1
|
Bolin AP, de Fatima Silva F, Salgueiro RB, Dos Santos BA, Komino ACM, Andreotti S, de Sousa É, de Castro É, Real CC, de Paula Faria D, Souza GP, Camara H, Sorgi CA, Tseng YH, Lima FB, Rodrigues AC. Glucocorticoid modulates oxidative and thermogenic function of rat brown adipose tissue and human brown adipocytes. J Cell Physiol 2024; 239:1-12. [PMID: 39091018 DOI: 10.1002/jcp.31397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Chronic and excessive glucocorticoid (GC) exposure can cause Cushing's syndrome, resulting in fat accumulation in selected body areas. Particularly in the brown adipose tissue (BAT), GC acts negatively, resulting in whitening of the tissue. We hypothesized that dysregulation of microRNAs by GC could be an additional mechanism to explain its negative actions in BAT. Male Wistar rats were divided into two groups: (1) Control sham and (2) GC group that was administered dexamethasone 6.25 mg/200 μL via osmotic pump implantation over 28 days. After this period, the animals were euthanized and BAT tissue was properly stored. Human fat cells treated with dexamethasone were used to translate the experimental results found in animals to human biology. GC-treated rat BAT presented with large lipid droplets, severely impaired thermogenic activation, and reduced glucose uptake measured by 18F-FDG PET/CT. GC exposure induced a reduction in the mitochondrial OXPHOS system and oxygen consumption. MicroRNA profiling of BAT revealed five top-regulated microRNAs and among them miR-21-5p was the most significantly upregulated in GC-treated rats compared to the control group. Although upregulation of miR-21-5p in the tissue, differentiated primary brown adipocytes from GC-treated rats had decreased miR-21-5p levels compared to the control group. To translate these results to the clinic, human brown adipocytes were treated with dexamethasone and miR-21-5p inhibitor. In human brown cells, inhibition of miR-21-5p increased brown adipocyte differentiation and prevented GC-induced glucose uptake, resulting in a lower glycolysis rate. In conclusion, high-dose GC therapy significantly impacts brown adipose tissue function, with a notable association between glucose uptake and miR-21-5p.
Collapse
Affiliation(s)
- Anaysa Paola Bolin
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Flaviane de Fatima Silva
- Department of Physiology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Barrera Salgueiro
- Department of Physiology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Bruna Araújo Dos Santos
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Sandra Andreotti
- Department of Physiology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Érica de Sousa
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Érique de Castro
- Department of Physiology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Caroline Cristiano Real
- Department of Nuclear Medicine and PET, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Daniele de Paula Faria
- Department of Radiology and Oncology, Laboratory of Nuclear Medicine (LIM43), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Gerson Profeta Souza
- Department of Medicine, Section on Integrative Physiology and Metabolism, Joslin Diabetes Center Harvard Medical School, Boston, Massachusetts, USA
| | - Henrique Camara
- Department of Medicine, Section on Integrative Physiology and Metabolism, Joslin Diabetes Center Harvard Medical School, Boston, Massachusetts, USA
| | - Carlos Arterio Sorgi
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto - FMRP/USP, Ribeirão Preto, Brazil
- Department of Chemistry, Faculdade de Filosofia, Ciencias e Letras de Ribeirão Preto - FFCLRP/USP, Ribeirão Preto, Brazil
| | - Yu-Hua Tseng
- Department of Medicine, Section on Integrative Physiology and Metabolism, Joslin Diabetes Center Harvard Medical School, Boston, Massachusetts, USA
| | - Fábio Bessa Lima
- Department of Physiology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alice Cristina Rodrigues
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Gaál Z. Role of microRNAs in Immune Regulation with Translational and Clinical Applications. Int J Mol Sci 2024; 25:1942. [PMID: 38339220 PMCID: PMC10856342 DOI: 10.3390/ijms25031942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
MicroRNAs (miRNAs) are 19-23 nucleotide long, evolutionarily conserved noncoding RNA molecules that regulate gene expression at the post-transcriptional level. In this review, involvement of miRNAs is summarized in the differentiation and function of immune cells, in anti-infective immune responses, immunodeficiencies and autoimmune diseases. Roles of miRNAs in anticancer immunity and in the transplantation of solid organs and hematopoietic stem cells are also discussed. Major focus is put on the translational clinical applications of miRNAs, including the establishment of noninvasive biomarkers for differential diagnosis and prediction of prognosis. Patient selection and response prediction to biological therapy is one of the most promising fields of application. Replacement or inhibition of miRNAs has enormous therapeutic potential, with constantly expanding possibilities. Although important challenges still await solutions, evaluation of miRNA fingerprints may contribute to an increasingly personalized management of immune dysregulation with a remarkable reduction in toxicity and treatment side effects. More detailed knowledge of the molecular effects of physical exercise and nutrition on the immune system may facilitate self-tailored lifestyle recommendations and advances in prevention.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt, 4032 Debrecen, Hungary
| |
Collapse
|
3
|
Casciaro C, Hamada H, Kostaki A, Matthews SG. Glucocorticoid exposure modifies the miRNA profile of sperm in the guinea pig: Implications for intergenerational transmission. FASEB J 2023; 37:e22879. [PMID: 36928999 DOI: 10.1096/fj.202201784r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Approximately 1%-3% of the adult population are treated with synthetic glucocorticoids (sGCs) for a variety of conditions. Studies have demonstrated that adversities experienced by males prior to conception may lead to abnormal neuroendocrine function and behaviors in offspring and that epigenetic factors including microRNA (miRNA) within sperm may be responsible for driving these effects. However, it remains unclear where in the epididymis sperm miRNA changes are occurring. Here, we hypothesized that sGC exposure will alter the miRNA profile of sperm in the epididymis in a region-specific manner. Adult male guinea pigs were exposed to regular drinking water (Ctrl) or water with the sGC dexamethasone (Dex; 3mg/kg) (n = 6/group) every other day for 48 days. Sperms were collected from epididymal seminal fluid in the caput and cauda regions of the epididymis and total RNA was extracted. miRNAs were assessed by miRNA 4.0 microarray; data were processed by TAC 4.0.1 and R. miRNA analysis revealed one miRNA in the caput that was significantly decreased by Dex in sperm. In the cauda, 31 miRNAs were reduced in sperm following Dex-exposure. The findings of this study demonstrate that Dex-exposure influences miRNA profile of sperm in the cauda but not the caput of the epididymis. This suggests that glucocorticoids target the epididymis to modify sperm miRNA and do not modify the miRNA content during spermiation in the testes.
Collapse
Affiliation(s)
- Christopher Casciaro
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hirotaka Hamada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Gynecology and Obstetrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Alisa Kostaki
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Stephen G Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Crosstalk of Transcriptional Regulators of Adaptive Immune System and microRNAs: An Insight into Differentiation and Development. Cells 2023; 12:cells12040635. [PMID: 36831302 PMCID: PMC9953855 DOI: 10.3390/cells12040635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
MicroRNAs (miRNAs), as small regulatory RNA molecules, are involved in gene expression at the post-transcriptional level. Hence, miRNAs contribute to gene regulation of various steps of different cell subsets' differentiation, maturation, and activation. The adaptive immune system arm, which exhibits the most specific immune responses, is also modulated by miRNAs. The generation and maturation of various T-cell subsets concomitant with B-cells is under precise regulation of miRNAs which function directly on the hallmark genes of each cell subset or indirectly through regulation of signaling pathway mediators and/or transcription factors involved in this maturation journey. In this review, we first discussed the origination process of common lymphocyte progenitors from hematopoietic stem cells, which further differentiate into various T-cell subsets under strict regulation of miRNAs and transcription factors. Subsequently, the differentiation of B-cells from common lymphocyte progenitors in bone marrow and periphery were discussed in association with a network of miRNAs and transcription factors.
Collapse
|
5
|
Immunosuppressive drugs and associated complications in abdominal organ transplantation. Curr Opin Crit Care 2022; 28:208-215. [PMID: 35142726 DOI: 10.1097/mcc.0000000000000927] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Intensive care management of patients who have undergone organ transplantation of liver, small bowel, pancreas, and/or kidney requires a basic knowledge of immunosuppression principles and the management of immunosuppressive medications. This review highlights the core principles of immunosuppression management in abdominal organ transplantation with a focus on complications arising from immunosuppressive drugs, both in the immediate postoperative period and in long-term usage. RECENT FINDINGS The general principles of management of immunosuppression in the abdominal organ transplant population have remained largely unchanged. Improvements in drug monitoring coupled with improvements in knowledge of pathways involved in allograft rejection have further refined immunosuppressive therapy. Infectious and central nervous system complications remain prevalent and are common complications of immunosuppressive drug therapy. SUMMARY For the intensive care professional who cares for abdominal organ transplant recipients, a foundational knowledge of the core principles of immunosuppression management is essential. In addition, an understanding of the common immunosuppressive drug regimens and the complications associated with these regimens is required for optimal management, risk assessment, and outcomes.
Collapse
|
6
|
Chen H, Zhang Z, Zhang J. In silico drug repositioning based on integrated drug targets and canonical correlation analysis. BMC Med Genomics 2022; 15:48. [PMID: 35249529 PMCID: PMC8898485 DOI: 10.1186/s12920-022-01203-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/02/2022] [Indexed: 01/21/2023] Open
Abstract
Background Besides binding to proteins, the most recent advances in pharmacogenomics indicate drugs can regulate the expression of non-coding RNAs (ncRNAs). The polypharmacological feature in drugs enables us to find new uses for existing drugs (namely drug repositioning). However, current computational methods for drug repositioning mainly consider proteins as drug targets. Meanwhile, these methods identify only statistical relationships between drugs and diseases. They provide little information about how drug-disease associations are formed at the molecular target level. Methods Herein, we first comprehensively collect proteins and two categories of ncRNAs as drug targets from public databases to construct drug–target interactions. Experimentally confirmed drug-disease associations are downloaded from an established database. A canonical correlation analysis (CCA) based method is then applied to the two datasets to extract correlated sets of targets and diseases. The correlated sets are regarded as canonical components, and they are used to investigate drug’s mechanism of actions. We finally develop a strategy to predict novel drug-disease associations for drug repositioning by combining all the extracted correlated sets. Results We receive 400 canonical components which correlate targets with diseases in our study. We select 4 components for analysis and find some top-ranking diseases in an extracted set might be treated by drugs interfacing with the top-ranking targets in the same set. Experimental results from 10-fold cross-validations show integrating different categories of target information results in better prediction performance than only using proteins or ncRNAs as targets. When compared with 3 state-of-the-art approaches, our method receives the highest AUC value 0.8576. We use our method to predict new indications for 789 drugs and confirm 24 predictions in the top 1 predictions. Conclusions To the best of our knowledge, this is the first computational effort which combines both proteins and ncRNAs as drug targets for drug repositioning. Our study provides a biologically relevant interpretation regarding the forming of drug-disease associations, which is useful for guiding future biomedical tests. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01203-1.
Collapse
|
7
|
Tan XG, Zhu J, Cui L. MicroRNA expression signature and target prediction in familial and sporadic primary macronodular adrenal hyperplasia (PMAH). BMC Endocr Disord 2022; 22:11. [PMID: 34986816 PMCID: PMC8729020 DOI: 10.1186/s12902-021-00910-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 12/05/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Primary macronodular adrenal hyperplasia (PMAH), previously termed ACTH-independent macronodular adrenal hyperplasia (AIMAH), is a rare cause of Cushing's syndrome usually characterized by functioning adrenal macronodules and increased cortisol production. METHODS To screen and analyse the microRNA (miRNA) profile of PMAH in order to elucidate its possible pathogenesis, a miRNA microarray was used to test tissue samples from patients with familial PMAH, patients with sporadic PMAH and normal control samples of other nontumour adrenocortical tissues and identify characteristic microRNA expression signatures. Randomly selected miRNAs were validated by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, the key signalling pathways and miRNAs involved in PMAH pathogenesis were determined by gene ontology and pathway analysis. RESULTS Characteristic microRNA expression signatures were identified for patients with familial PMAH (16 differentially expressed microRNAs) and patients with sporadic PMAH (8 differentially expressed microRNAs). The expression of the selected miRNAs was confirmed by qRT-PCR, suggesting the high reliability of the miRNA array analysis results. Pathway analysis showed that the most enriched pathway was the renal cell carcinoma pathway. Overexpression of miR-17, miR-20a and miR-130b may inhibit glucocorticoid-induced apoptosis in PMAH pathogenesis. CONCLUSION We identified the miRNA signatures in patients with familial and sporadic PMAH. The differentially expressed miRNAs may be involved in the mechanisms of PMAH pathogenesis. Specific miRNAs, such as miR-17, miR-20a and miR-130b, may be new targets for further functional studies of PMAH.
