1
|
Bischoff A, Ortelt J, Dünschede B, Zegarra V, Bedrunka P, Bange G, Schünemann D. The role of chloroplast SRP54 domains and its C-terminal tail region in post- and co-translational protein transport in vivo. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5734-5749. [PMID: 38989593 PMCID: PMC11427828 DOI: 10.1093/jxb/erae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
In the chloroplast, the 54 kDa subunit of the signal recognition particle (cpSRP54) is involved in the post-translational transport of the light-harvesting chlorophyll a/b-binding proteins (LHCPs) and the co-translational transport of plastid-encoded subunits of the photosynthetic complexes to the thylakoid membrane. It forms a high-affinity complex with plastid-specific cpSRP43 for post-translational transport, while a ribosome-associated pool coordinates its co-translational function. CpSRP54 constitutes a conserved multidomain protein, comprising a GTPase (NG) and a methionine-rich (M) domain linked by a flexible region. It is further characterized by a plastid-specific C-terminal tail region containing the cpSRP43-binding motif. To characterize the physiological role of the various regions of cpSRP54 in thylakoid membrane protein transport, we generated Arabidopsis cpSRP54 knockout (ffc1-2) lines producing truncated cpSRP54 variants or a GTPase point mutation variant. Phenotypic characterization of the complementation lines demonstrated that the C-terminal tail region of cpSRP54 plays an important role exclusively in post-translational LHCP transport. Furthermore, we show that the GTPase activity of cpSRP54 plays an essential role in the transport pathways for both nuclear as well as plastid-encoded proteins. In addition, our data revealed that plants expressing cpSRP54 without the C-terminal region exhibit a strongly increased accumulation of a photosystem I assembly intermediate.
Collapse
Affiliation(s)
- Annika Bischoff
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Bochum, Germany
| | - Jennifer Ortelt
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Bochum, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Bochum, Germany
| | - Victor Zegarra
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, University of Marburg, Marburg, Germany
| | - Patricia Bedrunka
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, University of Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, University of Marburg, Marburg, Germany
- Max-Planck-Institute for terrestrial Microbiology, Marburg, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
2
|
Rathod MK, Nellaepalli S, Ozawa SI, Kuroda H, Kodama N, Bujaldon S, Wollman FA, Takahashi Y. Assembly Apparatus of Light-Harvesting Complexes: Identification of Alb3.1-cpSRP-LHCP Complexes in the Green Alga Chlamydomonas reinhardtii. PLANT & CELL PHYSIOLOGY 2022; 63:70-81. [PMID: 34592750 DOI: 10.1093/pcp/pcab146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
The unicellular green alga, Chlamydomonas reinhardtii, contains many light-harvesting complexes (LHCs) associating chlorophylls a/b and carotenoids; the major LHCIIs (types I, II, III and IV) and minor light-harvesting complexes, CP26 and CP29, for photosystem II, as well as nine LHCIs (LHCA1-9), for photosystem I. A pale green mutant BF4 exhibited impaired accumulation of LHCs due to deficiency in the Alb3.1 gene, which encodes the insertase involved in insertion, folding and assembly of LHC proteins in the thylakoid membranes. To elucidate the molecular mechanism by which ALB3.1 assists LHC assembly, we complemented BF4 to express ALB3.1 fused with no, single or triple Human influenza hemagglutinin (HA) tag at its C-terminus (cAlb3.1, cAlb3.1-HA or cAlb3.1-3HA). The resulting complemented strains accumulated most LHC proteins comparable to wild-type (WT) levels. The affinity purification of Alb3.1-HA and Alb3.1-3HA preparations showed that ALB3.1 interacts with cpSRP43 and cpSRP54 proteins of the chloroplast signal recognition particle (cpSRP) and several LHC proteins; two major LHCII proteins (types I and III), two minor LHCII proteins (CP26 and CP29) and eight LHCI proteins (LHCA1, 2, 3, 4, 5, 6, 8 and 9). Pulse-chase labeling experiments revealed that the newly synthesized major LHCII proteins were transiently bound to the Alb3.1 complex. We propose that Alb3.1 interacts with cpSRP43 and cpSRP54 to form an assembly apparatus for most LHCs in the thylakoid membranes. Interestingly, photosystem I (PSI) proteins were also detected in the Alb3.1 preparations, suggesting that the integration of LHCIs to a PSI core complex to form a PSI-LHCI subcomplex occurs before assembled LHCIs dissociate from the Alb3.1-cpSRP complex.
Collapse
Affiliation(s)
- Mithun Kumar Rathod
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Sreedhar Nellaepalli
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530 Japan
| | - Shin-Ichiro Ozawa
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046 Japan
| | - Hiroshi Kuroda
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530 Japan
| | - Natsumi Kodama
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530 Japan
| | - Sandrine Bujaldon
- Institut de Biologie Physico-Chimique, UMR7141 CNRS-Sorbonne Université, Paris 75005, France
| | - Francis-André Wollman
- Institut de Biologie Physico-Chimique, UMR7141 CNRS-Sorbonne Université, Paris 75005, France
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530 Japan
| |
Collapse
|
3
|
Ackermann B, Dünschede B, Pietzenuk B, Justesen BH, Krämer U, Hofmann E, Günther Pomorski T, Schünemann D. Chloroplast Ribosomes Interact With the Insertase Alb3 in the Thylakoid Membrane. FRONTIERS IN PLANT SCIENCE 2021; 12:781857. [PMID: 35003166 PMCID: PMC8733628 DOI: 10.3389/fpls.2021.781857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
Members of the Oxa1/YidC/Alb3 protein family are involved in the insertion, folding, and assembly of membrane proteins in mitochondria, bacteria, and chloroplasts. The thylakoid membrane protein Alb3 mediates the chloroplast signal recognition particle (cpSRP)-dependent posttranslational insertion of nuclear-encoded light harvesting chlorophyll a/b-binding proteins and participates in the biogenesis of plastid-encoded subunits of the photosynthetic complexes. These subunits are cotranslationally inserted into the thylakoid membrane, yet very little is known about the molecular mechanisms underlying docking of the ribosome-nascent chain complexes to the chloroplast SecY/Alb3 insertion machinery. Here, we show that nanodisc-embedded Alb3 interacts with ribosomes, while the homolog Alb4, also located in the thylakoid membrane, shows no ribosome binding. Alb3 contacts the ribosome with its C-terminal region and at least one additional binding site within its hydrophobic core region. Within the C-terminal region, two conserved motifs (motifs III and IV) are cooperatively required to enable the ribosome contact. Furthermore, our data suggest that the negatively charged C-terminus of the ribosomal subunit uL4c is involved in Alb3 binding. Phylogenetic analyses of uL4 demonstrate that this region newly evolved in the green lineage during the transition from aquatic to terrestrial life.
