1
|
Cheng C, Chen M, Sun J, Xu J, Deng S, Xia J, Han Y, Zhang X, Wang J, Lei L, Zhai R, Wu Q, Fang W, Song H. The MICOS Complex Subunit Mic60 is Hijacked by Intracellular Bacteria to Manipulate Mitochondrial Dynamics and Promote Bacterial Pathogenicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406760. [PMID: 39431455 DOI: 10.1002/advs.202406760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Indexed: 10/22/2024]
Abstract
Host mitochondria undergo fission and fusion, which bacteria often exploit for their infections. In this study, the underlying molecular mechanisms are aimed to clarify through which Listeria monocytogenes (L. monocytogenes), a human bacterial pathogen, manipulates mitochondrial dynamics to enhance its pathogenicity. It is demonstrated that L. monocytogenes triggers transient mitochondrial fission through its virulence factor listeriolysin O (LLO), driven by LLO's interaction with Mic60, a core component of the mitochondrial contact site and the cristae organizing system (MICOS). Specifically, Phe251 within LLO is identify as a crucial residue for binding to Mic60, crucial for LLO-induced mitochondrial fragmentation and bacterial pathogenicity. Importantly, it is that Mic60 affect the formation of F-actin tails recruited by L. monocytogenes, thereby contributing to intracellular bacterial infection. Mic60 plays a critical role in mediating changes in mitochondrial morphology, membrane potential, and reactive oxidative species (ROS) production, and L. monocytogenes infection exacerbates these changes by affecting Mic60 expression. These findings unveil a novel mechanism through which intracellular bacteria exploit host mitochondria, shedding light on the complex interplay between hosts and microbes during infections. This knowledge holds promise for developing innovative strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Mianmian Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Jiali Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Simin Deng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Jing Xia
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Yue Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Xian Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Jing Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Lei Lei
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Ruidong Zhai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Qin Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Weihuan Fang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| |
Collapse
|
2
|
Snyder M, Liu YK, Shang R, Xu H, Thrift C, Chen X, Chen J, Kim KH, Qiu J, Bi P, Tao WA, Kuang S. LETMD1 regulates mitochondrial protein synthesis and import to guard brown fat mitochondrial integrity and function. iScience 2024; 27:110944. [PMID: 39398236 PMCID: PMC11467678 DOI: 10.1016/j.isci.2024.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Thermogenic brown adipocytes (BAs) catabolize lipids to generate heat, representing powerful agents against the growing global obesity epidemic. We and others reported recently that LETMD1 is a BA-specific protein essential for mitochondrial structure and function, but the mechanisms of action remain unclear. We performed sequential digestion to demonstrate that LETMD1 is a trans-inner mitochondrial membrane protein. We then generated UCP1Cre-driven BA-specific Letmd1 knockout (Letmd1 UKO ) mice to show that Letmd1 UKO leads to protein aggregation, reactive oxidative stress, hyperpolarization, and mitophagy in BAs. We further employed TurboID proximity labeling to identify LETMD1-interacting proteins. Many candidate proteins are associated with mitochondrial ribosomes, protein import machinery, and electron transport chain complexes (ETC-I and ETC-IV). Using quantitative proteomics, we confirmed the elevated aggregations of ETC and mitochondrial ribosomal proteins, impairing mitochondrial protein synthesis in the Letmd1 UKO BAs. Therefore, LETMD1 may function to maintain mitochondrial proteostasis through regulating import of nuclear-encoded proteins and local protein translation in brown fat mitochondria.