Collapse
Affiliation(s)
- Xiao-Gang Tan
- Department of Thoracic Surgery, Xuan Wu Hospital of Capital Medical University, Beijing, 100053, China
| | - Jie Zhu
- Department of Urology Surgery, Chinese PLA General Hospital, Beijing, 100082, China
| | - Liang Cui
- Department of Urology Surgery, Civil Aviation General Hospital, Beijing, 100123, China.
| |
Collapse
|
8
|
Dashti F, Mirazimi SMA, Rabiei N, Fathazam R, Rabiei N, Piroozmand H, Vosough M, Rahimian N, Hamblin MR, Mirzaei H. The role of non-coding RNAs in chemotherapy for gastrointestinal cancers. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:892-926. [PMID: 34760336 PMCID: PMC8551789 DOI: 10.1016/j.omtn.2021.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, hepatic, esophageal, and pancreatic tumors, are responsible for large numbers of deaths around the world. Chemotherapy is the most common approach used to treat advanced GI cancer. However, chemoresistance has emerged as a critical challenge that prevents successful tumor elimination, leading to metastasis and recurrence. Chemoresistance mechanisms are complex, and many factors and pathways are involved. Among these factors, non-coding RNAs (ncRNAs) are critical regulators of GI tumor development and subsequently can induce resistance to chemotherapy. This occurs because ncRNAs can target multiple signaling pathways, affect downstream genes, and modulate proliferation, apoptosis, tumor cell migration, and autophagy. ncRNAs can also induce cancer stem cell features and affect the epithelial-mesenchymal transition. Thus, ncRNAs could possibly act as new targets in chemotherapy combinations to treat GI cancer and to predict treatment response.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fathazam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
9
|
Corrales WA, Silva JP, Parra CS, Olave FA, Aguayo FI, Román-Albasini L, Aliaga E, Venegas-Zamora L, Avalos AM, Rojas PS, Maracaja-Coutinho V, Oakley RH, Cidlowski JA, Fiedler JL. Sex-Dependent Changes of miRNA Levels in the Hippocampus of Adrenalectomized Rats Following Acute Corticosterone Administration. ACS Chem Neurosci 2021; 12:2981-3001. [PMID: 34339164 DOI: 10.1021/acschemneuro.0c00762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We explored sex-biased effects of the primary stress glucocorticoid hormone corticosterone on the miRNA expression profile in the rat hippocampus. Adult adrenalectomized (ADX) female and male rats received a single corticosterone (10 mg/kg) or vehicle injection, and after 6 h, hippocampi were collected for miRNA, mRNA, and Western blot analyses. miRNA profiling microarrays showed a basal sex-biased miRNA profile in ADX rat hippocampi. Additionally, acute corticosterone administration triggered a sex-biased differential expression of miRNAs derived from genes located in several chromosomes and clusters on the X and 6 chromosomes. Putative promoter analysis unveiled that most corticosterone-responsive miRNA genes contained motifs for either direct or indirect glucocorticoid actions in both sexes. The evaluation of transcription factors indicated that almost 50% of miRNA genes sensitive to corticosterone in both sexes was under glucocorticoid receptor regulation. Transcription factor-miRNA regulatory network analyses identified several transcription factors that regulate, activate, or repress miRNA expression. Validated target mRNA analysis of corticosterone-responsive miRNAs showed a more complex miRNA-mRNA interaction network in males compared to females. Enrichment analysis revealed that several hippocampal-relevant pathways were affected in both sexes, such as neurogenesis and neurotrophin signaling. The evaluation of selected miRNA targets from these pathways displayed a strong sex difference in the hippocampus of ADX-vehicle rats. Corticosterone treatment did not change the levels of the miRNA targets and their corresponding tested proteins. Our data indicate that corticosterone exerts a sex-biased effect on hippocampal miRNA expression, which may engage in sculpting the basal sex differences observed at higher levels of hippocampal functioning.
Collapse
Affiliation(s)
- Wladimir A. Corrales
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, Santiago 8380492, Chile
| | - Juan P. Silva
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, Santiago 8380492, Chile
| | - Claudio S. Parra
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, Santiago 8380492, Chile
| | - Felipe A. Olave
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, Santiago 8380492, Chile
| | - Felipe I. Aguayo
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, Santiago 8380492, Chile
| | - Luciano Román-Albasini
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, Santiago 8380492, Chile
| | - Esteban Aliaga
- Department of Kinesiology and The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI-Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca 3460000, Chile
| | - Leslye Venegas-Zamora
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, Santiago 8380492, Chile
| | - Ana M. Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Paulina S. Rojas
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago 8370149, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, Santiago 8380492, Chile
| | - Robert H. Oakley
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, United States
| | - John A. Cidlowski
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, United States
| | - Jenny L. Fiedler
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, Santiago 8380492, Chile
| |
Collapse
|
10
|
Vega-Tapia F, Bustamante M, Valenzuela RA, Urzua CA, Cuitino L. miRNA Landscape in Pathogenesis and Treatment of Vogt-Koyanagi-Harada Disease. Front Cell Dev Biol 2021; 9:658514. [PMID: 34041239 PMCID: PMC8141569 DOI: 10.3389/fcell.2021.658514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
miRNAs, one of the members of the noncoding RNA family, are regulators of gene expression in inflammatory and autoimmune diseases. Changes in miRNA pool expression have been associated with differentiation of CD4+ T cells toward an inflammatory phenotype and with loss of self-tolerance in autoimmune diseases. Vogt–Koyanagi–Harada (VKH) disease is a chronic multisystemic pathology, affecting the uvea, inner ear, central nervous system, and skin. Several lines of evidence support an autoimmune etiology for VKH, with loss of tolerance against retinal pigmented epithelium-related self-antigens. This deleterious reaction is characterized by exacerbated inflammation, due to an aberrant TH1 and TH17 polarization and secretion of their proinflammatory hallmark cytokines interleukin 6 (IL-6), IL-17, interferon γ, and tumor necrosis factor α, and an impaired CD4+ CD25high FoxP3+ regulatory T cell function. To restrain inflammation, VKH is pharmacologically treated with corticosteroids and immunosuppressive drugs as first and second line of therapy, respectively. Changes in the expression of miRNAs related to immunoregulatory pathways have been associated with VKH development, whereas some genetic variants of miRNAs have been found to be risk modifiers of VKH. Furthermore, the drugs commonly used in VKH treatment have great influence on miRNA expression, including those miRNAs associated to VKH disease. This relationship between response to therapy and miRNA regulation suggests that these small noncoding molecules might be therapeutic targets for the development of more effective and specific pharmacological therapy for VKH. In this review, we discuss the latest evidence regarding regulation and alteration of miRNA associated with VKH disease and its treatment.
Collapse
Affiliation(s)
- Fabian Vega-Tapia
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mario Bustamante
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Núcleo de Ciencias Biológicas, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Rodrigo A Valenzuela
- Department de Health Science, Universidad de Aysén, Coyhaique, Chile.,Department of Chemical and Biological Sciences, Faculty of Health, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Cristhian A Urzua
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Ophthalmology, University of Chile, Santiago, Chile.,Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Loreto Cuitino
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Servicio de Oftalmología, Hospital Clínico Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Tejos-Bravo M, Oakley RH, Whirledge SD, Corrales WA, Silva JP, García-Rojo G, Toledo J, Sanchez W, Román-Albasini L, Aliaga E, Aguayo F, Olave F, Maracaja-Coutinho V, Cidlowski JA, Fiedler JL. Deletion of hippocampal Glucocorticoid receptors unveils sex-biased microRNA expression and neuronal morphology alterations in mice. Neurobiol Stress 2021; 14:100306. [PMID: 33665240 PMCID: PMC7906897 DOI: 10.1016/j.ynstr.2021.100306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Sex differences in the brain have prompted many researchers to investigate the underlying molecular actors, such as the glucocorticoid receptor (GR). This nuclear receptor controls gene expression, including microRNAs (miRNAs), in non-neuronal cells. Here, we investigated sex-biased effects of GR on hippocampal miRNA expression and neuronal morphology by generating a neuron-specific GR knockout mouse (Emx1-Nr3c1−/−). The levels of 578 mature miRNAs were assessed using NanoString technology and, in contrast to males, female Emx1-Nr3c1−/− mice showed a substantially higher number of differentially expressed miRNAs, confirming a sex-biased effect of GR ablation. Based on bioinformatic analyses we identified several transcription factors potentially involved in miRNA regulation. Functional enrichment analyses of the miRNA-mRNA interactions revealed pathways related to neuronal arborization and both spine morphology and density in both sexes. Two recognized regulators of dendritic morphology, CAMKII-α and GSK-3β, increased their protein levels by GR ablation in female mice hippocampus, without changes in males. Additionally, sex-specific effects of GR deletion were observed on CA1 neuronal arborization and dendritic spine features. For instance, a reduced density of mushroom spines in apical dendrites was evidenced only in females, while a decreased length in basal dendrites was noted only in males. However, length and arborization of apical dendrites were reduced by GR ablation irrespective of the sex. Overall, our study provides new insights into the sex-biased GR actions, especially in terms of miRNAs expression and neuronal morphology in the hippocampus.
Collapse
Affiliation(s)
- Macarena Tejos-Bravo
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Robert H Oakley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Shannon D Whirledge
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Wladimir A Corrales
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Juan P Silva
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Gonzalo García-Rojo
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile.,Carrera de Odontología. Facultad de Ciencias, Universidad de La Serena, La Serena, Chile
| | - Jorge Toledo
- Laboratory of Scientific Image Analysis (SCIAN-Lab), Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8380453, Chile
| | - Wendy Sanchez
- Laboratory of Scientific Image Analysis (SCIAN-Lab), Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8380453, Chile
| | - Luciano Román-Albasini
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Esteban Aliaga
- Department of Kinesiology and the Neuropsychology and Cognitive Neurosciences Research Center (CINPSI-Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| | - Felipe Aguayo
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Felipe Olave
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases -ACCDiS. Faculty of Chemical and Pharmaceutical Sciences. Department of Biochemistry and Molecular Biology. Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Jenny L Fiedler
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile
| |
Collapse
|
12
|
Chen S, Yim JJ, Bogyo M. Synthetic and biological approaches to map substrate specificities of proteases. Biol Chem 2020; 401:165-182. [PMID: 31639098 DOI: 10.1515/hsz-2019-0332] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023]
Abstract
Proteases are regulators of diverse biological pathways including protein catabolism, antigen processing and inflammation, as well as various disease conditions, such as malignant metastasis, viral infection and parasite invasion. The identification of substrates of a given protease is essential to understand its function and this information can also aid in the design of specific inhibitors and active site probes. However, the diversity of putative protein and peptide substrates makes connecting a protease to its downstream substrates technically difficult and time-consuming. To address this challenge in protease research, a range of methods have been developed to identify natural protein substrates as well as map the overall substrate specificity patterns of proteases. In this review, we highlight recent examples of both synthetic and biological methods that are being used to define the substrate specificity of protease so that new protease-specific tools and therapeutic agents can be developed.
