1
|
Xie TQ, Yan X, Yan JH, Yu YJ, Liu XH, Feng J, Liu CJ, Zhang XZ. Construction of Iron-Scavenging Hydrogel via Thiol-Ene Click Chemistry for Antibiotic-Free Treatment of Bacterial Wound Infection. Adv Healthc Mater 2024; 13:e2401118. [PMID: 38979865 DOI: 10.1002/adhm.202401118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Bacteria, especially drug-resistant strains, can quickly cause wound infections, leading to delayed healing and fatal risk in clinics. With the growing need for alternative antibacterial approaches that rely less on antibiotics or eliminate their use altogether, a novel antibacterial hydrogel named Ovtgel is developed. Ovtgel is formulated by chemically crosslinking thiol-modified ovotransferrin (Ovt), a member of the transferrin family found in egg white, with olefin-modified agarose through thiol-ene click chemistry. Ovt is designed to sequester ferric ions essential for bacterial survival and protect wound tissues from damages caused by the reactive oxygen species (ROS) generated in Fenton reactions. Experimental data have shown that Ovtgel significantly enhances wound healing by inhibiting bacterial growth and shielding tissues from ROS-induced harms. Unlike traditional antibiotics, Ovtgel targets essential trace elements required for bacterial survival in the host environment, preventing the development of drug resistance in pathogenic bacteria. Ovtgel exhibits excellent biocompatibility due to the homology of Ovt to mammalian transferrin. This hydrogel has the potential to serve as an effective antibiotic-free solution for combating bacterial infections.
Collapse
Affiliation(s)
- Tian-Qiu Xie
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiao Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jian-Hua Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Yun-Jian Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xin-Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Chuan-Jun Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
2
|
Khan S, Cho WC, Hussain A, Azimi S, Babadaei MMN, Bloukh SH, Edis Z, Saeed M, Ten Hagen TLM, Ahmadi H, Ale-Ebrahim M, Jaragh-Alhadad LA, Khan RH, Falahati M, Zhang X, Bai Q. The interaction mechanism of plasma iron transport protein transferrin with nanoparticles. Int J Biol Macromol 2023; 240:124441. [PMID: 37060978 DOI: 10.1016/j.ijbiomac.2023.124441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
In the biological systems, exposure to nanoparticles (NPs) can cause complicated interactions with proteins, the formation of protein corona and structural changes to proteins. These changes depend not only on NP physicochemical properties, but also on the intrinsic stability of protein molecules. Although, the formation of protein corona on the surface of NPs and the underlying mechanisms have been fully explored in various studies, no comprehensive review has discussed the direct biochemical and biophysical interactions between NPs and blood proteins, particularly transferrin. In this review, we first discussed the interaction of NPs with proteins to comprehend the effects of physicochemical properties of NPs on protein structure. We then overviewed the transferrin structure and its direct interaction with NPs to explore transferrin stability and its iron ion (Fe3+) release behavior. Afterwards, we surveyed the various biological functions of transferrin, such as Fe3+ binding, receptor binding, antibacterial activity, growth, differentiation, and coagulation, followed by the application of transferrin-modified NPs in the development of drug delivery systems for cancer therapy. We believe that this study can provide useful insight into the design and development of bioconjugates containing NP-transferrin for potential biomedical applications.
Collapse
Affiliation(s)
- Suliman Khan
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Medical Lab Technology, The University of Haripur, Pakistan
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Sadaf Azimi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Zehra Edis
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Mesha Saeed
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands
| | - Hosein Ahmadi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP 202002, India.
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands.
| | - Xiaoju Zhang
- Department of Respiratory and Clinical Care Medicine, Henan Provisional People's Hospital, Zhengzhou, China.
| | - Qian Bai
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Hendricks K, Martines RB, Bielamowicz H, Boyer AE, Long S, Byers P, Stoddard RA, Taylor K, Kolton CB, Gallegos-Candela M, Roberts C, DeLeon-Carnes M, Salzer J, Dawson P, Brown D, Templeton-LeBouf L, Maves RC, Gulvik C, Lonsway D, Barr JR, Bower WA, Hoffmaster A. Welder's Anthrax: A Tale of 2 Cases. Clin Infect Dis 2022; 75:S354-S363. [PMID: 36251561 PMCID: PMC9649440 DOI: 10.1093/cid/ciac535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Bacillus anthracis has traditionally been considered the etiologic agent of anthrax. However, anthrax-like illness has been documented in welders and other metal workers infected with Bacillus cereus group spp. harboring pXO1 virulence genes that produce anthrax toxins. We present 2 recent cases of severe pneumonia in welders with B. cereus group infections and discuss potential risk factors for infection and treatment options, including antitoxin.
Collapse
Affiliation(s)
- Katherine Hendricks
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Roosecelis Brasil Martines
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Hannah Bielamowicz
- Pathology Department, Fort Bend County Medical Examiner Office, Rosenberg, Texas, USA
| | - Anne E Boyer
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen Long
- Houston Laboratory Response Network, Houston Health Department, Houston, Texas, USA
| | - Paul Byers
- Office of Communicable Diseases, Mississippi State Department of Health, Jackson, Mississippi, USA
| | - Robyn A Stoddard
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kathryn Taylor
- Office of Communicable Diseases, Mississippi State Department of Health, Jackson, Mississippi, USA
| | - Cari Beesley Kolton
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Maribel Gallegos-Candela
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christine Roberts
- Office of Communicable Diseases, Mississippi State Department of Health, Jackson, Mississippi, USA
| | - Marlene DeLeon-Carnes
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Johanna Salzer
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Patrick Dawson
- Office of Science, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dannette Brown
- King Daughters Medical Center, Brookhaven, Mississippi, USA
| | | | - Ryan C Maves
- Departments of Infectious Diseases and Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Chris Gulvik
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David Lonsway
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John R Barr
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - William A Bower
- Correspondence: W. A. Bower, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, MS H24-12, Atlanta, GA 30329 ()
| | - Alex Hoffmaster
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Zauberman A, Gur D, Levy Y, Aftalion M, Vagima Y, Tidhar A, Chitlaru T, Mamroud E. Postexposure Administration of a Yersinia pestis Live Vaccine for Potentiation of Second-Line Antibiotic Treatment Against Pneumonic Plague. J Infect Dis 2020; 220:1147-1151. [PMID: 31095689 DOI: 10.1093/infdis/jiz260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/15/2019] [Indexed: 01/08/2023] Open
Abstract
Pneumonic plague, caused by Yersinia pestis, is a rapidly progressing contagious disease. In the plague mouse model, a single immunization with the EV76 live attenuated Y. pestis strain rapidly induced the expression of hemopexin and haptoglobin in the lung and serum, both of which are important in iron sequestration. Immunization against a concomitant lethal Y. pestis respiratory challenge was correlated with temporary inhibition of disease progression. Combining EV76-immunization and second-line antibiotic treatment, which are individually insufficient, led to a synergistic protective effect that represents a proof of concept for efficient combinational therapy in cases of infection with antibiotic-resistant strains.