Collapse
Affiliation(s)
- Bernd Ackermann
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Björn Pietzenuk
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Bo Højen Justesen
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Ute Krämer
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Baucom DR, Furr M, Govind Kumar V, Okoto P, Losey JL, Henry RL, Moradi M, Kumar TKS, Heyes CD. Transient local secondary structure in the intrinsically disordered C-term of the Albino3 insertase. Biophys J 2021; 120:4992-5004. [PMID: 34662559 PMCID: PMC8633824 DOI: 10.1016/j.bpj.2021.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/16/2021] [Accepted: 10/13/2021] [Indexed: 11/26/2022] Open
Abstract
Albino3 (Alb3) is an integral membrane protein fundamental to the targeting and insertion of light-harvesting complex (LHC) proteins into the thylakoid membrane. Alb3 contains a stroma-exposed C-terminus (Alb3-Cterm) that is responsible for binding the LHC-loaded transit complex before LHC membrane insertion. Alb3-Cterm has been reported to be intrinsically disordered, but precise mechanistic details underlying how it recognizes and binds to the transit complex are lacking, and the functional roles of its four different motifs have been debated. Using a novel combination of experimental and computational techniques such as single-molecule fluorescence resonance energy transfer, circular dichroism with deconvolution analysis, site-directed mutagenesis, trypsin digestion assays, and all-atom molecular dynamics simulations in conjunction with enhanced sampling techniques, we show that Alb3-Cterm contains transient secondary structure in motifs I and II. The excellent agreement between the experimental and computational data provides a quantitatively consistent picture and allows us to identify a heterogeneous structural ensemble that highlights the local and transient nature of the secondary structure. This structural ensemble was used to predict both the inter-residue distance distributions of single molecules and the apparent unfolding free energy of the transient secondary structure, which were both in excellent agreement with those determined experimentally. We hypothesize that this transient local secondary structure may play an important role in the recognition of Alb3-Cterm for the LHC-loaded transit complex, and these results should provide a framework to better understand protein targeting by the Alb3-Oxa1-YidC family of insertases.
Collapse
Affiliation(s)
- Dustin R Baucom
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Mercede Furr
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Vivek Govind Kumar
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Patience Okoto
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - James L Losey
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Ralph L Henry
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas.
| | | | - Colin D Heyes
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas.
| |
Collapse
|
5
|
Siegel A, McAvoy CZ, Lam V, Liang FC, Kroon G, Miaou E, Griffin P, Wright PE, Shan SO. A Disorder-to-Order Transition Activates an ATP-Independent Membrane Protein Chaperone. J Mol Biol 2020; 432:166708. [PMID: 33188783 PMCID: PMC7780713 DOI: 10.1016/j.jmb.2020.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/20/2023]
Abstract
The 43 kDa subunit of the chloroplast signal recognition particle, cpSRP43, is an ATP-independent chaperone essential for the biogenesis of the light harvesting chlorophyll-binding proteins (LHCP), the most abundant membrane protein family on earth. cpSRP43 is activated by a stromal factor, cpSRP54, to more effectively capture and solubilize LHCPs. The molecular mechanism underlying this chaperone activation is unclear. Here, a combination of hydrogen-deuterium exchange, electron paramagnetic resonance, and NMR spectroscopy experiments reveal that a disorder-to-order transition of the ankyrin repeat motifs in the substrate binding domain of cpSRP43 drives its activation. An analogous coil-to-helix transition in the bridging helix, which connects the ankyrin repeat motifs to the cpSRP54 binding site in the second chromodomain, mediates long-range allosteric communication of cpSRP43 with its activating binding partner. Our results provide a molecular model to explain how the conformational dynamics of cpSRP43 enables regulation of its chaperone activity and suggest a general mechanism by which ATP-independent chaperones with cooperatively folding domains can be regulated.
Collapse
Affiliation(s)
- Alex Siegel
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Camille Z McAvoy
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Vinh Lam
- Department of Molecular Medicine, Florida Campus, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Fu-Cheng Liang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Gerard Kroon
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Emily Miaou
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Patrick Griffin
- Department of Molecular Medicine, Florida Campus, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
6
|
Nymark M, Volpe C, Hafskjold MCG, Kirst H, Serif M, Vadstein O, Bones AM, Melis A, Winge P. Loss of ALBINO3b Insertase Results in Truncated Light-Harvesting Antenna in Diatoms. PLANT PHYSIOLOGY 2019; 181:1257-1276. [PMID: 31467163 PMCID: PMC6836812 DOI: 10.1104/pp.19.00868] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/10/2019] [Indexed: 05/13/2023]
Abstract
The family of chloroplast ALBINO3 (ALB3) proteins function in the insertion and assembly of thylakoid membrane protein complexes. Loss of ALB3b in the marine diatom Phaeodactylum tricornutum leads to a striking change of cell color from the normal brown to green. A 75% decrease of the main fucoxanthin-chlorophyll a/c-binding proteins was identified in the alb3b strains as the cause of changes in the spectral properties of the mutant cells. The alb3b lines exhibit a truncated light-harvesting antenna phenotype with reduced amounts of light-harvesting pigments and require a higher light intensity for saturation of photosynthesis. Accumulation of photoprotective pigments and light-harvesting complex stress-related proteins was not negatively affected in the mutant strains, but still the capacity for nonphotochemical quenching was lower compared with the wild type. In plants and green algae, ALB3 proteins interact with members of the chloroplast signal recognition particle pathway through a Lys-rich C-terminal domain. A novel conserved C-terminal domain was identified in diatoms and other stramenopiles, questioning if ALB3b proteins have the same interaction partners as their plant/green algae homologs.
Collapse
Affiliation(s)
- Marianne Nymark
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Charlotte Volpe
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | | - Henning Kirst
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Manuel Serif
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Olav Vadstein
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Atle Magnar Bones
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Anastasios Melis
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
7
|
Ziehe D, Dünschede B, Schünemann D. Molecular mechanism of SRP-dependent light-harvesting protein transport to the thylakoid membrane in plants. PHOTOSYNTHESIS RESEARCH 2018; 138:303-313. [PMID: 29956039 PMCID: PMC6244792 DOI: 10.1007/s11120-018-0544-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 06/20/2018] [Indexed: 05/26/2023]
Abstract
The light-harvesting chlorophyll a/b binding proteins (LHCP) belong to a large family of membrane proteins. They form the antenna complexes of photosystem I and II and function in light absorption and transfer of the excitation energy to the photosystems. As nuclear-encoded proteins, the LHCPs are imported into the chloroplast and further targeted to their final destination-the thylakoid membrane. Due to their hydrophobicity, the formation of the so-called 'transit complex' in the stroma is important to prevent their aggregation in this aqueous environment. The posttranslational LHCP targeting mechanism is well regulated through the interaction of various soluble and membrane-associated protein components and includes several steps: the binding of the LHCP to the heterodimeric cpSRP43/cpSRP54 complex to form the soluble transit complex; the docking of the transit complex to the SRP receptor cpFtsY and the Alb3 translocase at the membrane followed by the release and integration of the LHCP into the thylakoid membrane in a GTP-dependent manner. This review summarizes the molecular mechanisms and dynamics behind the posttranslational LHCP targeting to the thylakoid membrane of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Dominik Ziehe
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| |
Collapse
|
8
|
McAvoy CZ, Siegel A, Piszkiewicz S, Miaou E, Yu M, Nguyen T, Moradian A, Sweredoski MJ, Hess S, Shan SO. Two distinct sites of client protein interaction with the chaperone cpSRP43. J Biol Chem 2018; 293:8861-8873. [PMID: 29669809 DOI: 10.1074/jbc.ra118.002215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/29/2018] [Indexed: 11/06/2022] Open
Abstract
Integral membrane proteins are prone to aggregation and misfolding in aqueous environments and therefore require binding by molecular chaperones during their biogenesis. Chloroplast signal recognition particle 43 (cpSRP43) is an ATP-independent chaperone required for the biogenesis of the most abundant class of membrane proteins, the light-harvesting chlorophyll a/b-binding proteins (LHCPs). Previous work has shown that cpSRP43 specifically recognizes an L18 loop sequence conserved among LHCP paralogs. However, how cpSRP43 protects the transmembrane domains (TMDs) of LHCP from aggregation was unclear. In this work, alkylation-protection and site-specific cross-linking experiments found that cpSRP43 makes extensive contacts with all the TMDs in LHCP. Site-directed mutagenesis identified a class of cpSRP43 mutants that bind tightly to the L18 sequence but are defective in chaperoning full-length LHCP. These mutations mapped to hydrophobic surfaces on or near the bridging helix and the β-hairpins lining the ankyrin repeat motifs of cpSRP43, suggesting that these regions are potential sites for interaction with the client TMDs. Our results suggest a working model for client protein interactions in this membrane protein chaperone.