Collapse
Affiliation(s)
- Shiyu Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joshua J Yim
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Cron MA, Guillochon É, Kusner L, Le Panse R. Role of miRNAs in Normal and Myasthenia Gravis Thymus. Front Immunol 2020; 11:1074. [PMID: 32587589 PMCID: PMC7297979 DOI: 10.3389/fimmu.2020.01074] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
The thymus, a primary lymphoid organ, provides a complex environment essential for the generation of the T-cell repertoire. Thymic alterations occur during life either in the context of thymic involution upon aging or the pathophysiological context of Myasthenia Gravis (MG). These changes involve complicated regulatory networks, in which microRNAs (miRNAs) are key players. Here, we analyzed the role of miRNAs in thymocyte maturation and differentiation sustained by thymic epithelial cells. We compared data from the literature regarding the role of mouse thymic miRNAs and original data obtained from a human thymic miRnome study. We identified a set of highly expressed miRNAs defined as ThymiRs and investigated miRNA expression in infants as compared to adults to determine those associated with human thymic involution. Thymic changes are also frequently observed in MG, an autoimmune disease which results in the production of anti-acetylcholine receptor (AChR) antibodies that lead to muscle weaknesses. Alterations such as thymoma in late-onset MG patients and hyperplasia with ectopic germinal centers (GCs) in early-onset (EOMG) patients are found. Thymic miRNA expression has been studied in AChR-MG patients both in thymoma-associated MG (TAMG) and EOMG, and their function through their mRNA targets investigated. Most of the dysregulated thymic miRNAs in EOMG are associated with GC development, such as miR-7, miR-24, miR-139, miR-143, miR-145, miR-146, miR-150, miR-452, miR-548 or thymic inflammation, such as miR-125b, miR-146, or miR-29. Understanding these pathways may provide therapeutic targets or biomarkers of disease manifestations.
Collapse
Affiliation(s)
- Mélanie A Cron
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, Paris, France
| | - Émilie Guillochon
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, Paris, France
| | - Linda Kusner
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States
| | - Rozen Le Panse
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, Paris, France
| |
Collapse
|
14
|
Lee S, Cho O, Chun M, Chang SJ, Kong TW, Lee EJ, Lee Y. Association Between Radiation Tolerance of Lymphocytes and Clinical Outcomes in Cervical Cancer. In Vivo 2020; 33:2191-2198. [PMID: 31662555 DOI: 10.21873/invivo.11721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND/AIM This study evaluated whether the lymphocyte tolerance factor (LTF) was an indicator of radiation tolerance of lymphocytes (RTL) using the relative lymphocyte count (RLC), and considering clinical outcomes. PATIENTS AND METHODS A total of 92 cervical cancer patients treated with concurrent chemoradiotherapy (CCRT) were analysed. RLC0 was pre-treatment RLC, and RLC1, and RLC2 were at the first and second week of CCRT, respectively. LTF1 was RLC1:RLC2. LTF2 was the dimension of the convex or concave shape comprising the three RLC vertexes. Patients were divided into three groups: good RTL group, low LTF1; moderate RTL group, high LTF1 and low LTF2; and poor RTL group, high LTF1 and high LTF2. RESULTS Patients with good tumour response to radiotherapy were mostly included in the good RTL group than in the other groups. The poor RTL group had lower 3-year progression-free survival (57.1% vs. 83.8% and 82%, p=0.01) and 5-year disease-specific survival (71.8% vs. 90.4% and 94.9%, p=0.062) rates than the moderate and good RTL groups. Multivariate analyses showed that poor RTL was a significant survival predictor. CONCLUSION The poor RTL group according to LTF is a potential predictor of clinical outcome.
Collapse
Affiliation(s)
- Shiho Lee
- Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Oyeon Cho
- Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Mison Chun
- Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Suk Jun Chang
- Department of Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Tae Wook Kong
- Department of Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Eun Ju Lee
- Department of Radiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yonghee Lee
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
15
|
Smutny T, Dusek J, Hyrsova L, Nekvindova J, Horvatova A, Micuda S, Gerbal-Chaloin S, Pavek P. The 3'-untranslated region contributes to the pregnane X receptor (PXR) expression down-regulation by PXR ligands and up-regulation by glucocorticoids. Acta Pharm Sin B 2020; 10:136-152. [PMID: 31998607 PMCID: PMC6976988 DOI: 10.1016/j.apsb.2019.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022] Open
Abstract
Pregnane X receptor (PXR) is the major regulator of xenobiotic metabolism. PXR itself is controlled by various signaling molecules including glucocorticoids. Moreover, negative feed-back regulation has been proposed at the transcriptional level. We examined the involvement of the 3'-untranslated region (3'-UTR) of NR1I2 mRNA and microRNAs in PXR- and glucocorticoid receptor (GR)-mediated regulation of NR1I2 gene expression. PXR ligands were found to significantly downregulate NR1I2 mRNA expression in a set of 14 human hepatocyte cultures. Similarly, PXR was downregulated by PCN in the C57/BL6 mice liver. In mechanistic studies with the full-length 3'-UTR cloned into luciferase reporter or expression vectors, we showed that the 3'-UTR reduces PXR expression. From the miRNAs tested, miR-18a-5p inhibited both NR1I2 expression and CYP3A4 gene induction. Importantly, we observed significant upregulation of miR-18a-5p expression 6 h after treatment with the PXR ligand rifampicin, which indicates a putative mechanism underlying NR1I2 negative feed-back regulation in hepatic cells. Additionally, glucocorticoids upregulated NR1I2 expression not only through the promoter region but also via 3'-UTR regulation, which likely involves downregulation of miR-18a-5p. We conclude that miR-18a-5p is involved in the down-regulation of NR1I2 expression by its ligands and in the upregulation of NR1I2 mRNA expression by glucocorticoids in hepatic cells.
Collapse
Key Words
- 3′-UTR, 3′-untranslated region
- CAR, constitutive androstane receptor
- CYP3A4, cytochrome P450 3A4
- Cytochrome P450 3A4
- DEX, dexamethasone
- DMEs, drug metabolizing enzymes
- DMSO, dimethyl sulfoxide
- ER, estrogen receptor
- GRα, glucocorticoid receptor α
- Gene expression
- Gluc, Gaussia luciferase
- Glucocorticoid
- LBD, ligand binding domain
- MRE, miRNA-response element
- MicroRNA
- NR, nuclear receptor
- PB, phenobarbital
- PCN, pregnenolone 16α-carbonitrile
- PHHs, primary human hepatocytes
- PPARα, peroxisome proliferator-activated receptor α
- PXR, pregnane X receptor
- Pregnane X receptor
- RXRα, retinoid X receptor α
- Regulation
- Rif, rifampicin
- SEAP, secreted alkaline phosphatase
- miRNA, microRNA
Collapse
Affiliation(s)
- Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove CZ-500 05, Czech Republic
| | - Jan Dusek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove CZ-500 05, Czech Republic
| | - Lucie Hyrsova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove CZ-500 05, Czech Republic
| | - Jana Nekvindova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove CZ-500 05, Czech Republic
| | - Alzbeta Horvatova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove CZ-500 05, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove CZ-500 03, Czech Republic
| | | | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove CZ-500 05, Czech Republic
| |
Collapse
|
16
|
Jacobsen DP, Eriksen MB, Rajalingam D, Nymoen I, Nielsen MB, Einarsen S, Gjerstad J. Exposure to workplace bullying, microRNAs and pain; evidence of a moderating effect of miR-30c rs928508 and miR-223 rs3848900. Stress 2020; 23:77-86. [PMID: 31339402 DOI: 10.1080/10253890.2019.1642320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Prolonged exposure to bullying behaviors may give rise to symptoms such as anxiety, depression and chronic pain. Earlier data suggest that these symptoms often are associated with stress-induced low-grade systemic inflammation. Here, using data from both animals and humans, we examined the moderating role of microRNAs (miRNAs, miRs) in this process. In the present study, a resident-intruder paradigm, blood samples, tissue harvesting and subsequent qPCR analyses were used to screen for stress-induced changes in circulating miRNAs in rats. The negative acts questionnaire (NAQ), TaqMan assays and a numeric rating scale (NRS) for pain intensity were then used to examine the associations among bullying behaviors, relevant miRNA polymorphisms and pain in a probability sample of 996 Norwegian employees. In rats, inhibited weight gain, reduced pituitary POMC expression, adrenal Nr3c1 mRNA downregulation, as well as increased miR-146a, miR-30c and miR-223 in plasma were observed following 1 week of repeated exposure to social stress. When following up the miRNA findings from the animal study in the human working population, a stronger relationship between NAQ and NRS scores was observed in subjects with the miR-30c GG genotype (rs928508) compared to other subjects. A stronger relationship between NAQ and NRS scores was also seen in men with the miR-223 G genotype (rs3848900) as compared to other men. Our findings show that social stress may induce many physiological changes including changed expression of miRNAs. We conclude that the miR-30c GG genotype in men and women, and the miR-223 G genotype in men, amplify the association between exposure to bullying behaviors and pain.Lay summaryUsing an animal model of social stress, we identified miR-146a, miR-30c and miR-223 as potentially important gene regulatory molecules that may be involved in the stress response. Interestingly, human genotypes affecting the expression of mature miR-30c and miR-223 had a moderating effect on the association between exposure to bullying and pain. Subjects with the miR-30c rs928508 GG genotype had a significantly stronger association between exposure to bullying behaviors and pain than other subjects. The same was observed in men with the miR-223 rs3848900 G genotype, as compared to other men.
Collapse
Affiliation(s)
- Daniel Pitz Jacobsen
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway
| | | | | | | | - Morten Birkeland Nielsen
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway
- Department for Psychosocial Science, University of Bergen, Bergen, Norway
| | - Ståle Einarsen
- Department for Psychosocial Science, University of Bergen, Bergen, Norway
| | - Johannes Gjerstad
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
- Department for Psychosocial Science, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Potential Health Risks Linked to Emerging Contaminants in Major Rivers and Treated Waters. WATER 2019. [DOI: 10.3390/w11122615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The presence of endocrine-disrupting chemicals (EDCs) in our local waterways is becoming an increasing threat to the surrounding population. These compounds and their degradation products (found in pesticides, herbicides, and plastic waste) are known to interfere with a range of biological functions from reproduction to differentiation. To better understand these effects, we used an in silico ontological pathway analysis to identify the genes affected by the most commonly detected EDCs in large river water supplies, which we grouped together based on four common functions: Organismal injuries, cell death, cancer, and behavior. In addition to EDCs, we included the opioid buprenorphine in our study, as this similar ecological threat has become increasingly detected in river water supplies. Through the identification of the pleiotropic biological effects associated with both the acute and chronic exposure to EDCs and opioids in local water supplies, our results highlight a serious health threat worthy of additional investigations with a potential emphasis on the effects linked to increased DNA damage.
Collapse
|
18
|
Abukiwan A, Nwaeburu CC, Bauer N, Zhao Z, Liu L, Gladkich J, Gross W, Benner A, Strobel O, Fellenberg J, Herr I. Dexamethasone-induced inhibition of miR-132 via methylation promotes TGF-β-driven progression of pancreatic cancer. Int J Oncol 2018; 54:53-64. [PMID: 30387838 PMCID: PMC6255064 DOI: 10.3892/ijo.2018.4616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/03/2018] [Indexed: 12/16/2022] Open
Abstract
Glucocorticoids (GCs) such as dexamethasone (DEX) are administered as cancer co-treatment for palliative purposes due to their pro-apoptotic effects in lymphoid cancer and limited side effects associated with cancer growth and chemotherapy. However, there is emerging evidence that GCs induce therapy resistance in most epithelial tumors. Our recent data reveal that DEX promotes the progression of pancreatic ductal adenocarcinoma (PDA). In the present study, we examined 1 primary and 2 established PDA cell lines, and 35 PDA tissues from patients who had received (n=14) or not received (n=21) GCs prior to surgery. Through microRNA microarray analysis, in silico, and RT-qPCR analyses, we identified 268 microRNAs differentially expressed between DEX-treated and untreated cells. With a focus on cancer progression, we selected miR-132 and its target gene, transforming growth factor-β2 (TGF-β2), as top candidates. miR-132 mimics directly bound to the 3′ untranslated region (3′UTR) of a TGF-β2 luciferase construct and enhanced expression, as shown by increased luciferase activity. By contrast, DEX inhibited miR-132 expression via promoter methylation. miR-132 mimics also reduced DEX-induced clonogenicity, migration and expression of vimentin and E-cadherin in vitro and in tumor xenografts. In patients, GC intake prior to surgery enhanced global hypermethylation and expression of TGF-β2 in tissues; expression of miR-132 was detected but could not be quantified. Our results demonstrate that DEX-mediated inhibition of miR-132 is a key mediator in the progression of pancreatic cancer, and the findings provide a foundation for miRNA-based therapies.
