1
|
Okamoto A, Nakanishi T, Tonai S, Shimada M, Yamashita Y. Neurotensin induces sustainable activation of the ErbB-ERK1/2 pathway, which is required for developmental competence of oocytes in mice. Reprod Med Biol 2024; 23:e12571. [PMID: 38510925 PMCID: PMC10951886 DOI: 10.1002/rmb2.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Purpose LH induces the expression of EGF-like factors and their shedding enzyme (ADAM17) in granulosa cells (GCs), which is essential for ovulation via activation of the ErbB-ERK1/2 pathway in cumulus cells (CCs). Neurotensin (NTS) is reported as a novel regulator of ovulation, whereas the NTS-induced maturation mechanism in oocytes remains unclear. In this study, we focused on the role of NTS in the expression of EGF-like factors and ErbBs, and ADAM17 activity, during oocyte maturation and ovulation in mice. Methods The expression and localization in GC and CC were examined. Next, hCG and NTS receptor 1 antagonist (SR) were injected into eCG-primed mice, and the effects of SR on ERK1/2 phosphorylation were investigated. Finally, we explored the effects of SR on the expression of EGF-like factors and ErbBs, and ADAM17 activity in GC and CC. Results NTS was significantly upregulated in GC and CC following hCG injection. SR injection suppressed oocyte maturation and ERK1/2 phosphorylation. SR also downregulated part of the expression of EGF-like factors and their receptors, and ADAM17 activity. Conclusions NTS induces oocyte maturation through the sustainable activation of the ERK1/2 signaling pathway by upregulating part of the EGF-like factor-induced pathway during oocyte maturation in mice.
Collapse
Affiliation(s)
- Asako Okamoto
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| | - Tomoya Nakanishi
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
| | - Shingo Tonai
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| | - Yasuhisa Yamashita
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
| |
Collapse
|
2
|
Singhal SM, Zell V, Faget L, Slosky LM, Barak LS, Caron MG, Pinkerton AB, Hnasko TS. Neurotensin receptor 1-biased ligand attenuates neurotensin-mediated excitation of ventral tegmental area dopamine neurons and dopamine release in the nucleus accumbens. Neuropharmacology 2023; 234:109544. [PMID: 37055008 PMCID: PMC10192038 DOI: 10.1016/j.neuropharm.2023.109544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
Strong expression of the G protein-coupled receptor (GPCR) neurotensin receptor 1 (NTR1) in ventral tegmental area (VTA) dopamine (DA) neurons and terminals makes it an attractive target to modulate DA neuron activity and normalize DA-related pathologies. Recent studies have identified a novel class of NTR1 ligand that shows promising effects in preclinical models of addiction. A lead molecule, SBI-0654553 (SBI-553), can act as a positive allosteric modulator of NTR1 β-arrestin recruitment while simultaneously antagonizing NTR1 Gq protein signaling. Using cell-attached recordings from mouse VTA DA neurons we discovered that, unlike neurotensin (NT), SBI-553 did not independently increase spontaneous firing. Instead, SBI-553 blocked the NT-mediated increase in firing. SBI-553 also antagonized the effects of NT on dopamine D2 auto-receptor signaling, potentially through its inhibitory effects on G-protein signaling. We also measured DA release directly, using fast-scan cyclic voltammetry in the nucleus accumbens and observed antagonist effects of SBI-553 on an NT-induced increase in DA release. Further, in vivo administration of SBI-553 did not notably change basal or cocaine-evoked DA release measured in NAc using fiber photometry. Overall, these results indicate that SBI-553 blunts NT's effects on spontaneous DA neuron firing, D2 auto-receptor function, and DA release, without independently affecting these measures. In the presence of NT, SBI-553 has an inhibitory effect on mesolimbic DA activity, which could contribute to its efficacy in animal models of psychostimulant use.
Collapse
Affiliation(s)
- Sarthak M Singhal
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Vivien Zell
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Lauren Faget
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Lauren M Slosky
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | | | - Marc G Caron
- Departments of Cell Biology, Neurobiology and Medicine, Duke University, Durham, NC, USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
3
|
Xu J, Pittenger C. The histamine H3 receptor modulates dopamine D2 receptor-dependent signaling pathways and mouse behaviors. J Biol Chem 2023; 299:104583. [PMID: 36871761 PMCID: PMC10139999 DOI: 10.1016/j.jbc.2023.104583] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The histamine H3 receptor (H3R) is highly enriched in the spiny projection neurons (SPNs) of the striatum, in both the D1 receptor (D1R)-expressing and D2 receptor (D2R)-expressing populations. A crossantagonistic interaction between H3R and D1R has been demonstrated in mice, both at the behavioral level and at the biochemical level. Although interactive behavioral effects have been described upon coactivation of H3R and D2R, the molecular mechanisms underlying this interaction are poorly understood. Here, we show that activation of H3R with the selective agonist R-(-)-α-methylhistamine dihydrobromide mitigates D2R agonist-induced locomotor activity and stereotypic behavior. Using biochemical approaches and the proximity ligation assay, we demonstrated the existence of an H3R-D2R complex in the mouse striatum. In addition, we examined consequences of simultaneous H3R-D2R agonism on the phosphorylation levels of several signaling molecules using immunohistochemistry. H3R agonist treatment modulated Akt (serine/threonine PKB)-glycogen synthase kinase 3 beta signaling in response to D2R activation via a β-arrestin 2-dependent mechanism in D2R-SPNs but not in D1R-SPNs. Phosphorylation of mitogen- and stress-activated protein kinase 1 and rpS6 (ribosomal protein S6) was largely unchanged under these conditions. As Akt-glycogen synthase kinase 3 beta signaling has been implicated in several neuropsychiatric disorders, this work may help clarify the role of H3R in modulating D2R function, leading to a better understanding of pathophysiology involving the interaction between histamine and dopamine systems.
Collapse
Affiliation(s)
- Jian Xu
- Department of Psychiatry, Yale University. ,
| | - Christopher Pittenger
- Department of Psychiatry, Yale University; Department of Psychology, Yale University; Department of Child Study Center, Yale University; Department of Interdepartmental Neuroscience Program, Yale University; Department of Wu-Tsai Institute, Yale University; Department of Center for Brain and Mind Health, Yale University.
| |
Collapse
|
4
|
Dopamine Reduces SARS-CoV-2 Replication In Vitro through Downregulation of D2 Receptors and Upregulation of Type-I Interferons. Cells 2022; 11:cells11101691. [PMID: 35626728 PMCID: PMC9139638 DOI: 10.3390/cells11101691] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Recent evidence suggests that SARS-CoV-2 hinders immune responses via dopamine (DA)-related mechanisms. Nonetheless, studies addressing the specific role of DA in the frame of SARS-CoV-2 infection are still missing. In the present study, we investigate the role of DA in SARS-CoV-2 replication along with potential links with innate immune pathways in CaLu-3 human epithelial lung cells. We document here for the first time that, besides DA synthetic pathways, SARS-CoV-2 alters the expression of D1 and D2 DA receptors (D1DR, D2DR), while DA administration reduces viral replication. Such an effect occurs at non-toxic, micromolar-range DA doses, which are known to induce receptor desensitization and downregulation. Indeed, the antiviral effects of DA were associated with a robust downregulation of D2DRs both at mRNA and protein levels, while the amount of D1DRs was not significantly affected. While halting SARS-CoV-2 replication, DA, similar to the D2DR agonist quinpirole, upregulates the expression of ISGs and Type-I IFNs, which goes along with the downregulation of various pro-inflammatory mediators. In turn, administration of Type-I IFNs, while dramatically reducing SARS-CoV-2 replication, converges in downregulating D2DRs expression. Besides configuring the CaLu-3 cell line as a suitable model to study SARS-CoV-2-induced alterations at the level of the DA system in the periphery, our findings disclose a previously unappreciated correlation between DA pathways and Type-I IFN response, which may be disrupted by SARS-CoV-2 for host cell invasion and replication.
Collapse
|
5
|
Servonnet A, Allain F, Gravel-Chouinard A, Hernandez G, Bourdeau Caporuscio C, Legrix M, Lévesque D, Rompré PP, Samaha AN. Dopaminergic mechanisms underlying the expression of antipsychotic-induced dopamine supersensitivity in rats. Neuropharmacology 2021; 197:108747. [PMID: 34364897 DOI: 10.1016/j.neuropharm.2021.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Antipsychotic treatment can produce a dopamine-supersensitive state, potentiating the response to dopamine receptor stimulation. In both schizophrenia patients and rats, this is linked to tolerance to ongoing antipsychotic treatment. In rodents, dopamine supersensitivity is often confirmed by an exaggerated psychomotor response to d-amphetamine after discontinuation of antipsychotic exposure. Here we examined in rats the dopaminergic mechanisms mediating this enhanced behavioural response, as this could uncover pathophysiological processes underlying the expression of antipsychotic-evoked dopamine supersensitivity. Rats received 0.5 mg/kg/day haloperidol via osmotic minipump for 2 weeks, before treatment was discontinued. After cessation of antipsychotic treatment, rats showed a supersensitive psychomotor response to the D2 agonist quinpirole, but not to the D1 partial agonist SKF38393 or the dopamine reuptake blocker GBR12783. Furthermore, acute D1 receptor blockade (using SCH39166) decreased the exaggerated psychomotor response to d-amphetamine in haloperidol-pretreated rats, whereas acute D2 receptor blockade (using sulpiride) enhanced it. Thus, after discontinuation of antipsychotic treatment, D1- and D2-mediated transmission differentially modulate the expression of a supersensitive response to d-amphetamine. This supersensitive behavioural response was accompanied by enhanced GSK3β activity and suppressed ERK1/2 activity in the nucleus accumbens (but not caudate-putamen), suggesting increased mesolimbic D2 transmission. Finally, after discontinuing haloperidol treatment, neither increasing ventral midbrain dopamine impulse flow nor infusing d-amphetamine into the cerebral ventricles triggered the expression of already established dopamine supersensitivity, suggesting that peripheral effects are required. Thus, while dopamine receptor-mediated signalling regulates the expression of antipsychotic-evoked dopamine supersensitivity, a simple increase in central dopamine neurotransmission is insufficient to trigger this supersensitivity.
Collapse
Affiliation(s)
- Alice Servonnet
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit boulevard, Montreal, H3T 1J4, Quebec, Canada.
| | - Florence Allain
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit boulevard, Montreal, H3T 1J4, Quebec, Canada
| | - Alice Gravel-Chouinard
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit boulevard, Montreal, H3T 1J4, Quebec, Canada
| | - Giovanni Hernandez
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit boulevard, Montreal, H3T 1J4, Quebec, Canada; Faculty of Pharmacy, Université de Montréal, 2900 Edouard-Montpetit boulevard, Montreal, H3T 1J4, Quebec, Canada
| | - Casey Bourdeau Caporuscio
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit boulevard, Montreal, H3T 1J4, Quebec, Canada
| | - Mathilde Legrix
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit boulevard, Montreal, H3T 1J4, Quebec, Canada
| | - Daniel Lévesque
- Faculty of Pharmacy, Université de Montréal, 2900 Edouard-Montpetit boulevard, Montreal, H3T 1J4, Quebec, Canada
| | - Pierre-Paul Rompré
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit boulevard, Montreal, H3T 1J4, Quebec, Canada
| | - Anne-Noël Samaha
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit boulevard, Montreal, H3T 1J4, Quebec, Canada; Groupe de recherche sur le système nerveux central, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit boulevard, Montrea, H3T 1J4, Quebec, Canada.
| |
Collapse
|
6
|
Mann A, Keen AC, Mark H, Dasgupta P, Javitch JA, Canals M, Schulz S, Robert Lane J. New phosphosite-specific antibodies to unravel the role of GRK phosphorylation in dopamine D 2 receptor regulation and signaling. Sci Rep 2021; 11:8288. [PMID: 33859231 PMCID: PMC8050214 DOI: 10.1038/s41598-021-87417-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
The dopamine D2 receptor (D2R) is the target of drugs used to treat the symptoms of Parkinson’s disease and schizophrenia. The D2R is regulated through its interaction with and phosphorylation by G protein receptor kinases (GRKs) and interaction with arrestins. More recently, D2R arrestin-mediated signaling has been shown to have distinct physiological functions to those of G protein signalling. Relatively little is known regarding the patterns of D2R phosphorylation that might control these processes. We aimed to generate antibodies specific for intracellular D2R phosphorylation sites to facilitate the investigation of these mechanisms. We synthesised double phosphorylated peptides corresponding to regions within intracellular loop 3 of the hD2R and used them to raise phosphosite-specific antibodies to capture a broad screen of GRK-mediated phosphorylation. We identify an antibody specific to a GRK2/3 phosphorylation site in intracellular loop 3 of the D2R. We compared measurements of D2R phosphorylation with other measurements of D2R signalling to profile selected D2R agonists including previously described biased agonists. These studies demonstrate the utility of novel phosphosite-specific antibodies to investigate D2R regulation and signalling.