Collapse
Affiliation(s)
| | - Alex Siegel
- From the Division of Chemistry and Chemical Engineering
| | | | - Emily Miaou
- From the Division of Chemistry and Chemical Engineering
| | - Mansen Yu
- From the Division of Chemistry and Chemical Engineering
| | - Thang Nguyen
- From the Division of Chemistry and Chemical Engineering
| | - Annie Moradian
- The Proteome Exploration Laboratory, and.,the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Michael J Sweredoski
- The Proteome Exploration Laboratory, and.,the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Sonja Hess
- The Proteome Exploration Laboratory, and.,the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Shu-Ou Shan
- From the Division of Chemistry and Chemical Engineering,
| |
Collapse
|
9
|
Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis. Proc Natl Acad Sci U S A 2018; 115:E3588-E3596. [PMID: 29581280 DOI: 10.1073/pnas.1719645115] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Assembly of light-harvesting complexes requires synchronization of chlorophyll (Chl) biosynthesis with biogenesis of light-harvesting Chl a/b-binding proteins (LHCPs). The chloroplast signal recognition particle (cpSRP) pathway is responsible for transport of nucleus-encoded LHCPs in the stroma of the plastid and their integration into the thylakoid membranes. Correct folding and assembly of LHCPs require the incorporation of Chls, whose biosynthesis must therefore be precisely coordinated with membrane insertion of LHCPs. How the spatiotemporal coordination between the cpSRP machinery and Chl biosynthesis is achieved is poorly understood. In this work, we demonstrate a direct interaction between cpSRP43, the chaperone that mediates LHCP targeting and insertion, and glutamyl-tRNA reductase (GluTR), a rate-limiting enzyme in tetrapyrrole biosynthesis. Concurrent deficiency for cpSRP43 and the GluTR-binding protein (GBP) additively reduces GluTR levels, indicating that cpSRP43 and GBP act nonredundantly to stabilize GluTR. The substrate-binding domain of cpSRP43 binds to the N-terminal region of GluTR, which harbors aggregation-prone motifs, and the chaperone activity of cpSRP43 efficiently prevents aggregation of these regions. Our work thus reveals a function of cpSRP43 in Chl biosynthesis and suggests a striking mechanism for posttranslational coordination of LHCP insertion with Chl biosynthesis.
Collapse
|
10
|
Ziehe D, Dünschede B, Schünemann D. From bacteria to chloroplasts: evolution of the chloroplast SRP system. Biol Chem 2017; 398:653-661. [PMID: 28076289 DOI: 10.1515/hsz-2016-0292] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/04/2017] [Indexed: 02/02/2023]
Abstract
Chloroplasts derive from a prokaryotic symbiont that lost most of its genes during evolution. As a result, the great majority of chloroplast proteins are encoded in the nucleus and are posttranslationally imported into the organelle. The chloroplast genome encodes only a few proteins. These include several multispan thylakoid membrane proteins which are synthesized on thylakoid-bound ribosomes and cotranslationally inserted into the membrane. During evolution, ancient prokaryotic targeting machineries were adapted and combined with novel targeting mechanisms to facilitate post- and cotranslational protein transport in chloroplasts. This review focusses on the chloroplast signal recognition particle (cpSRP) protein transport system, which has been intensively studied in higher plants. The cpSRP system derived from the prokaryotic SRP pathway, which mediates the cotranslational protein transport to the bacterial plasma membrane. Chloroplasts contain homologs of several components of the bacterial SRP system. The function of these conserved components in post- and/or cotranslational protein transport and chloroplast-specific modifications of these transport mechanisms are described. Furthermore, recent studies of cpSRP systems in algae and lower plants are summarized and their impact on understanding the evolution of the cpSRP system are discussed.
Collapse
Affiliation(s)
- Dominik Ziehe
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum
| |
Collapse
|
11
|
Chandrasekar S, Shan SO. Anionic Phospholipids and the Albino3 Translocase Activate Signal Recognition Particle-Receptor Interaction during Light-harvesting Chlorophyll a/b-binding Protein Targeting. J Biol Chem 2016; 292:397-406. [PMID: 27895124 DOI: 10.1074/jbc.m116.752956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/14/2016] [Indexed: 01/12/2023] Open
Abstract
The universally conserved signal recognition particle (SRP) co-translationally delivers newly synthesized membrane and secretory proteins to the target cellular membrane. The only exception is found in the chloroplast of green plants, where the chloroplast SRP (cpSRP) post-translationally targets light-harvesting chlorophyll a/b-binding proteins (LHCP) to the thylakoid membrane. The mechanism and regulation of this post-translational mode of targeting by cpSRP remain unclear. Using biochemical and biophysical methods, here we show that anionic phospholipids activate the cpSRP receptor cpFtsY to promote rapid and stable cpSRP54·cpFtsY complex assembly. Furthermore, the stromal domain of the Alb3 translocase binds with high affinity to and regulates GTP hydrolysis in the cpSRP54·cpFtsY complex, suggesting that cpFtsY is primarily responsible for initial recruitment of the targeting complex to Alb3. These results suggest a new model for the sequential recruitment, remodeling, and unloading of the targeting complex at membrane translocase sites in the post-translational cpSRP pathway.