Collapse
Affiliation(s)
- Alia Abukiwan
- Molecular Oncosurgery, Section of Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany
| | - Clifford C Nwaeburu
- Molecular Oncosurgery, Section of Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany
| | - Nathalie Bauer
- Molecular Oncosurgery, Section of Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany
| | - Zhefu Zhao
- Molecular Oncosurgery, Section of Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany
| | - Li Liu
- Molecular Oncosurgery, Section of Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany
| | - Jury Gladkich
- Molecular Oncosurgery, Section of Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany
| | - Wolfgang Gross
- Molecular Oncosurgery, Section of Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany
| | - Axel Benner
- Department of Biostatistics, German Cancer Research Center (DKFZ), University of Heidelberg, 69120 Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Jörg Fellenberg
- Orthopedics and Trauma Surgery, Experimental Orthopedics, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ingrid Herr
- Molecular Oncosurgery, Section of Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Duszka K, Wahli W. Enteric Microbiota⁻Gut⁻Brain Axis from the Perspective of Nuclear Receptors. Int J Mol Sci 2018; 19:ijms19082210. [PMID: 30060580 PMCID: PMC6121494 DOI: 10.3390/ijms19082210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) play a key role in regulating virtually all body functions, thus maintaining a healthy operating body with all its complex systems. Recently, gut microbiota emerged as major factor contributing to the health of the whole organism. Enteric bacteria have multiple ways to influence their host and several of them involve communication with the brain. Mounting evidence of cooperation between gut flora and NRs is already available. However, the full potential of the microbiota interconnection with NRs remains to be uncovered. Herewith, we present the current state of knowledge on the multifaceted roles of NRs in the enteric microbiota–gut–brain axis.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological, 11 Mandalay Road, Singapore 308232, Singapore.
- Center for Integrative Genomics, University of Lausanne, Génopode, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
20
|
De Iudicibus S, Lucafò M, Vitulo N, Martelossi S, Zimbello R, De Pascale F, Forcato C, Naviglio S, Di Silvestre A, Gerdol M, Stocco G, Valle G, Ventura A, Bramuzzo M, Decorti G. High-Throughput Sequencing of microRNAs in Glucocorticoid Sensitive Paediatric Inflammatory Bowel Disease Patients. Int J Mol Sci 2018; 19:ijms19051399. [PMID: 29738455 PMCID: PMC5983624 DOI: 10.3390/ijms19051399] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 01/02/2023] Open
Abstract
The aim of this research was the identification of novel pharmacogenomic biomarkers for better understanding the complex gene regulation mechanisms underpinning glucocorticoid (GC) action in paediatric inflammatory bowel disease (IBD). This goal was achieved by evaluating high-throughput microRNA (miRNA) profiles during GC treatment, integrated with the assessment of expression changes in GC receptor (GR) heterocomplex genes. Furthermore, we tested the hypothesis that differentially expressed miRNAs could be directly regulated by GCs through investigating the presence of GC responsive elements (GREs) in their gene promoters. Ten IBD paediatric patients responding to GCs were enrolled. Peripheral blood was obtained at diagnosis (T0) and after four weeks of steroid treatment (T4). MicroRNA profiles were analyzed using next generation sequencing, and selected significantly differentially expressed miRNAs were validated by quantitative reverse transcription-polymerase chain reaction. In detail, 18 miRNAs were differentially expressed from T0 to T4, 16 of which were upregulated and 2 of which were downregulated. Out of these, three miRNAs (miR-144, miR-142, and miR-96) could putatively recognize the 3’UTR of the GR gene and three miRNAs (miR-363, miR-96, miR-142) contained GREs sequences, thereby potentially enabling direct regulation by the GR. In conclusion, we identified miRNAs differently expressed during GC treatment and miRNAs which could be directly regulated by GCs in blood cells of young IBD patients. These results could represent a first step towards their translation as pharmacogenomic biomarkers.
Collapse
Affiliation(s)
- Sara De Iudicibus
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
| | - Marianna Lucafò
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, 37100 Verona, Italy.
| | - Stefano Martelossi
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
| | - Rosanna Zimbello
- CRIBI Biotechnology Centre, University of Padua, 35100 Padua, Italy.
| | - Fabio De Pascale
- CRIBI Biotechnology Centre, University of Padua, 35100 Padua, Italy.
| | - Claudio Forcato
- CRIBI Biotechnology Centre, University of Padua, 35100 Padua, Italy.
| | - Samuele Naviglio
- PhD School in Science of Reproduction and Development, University of Trieste, 34127 Trieste, Italy.
| | - Alessia Di Silvestre
- PhD School in Science of Reproduction and Development, University of Trieste, 34127 Trieste, Italy.
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Giorgio Valle
- CRIBI Biotechnology Centre, University of Padua, 35100 Padua, Italy.
| | - Alessandro Ventura
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Matteo Bramuzzo
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
| | - Giuliana Decorti
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| |
Collapse
|
21
|
Temporal Changes in Microrna Expression in Blood Leukocytes from Patients with the Acute Respiratory Distress Syndrome. Shock 2018; 47:688-695. [PMID: 27879560 DOI: 10.1097/shk.0000000000000806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND MicroRNA (miRNA) control gene transcription by binding to and repressing the translation of messenger RNA (mRNA). Their role in the acute respiratory distress syndrome (ARDS) is undefined. METHODS Blood leukocytes from 51 patients enrolled in a prior randomized trial of corticosteroids for ARDS were analyzed. After screening eight patients with microarrays for altered miRNA expression, 25 miRNAs were selected for further analysis using RT-PCR in all 51 patients. RESULTS On day 0, the 51 patients had APACHE III score of 60.4 ± 17.7 and PaO2/FiO2 of 117 ± 49. 21 miRNA were expressed at increased levels in blood leukocytes at the onset of ARDS compared with healthy controls. These miRNA remained elevated at day 3 and increased further by day 7 (log2 fold change from 0.66 to 5.7 fold, P <0.05 compared to day 0). In a subgroup analysis (37 patients treated with corticosteroids and 14 treated with placebo), the interaction of miRNA expression over time and steroid administration was not significant suggesting that systemic corticosteroids had no effect on the miRNA detected in our study. In contrast, corticosteroids but not placebo decreased IL-6 and C-reactive protein at day 3 (P < 0.001) demonstrating an early systemic anti-inflammatory response whereas both treatment arms had decreased values by day 7 (P <0.001). CONCLUSIONS Expression of miRNA is increased in blood leukocytes of patients with ARDS at day 0 and day 3 and rises further by day 7, when systemic inflammation is subsiding. These effects appear independent of the administration of steroids, suggesting different inflammatory modifying roles for each in the resolving phases of ARDS.
Collapse
|
22
|
miR-103 inhibits proliferation and sensitizes hemopoietic tumor cells for glucocorticoid-induced apoptosis. Oncotarget 2018; 8:472-489. [PMID: 27888798 PMCID: PMC5352135 DOI: 10.18632/oncotarget.13447] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/12/2016] [Indexed: 11/25/2022] Open
Abstract
Glucocorticoid (GC) hormones are an important ingredient of leukemia therapy since they are potent inducers of lymphoid cell apoptosis. However, the development of GC resistance remains an obstacle in GC-based treatment. In the present investigation we found that miR-103 is upregulated in GC-sensitive leukemia cells treated by the hormone. Transfection of GC resistant cells with miR-103 sensitized them to GC induced apoptosis (GCIA), while miR-103 sponging of GC sensitive cells rendered them partially resistant. miR-103 reduced the expression of cyclin dependent kinase (CDK2) and its cyclin E1 target, thereby leading to inhibition of cellular proliferation. miR-103 is encoded within the fifth intron of PANK3 gene. We demonstrate that the GC receptor (GR) upregulates miR-103 by direct interaction with GC response element (GRE) in the PANK3 enhancer. Consequently, miR-103 targets the c-Myc activators c-Myb and DVL1, thereby reducing c-Myc expression. Since c-Myc is a transcription factor of the miR-17~92a poly-cistron, all six miRNAs of the latter are also downregulated. Of these, miR-18a and miR-20a are involved in GCIA, as they target GR and BIM, respectively. Consequently, GR and BIM expression are elevated, thus advancing GCIA. Altogether, this study highlights miR-103 as a useful prognostic biomarker and drug for leukemia management in the future.
Collapse
|
23
|
Rane JK, Erb HHH, Nappo G, Mann VM, Simms MS, Collins AT, Visakorpi T, Maitland NJ. Inhibition of the glucocorticoid receptor results in an enhanced miR-99a/100-mediated radiation response in stem-like cells from human prostate cancers. Oncotarget 2018; 7:51965-51980. [PMID: 27340920 PMCID: PMC5239528 DOI: 10.18632/oncotarget.10207] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
Radiation therapy is a major primary treatment option for both localized early stage prostate cancer, and for advanced, regionally un-resectable, cancer. However, around 30% of patients still experience biochemical recurrence after radiation therapy within 10 years. Thus, identification of better biomarkers and new targets are urgently required to improve current therapeutic strategies. The miR-99 family has been shown to play an important role in the regulation of the DNA damage response, via targeting of the SWI/SNF chromatin remodeling factors, SMARCA5 and SMARCD1 in cell line models. In the present study, we have demonstrated that low expression of miR-99a and miR-100 is present in cell populations which are relatively radiation insensitive, for example in prostate cancer stem cells and in castration-resistant prostate cancer. Additionally, treatment of cells with the synthetic glucocorticoid, Dexamethasone resulted in decreased miR-99a and 100 expression, suggesting a new mechanism of miR-99a and 100 regulation in androgen-independent prostate cells. Strikingly, treatment of prostate cells with the glucocorticoid receptor inhibitor, Mifepristone was found to sensitize prostate cells to radiation by increasing the levels of miR-99a and miR-100. These results qualify the miR99 family as markers of radiation sensitivity and as potential therapeutic targets to improve efficiency of radiotherapy.
Collapse
Affiliation(s)
- Jayant K Rane
- The Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK.,Leukaemia and Stem Cell Biology Group, Department of Haematological Medicine, King's College London, Rayne Institute, London, SE5 9NU, UK
| | - Holger H H Erb
- The Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK
| | - Giovanna Nappo
- The Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK.,Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University, 88100, Catanzaro, Italy
| | - Vincent M Mann
- Hull York Medical School, University of Hull, Hull, East Yorkshire, HU6 7RX, UK.,Department of Urology, Castle Hill Hospital, Cottingham, East Yorkshire, HU16 5JQ, UK
| | - Matthew S Simms
- Hull York Medical School, University of Hull, Hull, East Yorkshire, HU6 7RX, UK.,Department of Urology, Castle Hill Hospital, Cottingham, East Yorkshire, HU16 5JQ, UK
| | - Anne T Collins
- The Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK
| | - Tapio Visakorpi
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology - BioMediTech, University of Tampere and Tampere University Hospital, Tampere, 33520 Finland
| | - Norman J Maitland
- The Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire, YO10 5DD, UK.,Hull York Medical School, University of Hull, Hull, East Yorkshire, HU6 7RX, UK
| |
Collapse
|
24
|
Clayton SA, Jones SW, Kurowska-Stolarska M, Clark AR. The role of microRNAs in glucocorticoid action. J Biol Chem 2018; 293:1865-1874. [PMID: 29301941 PMCID: PMC5808749 DOI: 10.1074/jbc.r117.000366] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GCs) are steroids with profound anti-inflammatory and immunomodulatory activities. Synthetic GCs are widely used for managing chronic inflammatory and autoimmune conditions, as immunosuppressants in transplantation, and as anti-tumor agents in certain hematological cancers. However, prolonged GC exposure can cause adverse effects. A detailed understanding of GCs' mechanisms of action may enable harnessing of their desirable actions while minimizing harmful effects. Here, we review the impact on the GC biology of microRNAs, small non-coding RNAs that post-transcriptionally regulate gene expression. Emerging evidence indicates that microRNAs modulate GC production by the adrenal glands and the cells' responses to GCs. Furthermore, GCs influence cell proliferation, survival, and function at least in part by regulating microRNA expression. We propose that the beneficial effects of GCs may be enhanced through combination with reagents targeting specific microRNAs.
