantly fewer S. haematobium worms and eggs from Mta1-/- mice than wild-type mice. In addition, we found a distinct loss of cytokine interdependence and aberrant Th1 and Th2 cytokine responses in the Mta1-/- mice compared to age-matched wild-type mice. Thus, utilizing this Mta1-null mouse model, we identified a distinct contribution of the mammalian MTA1 in establishing a productive host-parasite interaction and thus revealed a host factor critical for the optimal survival of schistosomes and successful parasitism. Moreover, MTA1 appears to play a significant role in driving inflammatory responses to schistosome egg-induced hepatic granulomata reactions, and thus offers a survival cue for parasitism as well as an obligatory contribution of liver in schistosomiasis. CONCLUSION These findings raise the possibility to develop intervention strategies targeting MTA1 to reduce the global burden of schistosomiasis, inflammation, and neoplasia.
Collapse
|
32
|
Ghanta KS, Pakala SB, Reddy SDN, Li DQ, Nair SS, Kumar R. MTA1 coregulation of transglutaminase 2 expression and function during inflammatory response. J Biol Chem 2011; 286:7132-8. [PMID: 21156794 PMCID: PMC3044970 DOI: 10.1074/jbc.m110.199273] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 12/05/2010] [Indexed: 12/26/2022] Open
Abstract
Although both metastatic tumor antigen 1 (MTA1), a master chromatin modifier, and transglutaminase 2 (TG2), a multifunctional enzyme, are known to be activated during inflammation, it remains unknown whether these molecules regulate inflammatory response in a coordinated manner. Here we investigated the role of MTA1 in the regulation of TG2 expression in bacterial lipopolysaccharide (LPS)-stimulated mammalian cells. While studying the impact of MTA1 status on global gene expression, we unexpectedly discovered that MTA1 depletion impairs the basal as well as the LPS-induced expression of TG2 in multiple experimental systems. We found that TG2 is a chromatin target of MTA1 and of NF-κB signaling in LPS-stimulated cells. In addition, LPS-mediated stimulation of TG2 expression is accompanied by the enhanced recruitment of MTA1, p65RelA, and RNA polymerase II to the NF-κB consensus sites in the TG2 promoter. Interestingly, both the recruitment of p65 and TG2 expression are effectively blocked by a pharmacological inhibitor of the NF-κB pathway. These findings reveal an obligatory coregulatory role of MTA1 in the regulation of TG2 expression and of the MTA1-TG2 pathway, at least in part, in LPS modulation of the NF-κB signaling in stimulated macrophages.
Collapse
Affiliation(s)
- Krishna Sumanth Ghanta
- From the Department of Biochemistry and Molecular Biology and Institute of Coregulator Biology, The George Washington University Medical Center, Washington, D. C. 20037
| | - Suresh B. Pakala
- From the Department of Biochemistry and Molecular Biology and Institute of Coregulator Biology, The George Washington University Medical Center, Washington, D. C. 20037
| | - Sirigiri Divijendra Natha Reddy
- From the Department of Biochemistry and Molecular Biology and Institute of Coregulator Biology, The George Washington University Medical Center, Washington, D. C. 20037
| | - Da-Qiang Li
- From the Department of Biochemistry and Molecular Biology and Institute of Coregulator Biology, The George Washington University Medical Center, Washington, D. C. 20037
| | - Sujit S. Nair
- From the Department of Biochemistry and Molecular Biology and Institute of Coregulator Biology, The George Washington University Medical Center, Washington, D. C. 20037
| | - Rakesh Kumar
- From the Department of Biochemistry and Molecular Biology and Institute of Coregulator Biology, The George Washington University Medical Center, Washington, D. C. 20037
| |
Collapse
|