Collapse
Affiliation(s)
- Anika Mann
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Alastair C Keen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Hanka Mark
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Pooja Dasgupta
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Jonathan A Javitch
- Departments of Psychiatry and Pharmacology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, USA
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
| | - J Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK. .,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK.
| |
Collapse
|
7
|
Dominguez‐Lopez S, Sharma R, Beckstead MJ. Neurotensin receptor 1 deletion decreases methamphetamine self-administration and the associated reduction in dopamine cell firing. Addict Biol 2021; 26:e12854. [PMID: 31742874 DOI: 10.1111/adb.12854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/26/2019] [Accepted: 10/28/2019] [Indexed: 12/26/2022]
Abstract
We previously reported that a non-selective pharmacological blockade of neurotensin receptors in the ventral tegmental area (VTA) decreases methamphetamine (METH) self-administration in mice. Here, we explored the consequences of genetic deletion of neurotensin receptor 1 (NtsR1) on METH self-administration and VTA dopamine neuron firing activity. We implanted mice with an indwelling jugular catheter and trained them to nose-poke for intravenous infusions of METH. Mice with NtsR1 deletion (KO) acquired self-administration similar to wildtype (WT) and heterozygous (HET) littermates. However, in NtsR1 KO and HET mice, METH intake and motivated METH seeking decreased when the response requirement was increased to a fixed ratio 3 and when mice were tested on a progressive ratio protocol. After completion of METH self-administration, single cell in vivo extracellular recordings of dopamine firing activity in the VTA were obtained in anesthetized mice. Non-bursting dopamine neurons from KO mice fired at slower rates than those from WT mice, supporting an excitatory role for NtsR1 on VTA dopamine neuronal activity. In WT mice, a history of METH self-administration decreased dopamine cell firing frequency compared with cells from drug-naïve controls. NtsR1 KO and HET mice did not exhibit this decline in dopamine cell firing activity after METH experience. We also observed an increase in population activity following METH self-administration that was strongest in the WT group. Our results suggest a role for NtsR1 in METH-seeking behavior and indicate that ablation of NtsR1 prevents the detrimental effects of prolonged METH self-administration on VTA dopamine cell firing frequency.
Collapse
Affiliation(s)
- Sergio Dominguez‐Lopez
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation Oklahoma City OK USA
| | - Ramaswamy Sharma
- Department of Cell Systems & Anatomy, UT Health San Antonio San Antonio TX USA
| | - Michael J. Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation Oklahoma City OK USA
| |
Collapse
|
8
|
Servonnet A, Uchida H, Samaha AN. Continuous versus extended antipsychotic dosing in schizophrenia: Less is more. Behav Brain Res 2020; 401:113076. [PMID: 33345826 DOI: 10.1016/j.bbr.2020.113076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 11/28/2022]
Abstract
Antipsychotic drugs temper psychotic symptoms by interacting with dopamine D2 receptors to reduce dopamine neurotransmission. Currently, the standard of care involves antipsychotic treatment protocols that achieve steady-state levels of medication. Maintaining patients on continuous treatment is thought to be necessary to keep them stabilised. However, continuous antipsychotic exposure increases the risk of adverse effects over time. These effects include metabolic and cardiovascular disorders, extrapyramidal complications, and dopamine receptor supersensitivity, the latter of which could potentially promote both treatment tolerance and psychosis relapse. In the present review, we describe evidence showing that continuous exposure to antipsychotic drugs can not only worsen long-term outcome, but-past acute phase treatment-it is also unnecessary to effectively manage schizophrenia symptoms. We also describe evidence that regular but extended dosing, allowing predictable periods of lower antipsychotic levels/D2 occupancy, is both safe and effective in patients, and it greatly reduces drug exposure overall. Studies in laboratory animals show that compared to continuous antipsychotic exposure, regular but extended dosing actually has superior antipsychotic-like efficacy, and it also substantially reduces the likelihood of both motor side effects and dopamine receptor supersensitivity. We propose that regular, but extended dosing should be considered in the long-term treatment of people with schizophrenia, because the available evidence suggests it can be just as effective as continuous treatment, while decreasing overall drug exposure and potentially reducing harmful side effects.
Collapse
Affiliation(s)
- Alice Servonnet
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Anne-Noël Samaha
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada; Groupe de recherche sur le système nerveux central, Faculty of Medicine, Université de Montréal, Montreal, Canada.
| |
Collapse
|
9
|
Chen R, Ferris MJ, Wang S. Dopamine D2 autoreceptor interactome: Targeting the receptor complex as a strategy for treatment of substance use disorder. Pharmacol Ther 2020; 213:107583. [PMID: 32473160 PMCID: PMC7434700 DOI: 10.1016/j.pharmthera.2020.107583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Dopamine D2 autoreceptors (D2ARs), located in somatodendritic and axon terminal compartments of dopamine (DA) neurons, function to provide a negative feedback regulatory control on DA neuron firing, DA synthesis, reuptake and release. Dysregulation of D2AR-mediated DA signaling is implicated in vulnerability to substance use disorder (SUD). Due to the extreme low abundance of D2ARs compared to postsynaptic D2 receptors (D2PRs) and the lack of experimental tools to differentiate the signaling of D2ARs from D2PRs, the regulation of D2ARs by drugs of abuse is poorly understood. The recent availability of conditional D2AR knockout mice and newly developed virus-mediated gene delivery approaches have provided means to specifically study the function of D2ARs at the molecular, cellular and behavioral levels. There is a growing revelation of novel mechanisms and new proteins that mediate D2AR activity, suggesting that D2ARs act cooperatively with an array of membrane and intracellular proteins to tightly control DA transmission. This review highlights D2AR-interacting partners including transporters, G-protein-coupled receptors, ion channels, intracellular signaling modulators, and protein kinases. The complexity of the D2AR interaction network illustrates the functional divergence of D2ARs. Pharmacological targeting of multiple D2AR-interacting partners may be more effective to restore disrupted DA homeostasis by drugs of abuse.
Collapse
Affiliation(s)
- Rong Chen
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America.
| | - Mark J Ferris
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| | - Shiyu Wang
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| |
Collapse
|
10
|
He X, Yan L, Wu Q, Zhang G, Zhou N. Ligand-dependent internalization of Bombyx mori tachykinin-related peptide receptor is regulated by PKC, GRK5 and β-arrestin2/BmKurtz. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118690. [PMID: 32112783 DOI: 10.1016/j.bbamcr.2020.118690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 02/18/2020] [Accepted: 02/23/2020] [Indexed: 10/24/2022]
Abstract
Tachykinin signaling system is present in both vertebrates and invertebrates, and functions as neuromodulator responsible for the regulation of various physiological processes. In human, the internalization of G protein-coupled receptors has been extensively characterized; however, the insect GPCR internalization has been rarely investigated. Here, we constructed two expression vectors of Bombyx tachykinin-related peptide receptor (BmTKRPR) fused with Enhanced Green Fluorescent Protein (EGFP) at the C-terminal end for direct visualization of receptor expression, localization, and trafficking in cultured mammalian HEK293 and insect Sf21 cells. Our results demonstrated that agonist-activated BmTKRPR underwent rapid internalization in a dose-and time-dependent manner via a clathrin-dependent pathway in both HEK293 and Sf21 cells. Further investigation via RNAi or specific inhibitors, or co-immunoprecipitation demonstrated that agonist-induced BmTKRPR internalization was mediated by PKC, GRK5 and β-arrestin2/BmKurtz. In addition, we also observed that most of the internalized BmTKRP receptors were recycled to the cell surface via early endosomes upon peptide ligand removal. Our study provides the first in-depth information on mechanisms underlying insect TKRP receptor internalization and perhaps aids in the interpretation of the signaling in the regulation of physiological processes.
Collapse
Affiliation(s)
- Xiaobai He
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China.
| | - Lili Yan
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qi Wu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Guozheng Zhang
- Key Laboratory of Genetic Improvement of Sericulture, Ministry of Agriculture and Rural Affairs, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
11
|
Antipsychotic-evoked dopamine supersensitivity. Neuropharmacology 2020; 163:107630. [DOI: 10.1016/j.neuropharm.2019.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
|
12
|
He D, Lasek AW. Anaplastic Lymphoma Kinase Regulates Internalization of the Dopamine D2 Receptor. Mol Pharmacol 2019; 97:123-131. [PMID: 31734646 DOI: 10.1124/mol.119.117473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022] Open
Abstract
The dopamine D2 receptor (D2R) is a G protein-coupled receptor (GPCR) expressed in regions of the brain that control motor function, cognition, and motivation. As a result, D2R is involved in the pathophysiology of disorders such as schizophrenia and drug addiction. Understanding the signaling pathways activated by D2R is crucial to finding new therapeutic targets for these disorders. D2R stimulation by its agonist, dopamine, causes desensitization and internalization of the receptor. A previous study found that inhibitors of the receptor tyrosine kinase anaplastic lymphoma kinase (ALK) blocked D2R desensitization in neurons in the ventral tegmental area of the brain. In the present study, using a cell-based system, we investigated whether ALK regulates D2R internalization. The ALK inhibitor alectinib completely inhibited dopamine-induced D2R internalization. Since GPCRs can transactivate receptor tyrosine kinases, we also examined if D2R stimulation activated ALK signaling. ALK phosphorylation increased by almost 2-fold after dopamine treatment and ALK coimmunoprecipitated with D2R. To identify the signaling pathways downstream of ALK that might regulate D2R internalization, we used pharmacological inhibitors of proteins activated by ALK signaling. Protein kinase Cγ was activated by dopamine in an ALK-dependent manner, and a protein kinase C inhibitor completely blocked dopamine-induced D2R internalization. Taken together, these results identify ALK as a receptor tyrosine kinase transactivated by D2R that promotes its internalization, possibly through activation of protein kinase C. ALK inhibitors could be useful in enhancing D2R signaling. SIGNIFICANCE STATEMENT: Receptor internalization is a mechanism by which receptors are desensitized. In this study we found that agonist-induced internalization of the dopamine D2 receptor is regulated by the receptor tyrosine kinase ALK. ALK was also transactivated by and associated with dopamine D2 receptor. Dopamine activated protein kinase C in an ALK-dependent manner and a PKC inhibitor blocked dopamine D2 receptor internalization. These results indicate that ALK regulates dopamine D2 receptor trafficking, which has implications for psychiatric disorders involving dysregulated dopamine signaling.