Collapse
Affiliation(s)
- Sally A Clayton
- From the Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB.,the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom
| | - Simon W Jones
- From the Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB.,the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom
| | - Mariola Kurowska-Stolarska
- the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom.,the Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, and
| | - Andrew R Clark
- From the Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB, .,the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom
| |
Collapse
|
25
|
Pushkin AS, Drugova ED, Kamshilin SA, Obraztsov NV, Polekhina OV, Dvoretskaya SI, Churyumova AI. Seasonal Oscillations in Statistical Mean Measures of Blood Composition and Blood Cell Morphology in Healthy White Rats. Pharm Chem J 2017. [DOI: 10.1007/s11094-017-1692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Zuo B, Zhai J, You L, Zhao Y, Yang J, Weng Z, Dai L, Wu Q, Ruan C, He Y. Plasma microRNAs characterising patients with immune thrombo cytopenic purpura. Thromb Haemost 2017; 117:1420-1431. [DOI: 10.1160/th-16-06-0481] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 04/04/2017] [Indexed: 01/04/2023]
Abstract
SummaryAltered microRNA (miRNA) expression has been reported in patients with immune thrombocytopenic purpura (ITP). However, the detailed expression profiling of cell-free circulating miRNAs in ITP patients has not been fully investigated. In this study, we aimed to examine plasma miRNAs in ITP patients and evaluate their diagnostic values. Plasma samples from 74 ITP patients and 58 healthy controls were obtained and allocated into discovery, validation, and therapy-response sets. Initial screen with a miRNA microarray assay identified 23 miRNAs with different levels between ITP patients and healthy controls (>1.5-fold changes; p<0.01). Subsequent quantitative real-time PCR confirmed eight up-regulated miRNAs (miR-320c, miR-642b-3p, miR-1275, miR-3141, miR-4270, miR-4499, miR-4739 and miR-6126) and three down-regulated miRNAs (miR-144–3p, miR-1281 and miR-3162–3p) in ITP patients. The levels of these circulating miRNAs varied, depending on ITP subtypes, i.e. newly-diagnosed, persistent and chronic ITP, and between treatment responders and non-responders. In receiver operator characteristic analysis, 10 miRNAs had positive diagnostic values (p<0.05) when tested individually. The diagnostic value improved when the miRNAs were analysed as a panel or together with the analysis of anti-platelet autoantibodies. Plasma miR-3162–3p levels were also found to positively correlate with platelet counts in ITP patients (r=0.338, p=0.01). Our results indicate that plasma miRNA profiles are altered in ITP patients and that the differentially expressed miRNAs may be used as biomarkers to improve the diagnosis of ITP.
Collapse
|
27
|
Glucocorticoids Induces Apoptosis in Chondrocytes Through the Regulation of 11β-Hydroxysteroid Dehydrogenases (11β-HSDs). Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Kwok HH, Poon PY, Mak KHM, Zhang LY, Liu P, Zhang H, Mak NK, Yue PYK, Wong RNS. Role of G3BP1 in glucocorticoid receptor-mediated microRNA-15b and microRNA-23a biogenesis in endothelial cells. Cell Mol Life Sci 2017; 74:3613-3630. [PMID: 28523344 PMCID: PMC11107666 DOI: 10.1007/s00018-017-2540-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are a family of non-coding RNAs that play crucial roles in regulating various normal cellular responses. Recent studies revealed that the canonical miRNA biogenesis pathway is subject to sophisticated regulation. Hormonal control of miRNA biogenesis by androgen and estrogen has been demonstrated, but the direct effects of the glucocorticoid receptor (GR) on miRNA biogenesis are unknown. This study revealed the role of GR in miRNA maturation. We showed that two GR agonists, dexamethasone and ginsenoside-Rg1 rapidly suppressed the expression of mature miR-15b, miR-23a, and miR-214 in human endothelial cells. RNA pulldown coupled with proteomic analysis identified GTPase-activating protein (SH3 domain) binding protein 1 (G3BP1) as one of the RNA-binding proteins mediating GR-regulated miRNA maturation. Activated GR induced phosphorylation of v-AKT Murine Thymoma Viral Oncogene Homologue (AKT) kinase, which in turn phosphorylated and promoted nuclear translocation of G3BP1. The nuclear G3BP1 bound to the G3BP1 consensus sequence located on primary miR-15b~16-2 and miR-23a~27a~24-2 to inhibit their maturation. The findings from this study have advanced our understanding of the non-genomic effects of GR in the vascular system.
Collapse
Affiliation(s)
- Hoi-Hin Kwok
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Po-Ying Poon
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Kylie Hin-Man Mak
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Lin-Yao Zhang
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Pei Liu
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Huoming Zhang
- Bioscience Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nai-Ki Mak
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Patrick Ying-Kit Yue
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ricky Ngok-Shun Wong
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
29
|
Han J, Kim HJ, Schafer ST, Paquola A, Clemenson GD, Toda T, Oh J, Pankonin AR, Lee BS, Johnston ST, Sarkar A, Denli AM, Gage FH. Functional Implications of miR-19 in the Migration of Newborn Neurons in the Adult Brain. Neuron 2017; 91:79-89. [PMID: 27387650 DOI: 10.1016/j.neuron.2016.05.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 04/13/2016] [Accepted: 05/18/2016] [Indexed: 12/27/2022]
Abstract
Altered microRNA profiles have been implicated in human brain disorders. However, the functional contribution of individual microRNAs to neuronal development and function is largely unknown. Here, we report biological functions for miR-19 in adult neurogenesis. We determined that miR-19 is enriched in neural progenitor cells (NPCs) and downregulated during neuronal development in the adult hippocampus. By manipulating miR-19 in NPCs for gain- and loss-of-function studies, we discovered that miR-19 regulates cell migration by directly targeting Rapgef2. Concordantly, dysregulation of miR-19 in NPCs alters the positioning of newborn neurons in the adult brain. Furthermore, we found abnormal expression of miR-19 in human NPCs generated from schizophrenic patient-derived induced pluripotent stem cells (iPSCs) that have been described as displaying aberrant migration. Our study demonstrates the significance of posttranscriptional gene regulation by miR-19 in preventing the irregular migration of adult-born neurons that may contribute to the etiology of schizophrenia.
Collapse
Affiliation(s)
- Jinju Han
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Hyung Joon Kim
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Simon T Schafer
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Institute of Physiology, University of Greifswald, 17495 Karlsburg, Germany
| | - Apua Paquola
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gregory D Clemenson
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tomohisa Toda
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jinseo Oh
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Aimee R Pankonin
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bo Suk Lee
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stephen T Johnston
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anindita Sarkar
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ahmet M Denli
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
30
|
Abstract
Glucocorticoids via the glucocorticoid receptor (GR) have effects on a variety of cell types, eliciting important physiological responses via changes in gene expression and signaling. Although decades of research have illuminated the mechanism of how this important steroid receptor controls gene expression using
in vitro and cell culture–based approaches, how GR responds to changes in external signals
in vivo under normal and pathological conditions remains elusive. The goal of this review is to highlight recent work on GR action in fat cells and liver to affect metabolism
in vivo and the role GR ligands and receptor phosphorylation play in calibrating signaling outputs by GR in the brain in health and disease. We also suggest that both the brain and fat tissue communicate to affect physiology and behavior and that understanding this “brain-fat axis” will enable a more complete understanding of metabolic diseases and inform new ways to target them.
Collapse
Affiliation(s)
- Michael J Garabedian
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 324, New York, NY, 10016, USA
| | - Charles A Harris
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Freddy Jeanneteau
- Departments of Physiology and Neuroscience, Institute of Functional Genomics, INSERM U1191, CNRS UMR5203, University of Montpellier, 34094 Montpellier, France
| |
Collapse
|
31
|
Rupani H, Martinez-Nunez RT, Dennison P, Lau LCK, Jayasekera N, Havelock T, Francisco-Garcia AS, Grainge C, Howarth PH, Sanchez-Elsner T. Toll-like Receptor 7 Is Reduced in Severe Asthma and Linked to an Altered MicroRNA Profile. Am J Respir Crit Care Med 2017; 194:26-37. [PMID: 26815632 DOI: 10.1164/rccm.201502-0280oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RATIONALE Asthma is one of the most common chronic diseases worldwide, and individuals with severe asthma experience recurrent exacerbations. Exacerbations are predominantly viral associated and have been linked to defective airway IFN responses. Ascertaining the molecular mechanisms underlying this deficiency is a major research goal to identify new therapeutic targets. OBJECTIVES We investigated the hypothesis that reduced Toll-like receptor 7 (TLR7)-derived signaling drove the impaired IFN responses to rhinovirus by asthmatic alveolar macrophages (AMs); the molecular mechanisms underlying this deficiency were explored. METHODS AMs were recovered from bronchoalveolar lavage from healthy subjects and patients with severe asthma. Expression of pattern-recognition receptors and microRNAs was evaluated by quantitative polymerase chain reaction and Western blotting. A TLR7-luciferase reporter construct was created to evaluate binding of microRNAs to the 3' untranslated region of TLR7. IFN production was measured by quantitative polymerase chain reaction and ELISA. MEASUREMENTS AND MAIN RESULTS The expression of TLR7 was significantly reduced in severe asthma AMs and was associated with reduced rhinovirus and imiquimod-induced IFN responses by these cells compared with healthy AMs. Severe asthma AMs also expressed increased levels of three microRNAs, which we showed were able to directly reduce TLR7 expression. Ex vivo knockdown of these microRNAs restored TLR7 expression with concomitant augmentation of virus-induced IFN production. CONCLUSIONS In severe asthma, TLR7 deficiency drives impaired innate immune responses to virus by AMs. Blocking a group of microRNAs that are up-regulated in these cells can restore antiviral innate responses, providing a novel approach for therapy in asthma.
Collapse
Affiliation(s)
- Hitasha Rupani
- 1 Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Rocio T Martinez-Nunez
- 1 Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Patrick Dennison
- 1 Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Laurie C K Lau
- 1 Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Nivenka Jayasekera
- 1 Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Tom Havelock
- 1 Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Ana S Francisco-Garcia
- 1 Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Christopher Grainge
- 2 Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia; and
| | - Peter H Howarth
- 1 Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton General Hospital, Southampton, United Kingdom.,3 NIHR Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - Tilman Sanchez-Elsner
- 1 Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
32
|
Caspases and their substrates. Cell Death Differ 2017; 24:1380-1389. [PMID: 28498362 DOI: 10.1038/cdd.2017.44] [Citation(s) in RCA: 512] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 12/14/2022] Open
Abstract
, or for pyroptosis, gasdermin D. For the most part, it appears that cleavage events function cooperatively in the cell death process to generate a proteolytic synthetic lethal outcome. In contrast to apoptosis, far less is known about caspase biology in non-apoptotic cellular processes, such as cellular remodeling, including which caspases are activated, the mechanisms of their activation and deactivation, and the key substrate targets. Here we survey the progress made in global identification of caspase substrates using proteomics and the exciting new avenues these studies have opened for understanding the molecular logic of substrate cleavage in apoptotic and non-apoptotic processes.