Collapse
Affiliation(s)
- Madigan Snyder
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Yi-Kai Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Renjie Shang
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Haowei Xu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Charlie Thrift
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Xiyue Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Orthopaedic Surgery, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Kun Ho Kim
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Pengpeng Bi
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - W. Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Orthopaedic Surgery, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
3
|
Zhang Y, Ma L, Wang Z, Gao C, Yang L, Li M, Tang X, Yuan H, Pang D, Ouyang H. Mfn2 R364W, Mfn2 G176S, and Mfn2 H165R mutations drive Charcot-Marie-Tooth type 2A disease by inducing apoptosis and mitochondrial oxidative phosphorylation damage. Int J Biol Macromol 2024; 278:134673. [PMID: 39142491 DOI: 10.1016/j.ijbiomac.2024.134673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Charcot-Marie-Tooth type 2A (CMT2A) is a single-gene motor sensory neuropathy caused by Mfn2 mutation. It is generally believed that CMT2A involves mitochondrial fusion disruption. However, how Mfn2 mutation mediates the mitochondrial membrane fusion loss and its further pathogenic mechanisms remain unclear. Here, in vivo and in vitro mouse models harboring the Mfn2R364W, Mfn2G176S and Mfn2H165R mutations were constructed. Mitochondrial membrane fusion and fission proteins analysis showed that Mfn2R364W, Mfn2G176S, and Mfn2H165R/+ mutations maintain the expression of Mfn2, but promote Drp1 upregulation and Opa1 hydrolytic cleavage. In Mfn2H165R/H165R mutation, Mfn2, Drp1, and Opa1 all play a role in inducing mitochondrial fragmentation, and the mitochondrial aggregation is affected by Mfn2 loss. Further research into the pathogenesis of CMT2A showed these three mutations all induce mitochondria-mediated apoptosis, and mitochondrial oxidative phosphorylation damage. Overall, loss of overall fusion activity affects mitochondrial DNA (mtDNA) stability and causes mitochondrial loss and dysfunction, ultimately leading to CMT2A disease. Interestingly, the differences in the pathogenesis of CMT2A between Mfn2R364W, Mfn2G176S, Mfn2H165R/+ and Mfn2H165R/H165R mutations, including the distribution of Mfn2 and mitochondria, the expression of mitochondrial outer membrane-associated proteins (Bax, VDAC1 and AIF), and the enzyme activity of mitochondrial complex I, are related to the expression of Mfn2.
Collapse
Affiliation(s)
- Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China; Central Laboratory, People's Hospital of Ningxia Hui Autonomous Region, 750002, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Lerong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China
| | - Ziru Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China
| | - Chuang Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China; Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Lin Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China
| | - Mengjing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China
| | - Xiaochun Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China; Chongqing Research Institute, Jilin University, Chongqing, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China.
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China; Chongqing Research Institute, Jilin University, Chongqing, China.
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China; Chongqing Research Institute, Jilin University, Chongqing, China.
| |
Collapse
|
4
|
Zarges C, Riemer J. Oxidative protein folding in the intermembrane space of human mitochondria. FEBS Open Bio 2024; 14:1610-1626. [PMID: 38867508 PMCID: PMC11452306 DOI: 10.1002/2211-5463.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
The mitochondrial intermembrane space hosts a machinery for oxidative protein folding, the mitochondrial disulfide relay. This machinery imports a large number of soluble proteins into the compartment, where they are retained through oxidative folding. Additionally, the disulfide relay enhances the stability of many proteins by forming disulfide bonds. In this review, we describe the mitochondrial disulfide relay in human cells, its components, and their coordinated collaboration in mechanistic detail. We also discuss the human pathologies associated with defects in this machinery and its protein substrates, providing a comprehensive overview of its biological importance and implications for health.
Collapse
Affiliation(s)
| | - Jan Riemer
- Institute for BiochemistryUniversity of CologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneGermany
| |
Collapse
|
5
|
Yang X, Chu F, Jiao Z, Yu H, Yang W, Li Y, Lu C, Ma H, Wang S, Liu Z, Qin S, Sun H. Ellagic acid ameliorates arsenic-induced neuronal ferroptosis and cognitive impairment via Nrf2/GPX4 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116833. [PMID: 39128446 DOI: 10.1016/j.ecoenv.2024.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Arsenic, a neurotoxic metalloid, poses significant health risks. However, ellagic acid, renowned for its antioxidant properties, has shown potential in neuroprotection. This study aimed to investigate the neuroprotective effects of ellagic acid against arsenic-induced neuronal ferroptosis and cognitive impairment and elucidate the underlying mechanisms. Using an arsenic-exposed Wistar rat model and an arsenic-induced HT22 cells model, we assessed cognitive ability, measured serum and brain arsenic levels, and evaluated pathological damage through histological analysis and transmission electron microscopy. Additionally, we examined oxidative stress and iron ion levels using GSH, MDA, ROS and tissue iron biochemical kits, and analyzed the expression of ferroptosis-related markers using western blot and qRT-PCR. Our results revealed that arsenic exposure increased both serum and brain arsenic levels, resulting in hippocampal pathological damage and subsequent decline in learning and memory abilities. Arsenic-induced neuronal ferroptosis was mediated by the inhibition of the xCT/GSH/GPX4/Nrf2 signaling axis and disruption of iron metabolism. Notably, ellagic acid intervention effectively reduced serum and brain arsenic levels, ameliorated neuronal damage, and improved oxidative stress, ferroptosis, and cognitive impairment. These beneficial effects were associated with the activation of the Nrf2/Keap1 signaling pathway, upregulation of GPX4 expression, and enhanced iron ion excretion. In conclusion, ellagic acid demonstrates promising neuroprotective effects against arsenic-induced neurotoxicity by mitigating neuronal ferroptosis and cognitive impairment.