Collapse
Affiliation(s)
- Donghong He
- Center for Alcohol Research in Epigenetics and Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics and Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
13
|
Neurotensin receptors inhibit mGluR I responses in nigral dopaminergic neurons via a process that undergoes functional desensitization by G-protein coupled receptor kinases. Neuropharmacology 2019; 155:76-88. [PMID: 31128122 DOI: 10.1016/j.neuropharm.2019.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/09/2019] [Accepted: 05/19/2019] [Indexed: 12/15/2022]
Abstract
Neurotensin (NT) is a 13-amino acid peptide acting as a neuromodulator in the CNS. NT immunoreactive cell bodies, synaptic terminals and receptors (NTS) are intimately associated with the dopaminergic system. In fact, NT exerts a stimulatory action on the dopaminergic (DAergic) neurons of substantia nigra pars compacta (SNpc) and ventral tegmental area by activating a mixed cation conductance, reducing D2-autoinhibition and modulating NMDA and AMPA transmission. In the present work, we describe an inhibitory effect of NT on metabotropic glutamate receptor I (mGluR I) actions in rat SNpc DAergic neurons. NTS and mGluR I share the same Gαq/11-PLC-IP3-Ca2+ intracellular pathway which causes either activation of unspecific cationic conductance or intracellular Ca2+ accumulation. We find that NT inhibits both inward current and the associated intracellular calcium elevation, elicited by the selective mGluR I agonist S-DHPG, in a concentration-dependent manner. This effect is mediated by type 1/2 NT receptors (NTS1/2), as revealed by pharmacological analysis. Activation of other metabotropic receptors, such as muscarinic and GABAB, does not inhibit mGluR I inward currents. PKC, MEK 1-2, calcineurin, clathrin-dependent endocytosis and intracellular Ca2+ elevation are not involved in the NT-mediated modulation of mGluR I responses. Interestingly, inhibition of G-protein coupled receptor kinases (GRKs) 2/3 exacerbates the NT-induced mGluR I inhibition while sustaining the NT-induced inward current during repeated agonist stimulation. These data suggest that GRKs are key molecules regulating either the NT excitation or the cross-talk between NTS1/2 and mGluR I in DAergic neurons of rat midbrain by tuning the degree of NTS1/2 desensitization.
Collapse
|
14
|
Zestos AG, Carpenter C, Kim Y, Low MJ, Kennedy RT, Gnegy ME. Ruboxistaurin Reduces Cocaine-Stimulated Increases in Extracellular Dopamine by Modifying Dopamine-Autoreceptor Activity. ACS Chem Neurosci 2019; 10:1960-1969. [PMID: 30384585 DOI: 10.1021/acschemneuro.8b00259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cocaine is a highly abused drug, and cocaine addiction affects millions of individuals worldwide. Cocaine blocks normal uptake function at the dopamine transporter (DAT), thus increasing extracellular dopamine. Currently, no chemical therapies are available to treat cocaine abuse. Previous works showed that the selective inhibitors of protein kinase Cβ (PKCβ), enzastaurin and ruboxistaurin, attenuate dopamine overflow and locomotion stimulated by another psychostimulant drug, amphetamine. We now test if ruboxistaurin similarly affects cocaine action. Perfusion of 1 μM ruboxistaurin directly into the core of the nucleus accumbens via retrodialysis reduced cocaine-stimulated increases in dopamine overflow, measured using microdialysis sampling, with simultaneous reductions in locomotor behavior. Because cocaine activity is highly regulated by dopamine autoreceptors, we examined whether ruboxistaurin was acting at the level of the D2 autoreceptor. Perfusion of 5 μM raclopride, a selective D2-like receptor antagonist, before addition of ruboxistaurin, abrogated the effect of ruboxistaurin on cocaine-stimulated dopamine overflow and hyperlocomotion. Further, ruboxistaurin was inactive against cocaine-stimulated locomotor activity in mice with a genetic deletion in D2 receptors as compared to wild-type mice. In contrast, blockade or deletion of dopamine D2 receptors did not abolish the attenuating effect of ruboxistaurin on amphetamine-stimulated activities. Therefore, the inhibition of PKCβ reduces dopamine overflow and locomotor activity stimulated by both cocaine and amphetamine, but the mechanism of action differs for each stimulant. These data suggest that inhibition of PKCβ would serve as a target to reduce the abuse of either amphetamine or cocaine.
Collapse
Affiliation(s)
- Alexander G. Zestos
- Department of Chemistry and Center for Behavioral Neuroscience, American University, Washington, D.C. 20016, United States
| | | | | | | | | | | |
Collapse
|
15
|
Borroto-Escuela DO, Perez De La Mora M, Manger P, Narváez M, Beggiato S, Crespo-Ramírez M, Navarro G, Wydra K, Díaz-Cabiale Z, Rivera A, Ferraro L, Tanganelli S, Filip M, Franco R, Fuxe K. Brain Dopamine Transmission in Health and Parkinson's Disease: Modulation of Synaptic Transmission and Plasticity Through Volume Transmission and Dopamine Heteroreceptors. Front Synaptic Neurosci 2018; 10:20. [PMID: 30042672 PMCID: PMC6048293 DOI: 10.3389/fnsyn.2018.00020] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 06/19/2018] [Indexed: 01/04/2023] Open
Abstract
This perspective article provides observations supporting the view that nigro-striatal dopamine neurons and meso-limbic dopamine neurons mainly communicate through short distance volume transmission in the um range with dopamine diffusing into extrasynaptic and synaptic regions of glutamate and GABA synapses. Based on this communication it is discussed how volume transmission modulates synaptic glutamate transmission onto the D1R modulated direct and D2R modulated indirect GABA pathways of the dorsal striatum. Each nigro-striatal dopamine neuron was first calculated to form large numbers of neostriatal DA nerve terminals and then found to give rise to dense axonal arborizations spread over the neostriatum, from which dopamine is released. These neurons can through DA volume transmission directly influence not only the striatal GABA projection neurons but all the striatal cell types in parallel. It includes the GABA nerve cells forming the island-/striosome GABA pathway to the nigral dopamine cells, the striatal cholinergic interneurons and the striatal GABA interneurons. The dopamine modulation of the different striatal nerve cell types involves the five dopamine receptor subtypes, D1R to D5R receptors, and their formation of multiple extrasynaptic and synaptic dopamine homo and heteroreceptor complexes. These features of the nigro-striatal dopamine neuron to modulate in parallel the activity of practically all the striatal nerve cell types in the dorsal striatum, through the dopamine receptor complexes allows us to understand its unique and crucial fine-tuning of movements, which is lost in Parkinson's disease. Integration of striatal dopamine signals with other transmitter systems in the striatum mainly takes place via the receptor-receptor interactions in dopamine heteroreceptor complexes. Such molecular events also participate in the integration of volume transmission and synaptic transmission. Dopamine modulation of the glutamate synapses on the dorsal striato-pallidal GABA pathway involves D2R heteroreceptor complexes such as D2R-NMDAR, A2AR-D2R, and NTSR1-D2R heteroreceptor complexes. The dopamine modulation of glutamate synapses on the striato-entopeduncular/nigral pathway takes place mainly via D1R heteroreceptor complexes such as D1R-NMDAR, A2R-D1R, and D1R-D3R heteroreceptor complexes. Dopamine modulation of the island/striosome compartment of the dorsal striatum projecting to the nigral dopamine cells involve D4R-MOR heteroreceptor complexes. All these receptor-receptor interactions have relevance for Parkinson's disease and its treatment.
Collapse
Affiliation(s)
- Dasiel O. Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Section of Physiology, Department of Biomolecular Science, University of Urbino, Urbino, Italy
- Observatorio Cubano de Neurociencias, Grupo Bohío-Estudio, Yaguajay, Cuba
| | - Miguel Perez De La Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paul Manger
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Manuel Narváez
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | - Sarah Beggiato
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Minerva Crespo-Ramírez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Karolina Wydra
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Zaida Díaz-Cabiale
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | - Alicia Rivera
- Department of Cell Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Luca Ferraro
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Sergio Tanganelli
- Department of Life Sciences and Biotechnology (SVEB), University of Ferrara, Ferrara, Italy
| | - Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biomedicine, University of Barcelona, Barcelona, Spain
- CiberNed: Centro de Investigación en Red Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Scheggia D, Mastrogiacomo R, Mereu M, Sannino S, Straub RE, Armando M, Managò F, Guadagna S, Piras F, Zhang F, Kleinman JE, Hyde TM, Kaalund SS, Pontillo M, Orso G, Caltagirone C, Borrelli E, De Luca MA, Vicari S, Weinberger DR, Spalletta G, Papaleo F. Variations in Dysbindin-1 are associated with cognitive response to antipsychotic drug treatment. Nat Commun 2018; 9:2265. [PMID: 29891954 PMCID: PMC5995960 DOI: 10.1038/s41467-018-04711-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/15/2018] [Indexed: 01/25/2023] Open
Abstract
Antipsychotics are the most widely used medications for the treatment of schizophrenia spectrum disorders. While such drugs generally ameliorate positive symptoms, clinical responses are highly variable in terms of negative symptoms and cognitive impairments. However, predictors of individual responses have been elusive. Here, we report a pharmacogenetic interaction related to a core cognitive dysfunction in patients with schizophrenia. We show that genetic variations reducing dysbindin-1 expression can identify individuals whose executive functions respond better to antipsychotic drugs, both in humans and in mice. Multilevel ex vivo and in vivo analyses in postmortem human brains and genetically modified mice demonstrate that such interaction between antipsychotics and dysbindin-1 is mediated by an imbalance between the short and long isoforms of dopamine D2 receptors, leading to enhanced presynaptic D2 function within the prefrontal cortex. These findings reveal one of the pharmacodynamic mechanisms underlying individual cognitive response to treatment in patients with schizophrenia, suggesting a potential approach for improving the use of antipsychotic drugs.
Collapse
Affiliation(s)
- Diego Scheggia
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center Lausanne, Prilly-Lausanne, CH-1008, Switzerland
| | - Rosa Mastrogiacomo
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Maddalena Mereu
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
- Dipartimento di Scienze del Farmaco, Universita' degli Studi di Padova, Largo Meneghetti 2, 35131, Padova, Italy
| | - Sara Sannino
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Richard E Straub
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, 21205, USA
| | - Marco Armando
- Department of Neuroscience, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio 4, 00100, Rome, Italy
| | - Francesca Managò
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Simone Guadagna
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Fabrizio Piras
- IRCCS Santa Lucia Foundation, Neuropsychiatry Laboratory, 00179, Rome, Italy
| | - Fengyu Zhang
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, 21205, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, 21205, USA
| | - Sanne S Kaalund
- Research Laboratory for Stereology and Neuroscience, Bispebjerg University Hospital, 2400, Copenhagen, NV, Denmark
| | - Maria Pontillo
- Department of Neuroscience, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio 4, 00100, Rome, Italy
| | - Genny Orso
- IRCCS E. Medea Scientific Institute, 23842, Bosisio Parini, Italy
| | - Carlo Caltagirone
- IRCCS Santa Lucia Foundation, Neuropsychiatry Laboratory, 00179, Rome, Italy
| | | | - Maria A De Luca
- Department of Biomedical Sciences, Università di Cagliari, 09124, Cagliari, Italy
| | - Stefano Vicari
- Department of Neuroscience, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio 4, 00100, Rome, Italy
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, 21205, USA
- Departments of Psychiatry, Neurology, Neuroscience and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Gianfranco Spalletta
- IRCCS Santa Lucia Foundation, Neuropsychiatry Laboratory, 00179, Rome, Italy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Francesco Papaleo
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.
| |
Collapse
|
17
|
Robinson BG, Condon AF, Radl D, Borrelli E, Williams JT, Neve KA. Cocaine-induced adaptation of dopamine D2S, but not D2L autoreceptors. eLife 2017; 6. [PMID: 29154756 PMCID: PMC5695907 DOI: 10.7554/elife.31924] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022] Open
Abstract
The dopamine D2 receptor has two splice variants, D2S (Short) and D2L (Long). In dopamine neurons, both variants can act as autoreceptors to regulate neuronal excitability and dopamine release, but the roles of each variant are incompletely characterized. In a previous study we used viral receptor expression in D2 receptor knockout mice to show distinct effects of calcium signaling on D2S and D2L autoreceptor function (Gantz et al., 2015). However, the cocaine-induced plasticity of D2 receptor desensitization observed in wild type mice was not recapitulated with this method of receptor expression. Here we use mice with genetic knockouts of either the D2S or D2L variant to investigate cocaine-induced plasticity in D2 receptor signaling. Following a single in vivo cocaine exposure, the desensitization of D2 receptors from neurons expressing only the D2S variant was reduced. This did not occur in D2L-expressing neurons, indicating differential drug-induced plasticity between the variants.