Collapse
|
33
|
Guo D, Ye Y, Qi J, Tan X, Zhang Y, Ma Y, Li Y. Age and sex differences in microRNAs expression during the process of thymus aging. Acta Biochim Biophys Sin (Shanghai) 2017; 49:409-419. [PMID: 28369179 DOI: 10.1093/abbs/gmx029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Indexed: 12/18/2022] Open
Abstract
The gender-biased thymus involution and the importance of microRNAs (miRNAs, miRs) expression in modulating the thymus development have been reported in many studies. However, how males and females differ in so many ways in thymus involution remains unclear. To address this question, we investigated the miRNA expression profiles in both untreated 3- and 12-month-old female and male mice thymuses. The results showed that 7 and 18 miRNAs were defined as the sex- and age-specific miRNAs, respectively. The expression of miR-181c-5p, miR-20b-5p, miR-98b-5p, miR-329-3p, miR-341-5p, and miR-2137 showed significant age-difference in mice thymus by quantitative polymerase chain reaction. High expression levels of miR-2137 were detected in mice thymic epithelial cells and gradually increased during the process of thymus aging. MiR-27b-3p and miR-378a-3p of the female-biased miRNAs were confirmed as the sex- and estrogen-responsive miRNAs in mice thymus in vivo. Their potential target genes and the pathway were identified by the online software. Possible regulation roles of sex- and age-specific miRNA expression during the process of thymus aging were discussed. Our results suggested that these miRNAs may be potential biomarkers for the study of sex- and age-specific thymus aging and involution.
Collapse
Affiliation(s)
- Dongguang Guo
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yaqiong Ye
- Department of Basic Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Junjie Qi
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaotong Tan
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuan Zhang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongjiang Ma
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yugu Li
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
34
|
Chen Y, Wang G, Liu Z, Wang S, Wang Y. Glucocorticoids regulate the proliferation of T cells via miRNA-155 in septic shock. Exp Ther Med 2016; 12:3723-3728. [PMID: 28105104 DOI: 10.3892/etm.2016.3825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 01/29/2016] [Indexed: 12/29/2022] Open
Abstract
Although previous studies have evaluated the roles of glucocorticoids and lymphocytes in septic shock, the precise mechanism remains unclear. The present study focused on investigating the influence of glucocorticoids on micro (mi)RNA-155 expression levels and the proliferation of T lymphocytes in septic shock. T cells were harvested from in the peripheral blood of patients with septic shock and healthy volunteers and were cultured in vitro. miRNA-155 levels and cell proliferation rates were subsequently analyzed. The proliferation of T cells from patients with septic shock was observed to be significantly lower as compared with that of T cells from healthy volunteers (P<0.05). Furthermore, miRNA-155 levels were significantly higher in the T cells from patients with septic shock, as compared with those from healthy volunteers (P<0.05). Notably, stimulation with dexamethasone increased the proliferation of T lymphocytes from patients with septic shock in a concentration-dependent manner, and markedly reduced miRNA-155 levels. Furthermore, transfection with an anti-miRNA-155 oligodoxynucleotide significantly increased the proliferation of T lymphocytes from patients with septic shock. In conclusion, the results of the present study indicate that glucocorticoids may regulate T-lymphocyte proliferation via the miRNA-155 pathway during septic shock. Therefore, miRNA-155 may be a potential therapeutic target in the treatment of septic shock.
Collapse
Affiliation(s)
- Ying Chen
- Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guang Wang
- Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhongmin Liu
- Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shiji Wang
- Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yushan Wang
- Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
35
|
Banuelos J, Shin S, Cao Y, Bochner BS, Morales-Nebreda L, Budinger GRS, Zhou L, Li S, Xin J, Lingen MW, Dong C, Schleimer RP, Lu NZ. BCL-2 protects human and mouse Th17 cells from glucocorticoid-induced apoptosis. Allergy 2016; 71:640-50. [PMID: 26752231 DOI: 10.1111/all.12840] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Glucocorticoid resistance has been associated with Th17-driven inflammation, the mechanisms of which are not clear. We determined whether human and mouse Th17 cells are resistant to glucocorticoid-induced apoptosis. METHODS Freshly isolated human blood Th17 cells and in vitro differentiated Th17 cells from IL-17F red fluorescent protein reporter mice were treated with dexamethasone, a potent glucocorticoid. Apoptosis was measured using annexin V and DAPI staining. Screening of apoptosis genes was performed using the apoptosis PCR array. Levels of molecules involved in apoptosis were measured using quantitative RT-PCR, flow cytometry, and Western blotting. Knockdown of BCL-2 in murine Th17 cells was performed via retroviral transduction. Cytokines were measured using ELISA. A murine Th17-driven severe asthma model was examined for Th17 glucocorticoid sensitivity in vivo. RESULTS Human and mouse Th17 cells and mouse Th2 cells were resistant to glucocorticoid-induced apoptosis. Th17 cells had glucocorticoid receptors levels comparable to those in other T effectors cells. Th17 cells had high levels of BCL-2, knockdown of which sensitized Th17 cells to dexamethasone-induced apoptosis. Production of IL-22, but not IL-17A and IL-17F, was suppressed by glucocorticoids. STAT3 phosphorylation in Th17 cells was insensitive to glucocorticoid inhibition. Lung Th17 cells in the murine severe asthma model were enhanced, rather than suppressed, by glucocorticoids. CONCLUSION Th17 cells are resistant to glucocorticoid-induced apoptosis and cytokine suppression, at least in part due to high levels of BCL-2. These findings support a role of Th17 cells in glucocorticoid-resistant inflammatory conditions such as certain endotypes of asthma.
Collapse
Affiliation(s)
- J. Banuelos
- Division of Allergy-Immunology; Department of Medicine, Feinberg School of Medicine, Northwestern University; Chicago IL USA
| | - S. Shin
- Division of Allergy-Immunology; Department of Medicine, Feinberg School of Medicine, Northwestern University; Chicago IL USA
| | - Y. Cao
- Division of Allergy-Immunology; Department of Medicine, Feinberg School of Medicine, Northwestern University; Chicago IL USA
| | - B. S. Bochner
- Division of Allergy-Immunology; Department of Medicine, Feinberg School of Medicine, Northwestern University; Chicago IL USA
| | - L. Morales-Nebreda
- Division of Pulmonary and Critical Care; Department of Medicine Feinberg School of Medicine; Northwestern University; Chicago IL USA
| | - G. R. S. Budinger
- Division of Pulmonary and Critical Care; Department of Medicine Feinberg School of Medicine; Northwestern University; Chicago IL USA
| | - L. Zhou
- Departments of Pathology and Immunology/Microbiology; Feinberg School of Medicine; Northwestern University; Chicago IL USA
| | - S. Li
- Department of Pharmacology and Human Tissue Resource Center; The University of Chicago; Chicago IL USA
| | - J. Xin
- Department of Pharmacology and Human Tissue Resource Center; The University of Chicago; Chicago IL USA
| | - M. W. Lingen
- Department of Pharmacology and Human Tissue Resource Center; The University of Chicago; Chicago IL USA
| | - C. Dong
- Basic Medical Sciences; Tsinghua University; Beijing China
| | - R. P. Schleimer
- Division of Allergy-Immunology; Department of Medicine, Feinberg School of Medicine, Northwestern University; Chicago IL USA
| | - N. Z. Lu
- Division of Allergy-Immunology; Department of Medicine, Feinberg School of Medicine, Northwestern University; Chicago IL USA
| |
Collapse
|
36
|
Gerö D, Szabo C. Glucocorticoids Suppress Mitochondrial Oxidant Production via Upregulation of Uncoupling Protein 2 in Hyperglycemic Endothelial Cells. PLoS One 2016; 11:e0154813. [PMID: 27128320 PMCID: PMC4851329 DOI: 10.1371/journal.pone.0154813] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/19/2016] [Indexed: 11/19/2022] Open
Abstract
Diabetic complications are the leading cause of morbidity and mortality in diabetic patients. Elevated blood glucose contributes to the development of endothelial and vascular dysfunction, and, consequently, to diabetic micro- and macrovascular complications, because it increases the mitochondrial proton gradient and mitochondrial oxidant production. Therapeutic approaches designed to counteract glucose-induced mitochondrial reactive oxygen species (ROS) production in the vasculature are expected to show efficacy against all diabetic complications, but direct pharmacological targeting (scavenging) of mitochondrial oxidants remains challenging due to the high reactivity of some of these oxidant species. In a recent study, we have conducted a medium-throughput cell-based screening of a focused library of well-annotated pharmacologically active compounds and identified glucocorticoids as inhibitors of mitochondrial superoxide production in microvascular endothelial cells exposed to elevated extracellular glucose. The goal of the current study was to investigate the mechanism of glucocorticoids' action. Our findings show that glucocorticoids induce the expression of the mitochondrial UCP2 protein and decrease the mitochondrial potential. UCP2 silencing prevents the protective effect of the glucocorticoids on ROS production. UCP2 induction also increases the oxygen consumption and the "proton leak" in microvascular endothelial cells. Furthermore, glutamine supplementation augments the effect of glucocorticoids via further enhancing the expression of UCP2 at the translational level. We conclude that UCP2 induction represents a novel experimental therapeutic intervention in diabetic vascular complications. While direct repurposing of glucocorticoids may not be possible for the therapy of diabetic complications due to their significant side effects that develop during chronic administration, the UCP2 pathway may be therapeutically targetable by other, glucocorticoid-independent pharmacological means.
Collapse
Affiliation(s)
- Domokos Gerö
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
- University of Exeter Medical School, Exeter, United Kingdom
- * E-mail:
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
37
|
Puimège L, Van Hauwermeiren F, Steeland S, Van Ryckeghem S, Vandewalle J, Lodens S, Dejager L, Vandevyver S, Staelens J, Timmermans S, Vandenbroucke RE, Libert C. Glucocorticoid-induced microRNA-511 protects against TNF by down-regulating TNFR1. EMBO Mol Med 2016; 7:1004-17. [PMID: 25995337 PMCID: PMC4551340 DOI: 10.15252/emmm.201405010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
TNF is a central actor during inflammation and a well-recognized drug target for inflammatory diseases. We found that the mouse strain SPRET/Ei, known for extreme and dominant resistance against TNF-induced shock, displays weak expression of TNF receptor 1 protein (TNFR1) but normal mRNA expression, a trait genetically linked to the major TNFR1 coding gene Tnfrsf1a and to a locus harbouring the predicted TNFR1-regulating miR-511. This miRNA is a genuine TNFR1 regulator in cells. In mice, overexpression of miR-511 down-regulates TNFR1 and protects against TNF, while anti-miR-511 up-regulates TNFR1 and sensitizes for TNF, breaking the resistance of SPRET/Ei. We found that miR-511 inhibits endotoxemia and experimental hepatitis and that this miR is strongly induced by glucocorticoids and is a true TNFR1 modulator and thus an anti-inflammatory miR. Since minimal reductions of TNFR1 have considerable effects on TNF sensitivity, we believe that at least part of the anti-inflammatory effects of glucocorti-coids are mediated by induction of this miR, resulting in reduced TNFR1 expression.