Collapse
Affiliation(s)
- Xiyue Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Fang Chu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Zhe Jiao
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Hao Yu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Wenjing Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Yang Li
- The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu Distinct, Nanchang, Jiangxi 330006, China
| | - Chunqing Lu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Hao Ma
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Sheng Wang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Zhipeng Liu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Shaoxiao Qin
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Hongna Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| |
Collapse
|
6
|
Zhao C, Xu Z, Que H, Zhang K, Wang F, Tan R, Fan C. ASB1 inhibits prostate cancer progression by destabilizing CHCHD3 via K48-linked ubiquitination. Am J Cancer Res 2024; 14:3404-3418. [PMID: 39113857 PMCID: PMC11301297 DOI: 10.62347/feiz7492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/17/2024] [Indexed: 08/10/2024] Open
Abstract
Prostate cancer is a major contributor to male mortality worldwide. In this study, we revealed that Ankyrin Repeat and SOCS Box Containing 1 (ASB1) expression was significantly decreased in prostate cancer tissues, correlating strongly with poor patient prognosis. Notably, the group with low ASB1 expression exhibited an increased proportion of M2 macrophages and showed resistance to immune checkpoint inhibitors and cisplatin, but remained sensitive to androgen-receptor-targeting drug bicalutamide. Silencing ASB1 enhanced prostate cancer cell proliferation, clonogenicity, and migration, whereas its overexpression exerted the opposite effects. Through quantitative mass spectrometry interactome analysis, we identified 37 novel proteins interacting with ASB1, including CHCHD3. Subsequent experiments including co-immunoprecipitation, cycloheximide treatment, and ubiquitination assays, revealed that ASB1 interacts with CHCHD3, promoting its degradation via K48-linked ubiquitination. Cell rescue experiments further demonstrated that ASB1 inhibits prostate cancer cell through the CHCHD3/reactive oxygen species (ROS) pathway. Taken together, our study indicated that ASB1 functions as a tumor suppressor by inhibiting CHCHD3/ROS signaling, thereby playing a vital part in prevention of prostate cancer proliferation, clonogenicity, and migration.
Collapse
Affiliation(s)
- Chunchun Zhao
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Zhen Xu
- Department of Urology, The Affiliated Taizhou People’s Hospital of Nanjing Medical UniversityTaizhou 225300, Jiangsu, China
| | - Hongliang Que
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Ke Zhang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Fei Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Caibin Fan
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| |
Collapse
|
7
|
Vue Z, Prasad P, Le H, Neikirk K, Harris C, Garza-Lopez E, Wang E, Murphy A, Jenkins B, Vang L, Scudese E, Shao B, Kadam A, Shao J, Marshall AG, Crabtree A, Kirk B, Koh A, Wilson G, Oliver A, Rodman T, Kabugi K, Koh HJ, Smith Q, Zaganjor E, Wanjalla CN, Dash C, Evans C, Phillips MA, Hubert D, Ajijola O, Whiteside A, Do Koo Y, Kinder A, Demirci M, Albritton CF, Wandira N, Jamison S, Ahmed T, Saleem M, Tomar D, Williams CR, Sweetwyne MT, Murray SA, Cooper A, Kirabo A, Jadiya P, Quintana A, Katti P, Fu Dai D, McReynolds MR, Hinton A. The MICOS Complex Regulates Mitochondrial Structure and Oxidative Stress During Age-Dependent Structural Deficits in the Kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598108. [PMID: 38915644 PMCID: PMC11195114 DOI: 10.1101/2024.06.09.598108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The kidney filters nutrient waste and bodily fluids from the bloodstream, in addition to secondary functions of metabolism and hormone secretion, requiring an astonishing amount of energy to maintain its functions. In kidney cells, mitochondria produce adenosine triphosphate (ATP) and help maintain kidney function. Due to aging, the efficiency of kidney functions begins to decrease. Dysfunction in mitochondria and cristae, the inner folds of mitochondria, is a hallmark of aging. Therefore, age-related kidney function decline could be due to changes in mitochondrial ultrastructure, increased reactive oxygen species (ROS), and subsequent alterations in metabolism and lipid composition. We sought to understand if there is altered mitochondrial ultrastructure, as marked by 3D morphological changes, across time in tubular kidney cells. Serial block facing-scanning electron microscope (SBF-SEM) and manual segmentation using the Amira software were used to visualize murine kidney samples during the aging process at 3 months (young) and 2 years (old). We found that 2-year mitochondria are more fragmented, compared to the 3-month, with many uniquely shaped mitochondria observed across aging, concomitant with shifts in ROS, metabolomics, and lipid homeostasis. Furthermore, we show that the mitochondrial contact site and cristae organizing system (MICOS) complex is impaired in the kidney due to aging. Disruption of the MICOS complex shows altered mitochondrial calcium uptake and calcium retention capacity, as well as generation of oxidative stress. We found significant, detrimental structural changes to aged kidney tubule mitochondria suggesting a potential mechanism underlying why kidney diseases occur more readily with age. We hypothesize that disruption in the MICOS complex further exacerbates mitochondrial dysfunction, creating a vicious cycle of mitochondrial degradation and oxidative stress, thus impacting kidney health.