Collapse
Affiliation(s)
- Sowmya Chandrasekar
- From the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Shu-Ou Shan
- From the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
12
|
Ziehe D, Dünschede B, Zenker M, Funke S, Nowaczyk MM, Schünemann D. The Chloroplast SRP Systems of Chaetosphaeridium globosum and Physcomitrella patens as Intermediates in the Evolution of SRP-Dependent Protein Transport in Higher Plants. PLoS One 2016; 11:e0166818. [PMID: 27861610 PMCID: PMC5115805 DOI: 10.1371/journal.pone.0166818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/05/2016] [Indexed: 11/19/2022] Open
Abstract
The bacterial signal recognition particle (SRP) mediates the cotranslational targeting of membrane proteins and is a high affinity complex consisting of a SRP54 protein subunit (Ffh) and an SRP RNA. The chloroplast SRP (cpSRP) pathway has adapted throughout evolution to enable the posttranslational targeting of the light harvesting chlorophyll a/b binding proteins (LHCPs) to the thylakoid membrane. In spermatophytes (seed plants), the cpSRP lacks the SRP RNA and is instead formed by a high affinity interaction of the conserved 54-kD subunit (cpSRP54) with the chloroplast-specific cpSRP43 protein. This heterodimeric cpSRP recognizes LHCP and delivers it to the thylakoid membrane. However, in contrast to spermatophytes, plastid SRP RNAs were identified within all streptophyte lineages and in all chlorophyte branches. Furthermore, it was shown that cpSRP43 does not interact with cpSRP54 in chlorophytes (e.g., Chlamydomonas reinhardtii). In this study, we biochemically characterized the cpSRP system of the charophyte Chaetosphaeridium globosum and the bryophyte Physcomitrella patens. Interaction studies demonstrate low affinity binding of cpSRP54 to cpSRP43 (Kd ~10 μM) in Chaetosphaeridium globosum and Physcomitrella patens as well as relatively low affinity binding of cpSRP54 to cpSRP RNA (Kd ~1 μM) in Physcomitrella patens. CpSRP54/cpSRP43 complex formation in charophytes is supported by the finding that specific alterations in the second chromodomain of cpSRP43, that are conserved within charophytes and absent in land plants, do not interfere with cpSRP54 binding. Furthermore, our data show that the elongated apical loop structure of the Physcomitrella patens cpSRP RNA contributes to the low binding affinity between cpSRP54 and the cpSRP RNA.
Collapse
Affiliation(s)
- Dominik Ziehe
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Mira Zenker
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Silke Funke
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Marc M. Nowaczyk
- Cyanobacterial Membrane Protein Complexes, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780, Bochum, Germany
| |
Collapse
|
13
|
Conformational dynamics of a membrane protein chaperone enables spatially regulated substrate capture and release. Proc Natl Acad Sci U S A 2016; 113:E1615-24. [PMID: 26951662 DOI: 10.1073/pnas.1524777113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane protein biogenesis poses enormous challenges to cellular protein homeostasis and requires effective molecular chaperones. Compared with chaperones that promote soluble protein folding, membrane protein chaperones require tight spatiotemporal coordination of their substrate binding and release cycles. Here we define the chaperone cycle for cpSRP43, which protects the largest family of membrane proteins, the light harvesting chlorophyll a/b-binding proteins (LHCPs), during their delivery. Biochemical and NMR analyses demonstrate that cpSRP43 samples three distinct conformations. The stromal factor cpSRP54 drives cpSRP43 to the active state, allowing it to tightly bind substrate in the aqueous compartment. Bidentate interactions with the Alb3 translocase drive cpSRP43 to a partially inactive state, triggering selective release of LHCP's transmembrane domains in a productive unloading complex at the membrane. Our work demonstrates how the intrinsic conformational dynamics of a chaperone enables spatially coordinated substrate capture and release, which may be general to other ATP-independent chaperone systems.
Collapse
|
14
|
Plöchinger M, Schwenkert S, von Sydow L, Schröder WP, Meurer J. Functional Update of the Auxiliary Proteins PsbW, PsbY, HCF136, PsbN, TerC and ALB3 in Maintenance and Assembly of PSII. FRONTIERS IN PLANT SCIENCE 2016; 7:423. [PMID: 27092151 PMCID: PMC4823308 DOI: 10.3389/fpls.2016.00423] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/18/2016] [Indexed: 05/17/2023]
Abstract
Assembly of Photosystem (PS) II in plants has turned out to be a highly complex process which, at least in part, occurs in a sequential order and requires many more auxiliary proteins than subunits present in the complex. Owing to the high evolutionary conservation of the subunit composition and the three-dimensional structure of the PSII complex, most plant factors involved in the biogenesis of PSII originated from cyanobacteria and only rarely evolved de novo. Furthermore, in chloroplasts the initial assembly steps occur in the non-appressed stroma lamellae, whereas the final assembly including the attachment of the major LHCII antenna proteins takes place in the grana regions. The stroma lamellae are also the place where part of PSII repair occurs, which very likely also involves assembly factors. In cyanobacteria initial PSII assembly also occurs in the thylakoid membrane, in so-called thylakoid centers, which are in contact with the plasma membrane. Here, we provide an update on the structures, localisations, topologies, functions, expression and interactions of the low molecular mass PSII subunits PsbY, PsbW and the auxiliary factors HCF136, PsbN, TerC and ALB3, assisting in PSII complex assembly and protein insertion into the thylakoid membrane.
Collapse
Affiliation(s)
- Magdalena Plöchinger
- Department Biologie I, Molekularbiologie der Pflanzen (Botanik), Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| | - Serena Schwenkert
- Department Biologie I, Biochemie und Physiologie der Pflanzen, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| | - Lotta von Sydow
- Umeå Plant Science Center and Department of Chemistry, Umeå UniversityUmeå, Sweden
| | - Wolfgang P. Schröder
- Umeå Plant Science Center and Department of Chemistry, Umeå UniversityUmeå, Sweden
- *Correspondence: Wolfgang P. Schröder,
| | - Jörg Meurer
- Department Biologie I, Molekularbiologie der Pflanzen (Botanik), Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| |
Collapse
|
15
|
Breiman A, Fieulaine S, Meinnel T, Giglione C. The intriguing realm of protein biogenesis: Facing the green co-translational protein maturation networks. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:531-50. [PMID: 26555180 DOI: 10.1016/j.bbapap.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023]
Abstract
The ribosome is the cell's protein-making factory, a huge protein-RNA complex, that is essential to life. Determining the high-resolution structures of the stable "core" of this factory was among the major breakthroughs of the past decades, and was awarded the Nobel Prize in 2009. Now that the mysteries of the ribosome appear to be more traceable, detailed understanding of the mechanisms that regulate protein synthesis includes not only the well-known steps of initiation, elongation, and termination but also the less comprehended features of the co-translational events associated with the maturation of the nascent chains. The ribosome is a platform for co-translational events affecting the nascent polypeptide, including protein modifications, folding, targeting to various cellular compartments for integration into membrane or translocation, and proteolysis. These events are orchestrated by ribosome-associated protein biogenesis factors (RPBs), a group of a dozen or more factors that act as the "welcoming committee" for the nascent chain as it emerges from the ribosome. In plants these factors have evolved to fit the specificity of different cellular compartments: cytoplasm, mitochondria and chloroplast. This review focuses on the current state of knowledge of these factors and their interaction around the exit tunnel of dedicated ribosomes. Particular attention has been accorded to the plant system, highlighting the similarities and differences with other organisms.