Collapse
Affiliation(s)
- Brooks G Robinson
- The Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Alec F Condon
- The Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Daniela Radl
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, United States
| | - Emiliana Borrelli
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, United States
| | - John T Williams
- The Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Kim A Neve
- Research Service, VA Portland Health Care System, Portland, United States.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, United States
| |
Collapse
|
18
|
Visualization of ligand-induced dopamine D 2S and D 2L receptor internalization by TIRF microscopy. Sci Rep 2017; 7:10894. [PMID: 28883522 PMCID: PMC5589927 DOI: 10.1038/s41598-017-11436-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/23/2017] [Indexed: 01/11/2023] Open
Abstract
G protein-coupled receptors (GPCRs), including the dopamine receptors, represent a group of important pharmacological targets. Upon agonist binding, GPCRs frequently undergo internalization, a process that is known to attenuate functional responses upon prolonged exposure to agonists. In this study, internalization was visualized by means of total internal reflection fluorescence (TIRF) microscopy at a level of discrete single events near the plasma membrane with high spatial resolution. A novel method has been developed to determine the relative extent of internalized fluorescent receptor-ligand complexes by comparative fluorescence quantification in living CHO cells. The procedure entails treatment with the reducing agent sodium borohydride, which converts cyanine-based fluorescent ligands on the membrane surface to a long-lived reduced form. Because the highly polar reducing agent is not able to pass the cell membrane, the fluorescent receptor-ligand complexes located in internalized compartments remain fluorescent under TIRF illumination. We applied the method to investigate differences of the short (D2S) and the long (D2L) isoforms of dopamine D2 receptors in their ability to undergo agonist-induced internalization.
Collapse
|
19
|
Dobbs LK, Lemos JC, Alvarez VA. Restructuring of basal ganglia circuitry and associated behaviors triggered by low striatal D2 receptor expression: implications for substance use disorders. GENES BRAIN AND BEHAVIOR 2017; 16:56-70. [PMID: 27860248 PMCID: PMC5243158 DOI: 10.1111/gbb.12361] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 01/11/2023]
Abstract
Dopamine D2 receptors (D2Rs) consistently emerge as a critical substrate for the etiology of some major psychiatric disorders. Indeed, a central theory of substance use disorders (SUDs) postulates that a reduction in D2R levels in the striatum is a determining factor that confers vulnerability to abuse substances. A large number of clinical and preclinical studies strongly support this link between SUDs and D2Rs; however, identifying the mechanism by which low D2Rs facilitate SUDs has been hindered by the complexity of circuit connectivity, the heterogeneity of D2R expression and the multifaceted constellation of phenotypes observed in SUD patient. Animal models are well‐suited for understanding the mechanisms because they allow access to the circuitry and the genetic tools that enable a dissection of the D2R heterogeneity. This review discusses recent findings on the functional role of D2Rs and highlights the distinctive contributions of D2Rs expressed on specific neuronal subpopulations to the behavioral responses to stimulant drugs. A circuit‐wide restructuring of local and long‐range inhibitory connectivity within the basal ganglia is observed in response to manipulation of striatal D2R levels and is accompanied by multiple alterations in dopamine‐dependent behaviors. Collectively, these new findings provide compelling evidence for a critical role of striatal D2Rs in shaping basal ganglia connectivity; even among neurons that do not express D2Rs. These findings from animal models have deep clinical implications for SUD patients with low levels D2R availability where a similar restructuring of basal ganglia circuitry is expected to take place.
Collapse
Affiliation(s)
- L K Dobbs
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - J C Lemos
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - V A Alvarez
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Voyer D, Lévesque D, Rompré PP. Repeated ventral midbrain neurotensin injections sensitize to amphetamine-induced locomotion and ERK activation: A role for NMDA receptors. Neuropharmacology 2016; 112:150-163. [PMID: 27267684 DOI: 10.1016/j.neuropharm.2016.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/31/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
Abstract
Previous studies have shown that activation of ventral midbrain NMDA receptors is required to initiate sensitization by amphetamine. In view of the recent evidence that neurotensin modulates ventral midbrain glutamate neurotransmission, we tested the hypothesis that neurotensin is acting upstream to glutamate to initiate sensitization to the behavioral and neurochemical effects of amphetamine. During a first testing phase, adult male rats implanted with bilateral ventral midbrain cannulae were injected every second day for three days with D-[Tyr11]neurotensin (1.5 nmol/side), the preferred NMDA GluN2A/B antagonist, CPP (40 or 120 pmol/side), the selective GluN2B antagonist, Ro04-5595 (200 or 1200 pmol/side), CPP (40 or 120 pmol/side) + D-[Tyr11]neurotensin (1.5 nmol/side) or Ro04-5595 (200 or 1200 pmol/side) + D-[Tyr11]neurotensin (1.5 nmol/side) and locomotor activity was measured immediately after the injection. Five days after the last central injection, the locomotor response or the expression of phosphorylated extracellular signal-regulated kinases 1/2 (pERK1/2) in neurons of different limbic nuclei was measured following a systemic injection of amphetamine sulfate (0.75 mg/kg, i.p.). Results show that amphetamine induced significantly stronger locomotor activity and pERK1/2 expression in the nucleus accumbens shell and infralimbic cortex in neurotensin pre-exposed animals than in controls (vehicle pre-exposed). These sensitization effects initiated by neurotensin were prevented by CPP, but not Ro04-5595. These results support the hypothesis that neurotensin is stimulating glutamate neurotransmission to initiate neural changes that sub-serve amphetamine sensitization and that glutamate is acting on NMDA receptors that are mostly likely composed of GluN2A, but not GluN2B, subunits. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- David Voyer
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Daniel Lévesque
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Pierre-Paul Rompré
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada; FRQ-S Research Group in Behavioral Neurobiology, Concordia University, Montréal, Quebec, Canada.
| |
Collapse
|
21
|
Umezu K, Hiradate Y, Oikawa T, Ishiguro H, Numabe T, Hara K, Tanemura K. Exogenous neurotensin modulates sperm function in Japanese Black cattle. J Reprod Dev 2016; 62:409-14. [PMID: 27210588 PMCID: PMC5004797 DOI: 10.1262/jrd.2016-055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recently, the conception rates after artificial insemination have been pointed out
to decline continuously. To overcome this problem, the control of frozen and thawed
sperm quality is required. However, the mechanism of bovine sperm functional
regulation is still largely unknown. In mammals, the ejaculated sperm are capable of
showing fertilizing ability during migration in the female reproductive organs. It is
well known that these female organs secrete several factors contributing to sperm
capacitation. We previously reported that neurotensin (NT) secreted from the oviduct
and cumulus cells enhanced sperm capacitation and acrosome reaction in mice. In this
study, we confirmed the expression of the NT receptor (NTR1) in the bovine sperm neck
region and the secretion of NT in the bovine uterus and oviduct. The similar
expression patterns of NT and NTR1 suggests a conserved mechanism of sperm functional
regulation between mouse and cattle. Thus, we examined the effects of exogenous NT on
the bovine sperm functions. First, we showed that NT induced sperm protein tyrosine
phosphorylation in a dose-dependent manner, suggesting that NT enhances sperm
capacitation. Second, we showed that NT induced acrosome reactions of capacitated
sperm in a dose-dependent manner, suggesting that NT facilitates acrosome reaction.
Finally, we used a computer-aided sperm analysis system to show that NT did not have
a great effect on sperm motility. These results suggest that NT acts as a facilitator
of sperm capacitation and acrosome reaction in the female reproductive tracts in
cattle, highlighting the importance of NT-mediated signaling to regulate sperm
functions.
Collapse
Affiliation(s)
- Kohei Umezu
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 981-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Rouibi K, Bose P, Rompré PP, Warren RA. Ventral Midbrain NTS1 Receptors Mediate Conditioned Reward Induced by the Neurotensin Analog, D-Tyr[11]neurotensin. Front Neurosci 2015; 9:470. [PMID: 26733785 PMCID: PMC4686738 DOI: 10.3389/fnins.2015.00470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/24/2015] [Indexed: 11/13/2022] Open
Abstract
The present study was aimed at characterizing the mechanisms by which neurotensin (NT) is acting within the ventral midbrain to induce a psychostimulant-like effect. In a first experiment, we determine which subtype(s) of NT receptors is/are involved in the reward-inducing effect of ventral midbrain microinjection of NT using the conditioned place-preference (CPP) paradigm. In a second study, we used in vitro patch clamp recording technique to characterize the NT receptor subtype(s) involved in the modulation of glutamatergic neurotransmission (excitatory post-synaptic current, EPSC) in ventral tegmental neurons that expressed (Ih+), or do not express (Ih-), a hyperpolarization-activated cationic current. Behavioral studies were performed with adult male Long-Evans rats while electrophysiological recordings were obtained from brain slices of rat pups aged between 14 and 21 days. Results show that bilateral ventral midbrain microinjections of 1.5 and 3 nmol of D-Tyr[11]NT induced a CPP that was respectively attenuated or blocked by co-injection with 1.2 nmol of the NTS1/NTS2 antagonist, SR142948, and the preferred NTS1 antagonist, SR48692. In electrophysiological experiments, D-Tyr[11]NT (0.01-0.5 μM) attenuated glutamatergic EPSC in Ih+ but enhanced it in Ih- neurons. The attenuation effect (Ih+ neurons) was blocked by SR142948 (0.1 μM) while the enhancement effect (Ih- neurons) was blocked by both antagonists (0.1 μM). These findings suggest that (i) NT is acting on ventral midbrain NTS1 receptors to induce a rewarding effect and (ii) that this psychostimulant-like effect could be due to a direct action of NT on dopamine neurons and/or an enhancement of glutamatergic inputs to non-dopamine (Ih-) neurons.