Collapse
Affiliation(s)
- Ayelet Zauberman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona
| | - David Gur
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona
| | - Yinon Levy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona
| | - Yaron Vagima
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona
| | - Avital Tidhar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona
| |
Collapse
|
5
|
Iatsenko I, Marra A, Boquete JP, Peña J, Lemaitre B. Iron sequestration by transferrin 1 mediates nutritional immunity in Drosophila melanogaster. Proc Natl Acad Sci U S A 2020; 117:7317-7325. [PMID: 32188787 PMCID: PMC7132258 DOI: 10.1073/pnas.1914830117] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Iron sequestration is a recognized innate immune mechanism against invading pathogens mediated by iron-binding proteins called transferrins. Despite many studies on antimicrobial activity of transferrins in vitro, their specific in vivo functions are poorly understood. Here we use Drosophila melanogaster as an in vivo model to investigate the role of transferrins in host defense. We find that systemic infections with a variety of pathogens trigger a hypoferremic response in flies, namely, iron withdrawal from the hemolymph and accumulation in the fat body. Notably, this hypoferremia to infection requires Drosophila nuclear factor κB (NF-κB) immune pathways, Toll and Imd, revealing that these pathways also mediate nutritional immunity in flies. Next, we show that the iron transporter Tsf1 is induced by infections downstream of the Toll and Imd pathways and is necessary for iron relocation from the hemolymph to the fat body. Consistent with elevated iron levels in the hemolymph, Tsf1 mutants exhibited increased susceptibility to Pseudomonas bacteria and Mucorales fungi, which could be rescued by chemical chelation of iron. Furthermore, using siderophore-deficient Pseudomonas aeruginosa, we discover that the siderophore pyoverdine is necessary for pathogenesis in wild-type flies, but it becomes dispensable in Tsf1 mutants due to excessive iron present in the hemolymph of these flies. As such, our study reveals that, similar to mammals, Drosophila uses iron limitation as an immune defense mechanism mediated by conserved iron-transporting proteins transferrins. Our in vivo work, together with accumulating in vitro studies, supports the immune role of insect transferrins against infections via an iron withholding strategy.
Collapse
Affiliation(s)
- Igor Iatsenko
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| | - Alice Marra
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jean-Philippe Boquete
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jasquelin Peña
- Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
6
|
Group IIA-Secreted Phospholipase A 2 in Human Serum Kills Commensal but Not Clinical Enterococcus faecium Isolates. Infect Immun 2018; 86:IAI.00180-18. [PMID: 29784864 DOI: 10.1128/iai.00180-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/18/2018] [Indexed: 11/20/2022] Open
Abstract
Human innate immunity employs cellular and humoral mechanisms to facilitate rapid killing of invading bacteria. The direct killing of bacteria by human serum is attributed mainly to the activity of the complement system, which forms pores in Gram-negative bacteria. Although Gram-positive bacteria are considered resistant to killing by serum, we uncover here that normal human serum effectively kills Enterococcus faecium Comparison of a well-characterized collection of commensal and clinical E. faecium isolates revealed that human serum specifically kills commensal E. faecium strains isolated from normal gut microbiota but not clinical isolates. Inhibitor studies show that the human group IIA secreted phospholipase A2 (hGIIA), but not complement, is responsible for killing of commensal E. faecium strains in human normal serum. This is remarkable since the hGIIA concentration in "noninflamed" serum was considered too low to be bactericidal against Gram-positive bacteria. Mechanistic studies showed that serum hGIIA specifically causes permeabilization of commensal E. faecium membranes. Altogether, we find that a normal concentration of hGIIA in serum effectively kills commensal E. faecium and that resistance of clinical E. faecium to hGIIA could have contributed to the ability of these strains to become opportunistic pathogens in hospitalized patients.
Collapse
|
7
|
Nairz M, Dichtl S, Schroll A, Haschka D, Tymoszuk P, Theurl I, Weiss G. Iron and innate antimicrobial immunity-Depriving the pathogen, defending the host. J Trace Elem Med Biol 2018; 48:118-133. [PMID: 29773170 DOI: 10.1016/j.jtemb.2018.03.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/25/2018] [Accepted: 03/06/2018] [Indexed: 02/08/2023]
Abstract
The acute-phase response is triggered by the presence of infectious agents and danger signals which indicate hazards for the integrity of the mammalian body. One central feature of this response is the sequestration of iron into storage compartments including macrophages. This limits the availability of this essential nutrient for circulating pathogens, a host defence strategy known as 'nutritional immunity'. Iron metabolism and the immune response are intimately linked. In infections, the availability of iron affects both the efficacy of antimicrobial immune pathways and pathogen proliferation. However, host strategies to withhold iron from microbes vary according to the localization of pathogens: Infections with extracellular bacteria such as Staphylococcus aureus, Streptococcus, Klebsiella or Yersinia stimulate the expression of the iron-regulatory hormone hepcidin which targets the cellular iron-exporter ferroportin-1 causing its internalization and blockade of iron egress from absorptive enterocytes in the duodenum and iron-recycling macrophages. This mechanism disrupts both routes of iron delivery to the circulation, contributes to iron sequestration in the mononuclear phagocyte system and mediates the hypoferraemia of the acute phase response subsequently resulting in the development of anaemia of inflammation. When intracellular microbes are present, other strategies of microbial iron withdrawal are needed. For instance, in macrophages harbouring intracellular pathogens such as Chlamydia, Mycobacterium tuberculosis, Listeria monocytogenes or Salmonella Typhimurium, ferroportin-1-mediated iron export is turned on for the removal of iron from infected cells. This also leads to reduced iron availability for intra-macrophage pathogens which inhibits their growth and in parallel strengthens anti-microbial effector pathways of macrophages including the formation of inducible nitric oxide synthase and tumour necrosis factor. Iron plays a key role in infectious diseases both as modulator of the innate immune response and as nutrient for microbes. We need to gain a more comprehensive understanding of how the body can differentially respond to infection by extra- or intracellular pathogens. This knowledge may allow us to modulate mammalian iron homeostasis pharmaceutically and to target iron-acquisition systems of pathogens, thus enabling us to treat infections with novel strategies that act independent of established antimicrobials.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria.
| | - Stefanie Dichtl
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Andrea Schroll
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - David Haschka
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Igor Theurl
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| |
Collapse
|
8
|
Saxena M, Loza-Rosas SA, Gaur K, Sharma S, Pérez Otero SC, Tinoco AD. Exploring titanium(IV) chemical proximity to iron(III) to elucidate a function for Ti(IV) in the human body. Coord Chem Rev 2018; 363:109-125. [PMID: 30270932 PMCID: PMC6159949 DOI: 10.1016/j.ccr.2018.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite its natural abundance and widespread use as food, paint additive, and in bone implants, no specific biological function of titanium is known in the human body. High concentrations of Ti(IV) could result in cellular toxicity, however, the absence of Ti toxicity in the blood of patients with titanium bone implants indicates the presence of one or more biological mechanisms to mitigate toxicity. Similar to Fe(III), Ti(IV) in blood binds to the iron transport protein serum transferrin (sTf), which gives credence to the possibility of its cellular uptake mechanism by transferrin-directed endocytosis. However, once inside the cell, how sTf bound Ti(IV) is released into the cytoplasm, utilized, or stored remain largely unknown. To explain the molecular mechanisms involved in Ti use in cells we have drawn parallels with those for Fe(III). Based on its chemical similarities with Fe(III), we compare the biological coordination chemistry of Fe(III) and Ti(IV) and hypothesize that Ti(IV) can bind to similar intracellular biomolecules. The comparable ligand affinity profiles suggest that at high Ti(IV) concentrations, Ti(IV) could compete with Fe(III) to bind to biomolecules and would inhibit Fe bioavailability. At the typical Ti concentrations in the body, Ti might exist as a labile pool of Ti(IV) in cells, similar to Fe. Ti could exhibit different types of properties that would determine its cellular functions. We predict some of these functions to mimic those of Fe in the cell and others to be specific to Ti. Bone and cellular speciation and localization studies hint toward various intracellular targets of Ti like phosphoproteins, DNA, ribonucleotide reductase, and ferritin. However, to decipher the exact mechanisms of how Ti might mediate these roles, development of innovative and more sensitive methods are required to track this difficult to trace metal in vivo.