Collapse
Affiliation(s)
- Adina Breiman
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France; Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sonia Fieulaine
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
16
|
Urbischek M, Nick von Braun S, Brylok T, Gügel IL, Richter A, Koskela M, Grimm B, Mulo P, Bölter B, Soll J, Ankele E, Schwenkert S. The extreme Albino3 (Alb3) C terminus is required for Alb3 stability and function in Arabidopsis thaliana. PLANTA 2015; 242:733-746. [PMID: 26105652 DOI: 10.1007/s00425-015-2352-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/11/2015] [Indexed: 05/28/2023]
Abstract
The extreme Alb3 C terminus is important for Alb3 stability in a light dependent manner, but is dispensable for LHCP insertion or D1 synthesis. YidC/Oxa1/Alb3 dependent insertion of membrane proteins is evolutionary conserved among bacteria, mitochondria and chloroplasts. Chloroplasts are challenged by the need to coordinate membrane integration of nuclear encoded, post-translationally targeted proteins into the thylakoids as well as of proteins translated on plastid ribosomes. The pathway facilitating post-translational targeting of the light-harvesting chlorophyll a/b binding proteins involves the chloroplast signal recognition particle, cpSRP54 and cpSRP43, as well as its membrane receptor FtsY and the translocase Alb3. Interaction of cpSRP43 with Alb3 is mediated by the positively charged, stromal exposed C terminus of Alb3. In this study, we utilized an Alb3 T-DNA insertion mutant in Arabidopsis thaliana lacking the last 75 amino acids to elucidate the function of this domain (alb3∆C). However, the truncated Alb3 protein (Alb3∆C) proved to be unstable under standard growth conditions, resulting in a reduction of Alb3∆C to 20 % of wild-type levels. In contrast, accumulation of Alb3∆C was comparable to wild type under low light growth conditions. Alb3∆C mutants grown under low light conditions were only slightly paler than wild type, accumulated almost wild-type levels of light harvesting proteins and were not affected in D1 synthesis, therefore showing that the extreme Alb3 C terminus is dispensable for both, co- and post-translational, protein insertion into the thylakoid membrane. However, reduction of Alb3∆C levels as observed under standard growth conditions resulted not only in a severely diminished accumulation of all thylakoid complexes but also in a strong defect in D1 synthesis and membrane insertion.
Collapse
Affiliation(s)
- Manuela Urbischek
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse. 2-4, 82152, Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gao F, Kight AD, Henderson R, Jayanthi S, Patel P, Murchison M, Sharma P, Goforth RL, Kumar TKS, Henry RL, Heyes CD. Regulation of Structural Dynamics within a Signal Recognition Particle Promotes Binding of Protein Targeting Substrates. J Biol Chem 2015; 290:15462-15474. [PMID: 25918165 DOI: 10.1074/jbc.m114.624346] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Indexed: 11/06/2022] Open
Abstract
Protein targeting is critical in all living organisms and involves a signal recognition particle (SRP), an SRP receptor, and a translocase. In co-translational targeting, interactions among these proteins are mediated by the ribosome. In chloroplasts, the light-harvesting chlorophyll-binding protein (LHCP) in the thylakoid membrane is targeted post-translationally without a ribosome. A multidomain chloroplast-specific subunit of the SRP, cpSRP43, is proposed to take on the role of coordinating the sequence of targeting events. Here, we demonstrate that cpSRP43 exhibits significant interdomain dynamics that are reduced upon binding its SRP binding partner, cpSRP54. We showed that the affinity of cpSRP43 for the binding motif of LHCP (L18) increases when cpSRP43 is complexed to the binding motif of cpSRP54 (cpSRP54pep). These results support the conclusion that substrate binding to the chloroplast SRP is modulated by protein structural dynamics in which a major role of cpSRP54 is to improve substrate binding efficiency to the cpSRP.
Collapse
Affiliation(s)
- Feng Gao
- Departments of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Alicia D Kight
- Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| | - Rory Henderson
- Departments of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Srinivas Jayanthi
- Departments of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Parth Patel
- Departments of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Marissa Murchison
- Departments of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Priyanka Sharma
- Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| | - Robyn L Goforth
- Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| | | | - Ralph L Henry
- Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701.
| | - Colin D Heyes
- Departments of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701.
| |
Collapse
|
18
|
Shimokawa-Chiba N, Kumazaki K, Tsukazaki T, Nureki O, Ito K, Chiba S. Hydrophilic microenvironment required for the channel-independent insertase function of YidC protein. Proc Natl Acad Sci U S A 2015; 112:5063-8. [PMID: 25855636 PMCID: PMC4413333 DOI: 10.1073/pnas.1423817112] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recently solved crystal structure of YidC protein suggests that it mediates membrane protein insertion by means of an intramembrane cavity rather than a transmembrane (TM) pore. This concept of protein translocation prompted us to characterize the native, membrane-integrated state of YidC with respect to the hydropathic nature of its TM region. Here, we show that the cavity-forming region of the stage III sporulation protein J (SpoIIIJ), a YidC homolog, is indeed open to the aqueous milieu of the Bacillus subtilis cells and that the overall hydrophilicity of the cavity, along with the presence of an Arg residue on several alternative sites of the cavity surface, is functionally important. We propose that YidC functions as a proteinaceous amphiphile that interacts with newly synthesized membrane proteins and reduces energetic costs of their membrane traversal.
Collapse
Affiliation(s)
- Naomi Shimokawa-Chiba
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Kaoru Kumazaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoya Tsukazaki
- Department of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan; and Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Shinobu Chiba
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan;
| |
Collapse
|
19
|
Dünschede B, Träger C, Schröder CV, Ziehe D, Walter B, Funke S, Hofmann E, Schünemann D. Chloroplast SRP54 Was Recruited for Posttranslational Protein Transport via Complex Formation with Chloroplast SRP43 during Land Plant Evolution. J Biol Chem 2015; 290:13104-14. [PMID: 25833951 DOI: 10.1074/jbc.m114.597922] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Indexed: 01/05/2023] Open
Abstract
In bacteria, membrane proteins are targeted cotranslationally via a signal recognition particle (SRP). During the evolution of higher plant chloroplasts from cyanobacteria, the SRP pathway underwent striking adaptations that enable the posttranslational transport of the abundant light-harvesting chlorophyll-a/b-binding proteins (LHCPs). The conserved 54-kDa SRP subunit in higher plant chloroplasts (cpSRP54) is not bound to an SRP RNA, an essential SRP component in bacteria, but forms a stable heterodimer with the chloroplast-specific cpSRP43. This heterodimeric cpSRP recognizes LHCP and delivers it to the thylakoid membrane whereby cpSRP43 plays a central role. This study shows that the cpSRP system in the green alga Chlamydomonas reinhardtii differs significantly from that of higher plants as cpSRP43 is not complexed to cpSRP54 in Chlamydomonas and cpSRP54 is not involved in LHCP recognition. This divergence is attributed to altered residues within the cpSRP54 tail and the second chromodomain of cpSRP43 that are crucial for the formation of the binding interface in Arabidopsis. These changes are highly conserved among chlorophytes, whereas all land plants contain cpSRP proteins with typical interaction motifs. These data demonstrate that the coevolution of LHCPs and cpSRP43 occurred independently of complex formation with cpSRP54 and that the interaction between cpSRP54 and cpSRP43 evolved later during the transition from chlorophytes to land plants. Furthermore, our data show that in higher plants a heterodimeric form of cpSRP is required for the formation of a low molecular weight transit complex with LHCP.