Collapse
Affiliation(s)
- Khalil Rouibi
- Department of Neurosciences, Université de MontréalMontréal, QC, Canada; FRQ-S Research Group in Behavioral Neurobiology, Department of Psychology, Concordia UniversityMontréal, QC, Canada
| | - Poulomee Bose
- Department of Psychiatry, Faculty of Medicine, Université de Montréal Montréal, QC, Canada
| | - Pierre-Paul Rompré
- Department of Neurosciences, Université de MontréalMontréal, QC, Canada; FRQ-S Research Group in Behavioral Neurobiology, Department of Psychology, Concordia UniversityMontréal, QC, Canada
| | - Richard A Warren
- Department of Psychiatry, Faculty of Medicine, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
23
|
Neurotensin Induces Presynaptic Depression of D2 Dopamine Autoreceptor-Mediated Neurotransmission in Midbrain Dopaminergic Neurons. J Neurosci 2015; 35:11144-52. [PMID: 26245975 DOI: 10.1523/jneurosci.3816-14.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Increased dopaminergic signaling is a hallmark of severe mesencephalic pathologies such as schizophrenia and psychostimulant abuse. Activity of midbrain dopaminergic neurons is under strict control of inhibitory D2 autoreceptors. Application of the modulatory peptide neurotensin (NT) to midbrain dopaminergic neurons transiently increases activity by decreasing D2 dopamine autoreceptor function, yet little is known about the mechanisms that underlie long-lasting effects. Here, we performed patch-clamp electrophysiology and fast-scan cyclic voltammetry in mouse brain slices to determine the effects of NT on dopamine autoreceptor-mediated neurotransmission. Application of the active peptide fragment NT8-13 produced synaptic depression that exhibited short- and long-term components. Sustained depression of D2 autoreceptor signaling required activation of the type 2 NT receptor and the protein phosphatase calcineurin. NT application increased paired-pulse ratios and decreased extracellular levels of somatodendritic dopamine, consistent with a decrease in presynaptic dopamine release. Surprisingly, we observed that electrically induced long-term depression of dopaminergic neurotransmission that we reported previously was also dependent on type 2 NT receptors and calcineurin. Because electrically induced depression, but not NT-induced depression, was blocked by postsynaptic calcium chelation, our findings suggest that endogenous NT may act through a local circuit to decrease presynaptic dopamine release. The current research provides a mechanism through which augmented NT release can produce a long-lasting increase in membrane excitability of midbrain dopamine neurons. SIGNIFICANCE STATEMENT Whereas plasticity of glutamate synapses in the brain has been studied extensively, demonstrations of plasticity at dopaminergic synapses have been more elusive. By quantifying inhibitory neurotransmission between midbrain dopaminergic neurons in brain slices from mice we have discovered that the modulatory peptide neurotensin can induce a persistent synaptic depression by decreasing dopamine release. This depression of inhibitory synaptic input would be expected to increase excitability of dopaminergic neurons. Induction of the plasticity can be pharmacologically blocked by antagonists of either the protein phosphatase calcineurin or neurotensin receptors, and persists surprisingly long after a brief exposure to the peptide. Since neurotensin-dopamine interactions have been implicated in hyperdopaminergic pathologies, these findings describe a synaptic mechanism that could contribute to addiction and/or schizophrenia.
Collapse
|
24
|
Gantz SC, Robinson BG, Buck DC, Bunzow JR, Neve RL, Williams JT, Neve KA. Distinct regulation of dopamine D2S and D2L autoreceptor signaling by calcium. eLife 2015; 4. [PMID: 26308580 PMCID: PMC4575989 DOI: 10.7554/elife.09358] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/25/2015] [Indexed: 11/29/2022] Open
Abstract
D2 autoreceptors regulate dopamine release throughout the brain. Two isoforms of the D2 receptor, D2S and D2L, are expressed in midbrain dopamine neurons. Differential roles of these isoforms as autoreceptors are poorly understood. By virally expressing the isoforms in dopamine neurons of D2 receptor knockout mice, this study assessed the calcium-dependence and drug-induced plasticity of D2S and D2L receptor-dependent G protein-coupled inwardly rectifying potassium (GIRK) currents. The results reveal that D2S, but not D2L receptors, exhibited calcium-dependent desensitization similar to that exhibited by endogenous autoreceptors. Two pathways of calcium signaling that regulated D2 autoreceptor-dependent GIRK signaling were identified, which distinctly affected desensitization and the magnitude of D2S and D2L receptor-dependent GIRK currents. Previous in vivo cocaine exposure removed calcium-dependent D2 autoreceptor desensitization in wild type, but not D2S-only mice. Thus, expression of D2S as the exclusive autoreceptor was insufficient for cocaine-induced plasticity, implying a functional role for the co-expression of D2S and D2L autoreceptors. DOI:http://dx.doi.org/10.7554/eLife.09358.001 Dopamine is an important component of the brain's reward system and is commonly referred to as a ‘feel-good’ chemical. It is mainly released from neurons in the brain in response to natural rewards, such as food or sex, and following exposure to, or in anticipation of, certain drugs of abuse (including cocaine). Dopamine-releasing neurons also sense dopamine, and just like someone can change the volume of their voice by hearing themselves speak, dopamine neurons regulate how much dopamine is released based on how much dopamine they sense. This feedback system is known as autoinhibition. These neurons sense dopamine when it binds to, and activates, so-called ‘dopamine D2 receptors’ on their cell surface. But not all D2 receptors are alike. Instead there are two variants called D2S and D2L. Previous studies have shown that D2 receptor signaling in dopamine neurons is altered by the concentration of calcium ions inside these cells. Furthermore, exposure to cocaine and other drugs is known to change how these calcium ions regulate D2 receptor signaling. Now, Gantz et al. have used mice that produce only a single variant of the D2 receptor (either D2S or D2L) in their dopamine neurons to uncover similarities and differences between the two variants. The experiments show that localized increases in calcium ion concentration make D2S less capable of autoinhibition, like D2 receptors in neurons from wild type mice, without affecting autoinhibition by D2L. In further experiments, some of these mice were given cocaine before D2 receptor signaling was assessed. In dopamine neurons from wild type mice, a single exposure to cocaine eliminates the calcium-dependent regulation; thus, cocaine treatment causes a D2L-like response. In contrast, cocaine treatment did not affect the calcium-dependent regulation when only one variant of the D2 receptor was present. This implies that dopamine neurons must have both D2S and D2L receptors before the drug can induce changes in D2 receptor signaling. These findings also challenge the long-held view that the D2S receptor is the predominant form involved in autoinhibition. The next challenge is to determine how cocaine induces an apparent switch from D2S to D2L and the implications of this switch for the development of cocaine addiction. DOI:http://dx.doi.org/10.7554/eLife.09358.002
Collapse
Affiliation(s)
- Stephanie C Gantz
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Brooks G Robinson
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - David C Buck
- Research Service, VA Portland Health Care System, United States Department of Veterans Affairs, Portland, United States
| | - James R Bunzow
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Rachael L Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - John T Williams
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Kim A Neve
- Research Service, VA Portland Health Care System, United States Department of Veterans Affairs, Portland, United States
| |
Collapse
|
25
|
Matsuoka H, Inoue M. Src mediates endocytosis of TWIK-related acid-sensitive K+ 1 channels in PC12 cells in response to nerve growth factor. Am J Physiol Cell Physiol 2015; 309:C251-63. [DOI: 10.1152/ajpcell.00354.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 06/10/2015] [Indexed: 01/17/2023]
Abstract
TWIK-related acid-sensitive K+ (TASK) channels produce background K+ currents. We elucidated that TASK1 channels in rat adrenal medullary cells and PC12 cells are internalized in a clathrin-dependent manner in response to nerve growth factor (NGF). Here, the molecular mechanism for this internalization in PC12 cells was explored. The combination of enzyme inhibitors with tropomyosin receptor kinase A mutants revealed that the internalization was mediated by both phospholipase C and phosphatidylinositol 3-kinase pathways that converge on protein kinase C with the consequent activation of Src, a nonreceptor tyrosine kinase. The NGF-induced endocytosis of TASK1 channels did not occur in the presence of the Src inhibitor or with the expression of a kinase-dead Src mutant. Additionally, NGF induced a transient colocalization of Src with the TASK1 channel, but not the TASK1 mutant, in which tyrosine at 370 was replaced with phenylalanine. This TASK1 mutant showed no increase in tyrosine phosphorylation and markedly diminished internalization in response to NGF. We concluded that NGF induces endocytosis of TASK1 channels via tyrosine phosphorylation in its carboxyl terminus.
Collapse
Affiliation(s)
- Hidetada Matsuoka
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Masumi Inoue
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| |
Collapse
|
26
|
Stuhrman K, Roseberry AG. Neurotensin inhibits both dopamine- and GABA-mediated inhibition of ventral tegmental area dopamine neurons. J Neurophysiol 2015; 114:1734-45. [PMID: 26180119 DOI: 10.1152/jn.00279.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/14/2015] [Indexed: 12/24/2022] Open
Abstract
Dopamine is an essential neurotransmitter that plays an important role in a number of different physiological processes and disorders. There is substantial evidence that the neuropeptide neurotensin interacts with the mesolimbic dopamine system and can regulate dopamine neuron activity. In these studies we have used whole cell patch-clamp electrophysiology in brain slices from mice to examine how neurotensin regulates dopamine neuron activity by examining the effect of neurotensin on the inhibitory postsynaptic current generated by somatodendritic dopamine release (D2R IPSC) in ventral tegmental area (VTA) dopamine neurons. Neurotensin inhibited the D2R IPSC and activated an inward current in VTA dopamine neurons that appeared to be at least partially mediated by activation of a transient receptor potential C-type channel. Neither the inward current nor the inhibition of the D2R IPSC was affected by blocking PKC or calcium release from intracellular stores, and the inhibition of the D2R IPSC was greater with neurotensin compared with activation of other Gq-coupled receptors. Interestingly, the effects of neurotensin were not specific to D2R signaling as neurotensin also inhibited GABAB inhibitory postsynaptic currents in VTA dopamine neurons. Finally, the effects of neurotensin were significantly larger when intracellular Ca(2+) was strongly buffered, suggesting that reduced intracellular calcium facilitates these effects. Overall these results suggest that neurotensin may inhibit the D2R and GABAB IPSCs downstream of receptor activation, potentially through regulation of G protein-coupled inwardly rectifying potassium channels. These studies provide an important advance in our understanding of dopamine neuron activity and how it is controlled by neurotensin.
Collapse
Affiliation(s)
- Katherine Stuhrman
- Department of Biology, Georgia State University, Atlanta, Georgia; The Neuroscience Institute, Georgia State University, Atlanta, Georgia; and
| | - Aaron G Roseberry
- Department of Biology, Georgia State University, Atlanta, Georgia; The Neuroscience Institute, Georgia State University, Atlanta, Georgia; and The Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| |
Collapse
|
27
|
Luderman KD, Chen R, Ferris MJ, Jones SR, Gnegy ME. Protein kinase C beta regulates the D₂-like dopamine autoreceptor. Neuropharmacology 2015; 89:335-41. [PMID: 25446677 DOI: 10.1016/j.neuropharm.2014.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/03/2014] [Accepted: 10/07/2014] [Indexed: 01/15/2023]
Abstract
The focus of this study was the regulation of the D2-like dopamine autoreceptor (D2 autoreceptor) by protein kinase Cβ, a member of the protein kinase C (PKC) family. Together with the dopamine transporter, the D2 autoreceptor regulates the level of extracellular dopamine and thus dopaminergic signaling. PKC regulates neuronal signaling via several mechanisms, including desensitizing autoreceptors to increase the release of several different neurotransmitters. Here, using both PKCβ(-/-) mice and specific PKCβ inhibitors, we demonstrated that a lack of PKCβ activity enhanced the D2 autoreceptor-stimulated decrease in dopamine release following both chemical and electrical stimulations. Inhibition of PKCβ increased surface localization of D2R in mouse striatal synaptosomes, which could underlie the greater sensitivity to quinpirole following inhibition of PKCβ. PKCβ(-/-) mice displayed greater sensitivity to the quinpirole-induced suppression of locomotor activity, demonstrating that the regulation of the D2 autoreceptor by PKCβ is physiologically significant. Overall, we have found that PKCβ downregulates the D2 autoreceptor, providing an additional layer of regulation for dopaminergic signaling. We propose that in the absence of PKCβ activity, surface D2 autoreceptor localization and thus D2 autoreceptor signaling is increased, leading to less dopamine in the extracellular space and attenuated dopaminergic signaling.