Collapse
Affiliation(s)
- Manoj Saxena
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Sergio A. Loza-Rosas
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Kavita Gaur
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Shweta Sharma
- Department of Environmental Sciences, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Sofia C. Pérez Otero
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Arthur D. Tinoco
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| |
Collapse
|
9
|
Reyes-López FE, Aerts J, Vallejos-Vidal E, Ampe B, Dierckens K, Tort L, Bossier P. Modulation of Innate Immune-Related Genes and Glucocorticoid Synthesis in Gnotobiotic Full-Sibling European Sea Bass ( Dicentrarchus labrax) Larvae Challenged With Vibrio anguillarum. Front Immunol 2018; 9:914. [PMID: 29867929 PMCID: PMC5953322 DOI: 10.3389/fimmu.2018.00914] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/12/2018] [Indexed: 01/02/2023] Open
Abstract
Although several efforts have been made to describe the immunoendocrine interaction in fish, there are no studies to date focusing on the characterization of the immune response and glucocorticoid synthesis using the host-pathogen interaction on larval stage as an early developmental stage model of study. Therefore, the aim of this study was to evaluate the glucocorticoid synthesis and the modulation of stress- and innate immune-related genes in European sea bass (Dicentrarchus labrax) larvae challenged with Vibrio anguillarum. For this purpose, we challenged by bath full-sibling gnotobiotic sea bass larvae with 107 CFU mL-1 of V. anguillarum strain HI 610 on day 5 post-hatching (dph). The mortality was monitored up to the end of the experiment [120 hours post-challenge (hpc)]. While no variations were registered in non-challenged larvae maintained under gnotobiotic conditions (93.20% survival at 120 hpc), in the challenged group a constant and sustained mortality was observed from 36 hpc onward, dropping to 18.31% survival at 120 hpc. Glucocorticoid quantification and expression analysis of stress- and innate immunity-related genes were carried out in single larvae. The increase of cortisol, cortisone and 20β-dihydrocortisone was observed at 120 hpc, although did not influence upon the modulation of stress-related genes (glucocorticoid receptor 1 [gr1], gr2, and heat shock protein 70 [hsp70]). On the other hand, the expression of lysozyme, transferrin, and il-10 differentially increased at 120 hpc together with a marked upregulation of the pro-inflammatory cytokines (il-1β and il-8) and hepcidin, suggesting a late activation of defense mechanisms against V. anguillarum. Importantly, this response coincided with the lowest survival observed in challenged groups. Therefore, the increase in markers associated with glucocorticoid synthesis together with the upregulation of genes associated with the anti-inflammatory response suggests that in larvae infected with V. anguillarum a pro-inflammatory response at systemic level takes place, which then leads to the participation of other physiological mechanisms at systemic level to counteract the effect and the consequences of such response. However, this late systemic response could be related to the previous high mortality observed in sea bass larvae challenged with V. anguillarum.
Collapse
Affiliation(s)
- Felipe E Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Johan Aerts
- Stress Physiology Research Group, Faculty of Pharmaceutical Sciences, Ghent University, Ostend, Belgium.,Stress Physiology Research Group, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Ostend, Belgium
| | - Eva Vallejos-Vidal
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Bart Ampe
- Biostatistics and Data Modeling, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | - Kristof Dierckens
- Laboratory of Aquaculture & Artemia Reference Center (ARC), Ghent University, Gent, Belgium
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center (ARC), Ghent University, Gent, Belgium
| |
Collapse
|
10
|
Virulence Role of the GlcNAc Side Chain of the Lancefield Cell Wall Carbohydrate Antigen in Non-M1-Serotype Group A Streptococcus. mBio 2018; 9:mBio.02294-17. [PMID: 29382733 PMCID: PMC5790915 DOI: 10.1128/mbio.02294-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Classification of streptococci is based upon expression of unique cell wall carbohydrate antigens. All serotypes of group A Streptococcus (GAS; Streptococcus pyogenes), a leading cause of infection-related mortality worldwide, express the group A carbohydrate (GAC). GAC, the classical Lancefield antigen, is comprised of a polyrhamnose backbone with N-acetylglucosamine (GlcNAc) side chains. The immunodominant GlcNAc epitope of GAC is the basis of all rapid diagnostic testing for GAS infection. We previously identified the 12-gene GAC biosynthesis gene cluster and determined that the glycosyltransferase GacI was required for addition of the GlcNAc side chain to the polyrhamnose core. Loss of the GAC GlcNAc epitope in serotype M1 GAS resulted in attenuated virulence in two animal infection models and increased GAS sensitivity to killing by whole human blood, serum, neutrophils, and antimicrobial peptides. Here, we report that the GAC biosynthesis gene cluster is ubiquitous among 520 GAS isolates from global sources, representing 105 GAS emm serotypes. Isogenic ΔgacI mutants were constructed in M2, M3, M4, M28, and M89 backgrounds and displayed an array of phenotypes in susceptibility to killing by whole human blood, baby rabbit serum, human platelet releasate, human neutrophils, and antimicrobial peptide LL-37. The contribution of the GlcNAc side chain to GAS survival in vivo also varied by strain, demonstrating that it is not a prerequisite for virulence in the murine infection model. Thus, the relative contribution of GAC to virulence in non-M1 serotypes appears to depend on the quorum of other virulence factors that each strain possesses.IMPORTANCE The Lancefield group A carbohydrate (GAC) is the species-defining antigen for group A Streptococcus (GAS), comprising ~50% of the cell wall of this major human pathogen. We previously showed that the GlcNAc side chain of GAC contributes to the innate immune resistance and animal virulence phenotypes of the globally disseminated strain of serotype M1 GAS. Here, we use isogenic mutagenesis to examine the role of GAC GlcNAc in five additional medically relevant GAS serotypes. Overall, the GlcNAc side chain of GAC contributes to the innate immune resistance of GAS, but the relative contribution varies among individual strains. Moreover, the GAC GlcNAc side chain is not a universal prerequisite for GAS virulence in the animal model.