Collapse
Affiliation(s)
| | | | | | | | - Björn Walter
- From the Molecular Biology of Plant Organelles and
| | - Silke Funke
- From the Molecular Biology of Plant Organelles and
| | - Eckhard Hofmann
- Protein Crystallography, Ruhr University Bochum, 44780 Bochum, Germany
| | | |
Collapse
|
20
|
MifM monitors total YidC activities of Bacillus subtilis, including that of YidC2, the target of regulation. J Bacteriol 2014; 197:99-107. [PMID: 25313395 DOI: 10.1128/jb.02074-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The YidC/Oxa1/Alb3 family proteins are involved in membrane protein biogenesis in bacteria, mitochondria, and chloroplasts. Recent studies show that YidC uses a channel-independent mechanism to insert a class of membrane proteins into the membrane. Bacillus subtilis has two YidC homologs, SpoIIIJ (YidC1) and YidC2 (YqjG); the former is expressed constitutively, while the latter is induced when the SpoIIIJ activity is compromised. MifM is a substrate of SpoIIIJ, and its failure in membrane insertion is accompanied by stable ribosome stalling on the mifM-yidC2 mRNA, which ultimately facilitates yidC2 translation. While mutational inactivation of SpoIIIJ has been known to induce yidC2 expression, here, we show that the level of this induction is lower than that observed when the membrane insertion signal of MifM is defective. Moreover, this partial induction of YidC2 translation is lowered further when YidC2 is overexpressed in trans. These results suggest that YidC2 is able to insert MifM into the membrane and to release its translation arrest. Thus, under SpoIIIJ-deficient conditions, YidC2 expression is subject to MifM-mediated autogenous feedback repression. Our results show that YidC2 uses a mechanism that is virtually identical to that used by SpoIIIJ; Arg75 of YidC2 in its intramembrane yet hydrophilic cavity is functionally indispensable and requires negatively charged residues of MifM as an insertion substrate. From these results, we conclude that MifM monitors the total activities of the SpoIIIJ and the YidC2 pathways to control the synthesis of YidC2 and to maintain the cellular capability of the YidC mode of membrane protein biogenesis.
Collapse
|
21
|
Nomura H, Shiina T. Calcium signaling in plant endosymbiotic organelles: mechanism and role in physiology. MOLECULAR PLANT 2014; 7:1094-1104. [PMID: 24574521 DOI: 10.1093/mp/ssu020] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recent studies have demonstrated that chloroplasts and mitochondria evoke specific Ca(2+) signals in response to biotic and abiotic stresses in a stress-dependent manner. The identification of Ca(2+) transporters and Ca(2+) signaling molecules in chloroplasts and mitochondria implies that they play roles in controlling not only intra-organellar functions, but also extra-organellar processes such as plant immunity and stress responses. It appears that organellar Ca(2+) signaling might be more important to plant cell functions than previously thought. This review briefly summarizes what is known about the molecular basis of Ca(2+) signaling in plant mitochondria and chloroplasts.
Collapse
Affiliation(s)
- Hironari Nomura
- Department of Health and Nutrition, Gifu Women's University, 80 Taromaru, Gifu 501-2592, Japan
| | - Takashi Shiina
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku Kyoto 606-8522, Japan
| |
Collapse
|
22
|
YlxM is a newly identified accessory protein that influences the function of signal recognition particle pathway components in Streptococcus mutans. J Bacteriol 2014; 196:2043-52. [PMID: 24659773 DOI: 10.1128/jb.01465-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Streptococcus mutans is a cariogenic oral pathogen whose virulence is determined largely by its membrane composition. The signal recognition particle (SRP) protein-targeting pathway plays a pivotal role in membrane biogenesis. S. mutans SRP pathway mutants demonstrate growth defects, cannot contend with environmental stress, and exhibit multiple changes in membrane composition. This study sought to define a role for ylxM, which in S. mutans and numerous other bacteria resides directly upstream of the ffh gene, encoding a major functional element of the bacterial SRP. YlxM was observed as a produced protein in S. mutans. Its predicted helix-turn-helix motif suggested that it has a role as a transcriptional regulator of components within the SRP pathway; however, no evidence of transcriptional regulation was found. Instead, capture enzyme-linked immunosorbent assay (ELISA), affinity chromatography, and bio-layer interferometry (BLI) demonstrated that S. mutans YlxM interacts with the SRP components Ffh and small cytoplasmic RNA (scRNA) but not with the SRP receptor FtsY. In the absence of FtsY, YlxM increased the GTP hydrolysis activity of Ffh alone and in complex with scRNA. However, in the presence of FtsY, YlxM caused an overall diminution of net GTPase activity. Thus, YlxM appears to modulate GTP hydrolysis, a process necessary for proper recycling of SRP pathway components. The presence of YlxM conferred a significant competitive growth advantage under nonstress and acid stress conditions when wild-type and ylxM mutant strains were cultured together. Our results identify YlxM as a component of the S. mutans SRP and suggest a regulatory function affecting GTPase activity.
Collapse
|
23
|
Abstract
The signal recognition particle (SRP) and its receptor compose a universally conserved and essential cellular machinery that couples the synthesis of nascent proteins to their proper membrane localization. The past decade has witnessed an explosion in in-depth mechanistic investigations of this targeting machine at increasingly higher resolutions. In this review, we summarize recent work that elucidates how the SRP and SRP receptor interact with the cargo protein and the target membrane, respectively, and how these interactions are coupled to a novel GTPase cycle in the SRP·SRP receptor complex to provide the driving force and enhance the fidelity of this fundamental cellular pathway. We also discuss emerging frontiers in which important questions remain to be addressed.
Collapse
Affiliation(s)
- David Akopian
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Kuang Shen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Xin Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
24
|
Benz M, Soll J, Ankele E. Arabidopsis thaliana Oxa proteins locate to mitochondria and fulfill essential roles during embryo development. PLANTA 2013; 237:573-88. [PMID: 23179441 DOI: 10.1007/s00425-012-1793-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/19/2012] [Indexed: 05/12/2023]
Abstract
Members of the Alb3/Oxa1/YidC protein family function as insertases in chloroplasts, mitochondria, and bacteria. Due to independent gene duplications, all organisms possess two isoforms, Oxa1 and Oxa2 except gram-negative bacteria, which encode only for one YidC-like protein. The genome of Arabidopsis thaliana however, encodes for eight different isoforms. The localization of three of these isoforms has been identified earlier: Alb3 and Alb4 located in thylakoid membranes of chloroplasts while AtOxa1 was found in the inner membrane of mitochondria. Here, we show that the second Oxa1 protein, Oxa1b as well as two Oxa2 proteins are also localized in mitochondria. The last two isoforms most likely encode truncated versions of Oxa-like proteins, which might be inoperable pseudogenes. Homozygous mutant lines were only obtained for Oxa1b, which did not reveal any significant phenotypes, while T-DNA insertion lines of Oxa1a, Oxa2a and Oxa2b resulted only in heterozygous plants indicating that these genes are indispensable for plant development. Phenotyping heterozygous lines showed that embryos are either retarded in growth, display an albino phenotype or embryo formation was entirely abolished suggesting that Oxa1a and both Oxa2 proteins function in embryo formation although at different developmental stages as indicated by the various phenotypes observed.