Collapse
Affiliation(s)
- Leen Puimège
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Filip Van Hauwermeiren
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sophie Steeland
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sara Van Ryckeghem
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sofie Lodens
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lien Dejager
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sofie Vandevyver
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jan Staelens
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Steven Timmermans
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
38
|
Linhares-Lacerda L, Palu CC, Ribeiro-Alves M, Paredes BD, Morrot A, Garcia-Silva MR, Cayota A, Savino W. Differential Expression of microRNAs in Thymic Epithelial Cells from Trypanosoma cruzi Acutely Infected Mice: Putative Role in Thymic Atrophy. Front Immunol 2015; 6:428. [PMID: 26347748 PMCID: PMC4543887 DOI: 10.3389/fimmu.2015.00428] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/06/2015] [Indexed: 12/21/2022] Open
Abstract
A common feature seen in acute infections is a severe atrophy of the thymus. This occurs in the murine model of acute Chagas disease. Moreover, in thymuses from Trypanosoma cruzi acutely infected mice, thymocytes exhibit an increase in the density of fibronectin and laminin integrin-type receptors, with an increase in migratory response ex vivo. Thymic epithelial cells (TEC) play a major role in the intrathymic T cell differentiation. To date, the consequences of molecular changes promoted by parasite infection upon thymus have not been elucidated. Considering the importance of microRNA for gene expression regulation, 85 microRNAs (mRNAs) were analyzed in TEC from T. cruzi acutely infected mice. The infection significantly modulated 29 miRNAs and modulation of 9 was also dependent whether TEC sorted out from the thymus exhibited cortical or medullary phenotype. In silico analysis revealed that these miRNAs may control target mRNAs known to be responsible for chemotaxis, cell adhesion, and cell death. Considering that we sorted TEC in the initial phase of thymocyte loss, it is conceivable that changes in TEC miRNA expression profile are functionally related to thymic atrophy, providing new clues to better understanding the mechanisms of the thymic involution seen in experimental Chagas disease.
Collapse
Affiliation(s)
- Leandra Linhares-Lacerda
- Laboratory on Thymus Research, Institute Oswaldo Cruz, Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | - Cintia Cristina Palu
- Laboratory on Thymus Research, Institute Oswaldo Cruz, Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | - Marcelo Ribeiro-Alves
- HIV/AIDS Clinical Research Center, National Institute of Infectious Diseases, Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | - Bruno Diaz Paredes
- The National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Alexandre Morrot
- Department of Immunology, Microbiology Institute, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | | | - Alfonso Cayota
- Functional Genomics Unit, Institut Pasteur de Montevideo , Montevideo , Uruguay
| | - Wilson Savino
- Laboratory on Thymus Research, Institute Oswaldo Cruz, Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| |
Collapse
|
39
|
Chen RJ, Kelly G, Sengupta A, Heydendael W, Nicholas B, Beltrami S, Luz S, Peixoto L, Abel T, Bhatnagar S. MicroRNAs as biomarkers of resilience or vulnerability to stress. Neuroscience 2015. [PMID: 26208845 DOI: 10.1016/j.neuroscience.2015.07.045] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Identifying novel biomarkers of resilience or vulnerability to stress could provide valuable information for the prevention and treatment of stress-related psychiatric disorders. To investigate the utility of blood microRNAs as biomarkers of resilience or vulnerability to stress, microRNAs were assessed before and after 7days of chronic social defeat in rats. Additionally, microRNA profiles of two important stress-regulatory brain regions, the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA), were assessed. Rats that displayed vulnerability to subsequent chronic stress exhibited reductions in circulating miR-24-2-5p, miR-27a-3p, miR-30e-5p, miR-3590-3p, miR-362-3p, and miR-532-5p levels. In contrast, rats that became resilient to stress displayed reduced levels of miR-139-5p, miR-28-3p, miR-326-3p, and miR-99b-5p compared to controls. In the mPFC, miR-126a-3p and miR-708-5p levels were higher in vulnerability compared to resilient rats. In the BLA, 77 microRNAs were significantly altered by stress but none were significantly different between resilient and vulnerable animals. These results provide proof-of-principle that assessment of circulating microRNAs is useful in identifying individuals who are vulnerable to the effects of future stress or individuals who have become resilient to the effects of stress. Furthermore, these data suggest that microRNAs in the mPFC but not in the BLA are regulators of resilience/vulnerability to stress.
Collapse
Affiliation(s)
- R J Chen
- Department of Anesthesiology, Children's Hospital of Philadelphia, United States
| | - G Kelly
- Department of Anesthesiology, Children's Hospital of Philadelphia, United States
| | - A Sengupta
- Department of Anesthesiology, Children's Hospital of Philadelphia, United States
| | - W Heydendael
- Department of Anesthesiology, Children's Hospital of Philadelphia, United States
| | - B Nicholas
- Department of Anesthesiology, Children's Hospital of Philadelphia, United States
| | - S Beltrami
- Department of Anesthesiology, Children's Hospital of Philadelphia, United States
| | - S Luz
- Department of Anesthesiology, Children's Hospital of Philadelphia, United States
| | - L Peixoto
- Department of Biology, University of Pennsylvania, United States
| | - T Abel
- Department of Biology, University of Pennsylvania, United States
| | - S Bhatnagar
- Department of Anesthesiology, Children's Hospital of Philadelphia, United States; Department of Anesthesiology, University of Pennsylvania, Perelman School of Medicine, United States.
| |
Collapse
|
40
|
Liu Z, Borlak J, Tong W. Deciphering miRNA transcription factor feed-forward loops to identify drug repurposing candidates for cystic fibrosis. Genome Med 2014; 6:94. [PMID: 25484921 PMCID: PMC4256829 DOI: 10.1186/s13073-014-0094-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/23/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is a fatal genetic disorder caused by mutations in the CF transmembrane conductance regulator (CFTR) gene that primarily affects the lungs and the digestive system, and the current drug treatment is mainly able to alleviate symptoms. To improve disease management for CF, we considered the repurposing of approved drugs and hypothesized that specific microRNA (miRNA) transcription factors (TF) gene networks can be used to generate feed-forward loops (FFLs), thus providing treatment opportunities on the basis of disease specific FFLs. METHODS Comprehensive database searches revealed significantly enriched TFs and miRNAs in CF and CFTR gene networks. The target genes were validated using ChIPBase and by employing a consensus approach of diverse algorithms to predict miRNA gene targets. STRING analysis confirmed protein-protein interactions (PPIs) among network partners and motif searches defined composite FFLs. Using information extracted from SM2miR and Pharmaco-miR, an in silico drug repurposing pipeline was established based on the regulation of miRNA/TFs in CF/CFTR networks. RESULTS In human airway epithelium, a total of 15 composite FFLs were constructed based on CFTR specific miRNA/TF gene networks. Importantly, nine of them were confirmed in patient samples and CF epithelial cells lines, and STRING PPI analysis provided evidence that the targets interacted with each other. Functional analysis revealed that ubiquitin-mediated proteolysis and protein processing in the endoplasmic reticulum dominate the composite FFLs, whose major functions are folding, sorting, and degradation. Given that the mutated CFTR gene disrupts the function of the chloride channel, the constructed FFLs address mechanistic aspects of the disease and, among 48 repurposing drug candidates, 26 were confirmed with literature reports and/or existing clinical trials relevant to the treatment of CF patients. CONCLUSION The construction of FFLs identified promising drug repurposing candidates for CF and the developed strategy may be applied to other diseases as well.
Collapse
Affiliation(s)
- Zhichao Liu
- />Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 USA
| | - Jürgen Borlak
- />Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Weida Tong
- />Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 USA
| |
Collapse
|
41
|
Li R, Jia Y, Zou H, Zhao R. Breed-specific expression ofDROSHA, DICERandAGO2is regulated by glucocorticoid-mediated miRNAs in the liver of newborn piglets. Anim Genet 2014; 45:817-26. [DOI: 10.1111/age.12232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Runsheng Li
- 1 Weigang; Key Laboratory of Animal Physiology & Biochemistry; Nanjing Agricultural University; Nanjing 210095 China
| | - Yimin Jia
- 1 Weigang; Key Laboratory of Animal Physiology & Biochemistry; Nanjing Agricultural University; Nanjing 210095 China
| | - Huafeng Zou
- 1 Weigang; Key Laboratory of Animal Physiology & Biochemistry; Nanjing Agricultural University; Nanjing 210095 China
| | - Ruqian Zhao
- 1 Weigang; Key Laboratory of Animal Physiology & Biochemistry; Nanjing Agricultural University; Nanjing 210095 China
| |
Collapse
|
42
|
Kurz T, Weiner M, Skoglund C, Basnet S, Eriksson P, Segelmark M. A myelopoiesis gene signature during remission in anti-neutrophil cytoplasm antibody-associated vasculitis does not predict relapses but seems to reflect ongoing prednisolone therapy. Clin Exp Immunol 2014; 175:215-26. [PMID: 24215168 DOI: 10.1111/cei.12236] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2013] [Indexed: 11/28/2022] Open
Abstract
A myelopoiesis gene signature in circulating leucocytes, exemplified by increased myeloperoxidase (MPO) and proteinase 3 (PR3) mRNA levels, has been reported in patients with active anti-neutrophil cytoplasm antibody-associated vasculitis (AAV), and to a lesser extent during remission. We hypothesized that this signature could predict disease relapse. mRNA levels of PR3, MPO, selected myelopoiesis transcription factors [CCAAT/enhancer binding protein α (CEBP-α), CCAAT/enhancer binding protein β (CEBP-β), SPI1/PU.1-related transcription factor (SPIB), spleen focus forming virus proviral integration oncogene, PU.1 homologue (SPI1)] and microRNAs (miRNAs) from patient and control peripheral blood mononuclear cells (PBMC) and polymorphonuclear cells (PMN) were analysed and associated with clinical data. Patients in stable remission had higher mRNA levels for PR3 (PBMC, PMN) and MPO (PBMC). PR3 and SPIB mRNA correlated positively in controls but negatively in patient PBMC. Statistically significant correlations existed between PR3 mRNA and several miRNAs in controls, but not in patients. PR3/MPO mRNA levels were not associated with previous or future relapses, but correlated with steroid treatment. Prednisolone doses were negatively linked to SPIB and miR-155-5p, miR-339-5p (PBMC) and to miR-221, miR-361 and miR-505 (PMN). PR3 mRNA in PBMC correlated with time since last flare, blood leucocyte count and estimated glomerular filtration rate. Our results show that elevated leucocyte PR3 mRNA levels in AAV patients in remission do not predict relapse. The origin seems multi-factorial, but to an important extent explainable by prednisolone action. Gene signatures in patients with AAV undergoing steroid treatment should therefore be interpreted accordingly.
Collapse
Affiliation(s)
- T Kurz
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
43
|
Xing W, Hao L, Yang X, Li F, Huo H. Glucocorticoids induce apoptosis by inhibiting microRNA cluster miR‑17‑92 expression in chondrocytic cells. Mol Med Rep 2014; 10:881-6. [PMID: 24859019 DOI: 10.3892/mmr.2014.2253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 03/06/2014] [Indexed: 11/05/2022] Open
Abstract
Sustained treatment with glucocorticoids (GCs) has frequently been observed to impair skeletal development. However, the influence of GCs on chondrocytes, which have a key role in skeletal development, has been rarely reported. HCS‑2/8 cells were selected as an in vitro model of human chondrocytes to assess the apoptosis induced by GCs and determine the role of the microRNA‑17‑92 (miR‑17‑92) cluster in the regulation of apoptosis. It was demonstrated that dexamethasone (Dex) was able to induce apoptosis and high levels of expression of apoptosis‑associated molecules in HCS‑2/8 chondrocytic cells, and that expression of the miR‑17‑92 cluster was inhibited during Dex‑induced apoptosis. In conclusion, the present study suggested that inhibition of the expression of the miR‑17‑92 cluster contributed to the Dex‑induced apoptosis in chondrocytes. The results suggest that microRNAs have an important role in glucocorticoid‑induced impairment to chondrocytes.