Collapse
|
11
|
Perera NCN, Godahewa GI, Hwang JY, Kwon MG, Hwang SD, Lee J. Molecular, structural, and functional comparison of N lobe and C lobe of the transferrin from rock bream, Oplegnathus fasciatus, with respect to its immune response. FISH & SHELLFISH IMMUNOLOGY 2017; 68:299-309. [PMID: 28732766 DOI: 10.1016/j.fsi.2017.07.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/07/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
The iron-withholding strategy of innate immunity is an effective antimicrobial defense mechanism that combats microbial infection by depriving microorganisms of Fe3+, which is important for their growth and propagation. Transferrins (Tfs) are a group of iron-binding proteins that exert their antimicrobial function through Fe3+ sequestration. The current study describes both structural and functional characteristics of a transferrin ortholog from rock bream Oplegnathus fasciatus (RbTf). The RbTf cDNA possesses an open reading frame (ORF) of 2079 bp encoding 693 amino acids. It has a molecular mass of approximately 74 kDa and an isoelectric point of 5.4. In silico analysis revealed that RbTf has two conserved domains: N-terminal domain and C-terminal domain. Pairwise homology analysis and phylogenetic analysis revealed that RbTf shared the highest identity (82.6%) with Dicentrarchus labrax Tf. According to the genomic analysis, RbTf possesses 17 exons and 16 introns, similar to the other orthologs. Here, we cloned the N terminal and C terminal domains of RbTf to evaluate their distinct functional features. Results obtained through the CAS (chrome azurol S) assay confirmed the iron-binding ability of the RbTf, and it was further determined that the iron-binding ability of rRbTfN was higher than that of rRbTfC. The antimicrobial functions of the rRbTfN and the rRbTfC were confirmed via the iron-dependent bacterial growth inhibition assay. Tissue distribution profiling revealed a ubiquitous expression with intense expression in the liver. Temporal assessment revealed that RbTf increased after stimulation of LPS, Edwardsiella tarda, and Streptococcus iniae post injection (p.i.). These findings demonstrated that RbTf is an important antimicrobial protein that can combat bacterial pathogens.
Collapse
Affiliation(s)
- N C N Perera
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - G I Godahewa
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jee Youn Hwang
- Aquatic Life Disease Control Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Mun Gyeong Kwon
- Aquatic Life Disease Control Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Seong Don Hwang
- Aquatic Life Disease Control Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
12
|
Mooney D, Edgar D, Einarsson G, Downey D, Elborn S, Tunney M. Chronic lung disease in common variable immune deficiency (CVID): A pathophysiological role for microbial and non-B cell immune factors. Crit Rev Microbiol 2017; 43:508-519. [PMID: 28068853 DOI: 10.1080/1040841x.2016.1268568] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
One of the most common and most severe forms of primary antibody deficiency encountered in the clinical setting is a heterogeneous group of syndromes termed common variable immune deficiency (CVID). This disorder is characterized by reduced immunoglobulin production and increased susceptibility to infection, particularly of the respiratory tract. Infection and subsequent immunological/inflammatory processes may contribute to the development of pulmonary complications such as bronchiectasis and interstitial lung disease. Immunoglobulin replacement and/or antibiotic therapy, to prevent infection, are routinely prescribed treatments. However, chronic lung disease, the major cause of morbidity and mortality in this patient cohort, may still progress. This clinical progression suggests that pathogens recalcitrant to currently prescribed treatments and other immunological defects may be contributing to the development of pulmonary disease. This review describes the potential role of microbiological and non-B cell immunological factors, including T-cells, neutrophils, complement, toll like receptors, and antimicrobial peptides, in the pathogenicity of chronic lung disease in patients with CVID.
Collapse
Affiliation(s)
- Denver Mooney
- a Halo Research Group, Queen's University Belfast , Belfast , United Kingdom
- b Centre for Experimental Medicine, School of Medicine , Dentistry and Biomedical Sciences. Queen's University Belfast , Belfast , United Kingdom
| | - David Edgar
- c T he Royal Hospitals, Belfast Health and Social Care Trust , Regional Immunology Service , Belfast , United Kingdom
| | - Gisli Einarsson
- a Halo Research Group, Queen's University Belfast , Belfast , United Kingdom
- b Centre for Experimental Medicine, School of Medicine , Dentistry and Biomedical Sciences. Queen's University Belfast , Belfast , United Kingdom
| | - Damian Downey
- d Belfast City Hospital, Belfast Health and Social Care Trust , Regional Respiratory Centre , Belfast , United Kingdom
| | - Stuart Elborn
- a Halo Research Group, Queen's University Belfast , Belfast , United Kingdom
- b Centre for Experimental Medicine, School of Medicine , Dentistry and Biomedical Sciences. Queen's University Belfast , Belfast , United Kingdom
| | - Michael Tunney
- a Halo Research Group, Queen's University Belfast , Belfast , United Kingdom
- e School of Pharmacy , Queen's University Belfast , Belfast , United Kingdom
| |
Collapse
|
13
|
Zauberman A, Vagima Y, Tidhar A, Aftalion M, Gur D, Rotem S, Chitlaru T, Levy Y, Mamroud E. Host Iron Nutritional Immunity Induced by a Live Yersinia pestis Vaccine Strain Is Associated with Immediate Protection against Plague. Front Cell Infect Microbiol 2017; 7:277. [PMID: 28680860 PMCID: PMC5478729 DOI: 10.3389/fcimb.2017.00277] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/06/2017] [Indexed: 12/29/2022] Open
Abstract
Prompt and effective elicitation of protective immunity is highly relevant for cases of rapidly deteriorating fatal diseases, such as plague, which is caused by Yersinia pestis. Here, we assessed the potential of a live vaccine to induce rapid protection against this infection. We demonstrated that the Y. pestis EV76 live vaccine protected mice against an immediate lethal challenge, limiting the multiplication of the virulent pathogen and its dissemination into circulation. Ex vivo analysis of Y. pestis growth in serum derived from EV76-immunized mice revealed that an antibacterial activity was produced rapidly. This activity was mediated by the host heme- and iron-binding proteins hemopexin and transferrin, and it occurred in strong correlation with the kinetics of hemopexin induction in vivo. We suggest a new concept in which a live vaccine is capable of rapidly inducing iron nutritional immunity, thus limiting the propagation of pathogens. This concept could be exploited to design novel therapeutic interventions.
Collapse
Affiliation(s)
- Ayelet Zauberman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological ResearchNess-Ziona, Israel
| | | | | | | | | | | | | | | | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological ResearchNess-Ziona, Israel
| |
Collapse
|
14
|
Transferrin Impacts Bacillus thuringiensis Biofilm Levels. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3628268. [PMID: 28025643 PMCID: PMC5153491 DOI: 10.1155/2016/3628268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 01/17/2023]
Abstract
The present study examined the impact of transferrin on Bacillus thuringiensis biofilms. Three commercial strains, an environmental strain (33679), the type strain (10792), and an isolate from a diseased insect (700872), were cultured in iron restricted minimal medium. All strains produced biofilm when grown in vinyl plates at 30°C. B. thuringiensis 33679 had a biofilm biomass more than twice the concentration exhibited by the other strains. The addition of transferrin resulted in slightly increased growth yields for 2 of the 3 strains tested, including 33679. In contrast, the addition of 50 μg/mL of transferrin resulted in an 80% decrease in biofilm levels for strain 33679. When the growth temperature was increased to 37°C, the addition of 50 μg/mL of transferrin increased culture turbidity for only strain 33679. Biofilm levels were again decreased in strain 33679 at 37°C. Growth of B. thuringiensis cultures in polystyrene resulted in a decrease in overall growth yields at 30°C, with biofilm levels significantly decreased for 33679 in the presence of transferrin. These findings demonstrate that transferrin impacts biofilm formation in select strains of B. thuringiensis. Identification of these differences in biofilm regulation may be beneficial in elucidating potential virulence mechanisms among the differing strains.