Collapse
Affiliation(s)
- Monique Benz
- Energy Biosciences Institute, University of California, 2151 Berkeley Way, Berkeley, CA 94720-5230, USA.
| | | | | |
Collapse
|
25
|
Träger C, Rosenblad MA, Ziehe D, Garcia-Petit C, Schrader L, Kock K, Vera Richter C, Klinkert B, Narberhaus F, Herrmann C, Hofmann E, Aronsson H, Schünemann D. Evolution from the prokaryotic to the higher plant chloroplast signal recognition particle: the signal recognition particle RNA is conserved in plastids of a wide range of photosynthetic organisms. THE PLANT CELL 2012; 24:4819-36. [PMID: 23275580 PMCID: PMC3556960 DOI: 10.1105/tpc.112.102996] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The protein targeting signal recognition particle (SRP) pathway in chloroplasts of higher plants has undergone dramatic evolutionary changes. It disposed of its RNA, which is an essential SRP component in bacteria, and uses a unique chloroplast-specific protein cpSRP43. Nevertheless, homologs of the conserved SRP54 and the SRP receptor, FtsY, are present in higher plant chloroplasts. In this study, we analyzed the phylogenetic distribution of SRP components in photosynthetic organisms to elucidate the evolution of the SRP system. We identified conserved plastid SRP RNAs within all nonspermatophyte land plant lineages and in all chlorophyte branches. Furthermore, we show the simultaneous presence of cpSRP43 in these organisms. The function of this novel SRP system was biochemically and structurally characterized in the moss Physcomitrella patens. We show that P. patens chloroplast SRP (cpSRP) RNA binds cpSRP54 but has lost the ability to significantly stimulate the GTPase cycle of SRP54 and FtsY. Furthermore, the crystal structure at 1.8-Å resolution and the nucleotide specificity of P. patens cpFtsY was determined and compared with bacterial FtsY and higher plant chloroplast FtsY. Our data lead to the view that the P. patens cpSRP system occupies an intermediate position in the evolution from bacterial-type SRP to higher plant-type cpSRP system.
Collapse
Affiliation(s)
- Chantal Träger
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Magnus Alm Rosenblad
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Dominik Ziehe
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Christel Garcia-Petit
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Lukas Schrader
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Klaus Kock
- Physical Chemistry I, Ruhr-University Bochum, 44780 Bochum, Germany
| | | | - Birgit Klinkert
- Microbial Biology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Franz Narberhaus
- Microbial Biology, Ruhr-University Bochum, 44780 Bochum, Germany
| | | | - Eckhard Hofmann
- Protein Crystallography, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780 Bochum, Germany
- Address correspondence to
| |
Collapse
|
26
|
Celedon JM, Cline K. Intra-plastid protein trafficking: how plant cells adapted prokaryotic mechanisms to the eukaryotic condition. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:341-51. [PMID: 22750312 DOI: 10.1016/j.bbamcr.2012.06.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/11/2012] [Accepted: 06/20/2012] [Indexed: 12/14/2022]
Abstract
Protein trafficking and localization in plastids involve a complex interplay between ancient (prokaryotic) and novel (eukaryotic) translocases and targeting machineries. During evolution, ancient systems acquired new functions and novel translocation machineries were developed to facilitate the correct localization of nuclear encoded proteins targeted to the chloroplast. Because of its post-translational nature, targeting and integration of membrane proteins posed the biggest challenge to the organelle to avoid aggregation in the aqueous compartments. Soluble proteins faced a different kind of problem since some had to be transported across three membranes to reach their destination. Early studies suggested that chloroplasts addressed these issues by adapting ancient-prokaryotic machineries and integrating them with novel-eukaryotic systems, a process called 'conservative sorting'. In the last decade, detailed biochemical, genetic, and structural studies have unraveled the mechanisms of protein targeting and localization in chloroplasts, suggesting a highly integrated scheme where ancient and novel systems collaborate at different stages of the process. In this review we focus on the differences and similarities between chloroplast ancestral translocases and their prokaryotic relatives to highlight known modifications that adapted them to the eukaryotic situation. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Jose M Celedon
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
27
|
Ghai R, Falconer RJ, Collins BM. Applications of isothermal titration calorimetry in pure and applied research--survey of the literature from 2010. J Mol Recognit 2012; 25:32-52. [PMID: 22213449 DOI: 10.1002/jmr.1167] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Isothermal titration calorimetry (ITC) is a biophysical technique for measuring the formation and dissociation of molecular complexes and has become an invaluable tool in many branches of science from cell biology to food chemistry. By measuring the heat absorbed or released during bond formation, ITC provides accurate, rapid, and label-free measurement of the thermodynamics of molecular interactions. In this review, we survey the recent literature reporting the use of ITC and have highlighted a number of interesting studies that provide a flavour of the diverse systems to which ITC can be applied. These include measurements of protein-protein and protein-membrane interactions required for macromolecular assembly, analysis of enzyme kinetics, experimental validation of molecular dynamics simulations, and even in manufacturing applications such as food science. Some highlights include studies of the biological complex formed by Staphylococcus aureus enterotoxin C3 and the murine T-cell receptor, the mechanism of membrane association of the Parkinson's disease-associated protein α-synuclein, and the role of non-specific tannin-protein interactions in the quality of different beverages. Recent developments in automation are overcoming limitations on throughput imposed by previous manual procedures and promise to greatly extend usefulness of ITC in the future. We also attempt to impart some practical advice for getting the most out of ITC data for those researchers less familiar with the method.
Collapse
Affiliation(s)
- Rajesh Ghai
- Institute for Molecular Bioscience (IMB), University of Queensland, St. Lucia, Queensland, 4072, Australia
| | | | | |
Collapse
|
28
|
Stael S, Wurzinger B, Mair A, Mehlmer N, Vothknecht UC, Teige M. Plant organellar calcium signalling: an emerging field. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1525-42. [PMID: 22200666 PMCID: PMC3966264 DOI: 10.1093/jxb/err394] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This review provides a comprehensive overview of the established and emerging roles that organelles play in calcium signalling. The function of calcium as a secondary messenger in signal transduction networks is well documented in all eukaryotic organisms, but so far existing reviews have hardly addressed the role of organelles in calcium signalling, except for the nucleus. Therefore, a brief overview on the main calcium stores in plants-the vacuole, the endoplasmic reticulum, and the apoplast-is provided and knowledge on the regulation of calcium concentrations in different cellular compartments is summarized. The main focus of the review will be the calcium handling properties of chloroplasts, mitochondria, and peroxisomes. Recently, it became clear that these organelles not only undergo calcium regulation themselves, but are able to influence the Ca(2+) signalling pathways of the cytoplasm and the entire cell. Furthermore, the relevance of recent discoveries in the animal field for the regulation of organellar calcium signals will be discussed and conclusions will be drawn regarding potential homologous mechanisms in plant cells. Finally, a short overview on bacterial calcium signalling is included to provide some ideas on the question where this typically eukaryotic signalling mechanism could have originated from during evolution.