Collapse
Affiliation(s)
- Kathryn D Luderman
- Department of Pharmacology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5632, USA.
| | | | | | | | | |
Collapse
|
28
|
Striatal dopamine receptor plasticity in neurotensin deficient mice. Behav Brain Res 2014; 280:160-71. [PMID: 25449842 DOI: 10.1016/j.bbr.2014.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/04/2014] [Accepted: 11/07/2014] [Indexed: 11/21/2022]
Abstract
Schizophrenia is thought to be caused, at least in part, by dysfunction in striatal dopamine neurotransmission. Both clinical studies and animal research have implicated the dopamine neuromodulator neurotensin (NT) in the pathophysiology of schizophrenia. Utilizing male mice lacking the NT gene (NT(-/-)), these studies examined the consequences of NT deficiency on dopaminergic tone and function, investigating (1) dopamine concentrations and dopamine receptor and transporter expression and binding in dopaminergic terminal regions, and (2) the behavioral effects of selective dopamine receptor agonists on locomotion and sensorimotor gating in adult NT(-/-) mice compared to wildtype (NT(+/+)) mice. NT(-/-) mice did not differ from NT(+/+) mice in concentrations of dopamine or its metabolite DOPAC in any brain region examined. However, NT(-/-) mice showed significantly increased D1 receptor, D2 receptor, and dopamine transporter (DAT) mRNA in the caudate putamen compared to NT(+/+) controls. NT(-/-) mice also showed elevated D2 receptor binding densities in both the caudate putamen and nucleus accumbens shell compared to NT(+/+) mice. In addition, some of the behavioral effects of the D1-type receptor agonist SKF-82958 and the D2-type receptor agonist quinpirole on locomotion, startle amplitude, and prepulse inhibition were dose-dependently altered in NT(-/-) mice, showing altered D1-type and D2-type receptor sensitivity to stimulation by agonists in the absence of NT. The results indicate that NT deficiency alters striatal dopamine receptor expression, binding, and function. This suggests a critical role for the NT system in the maintenance of striatal DA system homeostasis and implicates NT deficiency in the etiology of dopamine-associated disorders such as schizophrenia.
Collapse
|
29
|
Vadnie CA, Park JH, Abdel Gawad N, Ho AMC, Hinton DJ, Choi DS. Gut-brain peptides in corticostriatal-limbic circuitry and alcohol use disorders. Front Neurosci 2014; 8:288. [PMID: 25278825 PMCID: PMC4166902 DOI: 10.3389/fnins.2014.00288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/26/2014] [Indexed: 12/22/2022] Open
Abstract
Peptides synthesized in endocrine cells in the gastrointestinal tract and neurons are traditionally considered regulators of metabolism, energy intake, and appetite. However, recent work has demonstrated that many of these peptides act on corticostriatal-limbic circuitry and, in turn, regulate addictive behaviors. Given that alcohol is a source of energy and an addictive substance, it is not surprising that increasing evidence supports a role for gut-brain peptides specifically in alcohol use disorders (AUD). In this review, we discuss the effects of several gut-brain peptides on alcohol-related behaviors and the potential mechanisms by which these gut-brain peptides may interfere with alcohol-induced changes in corticostriatal-limbic circuitry. This review provides a summary of current knowledge on gut-brain peptides focusing on five peptides: neurotensin, glucagon-like peptide 1, ghrelin, substance P, and neuropeptide Y. Our review will be helpful to develop novel therapeutic targets for AUD.
Collapse
Affiliation(s)
- Chelsea A Vadnie
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Jun Hyun Park
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry, Sanggye Paik Hospital, College of Medicine, InJe University Seoul, South Korea
| | - Noha Abdel Gawad
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Ada Man Choi Ho
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| | - David J Hinton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| |
Collapse
|
30
|
Hiradate Y, Inoue H, Kobayashi N, Shirakata Y, Suzuki Y, Gotoh A, Roh SG, Uchida T, Katoh K, Yoshida M, Sato E, Tanemura K. Neurotensin enhances sperm capacitation and acrosome reaction in mice. Biol Reprod 2014; 91:53. [PMID: 25031361 DOI: 10.1095/biolreprod.113.112789] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Neurotensin (NT) has multiple functions, ranging from acting as a neurotransmitter to regulating intestinal movement. However, its function in reproductive physiology is unknown. Here, we confirmed the expression and localization of NT receptors (NTR1) in mouse epididymal spermatozoa and investigated the effect of NT on sperm function. Sperm protein tyrosine phosphorylation, one of the indices of sperm capacitation, was facilitated dose-dependently by NT administration. In addition, the acrosome reaction was promoted in capacitated spermatozoa, and addition of a selective antagonist of NTR1 and NTR2 blocked the induction. Furthermore, intracellular calcium mobilization by NT addition was observed. This showed that NT was an accelerator of sperm function via its functional receptors. The presence of NT was confirmed by immunohistochemistry and its localization was observed in epithelia of the uterus and oviduct isthmus and ampulla, which correspond to the fertilization route of spermatozoa. The NT mRNA level in ovulated cumulus cell was remarkably increased by treatment with human chorionic gonadotropin (hCG). Using an in vitro maturation model, we analyzed the effects of FSH, epidermal growth factor (EGF), estradiol, and progesterone in NT production in cumulus cells. We found that FSH and EGF upregulated NT release and mRNA expression. Both FSH- and EGF-induced upregulation were inhibited by U0126, an MAPK kinase inhibitor, indicating that FSH and EGF regulate NT expression via a MAPK-dependent pathway. This evidence suggests that NT can act as a promoter of sperm capacitation and the acrosome reaction in the female reproductive tract.
Collapse
Affiliation(s)
- Yuuki Hiradate
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hiroki Inoue
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Norio Kobayashi
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yoshiki Shirakata
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yutaka Suzuki
- Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Aina Gotoh
- Laboratory of Enzymology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Sang-Gun Roh
- Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takafumi Uchida
- Laboratory of Enzymology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kazuo Katoh
- Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Kanagawa, Japan
| | - Eimei Sato
- National Livestock Breeding, Fukushima, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
31
|
Activation of neurotensin receptor type 1 attenuates locomotor activity. Neuropharmacology 2014; 85:482-92. [PMID: 24929110 DOI: 10.1016/j.neuropharm.2014.05.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 12/16/2022]
Abstract
Intracerebroventricular administration of neurotensin (NT) suppresses locomotor activity. However, the brain regions that mediate the locomotor depressant effect of NT and receptor subtype-specific mechanisms involved are unclear. Using a brain-penetrating, selective NT receptor type 1 (NTS1) agonist PD149163, we investigated the effect of systemic and brain region-specific NTS1 activation on locomotor activity. Systemic administration of PD149163 attenuated the locomotor activity of C57BL/6J mice both in a novel environment and in their homecage. However, mice developed tolerance to the hypolocomotor effect of PD149163 (0.1 mg/kg, i.p.). Since NTS1 is known to modulate dopaminergic signaling, we examined whether PD149163 blocks dopamine receptor-mediated hyperactivity. Pretreatment with PD149163 (0.1 or 0.05 mg/kg, i.p.) inhibited D2R agonist bromocriptine (8 mg/kg, i.p.)-mediated hyperactivity. D1R agonist SKF-81297 (8 mg/kg, i.p.)-induced hyperlocomotion was only inhibited by 0.1 mg/kg of PD149163. Since the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) have been implicated in the behavioral effects of NT, we examined whether microinjection of PD149163 into these regions reduces locomotion. Microinjection of PD149163 (2 pmol) into the NAc, but not the mPFC suppressed locomotor activity. In summary, our results indicate that systemic and intra-NAc activation of NTS1 is sufficient to reduce locomotion and NTS1 activation inhibits D2R-mediated hyperactivity. Our study will be helpful to identify pharmacological factors and a possible therapeutic window for NTS1-targeted therapies for movement disorders.
Collapse
|
32
|
Ligand- and cell-dependent determinants of internalization and cAMP modulation by delta opioid receptor (DOR) agonists. Cell Mol Life Sci 2014; 71:1529-46. [PMID: 24022593 DOI: 10.1007/s00018-013-1461-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/13/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
Signaling bias refers to G protein-coupled receptor ligand ability to preferentially activate one type of signal over another. Bias to evoke signaling as opposed to sequestration has been proposed as a predictor of opioid ligand potential for generating tolerance. Here we measured whether delta opioid receptor agonists preferentially inhibited cyclase activity over internalization in HEK cells. Efficacy (τ) and affinity (KA) values were estimated from functional data and bias was calculated from efficiency coefficients (log τ/KA). This approach better represented the data as compared to alternative methods that estimate bias exclusively from τ values. Log (τ/KA) coefficients indicated that SNC-80 and UFP-512 promoted cyclase inhibition more efficiently than DOR internalization as compared to DPDPE (bias factor for SNC-80: 50 and for UFP-512: 132). Molecular determinants of internalization were different in HEK293 cells and neurons with βarrs contributing to internalization in both cell types, while PKC and GRK2 activities were only involved in neurons. Rank orders of ligand ability to engage different internalization mechanisms in neurons were compared to rank order of E max values for cyclase assays in HEK cells. Comparison revealed a significant reversal in rank order for cyclase E max values and βarr-dependent internalization in neurons, indicating that these responses were ligand-specific. Despite this evidence, and because kinases involved in internalization were not the same across cellular backgrounds, it is not possible to assert if the magnitude and nature of bias revealed by rank orders of maximal responses is the same as the one measured in HEK cells.
Collapse
|
33
|
Nimitvilai S, Herman M, You C, Arora DS, McElvain MA, Roberto M, Brodie MS. Dopamine D2 receptor desensitization by dopamine or corticotropin releasing factor in ventral tegmental area neurons is associated with increased glutamate release. Neuropharmacology 2014; 82:28-40. [PMID: 24657149 DOI: 10.1016/j.neuropharm.2014.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
Abstract
Neurons of the ventral tegmental area (VTA) are the source of dopaminergic (DAergic) input to important brain regions related to addiction. Prolonged exposure of these VTA neurons to moderate concentrations of dopamine (DA) causes a time-dependent decrease in DA-induced inhibition, a complex desensitization called DA inhibition reversal (DIR). DIR is mediated by conventional protein kinase C (cPKC) through concurrent stimulation of D2 and D1-like DA receptors, or by D2 stimulation concurrent with activation of some Gq-linked receptors. Corticotropin releasing factor (CRF) acts via Gq, and can modulate glutamater neurotransmission in the VTA. In the present study, we used brain slice electrophysiology to characterize the interaction of DA, glutamate antagonists, and CRF agonists in the induction and maintenance of DIR in the VTA. Glutamate receptor antagonists blocked induction but not maintenance of DIR. Putative blockers of neurotransmitter release and store-operated calcium channels blocked and reversed DIR. CRF and the CRF agonist urocortin reversed inhibition produced by the D2 agonist quinpirole, consistent with our earlier work indicating that Gq activation reverses quinpirole-mediated inhibition. In whole cell recordings, the combination of urocortin and quinpirole, but not either agent alone, increased spontaneous excitatory postsynaptic currents (sEPSCs) in VTA neurons. Likewise, the combination of a D1-like receptor agonist and quinpirole, but not either agent alone, increased sEPSCs in VTA neurons. In summary, desensitization of D2 receptors induced by dopamine or CRF on DAergic VTA neurons is associated with increased glutamatergic signaling in the VTA.