Collapse
|
15
|
Hayrapetyan H, Siezen R, Abee T, Nierop Groot M. Comparative Genomics of Iron-Transporting Systems in Bacillus cereus Strains and Impact of Iron Sources on Growth and Biofilm Formation. Front Microbiol 2016; 7:842. [PMID: 27375568 PMCID: PMC4896950 DOI: 10.3389/fmicb.2016.00842] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/20/2016] [Indexed: 12/18/2022] Open
Abstract
Iron is an important element for bacterial viability, however it is not readily available in most environments. We studied the ability of 20 undomesticated food isolates of Bacillus cereus and two reference strains for capacity to use different (complex) iron sources for growth and biofilm formation. Studies were performed in media containing the iron scavenger 2,2-Bipyridine. Transcriptome analysis using B. cereus ATCC 10987 indeed showed upregulation of predicted iron transporters in the presence of 2,2-Bipyridine, confirming that iron was depleted upon its addition. Next, the impact of iron sources on growth performance of the 22 strains was assessed and correlations between growth stimulation and presence of putative iron transporter systems in the genome sequences were analyzed. All 22 strains effectively used Fe citrate and FeCl3 for growth, and possessed genes for biosynthesis of the siderophore bacillibactin, whereas seven strains lacked genes for synthesis of petrobactin. Hemoglobin could be used by all strains with the exception of one strain that lacked functional petrobactin and IlsA systems. Hemin could be used by the majority of the tested strains (19 of 22). Notably, transferrin, ferritin, and lactoferrin were not commonly used by B. cereus for growth, as these iron sources could be used by 6, 3, and 2 strains, respectively. Furthermore, biofilm formation was found to be affected by the type of iron source used, including stimulation of biofilms at liquid-air interphase (FeCl3 and Fe citrate) and formation of submerged type biofilms (hemin and lactoferrin). Our results show strain variability in the genome-encoded repertoire of iron-transporting systems and differences in efficacy to use complex iron sources for growth and biofilm formation. These features may affect B. cereus survival and persistence in specific niches.
Collapse
Affiliation(s)
- Hasmik Hayrapetyan
- Laboratory of Food Microbiology, Wageningen UniversityWageningen, Netherlands; Top Institute of Food and NutritionWageningen, Netherlands
| | - Roland Siezen
- Top Institute of Food and NutritionWageningen, Netherlands; Microbial Bioinformatics, NIZOEde, Netherlands; Center for Molecular and Biomolecular Informatics, Radboud University Medical CentreNijmegen, Netherlands
| | - Tjakko Abee
- Laboratory of Food Microbiology, Wageningen UniversityWageningen, Netherlands; Top Institute of Food and NutritionWageningen, Netherlands
| | - Masja Nierop Groot
- Top Institute of Food and NutritionWageningen, Netherlands; Wageningen UR Food and Biobased ResearchWageningen, Netherlands
| |
Collapse
|
16
|
Zhou Z, Xu MJ, Gao B. Hepatocytes: a key cell type for innate immunity. Cell Mol Immunol 2015; 13:301-15. [PMID: 26685902 PMCID: PMC4856808 DOI: 10.1038/cmi.2015.97] [Citation(s) in RCA: 298] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023] Open
Abstract
Hepatocytes, the major parenchymal cells in the liver, play pivotal roles in metabolism, detoxification, and protein synthesis. Hepatocytes also activate innate immunity against invading microorganisms by secreting innate immunity proteins. These proteins include bactericidal proteins that directly kill bacteria, opsonins that assist in the phagocytosis of foreign bacteria, iron-sequestering proteins that block iron uptake by bacteria, several soluble factors that regulate lipopolysaccharide signaling, and the coagulation factor fibrinogen that activates innate immunity. In this review, we summarize the wide variety of innate immunity proteins produced by hepatocytes and discuss liver-enriched transcription factors (e.g. hepatocyte nuclear factors and CCAAT/enhancer-binding proteins), pro-inflammatory mediators (e.g. interleukin (IL)-6, IL-22, IL-1β and tumor necrosis factor-α), and downstream signaling pathways (e.g. signal transducer and activator of transcription factor 3 and nuclear factor-κB) that regulate the expression of these innate immunity proteins. We also briefly discuss the dysregulation of these innate immunity proteins in chronic liver disease, which may contribute to an increased susceptibility to bacterial infection in patients with cirrhosis.
Collapse
Affiliation(s)
- Zhou Zhou
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Bethesda, MD, USA
| | - Ming-Jiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Bethesda, MD, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Abstract
Ancient bacteria originated from metal-rich environments. Billions of years of evolution directed these tiny single cell creatures to exploit the versatile properties of metals in catalyzing chemical reactions and biological responses. The result is an entire metallome of proteins that use metal co-factors to facilitate key cellular process that range from the production of energy to the replication of DNA. Two key metals in this regard are iron and zinc, both abundant on Earth but not readily accessible in a human host. Instead, pathogenic bacteria must employ clever ways to acquire these metals. In this review we describe the many elegant ways these bacteria mine, regulate, and craft the use of two key metals (iron and zinc) to build a virulence arsenal that challenges even the most sophisticated immune response.
Collapse
Affiliation(s)
- Li Ma
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77459, USA.
| | | | | |
Collapse
|
18
|
Bruhn KW, Spellberg B. Transferrin-mediated iron sequestration as a novel therapy for bacterial and fungal infections. Curr Opin Microbiol 2015; 27:57-61. [PMID: 26261881 DOI: 10.1016/j.mib.2015.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/10/2015] [Indexed: 10/23/2022]
Abstract
Pathogenic microbes must acquire essential nutrients, including iron, from the host in order to proliferate and cause infections. Iron sequestration is an ancient host antimicrobial strategy. Thus, enhancing iron sequestration is a promising, novel anti-infective strategy. Unfortunately, small molecule iron chelators have proven difficult to develop as anti-infective treatments, in part due to unacceptable toxicities. Iron sequestration in mammals is predominantly mediated by the transferrin family of iron-binding proteins. In this review, we explore the possibility of administering supraphysiological levels of exogenous transferrin as an iron sequestering therapy for infections, which could overcome some of the problems associated with small molecule chelation. Recent studies suggest that transferrin delivery may represent a promising approach to augment both natural resistance and traditional antibiotic therapy.