Collapse
Affiliation(s)
- Wenhua Xing
- Department of Spinal Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia Autonomous Region 010058, P.R. China
| | - Lixia Hao
- Department of Rehabilitation, First Affiliated Hospital of Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia Autonomous Region 010059, P.R. China
| | - Xuejun Yang
- Department of Spinal Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia Autonomous Region 010058, P.R. China
| | - Feng Li
- Department of Spinal Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia Autonomous Region 010058, P.R. China
| | - Hongjun Huo
- Department of Spinal Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia Autonomous Region 010058, P.R. China
| |
Collapse
|
44
|
Takahashi K, Tatsumi N, Fukami T, Yokoi T, Nakajima M. Integrated analysis of rifampicin-induced microRNA and gene expression changes in human hepatocytes. Drug Metab Pharmacokinet 2014; 29:333-40. [PMID: 24552687 DOI: 10.2133/dmpk.dmpk-13-rg-114] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs) post-transcriptionally regulate mRNA expression, controlling global cell function. Altered expression or function of miRNAs causes various diseases. Chemically induced changes in miRNA expression in human tissues are not fully understood. We investigated the changes in miRNA expression by rifampicin, which modulates the expression of various genes related to drug metabolism and pharmacokinetics, in human hepatocytes, and evaluated the relationship with the gene expression changes. We found that 23 miRNAs were increased (>2-fold) and 17 miRNAs were decreased (<0.5-fold) among 150 detected miRNAs, whereas 60 genes were increased and 105 genes were decreased among 22,673 detected genes upon treatment with 10 µM rifampicin. Changes in 17 intragenic miRNAs out of 40 altered miRNAs did not occur in parallel with alterations in their host genes. We searched for the target mRNAs of the miRNAs altered by rifampicin and found that the changes in expression of 16 mRNA/miRNA pairs were inversely associated. Thus, some mRNA expression altered by rifampicin may result from miRNA regulation. In conclusion, we found that rifampicin altered miRNA expression in human hepatocytes. We obtained new insight on the mechanism of the miRNA expression changes and the complicated relationship with gene transcripts.
Collapse
Affiliation(s)
- Kei Takahashi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University
| | | | | | | | | |
Collapse
|
45
|
Transgenic expression of microRNA-181d augments the stress-sensitivity of CD4(+)CD8(+) thymocytes. PLoS One 2014; 9:e85274. [PMID: 24416377 PMCID: PMC3887031 DOI: 10.1371/journal.pone.0085274] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/26/2013] [Indexed: 01/27/2023] Open
Abstract
Physiological stress resulting from infections, trauma, surgery, alcoholism, malnutrition, and/or pregnancy results in a substantial depletion of immature CD4+CD8+ thymocytes. We previously identified 18 distinct stress-responsive microRNAs (miRs) in the thymus upon systemic stress induced by lipopolysaccharide (LPS) or the synthetic glucocorticoid, dexamethasone (Dex). MiRs are short, non-coding RNAs that play critical roles in the immune system by targeting diverse mRNAs, suggesting that their modulation in the thymus in response to stress could impact thymopoiesis. MiR-181d is one such stress-responsive miR, exhibiting a 15-fold down-regulation in expression. We utilized both transgenic and gene-targeting approaches to study the impact of miR-181d on thymopoiesis under normal and stress conditions. The over-expression of miR-181d in developing thymocytes reduced the total number of immature CD4+CD8+ thymocytes. LPS or Dex injections caused a 4-fold greater loss of these cells when compared with the wild type controls. A knockout mouse was developed to selectively eliminate miR-181d, leaving the closely spaced and contiguous family member miR-181c intact. The targeted elimination of just miR-181d resulted in a thymus stress-responsiveness similar to wild-type mice. These experiments suggest that one or more of three other miR-181 family members have overlapping or compensatory functions. Gene expression comparisons of thymocytes from the wild type versus transgenic mice indicated that miR-181d targets a number of stress, metabolic, and signaling pathways. These findings demonstrate that selected miRs enhance stress-mediated thymic involution in vivo.
Collapse
|
46
|
Iudicibus SD, Lucafò M, Martelossi S, Pierobon C, Ventura A, Decorti G. MicroRNAs as tools to predict glucocorticoid response in inflammatory bowel diseases. World J Gastroenterol 2013; 19:7947-54. [PMID: 24307788 PMCID: PMC3848142 DOI: 10.3748/wjg.v19.i44.7947] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/16/2013] [Accepted: 10/19/2013] [Indexed: 02/06/2023] Open
Abstract
In spite of the introduction in therapy of highly effective biological agents, glucocorticoids (GCs) are still employed to induce remission in moderate to severe inflammatory bowel diseases (IBD), but considerable inter-individual differences in their efficacy and side effects have been reported. The effectiveness of these drugs is indeed very variable and side effects, particularly severe in pediatric patients, are common and often unpredictable: the understanding of the complex gene regulation mediated by GCs could shed light on the causes of this variability. In this context, microRNAs (miRNAs) represent a new and promising field of research. miRNAs are small non-coding RNA molecules that suppress gene expression at post-transcriptional level, and are fine-tuning regulators of diverse biological processes, including the development and function of the immune system, apoptosis, metabolism and inflammation. Emerging data have implicated the deregulated expression of certain miRNA networks in the pathogenesis of autoimmune and inflammatory diseases, such as IBD. There is a great interest in the identification of the role of miRNAs in the modulation of pharmacological response; however, the association between miRNA and GC response in patients with IBD has not yet been evaluated in a prospective clinical study. The identification of miRNAs differently expressed as a consequence of GC treatment in comparison to diagnosis, represents an important innovative approach that could be translated into clinical practice. In this review we highlight the altered regulation of proteins involved in GC molecular mechanism by miRNAs, and their potential role as molecular markers useful for predicting in advance GC response.
Collapse
|
47
|
Ratman D, Vanden Berghe W, Dejager L, Libert C, Tavernier J, Beck IM, De Bosscher K. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering. Mol Cell Endocrinol 2013; 380:41-54. [PMID: 23267834 DOI: 10.1016/j.mce.2012.12.014] [Citation(s) in RCA: 283] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/13/2012] [Accepted: 12/16/2012] [Indexed: 01/11/2023]
Abstract
The activity of the glucocorticoid receptor (GR), a nuclear receptor transcription factor belonging to subclass 3C of the steroid/thyroid hormone receptor superfamily, is typically triggered by glucocorticoid hormones. Apart from driving gene transcription via binding onto glucocorticoid response elements in regulatory regions of particular target genes, GR can also inhibit gene expression via transrepression, a mechanism largely based on protein:protein interactions. Hereby GR can influence the activity of other transcription factors, without contacting DNA itself. GR is known to inhibit the activity of a growing list of immune-regulating transcription factors. Hence, GCs still rule the clinic for treatments of inflammatory disorders, notwithstanding concomitant deleterious side effects. Although patience is a virtue when it comes to deciphering the many mechanisms GR uses to influence various signaling pathways, the current review is testimony of the fact that groundbreaking mechanistic work has been accumulating over the past years and steadily continues to grow.
Collapse
Affiliation(s)
- Dariusz Ratman
- Cytokine Receptor Lab, VIB Department of Medical Protein Research, VIB, UGent, Albert Baertsoenkaai 3, B-9000 Gent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
48
|
Deep sequencing identification of novel glucocorticoid-responsive miRNAs in apoptotic primary lymphocytes. PLoS One 2013; 8:e78316. [PMID: 24250753 PMCID: PMC3824063 DOI: 10.1371/journal.pone.0078316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/11/2013] [Indexed: 01/01/2023] Open
Abstract
Apoptosis of lymphocytes governs the response of the immune system to environmental stress and toxic insult. Signaling through the ubiquitously expressed glucocorticoid receptor, stress-induced glucocorticoid hormones induce apoptosis via mechanisms requiring altered gene expression. Several reports have detailed the changes in gene expression mediating glucocorticoid-induced apoptosis of lymphocytes. However, few studies have examined the role of non-coding miRNAs in this essential physiological process. Previously, using hybridization-based gene expression analysis and deep sequencing of small RNAs, we described the prevalent post-transcriptional repression of annotated miRNAs during glucocorticoid-induced apoptosis of lymphocytes. Here, we describe the development of a customized bioinformatics pipeline that facilitates the deep sequencing-mediated discovery of novel glucocorticoid-responsive miRNAs in apoptotic primary lymphocytes. This analysis identifies the potential presence of over 200 novel glucocorticoid-responsive miRNAs. We have validated the expression of two novel glucocorticoid-responsive miRNAs using small RNA-specific qPCR. Furthermore, through the use of Ingenuity Pathways Analysis (IPA) we determined that the putative targets of these novel validated miRNAs are predicted to regulate cell death processes. These findings identify two and predict the presence of additional novel glucocorticoid-responsive miRNAs in the rat transcriptome, suggesting a potential role for both annotated and novel miRNAs in glucocorticoid-induced apoptosis of lymphocytes.
Collapse
|
49
|
Kress M, Hüttenhofer A, Landry M, Kuner R, Favereaux A, Greenberg D, Bednarik J, Heppenstall P, Kronenberg F, Malcangio M, Rittner H, üçeyler N, Trajanoski Z, Mouritzen P, Birklein F, Sommer C, Soreq H. microRNAs in nociceptive circuits as predictors of future clinical applications. Front Mol Neurosci 2013; 6:33. [PMID: 24151455 PMCID: PMC3798051 DOI: 10.3389/fnmol.2013.00033] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/24/2013] [Indexed: 01/09/2023] Open
Abstract
Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain, and non-coding RNAs - and microRNAs (miRNAs) in particular - regulate both immune and neuronal processes. Specifically, miRNAs control macromolecular complexes in neurons, glia and immune cells and regulate signals used for neuro-immune communication in the pain pathway. Therefore, miRNAs may be hypothesized as critically important master switches modulating chronic pain. In particular, understanding the concerted function of miRNA in the regulation of nociception and endogenous analgesia and defining the importance of miRNAs in the circuitries and cognitive, emotional and behavioral components involved in pain is expected to shed new light on the enigmatic pathophysiology of neuropathic pain, migraine and complex regional pain syndrome. Specific miRNAs may evolve as new druggable molecular targets for pain prevention and relief. Furthermore, predisposing miRNA expression patterns and inter-individual variations and polymorphisms in miRNAs and/or their binding sites may serve as biomarkers for pain and help to predict individual risks for certain types of pain and responsiveness to analgesic drugs. miRNA-based diagnostics are expected to develop into hands-on tools that allow better patient stratification, improved mechanism-based treatment, and targeted prevention strategies for high risk individuals.
Collapse
Affiliation(s)
- Michaela Kress
- Department of Physiology and Medical Physics, Division of Physiology, Medical University InnsbruckInnsbruck, Austria
| | | | - Marc Landry
- UMR 5297, Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, University of BordeauxBordeaux, France
| | | | - Alexandre Favereaux
- UMR 5297, Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, University of BordeauxBordeaux, France
| | | | | | | | | | | | | | | | | | | | | | | | - Hermona Soreq
- Laboratory of Molecular Neuroscience, Department of Biological chemistry, Hebrew University of JerusalemJerusalem, Israel
| |
Collapse
|
50
|
Dooley J, Linterman MA, Liston A. MicroRNA regulation of T-cell development. Immunol Rev 2013; 253:53-64. [PMID: 23550638 DOI: 10.1111/imr.12049] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs are short, 19-24 nucleotide long, RNA molecules capable of regulating the longevity and, to a lesser extent, translation of messenger RNA (mRNA) species. The function of the microRNA network, and indeed, even that of individual microRNA species, can have profoundly different roles in even a single cell type as the microRNA/mRNA composition evolves. As the role of microRNA within T cells has come under increasing scrutiny, several distinct checkpoints have been demonstrated to have a particular reliance on microRNA regulation. MicroRNAs are arguably most important in T cells during the earliest and last stages in T-cell biology. The first stages of early thymic differentiation have a crucial reliance on the microRNA network, while later stages and peripheral homeostasis are largely, although not completely, microRNA-independent. The most profound effects on T cells are in the activation of effector and regulatory functions of conventional and regulatory T cells, where microRNA deficiency results in a near-complete loss of function. In this review, we focus on integrating the research on individual microRNA into a more global understanding of the function of the microRNA regulatory network in T cells.
Collapse
Affiliation(s)
- James Dooley
- Autoimmune Genetics Laboratory, VIB, Leuven, Belgium
| | | | | |
Collapse
|