Collapse
Affiliation(s)
- Sudarat Nimitvilai
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott, Room E-202, M/C 901, Chicago, IL 60612-7342, USA
| | - Melissa Herman
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, SP30-1150, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott, Room E-202, M/C 901, Chicago, IL 60612-7342, USA
| | - Devinder S Arora
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott, Room E-202, M/C 901, Chicago, IL 60612-7342, USA
| | - Maureen A McElvain
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott, Room E-202, M/C 901, Chicago, IL 60612-7342, USA
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, SP30-1150, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mark S Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott, Room E-202, M/C 901, Chicago, IL 60612-7342, USA.
| |
Collapse
|
34
|
Gomes I, Fujita W, Chandrakala MV, Devi LA. Disease-specific heteromerization of G-protein-coupled receptors that target drugs of abuse. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:207-65. [PMID: 23663971 DOI: 10.1016/b978-0-12-386931-9.00009-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Drugs of abuse such as morphine or marijuana exert their effects through the activation of G-protein-coupled receptors (GPCRs), the opioid and cannabinoid receptors, respectively. Moreover, interactions between either of these receptors have been shown to be involved in the rewarding effects of drugs of abuse. Recent advances in the field, using a variety of approaches, have demonstrated that many GPCRs, including opioid, cannabinoid, and dopamine receptors, can form associations between different receptor subtypes or with other GPCRs to form heteromeric complexes. The formation of these complexes, in turn, leads to the modulation of the properties of individual protomers. The development of tools that can selectively disrupt GPCR heteromers as well as monoclonal antibodies that can selectively block signaling by specific heteromer pairs has indicated that heteromers involving opioid, cannabinoid, or dopamine receptors may play a role in various disease states. In this review, we describe evidence for opioid, cannabinoid, and dopamine receptor heteromerization and the potential role of GPCR heteromers in pathophysiological conditions.
Collapse
Affiliation(s)
- Ivone Gomes
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, USA
| | | | | | | |
Collapse
|
35
|
Seeman P. Are dopamine D2 receptors out of control in psychosis? Prog Neuropsychopharmacol Biol Psychiatry 2013; 46:146-52. [PMID: 23880595 DOI: 10.1016/j.pnpbp.2013.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/08/2013] [Accepted: 07/08/2013] [Indexed: 01/11/2023]
Abstract
It is known that schizophrenia patients are behaviorally supersensitive to dopamine-like drugs (amphetamine, methylphenidate). There is evidence for an increased release of dopamine, a slight increase of dopamine D2 receptors and an increase of dopamine D2High receptors in schizophrenia, all possibly explaining the clinical supersensitivity to dopamine. The elevation in apparent D2High receptors in vivo in schizophrenia matches the elevation in D2High receptors in many animal models of psychosis. The increased amounts of D2High receptors in psychotic-like behavior in animals may result from a loss of control of D2 by various factors. These factors include the rate of phosphorylation and desensitization of D2 receptors by kinases, the attachment of arrestin to D2 receptors, internalization of D2 receptors, the rate of receptor de-phosphorylation, formation of D2 receptor dimers, and GTP regulation by various GTPases. While at present there are no statistically significant associations of any of these controlling factors and their genes with schizophrenia, investigation of D2High receptors in schizophrenia will require a new radioligand in order to selectively label D2High receptors in vivo in patients. Finally, haloperidol reduces the number of D2High receptors that are elevated by amphetamine, indicating that this therapeutic effect may occur clinically.
Collapse
Affiliation(s)
- Philip Seeman
- Department of Pharmacology, University of Toronto, 260 Heath Street, West, unit 605, Toronto, Ontario M5P 3L6, Canada; Department of Psychiatry, University of Toronto, 260 Heath Street, West, unit 605, Toronto, Ontario, M5P 3L6, Canada.
| |
Collapse
|
36
|
Basu D, Tian Y, Bhandari J, Jiang JR, Hui P, Johnson RL, Mishra RK. Effects of the dopamine D2 allosteric modulator, PAOPA, on the expression of GRK2, arrestin-3, ERK1/2, and on receptor internalization. PLoS One 2013; 8:e70736. [PMID: 23940634 PMCID: PMC3735488 DOI: 10.1371/journal.pone.0070736] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/26/2013] [Indexed: 11/19/2022] Open
Abstract
The activity of G protein-coupled receptors (GPCRs) is intricately regulated by a range of intracellular proteins, including G protein-coupled kinases (GRKs) and arrestins. Understanding the effects of ligands on these signaling pathways could provide insights into disease pathophysiologies and treatment. The dopamine D2 receptor is a GPCR strongly implicated in the pathophysiology of a range of neurological and neuropsychiatric disorders, particularly schizophrenia. Previous studies from our lab have shown the preclinical efficacy of a novel allosteric drug, 3(R)- [(2(S)-pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide (PAOPA), in attenuating schizophrenia-like behavioural abnormalities in rodent models of the disease. As an allosteric modulator, PAOPA binds to a site on the D2 receptor, which is distinct from the endogenous ligand-binding site, in order to modulate the binding of the D2 receptor ligand, dopamine. The exact signaling pathways affected by this allosteric modulator are currently unknown. The objectives of this study were to decipher the in vivo effects, in rats, of chronic PAOPA administration on D2 receptor regulatory and downstream molecules, including GRK2, arrestin-3 and extracellular receptor kinase (ERK) 1/2. Additionally, an in vitro cellular model was also used to study PAOPA’s effects on D2 receptor internalization. Results from western immunoblots showed that chronic PAOPA treatment increased the striatal expression of GRK2 by 41%, arrestin-3 by 34%, phospho-ERK1 by 51% and phospho-ERK2 by 36%. Results also showed that the addition of PAOPA to agonist treatment in cells increased D2 receptor internalization by 33%. This study provides the foundational evidence of putative signaling pathways, and changes in receptor localization, affected by treatment with PAOPA. It improves our understanding on the diverse mechanisms of action of allosteric modulators, while advancing PAOPA’s development into a novel drug for the improved treatment of schizophrenia.
Collapse
Affiliation(s)
- Dipannita Basu
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Yuxin Tian
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Jayant Bhandari
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Jian Ru Jiang
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Patricia Hui
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Rodney L. Johnson
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ram K. Mishra
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
37
|
Celver J, Sharma M, Thanawala V, Christopher Octeau J, Kovoor A. Arrestin-dependent but G-protein coupled receptor kinase-independent uncoupling of D2-dopamine receptors. J Neurochem 2013; 127:57-65. [PMID: 23815307 DOI: 10.1111/jnc.12359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 11/30/2022]
Abstract
We reconstituted D2 like dopamine receptor (D2R) and the delta opioid receptor (DOR) coupling to G-protein gated inwardly rectifying potassium channels (K(ir)3) and directly compared the effects of co-expression of G-protein coupled receptor kinase (GRK) and arrestin on agonist-dependent desensitization of the receptor response. We found, as described previously, that co-expression of a GRK and an arrestin synergistically increased the rate of agonist-dependent desensitization of DOR. In contrast, only arrestin expression was required to produce desensitization of D2R responses. Furthermore, arrestin-dependent GRK-independent desensitization of D2R-K(ir)3 coupling could be transferred to DOR by substituting the third cytoplasmic loop of DOR with that of D2R. The arrestin-dependent GRK-independent desensitization of D2R desensitization was inhibited by staurosporine treatment, and blocked by alanine substitution of putative protein kinase C phosphorylation sites in the third cytoplasmic loop of D2R. Finally, the D2R construct in which putative protein kinase C phosphorylation sites were mutated did not undergo significant agonist-dependent desensitization even after GRK co-expression, suggesting that GRK phosphorylation of D2R does not play an important role in uncoupling of the receptor.
Collapse
Affiliation(s)
- Jeremy Celver
- Department of Biomedical and Pharmacological Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | | | | | | | | |
Collapse
|
38
|
Ustione A, Piston DW, Harris PE. Minireview: Dopaminergic regulation of insulin secretion from the pancreatic islet. Mol Endocrinol 2013; 27:1198-207. [PMID: 23744894 DOI: 10.1210/me.2013-1083] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Exogenous dopamine inhibits insulin secretion from pancreatic β-cells, but the lack of dopaminergic neurons in pancreatic islets has led to controversy regarding the importance of this effect. Recent data, however, suggest a plausible physiologic role for dopamine in the regulation of insulin secretion. We review the literature underlying our current understanding of dopaminergic signaling that can down-regulate glucose-stimulated insulin secretion from pancreatic islets. In this negative feedback loop, dopamine is synthesized in the β-cells from circulating L-dopa, serves as an autocrine signal that is cosecreted with insulin, and causes a tonic inhibition on glucose-stimulated insulin secretion. On the whole animal scale, L-dopa is produced by cells in the gastrointestinal tract, and its concentration in the blood plasma increases following a mixed meal. By reviewing the outcome of certain types of bariatric surgery that result in rapid amelioration of glucose tolerance, we hypothesize that dopamine serves as an "antiincretin" signal that counterbalances the stimulatory effect of glucagon-like peptide 1.
Collapse
Affiliation(s)
- Alessandro Ustione
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, Tennessee 37232-0615, USA
| | | | | |
Collapse
|
39
|
Dopamine D2 receptor signaling dynamics of dopamine D2-neurotensin 1 receptor heteromers. Biochem Biophys Res Commun 2013; 435:140-6. [DOI: 10.1016/j.bbrc.2013.04.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 11/23/2022]
|
40
|
Mousa SA, Shaqura M, Khalefa BI, Zöllner C, Schaad L, Schneider J, Shippenberg TS, Richter JF, Hellweg R, Shakibaei M, Schäfer M. Rab7 silencing prevents μ-opioid receptor lysosomal targeting and rescues opioid responsiveness to strengthen diabetic neuropathic pain therapy. Diabetes 2013; 62:1308-19. [PMID: 23230081 PMCID: PMC3609597 DOI: 10.2337/db12-0590] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Painful diabetic neuropathy is poorly controlled by analgesics and requires high doses of opioids, triggering side effects and reducing patient quality of life. This study investigated whether enhanced Rab7-mediated lysosomal targeting of peripheral sensory neuron μ-opioid receptors (MORs) is responsible for diminished opioid responsiveness in rats with streptozotocin-induced diabetes. In diabetic animals, significantly impaired peripheral opioid analgesia was associated with a loss in sensory neuron MOR and a reduction in functional MOR G-protein-coupling. In control animals, MORs were retained mainly on the neuronal cell membrane. In contrast, in diabetic rats, they were colocalized with upregulated Rab7 in LampI-positive perinuclear lysosome compartments. Silencing endogenous Rab7 with intrathecal Rab7-siRNA or, indirectly, by reversing nerve growth factor deprivation in peripheral sensory neurons not only prevented MOR targeting to lysosomes, restoring their plasma membrane density, but also rescued opioid responsiveness toward better pain relief. These findings elucidate in vivo the mechanisms by which enhanced Rab7 lysosomal targeting of MORs leads to a loss in opioid antinociception in diabetic neuropathic pain. This is in contrast to peripheral sensory neuron MOR upregulation and antinociception in inflammatory pain, and provides intriguing evidence that regulation of opioid responsiveness varies as a function of pain pathogenesis.