Collapse
Affiliation(s)
- Kevin W Bruhn
- Department of Molecular Microbiology & Immunology, Keck School of Medicine at the University of Southern California (USC), Los Angeles, CA, United States.
| | - Brad Spellberg
- Department of Medicine, Keck School of Medicine at USC, Los Angeles, United States
| |
Collapse
|
19
|
van Sorge NM, Cole JN, Kuipers K, Henningham A, Aziz RK, Kasirer-Friede A, Lin L, Berends ETM, Davies MR, Dougan G, Zhang F, Dahesh S, Shaw L, Gin J, Cunningham M, Merriman JA, Hütter J, Lepenies B, Rooijakkers SHM, Malley R, Walker MJ, Shattil SJ, Schlievert PM, Choudhury B, Nizet V. The classical lancefield antigen of group a Streptococcus is a virulence determinant with implications for vaccine design. Cell Host Microbe 2015; 15:729-740. [PMID: 24922575 DOI: 10.1016/j.chom.2014.05.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 12/19/2022]
Abstract
Group A Streptococcus (GAS) is a leading cause of infection-related mortality in humans. All GAS serotypes express the Lancefield group A carbohydrate (GAC), comprising a polyrhamnose backbone with an immunodominant N-acetylglucosamine (GlcNAc) side chain, which is the basis of rapid diagnostic tests. No biological function has been attributed to this conserved antigen. Here we identify and characterize the GAC biosynthesis genes, gacA through gacL. An isogenic mutant of the glycosyltransferase gacI, which is defective for GlcNAc side-chain addition, is attenuated for virulence in two infection models, in association with increased sensitivity to neutrophil killing, platelet-derived antimicrobials in serum, and the cathelicidin antimicrobial peptide LL-37. Antibodies to GAC lacking the GlcNAc side chain and containing only polyrhamnose promoted opsonophagocytic killing of multiple GAS serotypes and protected against systemic GAS challenge after passive immunization. Thus, the Lancefield antigen plays a functional role in GAS pathogenesis, and a deeper understanding of this unique polysaccharide has implications for vaccine development.
Collapse
Affiliation(s)
- Nina M van Sorge
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.,Medical Microbiology, University Medical Center Utrecht,3584 CX Utrecht, The Netherlands
| | - Jason N Cole
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.,Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland,QLD 4072, Australia
| | - Kirsten Kuipers
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Anna Henningham
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Ramy K Aziz
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University,11562 Cairo, Egypt
| | - Ana Kasirer-Friede
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Leo Lin
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Evelien T M Berends
- Medical Microbiology, University Medical Center Utrecht,3584 CX Utrecht, The Netherlands
| | - Mark R Davies
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland,QLD 4072, Australia.,The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, CB10 1SA,United Kingdom
| | - Gordon Dougan
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, CB10 1SA,United Kingdom
| | - Fan Zhang
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
| | - Samira Dahesh
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Laura Shaw
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Jennifer Gin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Madeleine Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Joseph A Merriman
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Julia Hütter
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14476 Potsdam, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, 14195 Berlin, Germany
| | - Bernd Lepenies
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14476 Potsdam, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, 14195 Berlin, Germany
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht,3584 CX Utrecht, The Netherlands
| | - Richard Malley
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mark J Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland,QLD 4072, Australia
| | - Sanford J Shattil
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Patrick M Schlievert
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Biswa Choudhury
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.,Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
20
|
Berends ETM, Mohan S, Miellet WR, Ruyken M, Rooijakkers SHM. Contribution of the complement Membrane Attack Complex to the bactericidal activity of human serum. Mol Immunol 2015; 65:328-35. [PMID: 25725315 DOI: 10.1016/j.molimm.2015.01.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/19/2014] [Accepted: 01/18/2015] [Indexed: 02/08/2023]
Abstract
Direct killing of Gram-negative bacteria by serum is usually attributed to the Membrane Attack Complex (MAC) that is assembled upon activation of the complement system. In serum bactericidal assays, the activity of the MAC is usually blocked by a relatively unspecific method in which certain heat-labile complement components are inactivated at 56°C. The goal of this study was to re-evaluate MAC-driven lysis towards various Gram-negative bacteria. Instead of using heat-treatment, we included the highly specific C5 cleavage inhibitor OmCI to specifically block the formation of the MAC. Using a C5 conversion analysis tool, we monitored the efficacy of the inhibitor during the incubations. Our findings indicate that 'serum-sensitive' bacteria are not necessarily killed by the MAC. Other heat-labile serum factors can contribute to serum bactericidal activity. These unidentified factors are most potent at serum concentrations of 10% and higher. Furthermore, we also find that some bacteria can be killed by the MAC at a slower rate. Our data demonstrate the requirement for the use of specific inhibitors in serum bactericidal assays and revealed that the classification of serum-sensitive and resistant strains needs re-evaluation. Moreover, it is important to determine bacterial viability at multiple time intervals to differentiate serum susceptibility between bacterial species. In conclusion, these data provide new insights into bacterial killing by the humoral immune system and may guide future vaccine development studies for the treatment of pathogenic serum-resistant bacteria.
Collapse
Affiliation(s)
| | - Sarbani Mohan
- Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | - Willem R Miellet
- Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | - Maartje Ruyken
- Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | | |
Collapse
|
21
|
Dong X, McCoy E, Zhang M, Yang L. Inhibitory effects of nisin-coated multi-walled carbon nanotube sheet on biofilm formation from Bacillus anthracis spores. J Environ Sci (China) 2014; 26:2526-2534. [PMID: 25499501 DOI: 10.1016/j.jes.2014.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 06/04/2023]
Abstract
Multi-walled carbon nanotube (MWCNT) sheet was fabricated from a drawable MWCNT forest and then deposited on poly(methyl methacrylate) film. The film was further coated with a natural antimicrobial peptide nisin. We studied the effects of nisin coating on the attachment of Bacillus anthracis spores, the germination of attached spores, and the subsequent biofilm formation from attached spores. It was found that the strong adsorptivity and the super hydrophobicity of MWCNTs provided an ideal platform for nisin coating. Nisin coating on MWCNT sheets decreased surface hydrophobicity, reduced spore attachment, and reduced the germination of attached spores by 3.5 fold, and further inhibited the subsequent biofilm formation by 94.6% compared to that on uncoated MWCNT sheet. Nisin also changed the morphology of vegetative cells in the formed biofilm. The results of this study demonstrated that the anti-adhesion and antimicrobial effect of nisin in combination with the physical properties of carbon nanotubes had the potential in producing effective anti-biofilm formation surfaces.
Collapse
Affiliation(s)
- Xiuli Dong
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, USA.
| | - Eric McCoy
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| | - Mei Zhang
- Department of Industrial & Manufacturing Engineering, Florida State University, Tallahassee, FL, USA
| | - Liju Yang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, USA.
| |
Collapse
|
22
|
Baron F, Jan S, Gonnet F, Pasco M, Jardin J, Giudici B, Gautier M, Guérin-Dubiard C, Nau F. Ovotransferrin plays a major role in the strong bactericidal effect of egg white against the Bacillus cereus group. J Food Prot 2014; 77:955-62. [PMID: 24853518 DOI: 10.4315/0362-028x.jfp-13-473] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacillus cereus group bacteria are opportunistically pathogenic spore-forming microorganisms well known in the sector of pasteurized food products because of their involvement in spoilage events. In the sector of egg product processing, these bacteria may lead to important economic losses. It seemed then relevant to study their behavior in egg white, a widely used egg product usually recognized as developing different levels of antimicrobial activities depending on the environmental conditions. A strong bactericidal effect (decrease in the bacterial population of 6.1 ± 0.2 log CFU/ml) was observed for 68 B. cereus group isolates, independently incubated at 30°C in egg white at pH 9.3 (natural egg white pH). To determine which components could explain such a strong bactericidal effect, an experimental strategy was carried out, based on egg white fractionation by ultrafiltration and by anion-exchange liquid chromatography. The role of the protein fraction was thus demonstrated, and subsequent nano-liquid chromatography-tandem mass spectrometry analyses allowed identification of ovotransferrin as a major protein involved. The strong bactericidal effect was confirmed in the presence of commercial ovotransferrin. Such a bactericidal effect (i.e., a decrease in the bacterial population through cell death) had never been described because ovotransferrin is known for its bacteriostatic effect (i.e., inhibition of growth) due to its ability to chelate iron. Surprisingly, the addition of iron did not reverse the bactericidal effect of ovotransferrin under alkaline conditions (pH 9.3), whereas it completely reversed this effect at pH 7.3. Ovotransferrin was shown to provoke a perturbation of the electrochemical potential of the cytoplasmic membrane. A membrane disturbance mechanism could, hence, be involved, leading to the lysis of B. cereus group bacteria incubated in egg white.