Collapse
Affiliation(s)
- Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chanel Harris
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Eric Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Alexandria Murphy
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Brenita Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Benjamin Kirk
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Genesis Wilson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Taylor Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Chandravanu Dash
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, United States
| | - Chantell Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Mark A. Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - David Hubert
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Olujimi Ajijola
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, CA, USA
| | - Aaron Whiteside
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Young Do Koo
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, Iowa, USA
| | - André Kinder
- Artur Sá Earp Neto University Center - UNIFASE-FMP, Petrópolis Medical School, Brazil
| | - Mert Demirci
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Claude F. Albritton
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208-3501, USA
| | - Nelson Wandira
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Sydney Jamison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Taseer Ahmed
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Mohammad Saleem
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dhanendra Tomar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Clintoria R. Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Mariya T. Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Sandra A. Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Anthonya Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Institute for Global Health, Vanderbilt University, Nashville, TN, 37232, USA
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Anita Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, AP, 517619, India
| | - Dao Fu Dai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
8
|
Zhang W, Liu D, Yuan M, Zhu LQ. The mechanisms of mitochondrial abnormalities that contribute to sleep disorders and related neurodegenerative diseases. Ageing Res Rev 2024; 97:102307. [PMID: 38614368 DOI: 10.1016/j.arr.2024.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Sleep is a highly intricate biological phenomenon, and its disorders play a pivotal role in numerous diseases. However, the specific regulatory mechanisms remain elusive. In recent years, the role of mitochondria in sleep disorders has gained considerable attention. Sleep deprivation not only impairs mitochondrial morphology but also decreases the number of mitochondria and triggers mitochondrial dysfunction. Furthermore, mitochondrial dysfunction has been implicated in the onset and progression of various sleep disorder-related neurological diseases, especially neurodegenerative conditions. Therefore, a greater understanding of the impact of sleep disorders on mitochondrial dysfunction may reveal new therapeutic targets for neurodegenerative diseases. In this review, we comprehensively summarize the recent key findings on the mechanisms underlying mitochondrial dysfunction caused by sleep disorders and their role in initiating or exacerbating common neurodegenerative diseases. In addition, we provide fresh insights into the diagnosis and treatment of sleep disorder-related diseases.
Collapse
Affiliation(s)
- Wentao Zhang
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Dan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mei Yuan
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
9
|
Leventoux N, Morimoto S, Ishikawa M, Nakamura S, Ozawa F, Kobayashi R, Watanabe H, Supakul S, Okamoto S, Zhou Z, Kobayashi H, Kato C, Hirokawa Y, Aiba I, Takahashi S, Shibata S, Takao M, Yoshida M, Endo F, Yamanaka K, Kokubo Y, Okano H. Aberrant CHCHD2-associated mitochondriopathy in Kii ALS/PDC astrocytes. Acta Neuropathol 2024; 147:84. [PMID: 38750212 DOI: 10.1007/s00401-024-02734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/28/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), a rare and complex neurological disorder, is predominantly observed in the Western Pacific islands, including regions of Japan, Guam, and Papua. This enigmatic condition continues to capture medical attention due to affected patients displaying symptoms that parallel those seen in either classical amyotrophic lateral sclerosis (ALS) or Parkinson's disease (PD). Distinctly, postmortem examinations of the brains of affected individuals have shown the presence of α-synuclein aggregates and TDP-43, which are hallmarks of PD and classical ALS, respectively. These observations are further complicated by the detection of phosphorylated tau, accentuating the multifaceted proteinopathic nature of ALS/PDC. The etiological foundations of this disease remain undetermined, and genetic investigations have yet to provide conclusive answers. However, emerging evidence has implicated the contribution of astrocytes, pivotal cells for maintaining brain health, to neurodegenerative onset, and likely to play a significant role in the pathogenesis of ALS/PDC. Leveraging advanced induced pluripotent stem cell technology, our team cultivated multiple astrocyte lines to further investigate the Japanese variant of ALS/PDC (Kii ALS/PDC). CHCHD2 emerged as a significantly dysregulated gene when disease astrocytes were compared to healthy controls. Our analyses also revealed imbalances in the activation of specific pathways: those associated with astrocytic cilium dysfunction, known to be involved in neurodegeneration, and those related to major neurological disorders, including classical ALS and PD. Further in-depth examinations revealed abnormalities in the mitochondrial morphology and metabolic processes of the affected astrocytes. A particularly striking observation was the reduced expression of CHCHD2 in the spinal cord, motor cortex, and oculomotor nuclei of patients with Kii ALS/PDC. In summary, our findings suggest a potential reduction in the support Kii ALS/PDC astrocytes provide to neurons, emphasizing the need to explore the role of CHCHD2 in maintaining mitochondrial health and its implications for the disease.