Collapse
Affiliation(s)
- Shaaban A Mousa
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charite Mitte, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sykora C, Amor M, Schlenker E. Age and hypothyroidism affect dopamine modulation of breathing and D2 receptor levels. Respir Physiol Neurobiol 2013; 185:257-64. [DOI: 10.1016/j.resp.2012.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 09/12/2012] [Accepted: 10/02/2012] [Indexed: 12/29/2022]
|
42
|
Boules M, Li Z, Smith K, Fredrickson P, Richelson E. Diverse roles of neurotensin agonists in the central nervous system. Front Endocrinol (Lausanne) 2013; 4:36. [PMID: 23526754 PMCID: PMC3605594 DOI: 10.3389/fendo.2013.00036] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 03/06/2013] [Indexed: 01/10/2023] Open
Abstract
Neurotensin (NT) is a tridecapeptide that is found in the central nervous system (CNS) and the gastrointestinal tract. NT behaves as a neurotransmitter in the brain and as a hormone in the gut. Additionally, NT acts as a neuromodulator to several neurotransmitter systems including dopaminergic, sertonergic, GABAergic, glutamatergic, and cholinergic systems. Due to its association with such a wide variety of neurotransmitters, NT has been implicated in the pathophysiology of several CNS disorders such as schizophrenia, drug abuse, Parkinson's disease (PD), pain, central control of blood pressure, eating disorders, as well as, cancer and inflammation. The present review will focus on the role that NT and its analogs play in schizophrenia, endocrine function, pain, psychostimulant abuse, and PD.
Collapse
Affiliation(s)
- Mona Boules
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
- *Correspondence: Mona Boules, Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA. e-mail:
| | - Zhimin Li
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Kristin Smith
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Paul Fredrickson
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Elliott Richelson
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| |
Collapse
|
43
|
Nimitvilai S, Arora DS, McElvain MA, Brodie MS. Reversal of inhibition of putative dopaminergic neurons of the ventral tegmental area: interaction of GABA(B) and D2 receptors. Neuroscience 2012; 226:29-39. [PMID: 22986166 PMCID: PMC3490029 DOI: 10.1016/j.neuroscience.2012.08.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/21/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
Abstract
Neurons of the ventral tegmental area (VTA) are critical in the rewarding and reinforcing properties of drugs of abuse. Desensitization of VTA neurons to moderate extracellular concentrations of dopamine (DA) is dependent on protein kinase C (PKC) and intracellular calcium levels. This desensitization is called DA inhibition reversal, as it requires concurrent activation of D2 and D1-like receptors; activation of D2 receptors alone does not result in desensitization. Activation of other G-protein-linked receptors can substitute for D1 activation. Like D2 receptors, GABA(B) receptors in the VTA are coupled to G-protein-linked potassium channels. In the present study, we examined interactions between a GABA(B) agonist, baclofen, and dopamine agonists, dopamine and quinpirole, to determine whether there was some interaction in the processes of desensitization of GABA(B) and D2 responses. Long-duration administration of baclofen alone produced reversal of the baclofen-induced inhibition indicative of desensitization, and this desensitization persisted for at least 60 min after baclofen washout. Desensitization to baclofen was dependent on PKC. Dopamine inhibition was reduced for 30 min after baclofen-induced desensitization and conversely, the magnitude of baclofen inhibition was reduced for 30 min by long-duration application of dopamine, but not quinpirole. These results indicate that D2 and GABA(B) receptors share some PKC-dependent mechanisms of receptor desensitization.
Collapse
Affiliation(s)
- S Nimitvilai
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott, Room E-202, M/C 901, Chicago, IL 60612-7342, USA
| | | | | | | |
Collapse
|
44
|
Nimitvilai S, McElvain MA, Brodie MS. Reversal of dopamine D2 agonist-induced inhibition of ventral tegmental area neurons by Gq-linked neurotransmitters is dependent on protein kinase C, G protein-coupled receptor kinase, and dynamin. J Pharmacol Exp Ther 2012; 344:253-63. [PMID: 23019137 DOI: 10.1124/jpet.112.199844] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Dopaminergic neurons of the ventral tegmental area are important components of brain pathways related to addiction. Prolonged exposure of these neurons to moderate concentrations of dopamine (DA) decreases their sensitivity to inhibition by DA, a process called DA-inhibition reversal (DIR). DIR is mediated by phospholipase C and conventional subtype of protein kinase C (cPKC) through concurrent stimulation of D2 and D1-like DA receptors, or by D2 stimulation concurrent with activation of 5-HT(2) or neurotensin receptors. In the present study, we further characterized this phenomenon by use of extracellular recordings in brain slices to examine whether DIR is linked to G protein-coupled receptor kinase-2 (GRK2) or dynamin by assessing DIR in the presence of antagonists of these enzymes. DIR was blocked by β-ARK1 inhibitor, which inhibits GRK2, and by dynasore, which blocks dynamin. Reversal of inhibition by D2 agonist quinpirole was produced by serotonin (50 µM) and by neurotensin (5-10 nM). Serotonin-induced or neurotensin-induced reversal was blocked by β-ARK1 inhibitor, dynasore, or cPKC antagonist 5,6,7,13-tetrahydro-13-methyl-5-oxo-12H-indolo[2,3-a]pyrrolo[3,4c]carbazole-12-propanenitrile (Gö6976). This further characterization of DIR indicates that cPKC, GRK2, and dynamin play important roles in the desensitization of D2 receptors. As drugs of abuse produce persistent increases in DA concentration in the ventral tegmental area, reduction of D2 receptor sensitivity as a result of drug abuse may be a critical factor in the processes of addiction.
Collapse
Affiliation(s)
- Sudarat Nimitvilai
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612-7342, USA
| | | | | |
Collapse
|
45
|
Nimitvilai S, McElvain MA, Arora DS, Brodie MS. Reversal of quinpirole inhibition of ventral tegmental area neurons is linked to the phosphatidylinositol system and is induced by agonists linked to G(q). J Neurophysiol 2012; 108:263-74. [PMID: 22490559 DOI: 10.1152/jn.01137.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Putative dopaminergic (pDAergic) ventral tegmental area neurons play an important role in brain pathways related to addiction. Extended exposure of pDAergic neurons to moderate concentrations of dopamine (DA) results in a time-dependent decrease in sensitivity of pDAergic neurons to DA inhibition, a process called dopamine inhibition reversal (DIR). We have shown that DIR is mediated by phospholipase C and conventional protein kinase C through concurrent stimulation of D2 and D1-like receptors. In the present study, we further characterized this phenomenon by using extracellular recordings in brain slices to examine whether DIR is linked to phosphatidylinositol (PI) or adenylate cyclase (AC) second-messenger pathways. A D1-like dopaminergic agonist associated with PI turnover (SKF83959), but not one linked to AC (SKF83822), promoted reversal of inhibition produced by quinpirole, a dopamine D2-selective agonist. Other neurotransmitter receptors linked to PI turnover include serotonin 5-HT(2), α(1)-adrenergic, neurotensin, and group I metabotropic glutamate (mGlu) receptors. Both serotonin and neurotensin produced significant reversal of quinpirole inhibition, but agonists of α(1)-adrenergic and group I mGlu receptors failed to significantly reverse quinpirole inhibition. These results indicate that some agonists that stimulate PI turnover can facilitate desensitization of D2 receptors but that there may be other factors in addition to PI that control that interaction.
Collapse
Affiliation(s)
- Sudarat Nimitvilai
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612-7342, USA
| | | | | | | |
Collapse
|
46
|
Nimitvilai S, Arora DS, Brodie MS. Reversal of dopamine inhibition of dopaminergic neurons of the ventral tegmental area is mediated by protein kinase C. Neuropsychopharmacology 2012; 37:543-56. [PMID: 21976045 PMCID: PMC3242316 DOI: 10.1038/npp.2011.222] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adaptation of putative dopaminergic (pDA) neurons in the ventral tegmental area (VTA) to drugs of abuse may alter information processing related to reward and reinforcement and is an important factor in the development of addiction. We have demonstrated that prolonged increases in the concentration of dopamine (DA) result in a time-dependent decrease in sensitivity of pDA neurons to DA, which we termed DA inhibition reversal (DIR). In this study, we used extracellular recordings to examine factors mediating DIR. A 40 min administration of DA (2.5-10 μM), but not the DA D2 receptor agonist quinpirole (50-200 nM), resulted in inhibition of neuronal firing followed by DIR. In the presence of 100 nM cocaine, inhibition followed by DIR was seen with much lower DA concentrations. Reversal of quinpirole inhibition could be induced by an activator of protein kinase C, but not of protein kinase A. Inhibitors of protein kinase C or phospholipase C blocked the development of DIR. Disruption of intracellular calcium release also prevented DIR. Reduction of extracellular calcium or inhibition of store-operated calcium entry blocked DIR, but the L-type calcium channel blocker nifedipine did not. DIR was age-dependent and not seen in pDA VTA neurons from rat pups younger than 15 days postnatally. Our data indicate that DIR is mediated by protein kinase C, and implicate a conventional protein kinase C. This characterization of DIR gives insight into the regulation of autoinhibition of pDA VTA neurons, and the resulting long-term alteration in information processing related to reward and reinforcement.
Collapse
Affiliation(s)
- Sudarat Nimitvilai
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Devinder S Arora
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark S Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA,Department of Physiology and Biophysics, University of Illinois at Chicago, 835 South Wolcott, Room E-202, M/C 901, Chicago, IL 60612-7342, USA, Tel: +1 312 996 2373, Fax: +1 312 996 1414, E-mail:
| |
Collapse
|
47
|
Plouffe B, Yang X, Tiberi M. The third intracellular loop of D1 and D5 dopaminergic receptors dictates their subtype-specific PKC-induced sensitization and desensitization in a receptor conformation-dependent manner. Cell Signal 2011; 24:106-18. [PMID: 21893192 DOI: 10.1016/j.cellsig.2011.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/05/2011] [Accepted: 08/17/2011] [Indexed: 01/11/2023]
Abstract
We previously showed that phorbol-12-myristate-13-acetate (PMA) mediates a robust PKC-dependent sensitization and desensitization of the highly homologous human Gs protein and adenylyl cyclase (AC)-linked D1 (hD1R) and D5 (hD5R) dopaminergic receptors, respectively. Here, we demonstrate using forskolin-mediated AC stimulation that PMA-mediated hD1R sensitization and hD5R desensitization is not associated with changes in AC activity. We next employed a series of chimeric hD1R and hD5R to delineate the underlying structural determinants dictating the subtype-specific regulation of human D1-like receptors by PMA. We first used chimeric receptors in which the whole terminal region (TR) spanning from the extracellular face of transmembrane domain 6 to the end of cytoplasmic tail (CT) or CT alone were exchanged between hD1R and hD5R. CT and TR swaps lead to chimeric hD1R and hD5R retaining PMA-induced sensitization and desensitization of wild type parent receptors. In striking contrast, hD1R sensitization and hD5R desensitization mediated by PMA are correspondingly switched to PMA-induced receptor desensitization and sensitization following the IL3 swap between hD1R and hD5R. Cell treatment with the PKC blocker, Gö6983, inhibits PMA-induced regulation of these chimeric receptors in a similar fashion to wild type receptors. Further studies with chimeras constructed by exchanging IL3 and TR show that PMA-induced regulation of these chimeras remains fully switched relative to their respective wild type parent receptor. Interestingly, results obtained with the exchange of IL3 and TR also reveal that the D1-like subtype-specific regulation by PMA, while fully dictated by IL3, can be modulated in a receptor conformation-dependent manner. Overall, our results strongly suggest that IL3 is the critical determinant underlying the subtype-specific regulation of human D1-like receptor responsiveness by PKC.
Collapse
Affiliation(s)
- Bianca Plouffe
- Ottawa Hospital Research Institute, Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | |
Collapse
|