Collapse
Affiliation(s)
- Florence Baron
- Agrocampus Ouest and Institut national de la recherche agronomique (INRA), UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France.
| | - Sophie Jan
- Agrocampus Ouest and Institut national de la recherche agronomique (INRA), UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| | - Fabienne Gonnet
- Agrocampus Ouest and Institut national de la recherche agronomique (INRA), UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| | - Maryvonne Pasco
- Agrocampus Ouest and Institut national de la recherche agronomique (INRA), UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| | - Julien Jardin
- Agrocampus Ouest and Institut national de la recherche agronomique (INRA), UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| | - Bérangère Giudici
- Agrocampus Ouest and Institut national de la recherche agronomique (INRA), UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| | - Michel Gautier
- Agrocampus Ouest and Institut national de la recherche agronomique (INRA), UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| | - Catherine Guérin-Dubiard
- Agrocampus Ouest and Institut national de la recherche agronomique (INRA), UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| | - Françoise Nau
- Agrocampus Ouest and Institut national de la recherche agronomique (INRA), UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| |
Collapse
|
23
|
EndoE from Enterococcus faecalis hydrolyzes the glycans of the biofilm inhibiting protein lactoferrin and mediates growth. PLoS One 2014; 9:e91035. [PMID: 24608122 PMCID: PMC3946673 DOI: 10.1371/journal.pone.0091035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 02/10/2014] [Indexed: 11/24/2022] Open
Abstract
Glycosidases are widespread among bacteria. The opportunistic human pathogen Enterococcus faecalis encodes several putative glycosidases but little is known about their functions. The identified endo-β-N-acetylglucosaminidase EndoE has activity on the N-linked glycans of the human immunoglobulin G (IgG). In this report we identified the human glycoprotein lactoferrin (hLF) as a new substrate for EndoE. Hydrolysis of the N-glycans from hLF was investigated using lectin blot, UHPLC and mass spectrometry, showing that EndoE releases major glycoforms from this protein. hLF was shown to inhibit biofilm formation of E. faecalis in vitro. Glycans of hLF influence the binding to E. faecalis, and EndoE-hydrolyzed hLF inhibits biofilm formation to lesser extent than intact hLF indicating that EndoE prevents the inhibition of biofilm. In addition, hLF binds to a surface-associated enolase of E. faecalis. Culture experiments showed that the activity of EndoE enables E. faecalis to use the glycans derived from lactoferrin as a carbon source indicating that they could be used as nutrients in vivo when no other preferred carbon source is available. This report adds important information about the enzymatic activity of EndoE from the commensal and opportunist E. faecalis. The activity on the human glycoprotein hLF, and the functional consequences with reduced inhibition of biofilm formation highlights both innate immunity functions of hLF and a bacterial mechanism to evade this innate immunity function. Taken together, our results underline the importance of glycans in the interplay between bacteria and the human host, with possible implications for both commensalism and opportunism.
Collapse
|
24
|
Lin L, Pantapalangkoor P, Tan B, Bruhn KW, Ho T, Nielsen T, Skaar EP, Zhang Y, Bai R, Wang A, Doherty TM, Spellberg B. Transferrin iron starvation therapy for lethal bacterial and fungal infections. J Infect Dis 2014; 210:254-64. [PMID: 24446527 DOI: 10.1093/infdis/jiu049] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
New strategies to treat antibiotic-resistant infections are urgently needed. We serendipitously discovered that stem cell conditioned media possessed broad antimicrobial properties. Biochemical, functional, and genetic assays confirmed that the antimicrobial effect was mediated by supra-physiological concentrations of transferrin. Human transferrin inhibited growth of gram-positive (Staphylococcus aureus), gram-negative (Acinetobacter baumannii), and fungal (Candida albicans) pathogens by sequestering iron and disrupting membrane potential. Serial passage in subtherapeutic transferrin concentrations resulted in no emergence of resistance. Infected mice treated with intravenous human transferrin had improved survival and reduced microbial burden. Finally, adjunctive transferrin reduced the emergence of rifampin-resistant mutants of S. aureus in infected mice treated with rifampin. Transferrin is a promising, novel antimicrobial agent that merits clinical investigation. These results provide proof of principle that bacterial infections can be treated in vivo by attacking host targets (ie, trace metal availability) rather than microbial targets.
Collapse
Affiliation(s)
- Lin Lin
- The Los Angeles Biomedical Research Institute, Torrance, California The Division of General Internal Medicine, Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance The David Geffen School of Medicine at UCLA, Los Angeles
| | | | - Brandon Tan
- The Los Angeles Biomedical Research Institute, Torrance, California
| | - Kevin W Bruhn
- The Los Angeles Biomedical Research Institute, Torrance, California The Division of General Internal Medicine, Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance The David Geffen School of Medicine at UCLA, Los Angeles
| | - Tiffany Ho
- The Los Angeles Biomedical Research Institute, Torrance, California
| | - Travis Nielsen
- The Los Angeles Biomedical Research Institute, Torrance, California
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yaofang Zhang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ruipeng Bai
- The Los Angeles Biomedical Research Institute, Torrance, California
| | - Amy Wang
- The Los Angeles Biomedical Research Institute, Torrance, California
| | | | - Brad Spellberg
- The Los Angeles Biomedical Research Institute, Torrance, California The Division of General Internal Medicine, Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance The David Geffen School of Medicine at UCLA, Los Angeles
| |
Collapse
|
25
|
Berends ETM, Dekkers JF, Nijland R, Kuipers A, Soppe JA, van Strijp JAG, Rooijakkers SHM. Distinct localization of the complement C5b-9 complex on Gram-positive bacteria. Cell Microbiol 2013; 15:1955-68. [PMID: 23869880 DOI: 10.1111/cmi.12170] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/13/2013] [Accepted: 07/14/2013] [Indexed: 02/05/2023]
Abstract
The plasma proteins of the complement system fulfil important immune defence functions, including opsonization of bacteria for phagocytosis, generation of chemo-attractants and direct bacterial killing via the Membrane Attack Complex (MAC or C5b-9). The MAC is comprised of C5b, C6, C7, C8, and multiple copies of C9 that generate lytic pores in cellular membranes. Gram-positive bacteria are protected from MAC-dependent lysis by their thick peptidoglycan layer. Paradoxically, several Gram-positive pathogens secrete small proteins that inhibit C5b-9 formation. In this study, we found that complement activation on Gram-positive bacteria in serum results in specific surface deposition of C5b-9 complexes. Immunoblotting revealed that C9 occurs in both monomeric and polymeric (SDS-stable) forms, indicating the presence of ring-structured C5b-9. Surprisingly, confocal microscopy demonstrated that C5b-9 deposition occurs at specialized regions on the bacterial cell. On Streptococcus pyogenes, C5b-9 deposits near the division septum whereas on Bacillus subtilis the complex is located at the poles. This is in contrast to C3b deposition, which occurs randomly on the bacterial surface. Altogether, these results show a previously unrecognized interaction between the C5b-9 complex and Gram-positive bacteria, which might ultimately lead to a new model of MAC assembly and functioning.