Collapse
Affiliation(s)
- Simon Stael
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Bernhard Wurzinger
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Andrea Mair
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Norbert Mehlmer
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | - Ute C. Vothknecht
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science (Munich) at the Department of Biology of the LMU Munich, D-81377 Munich, Germany
| | - Markus Teige
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
- To whom correspondence should be addressed.
| |
Collapse
|
29
|
Welte T, Kudva R, Kuhn P, Sturm L, Braig D, Müller M, Warscheid B, Drepper F, Koch HG. Promiscuous targeting of polytopic membrane proteins to SecYEG or YidC by the Escherichia coli signal recognition particle. Mol Biol Cell 2011; 23:464-79. [PMID: 22160593 PMCID: PMC3268725 DOI: 10.1091/mbc.e11-07-0590] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The YidC insertase also integrates multispanning membrane proteins that had been considered to be exclusively SecYEG dependent. Only membrane proteins that require SecA can be inserted only via SecYEG. Targeting to YidC is SRP dependent, and the C-terminus of YidC cross-links to SRP, FtsY, and ribosomal subunits. Protein insertion into the bacterial inner membrane is facilitated by SecYEG or YidC. Although SecYEG most likely constitutes the major integration site, small membrane proteins have been shown to integrate via YidC. We show that YidC can also integrate multispanning membrane proteins such as mannitol permease or TatC, which had been considered to be exclusively integrated by SecYEG. Only SecA-dependent multispanning membrane proteins strictly require SecYEG for integration, which suggests that SecA can only interact with the SecYEG translocon, but not with the YidC insertase. Targeting of multispanning membrane proteins to YidC is mediated by signal recognition particle (SRP), and we show by site-directed cross-linking that the C-terminus of YidC is in contact with SRP, the SRP receptor, and ribosomal proteins. These findings indicate that SRP recognizes membrane proteins independent of the downstream integration site and that many membrane proteins can probably use either SecYEG or YidC for integration. Because protein synthesis is much slower than protein transport, the use of YidC as an additional integration site for multispanning membrane proteins may prevent a situation in which the majority of SecYEG complexes are occupied by translating ribosomes during cotranslational insertion, impeding the translocation of secretory proteins.
Collapse
Affiliation(s)
- Thomas Welte
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The chromatin organization modifier domain (chromodomain) was first identified as a motif associated with chromatin silencing in Drosophila. There is growing evidence that chromodomains are evolutionary conserved across different eukaryotic species to control diverse aspects of epigenetic regulation. Although originally reported as histone H3 methyllysine readers, the chromodomain functions have now expanded to recognition of other histone and non-histone partners as well as interaction with nucleic acids. Chromodomain binding to a diverse group of targets is mediated by a conserved substructure called the chromobox homology region. This motif can be used to predict methyllysine binding and distinguish chromodomains from related Tudor "Royal" family members. In this review, we discuss and classify various chromodomains according to their context, structure and the mechanism of target recognition.
Collapse
Affiliation(s)
- Bartlomiej J Blus
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL, USA
| | | | | |
Collapse
|
31
|
Nguyen TX, Chandrasekar S, Neher S, Walter P, Shan SO. Concerted complex assembly and GTPase activation in the chloroplast signal recognition particle. Biochemistry 2011; 50:7208-17. [PMID: 21780778 PMCID: PMC6309729 DOI: 10.1021/bi200742a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The universally conserved signal recognition particle (SRP) and SRP receptor (SR) mediate the cotranslational targeting of proteins to cellular membranes. In contrast, a unique chloroplast SRP in green plants is primarily dedicated to the post-translational targeting of light harvesting chlorophyll a/b binding (LHC) proteins. In both pathways, dimerization and activation between the SRP and SR GTPases mediate the delivery of cargo; whether and how the GTPase cycle in each system adapts to its distinct substrate proteins were unclear. Here, we show that interactions at the active site essential for GTPase activation in the chloroplast SRP and SR play key roles in the assembly of the GTPase complex. In contrast to their cytosolic homologues, GTPase activation in the chloroplast SRP-SR complex contributes marginally to the targeting of LHC proteins. These results demonstrate that complex assembly and GTPase activation are highly coupled in the chloroplast SRP and SR and suggest that the chloroplast GTPases may forego the GTPase activation step as a key regulatory point. These features may reflect adaptations of the chloroplast SRP to the delivery of their unique substrate protein.
Collapse
Affiliation(s)
- Thang X. Nguyen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125
| | - Saskia Neher
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158
- Current address: Department of biochemistry and biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125
| |
Collapse
|
32
|
Dünschede B, Bals T, Funke S, Schünemann D. Interaction studies between the chloroplast signal recognition particle subunit cpSRP43 and the full-length translocase Alb3 reveal a membrane-embedded binding region in Alb3 protein. J Biol Chem 2011; 286:35187-95. [PMID: 21832051 DOI: 10.1074/jbc.m111.250746] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Posttranslational targeting of the light-harvesting chlorophyll a,b-binding proteins depends on the function of the chloroplast signal recognition particle, its receptor cpFtsY, and the translocase Alb3. The thylakoid membrane protein Alb3 of Arabidopsis chloroplasts belongs to the evolutionarily conserved YidC/Oxa1/Alb3 protein family; the members of this family facilitate the insertion, folding, and assembly of membrane proteins in bacteria, mitochondria, and chloroplasts. Here, we analyzed the interaction sites of full-length Alb3 with the cpSRP pathway component cpSRP43 by using in vitro and in vivo studies. Bimolecular fluorescence complementation and Alb3 proteoliposome studies showed that the interaction of cpSRP43 is dependent on a binding domain in the C terminus of Alb3 as well as an additional membrane-embedded binding site in the fifth transmembrane domain (TMD5) of Alb3. The C-terminal binding domain was mapped to residues 374-388, and the binding domain within TMD5 was mapped to residues 314-318 located close to the luminal end of TMD5. A direct binding between cpSRP43 and these binding motifs was shown by pepspot analysis. Further studies using blue-native gel electrophoresis revealed that full-length Alb3 is able to form dimers. This finding and the identification of a membrane-embedded cpSRP43 binding site in Alb3 support a model in which cpSRP43 inserts into a dimeric Alb3 translocation pore during cpSRP-dependent delivery of light-harvesting chlorophyll a,b-binding proteins.
Collapse
Affiliation(s)
- Beatrix Dünschede
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780 Bochum, Germany
| | | | | | | |
Collapse
|
33
|
Falk S, Sinning I. The C terminus of Alb3 interacts with the chromodomains 2 and 3 of cpSRP43. J Biol Chem 2010; 285:le25-6; author reply le26-8. [PMID: 21186296 PMCID: PMC3009945 DOI: 10.1074/jbc.l110.160093] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Sebastian Falk
- Heidelberg University Biochemistry Center (BZH), INF 328, 69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), INF 328, 69120 Heidelberg, Germany
| |
Collapse
|
34
|
Lewis NE, Kight AD, Daily A, Kumar TKS, Henry RL, Goforth RL. Response to Falk and Sinning: The C Terminus of Alb3 Interacts with the Chromodomains 2 and 3 of cpSRP43. J Biol Chem 2010. [DOI: 10.1074/jbc.n110.160093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|