Collapse
Affiliation(s)
- Evelien T M Berends
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
26
|
Toxin inhibition of antimicrobial factors induced by Bacillus anthracis peptidoglycan in human blood. Infect Immun 2013; 81:3693-702. [PMID: 23876807 DOI: 10.1128/iai.00709-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we describe the capacity of Bacillus anthracis peptidoglycan (BaPGN) to trigger an antimicrobial response in human white blood cells (WBCs). Analysis of freshly isolated human blood cells found that monocytes and neutrophils, but not B and T cells, were highly responsive to BaPGN and produced a variety of cytokines and chemokines. This BaPGN-induced response was suppressed by anthrax lethal toxin (LT) and edema toxin (ET), with the most pronounced effect on human monocytes, and this corresponded with the higher levels of anthrax toxin receptor 1 (ANTXR1) in these cells than in neutrophils. The supernatant from BaPGN-treated cells altered the growth of B. anthracis Sterne, and this effect was blocked by LT, but not by ET. An FtsX mutant of B. anthracis known to be resistant to the antimicrobial effects of interferon-inducible Glu-Leu-Arg (ELR)-negative CXC chemokines was not affected by the BaPGN-induced antimicrobial effects. Collectively, these findings describe a system in which BaPGN triggers expression of antimicrobial factors in human WBCs and reveal a distinctive role, not shared with ET, in LT's capacity to suppress this response.
Collapse
|
27
|
Abstract
Although successful iron acquisition by pathogens within a host is a prerequisite for the establishment of infection, surprisingly little is known about the intracellular distribution of iron within bacterial pathogens. We have used a combination of anaerobic native liquid chromatography, inductively coupled plasma mass spectrometry, principal-component analysis, and peptide mass fingerprinting to investigate the cytosolic iron distribution in the pathogen Bacillus anthracis. Our studies identified three of the major iron pools as being associated with the electron transfer protein ferredoxin, the miniferritin Dps2, and the superoxide dismutase (SOD) enzymes SodA1 and SodA2. Although both SOD isozymes were predicted to utilize manganese cofactors, quantification of the metal ions associated with SodA1 and SodA2 in cell extracts established that SodA1 is associated with both manganese and iron, whereas SodA2 is bound exclusively to iron in vivo. These data were confirmed by in vitro assays using recombinant protein preparations, showing that SodA2 is active with an iron cofactor, while SodA1 is cambialistic, i.e., active with manganese or iron. Furthermore, we observe that B. anthracis cells exposed to superoxide stress increase their total iron content more than 2-fold over 60 min, while the manganese and zinc contents are unaffected. Notably, the acquired iron is not localized to the three identified cytosolic iron pools.
Collapse
|
28
|
The iron-binding protein Dps2 confers peroxide stress resistance on Bacillus anthracis. J Bacteriol 2011; 194:925-31. [PMID: 22155779 DOI: 10.1128/jb.06005-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron is an essential nutrient that is implicated in most cellular oxidation reactions. However, iron is a highly reactive element that, if not appropriately chaperoned, can react with endogenously and exogenously generated oxidants such as hydrogen peroxide to generate highly toxic hydroxyl radicals. Dps proteins (DNA-binding proteins from starved cells) form a distinct class (the miniferritins) of iron-binding proteins within the ferritin superfamily. Bacillus anthracis encodes two Dps-like proteins, Dps1 and Dps2, the latter being one of the main iron-containing proteins in the cytoplasm. In this study, the function of Dps2 was characterized in vivo. A B. anthracis Δdps2 mutant was constructed by double-crossover mutagenesis. The growth of the Δdps2 mutant was unaffected by excess iron or iron-limiting conditions, indicating that the primary role of Dps2 is not that of iron sequestration and storage. However, the Δdps2 mutant was highly sensitive to H(2)O(2), and pretreatment of the cells with the iron chelator deferoxamine mesylate (DFM) significantly reduced its sensitivity to H(2)O(2) stress. In addition, the transcription of dps2 was upregulated by H(2)O(2) treatment and derepressed in a perR mutant, indicating that dps2 is a member of the regulon controlled by the PerR regulator. This indicates that the main role of Dps2 is to protect cells from peroxide stress by inhibiting the iron-catalyzed production of OH.
Collapse
|
29
|
Abstract
Both the essentiality and toxicity of transition metals are exploited as part of mammalian immune defenses against bacterial infection. Salmonella serovars continue to cause serious medical and veterinary problems worldwide and detecting deficiency and excess of different metal ions (such as copper, iron, zinc, manganese, nickel, and cobalt) is fundamental to their virulence. This involves multiple DNA-binding metal-responsive transcription factors that discriminate between elements and trigger expression of genes that mediate appropriate responses to metal fluxes. This review focuses on the metal stresses encountered by Salmonella during infection and the roles of the different metal-sensing regulatory proteins and their target genes in adapting to these changing metal levels. Current knowledge regarding the mechanisms of metal-regulated gene expression and the structural features of sensory metal binding sites are described. In addition, the principles governing the ability of the different sensors to detect specific metals within a cell to control cytosolic metal levels are also discussed. These proteins represent potential targets for the development of new therapeutic approaches.
Collapse
|
30
|
Brandsma ME, Jevnikar AM, Ma S. Recombinant human transferrin: beyond iron binding and transport. Biotechnol Adv 2010; 29:230-8. [PMID: 21147210 DOI: 10.1016/j.biotechadv.2010.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 11/22/2010] [Accepted: 11/26/2010] [Indexed: 11/15/2022]
Abstract
Iron is indispensible for life and essential for such processes as oxygen transport, electron transfer and DNA synthesis. Transferrin (Tf) is a ubiquitous protein with a central role in iron transport and metabolism. There is evidence, however, that Tf has many other biological roles in addition to its primary function of facilitating iron transport and metabolism, such as its profound effect on mammalian cell growth and productivity. The multiple functions of Tf can be exploited to develop many novel applications. Indeed, over the past several years, considerable efforts have been directed towards exploring human serum Tf (hTf), especially the use of recombinant native hTf and recombinant Tf fusion proteins, for various applications within biotechnology and medicine. Here, we review some of the remarkable progress that has been made towards the application of hTf in these diverse areas and discuss some of the exciting future prospects for hTf.
Collapse
Affiliation(s)
- Martin E Brandsma
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|