Collapse
Affiliation(s)
- Nicolas Leventoux
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Shiho Nakamura
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Fumiko Ozawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Reona Kobayashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
| | - Sopak Supakul
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Okamoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Zhi Zhou
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroya Kobayashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Chris Kato
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yoshifumi Hirokawa
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Ikuko Aiba
- Department of Neurology, NHO, Higashinagoya National Hospital, Aichi, Japan
| | - Shinichi Takahashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Department of Neurology and Stroke, International Medical Centre, Saitama Medical University, Saitama, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Takao
- Department of Clinical Laboratory, National Centre of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Fumito Endo
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Yasumasa Kokubo
- Kii ALS/PDC Research Centre, Mie University Graduate School of Regional Innovation Studies, Mie, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan.
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan.
| |
Collapse
|
10
|
Chaurembo AI, Xing N, Chanda F, Li Y, Zhang HJ, Fu LD, Huang JY, Xu YJ, Deng WH, Cui HD, Tong XY, Shu C, Lin HB, Lin KX. Mitofilin in cardiovascular diseases: Insights into the pathogenesis and potential pharmacological interventions. Pharmacol Res 2024; 203:107164. [PMID: 38569981 DOI: 10.1016/j.phrs.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
The impact of mitochondrial dysfunction on the pathogenesis of cardiovascular disease is increasing. However, the precise underlying mechanism remains unclear. Mitochondria produce cellular energy through oxidative phosphorylation while regulating calcium homeostasis, cellular respiration, and the production of biosynthetic chemicals. Nevertheless, problems related to cardiac energy metabolism, defective mitochondrial proteins, mitophagy, and structural changes in mitochondrial membranes can cause cardiovascular diseases via mitochondrial dysfunction. Mitofilin is a critical inner mitochondrial membrane protein that maintains cristae structure and facilitates protein transport while linking the inner mitochondrial membrane, outer mitochondrial membrane, and mitochondrial DNA transcription. Researchers believe that mitofilin may be a therapeutic target for treating cardiovascular diseases, particularly cardiac mitochondrial dysfunctions. In this review, we highlight current findings regarding the role of mitofilin in the pathogenesis of cardiovascular diseases and potential therapeutic compounds targeting mitofilin.
Collapse
Affiliation(s)
- Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China.
| | - Francis Chanda
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Guizhou Medical University, Guiyang, Guizhou, China
| | - Xin-Yue Tong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Sjodin BMF, Schmidt DA, Galbreath KE, Russello MA. Putative climate adaptation in American pikas (Ochotona princeps) is associated with copy number variation across environmental gradients. Sci Rep 2024; 14:8568. [PMID: 38609461 PMCID: PMC11014952 DOI: 10.1038/s41598-024-59157-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
Improved understanding of the genetic basis of adaptation to climate change is necessary for maintaining global biodiversity moving forward. Studies to date have largely focused on sequence variation, yet there is growing evidence that suggests that changes in genome structure may be an even more significant source of adaptive potential. The American pika (Ochotona princeps) is an alpine specialist that shows some evidence of adaptation to climate along elevational gradients, but previous work has been limited to single nucleotide polymorphism based analyses within a fraction of the species range. Here, we investigated the role of copy number variation underlying patterns of local adaptation in the American pika using genome-wide data previously collected across the entire species range. We identified 37-193 putative copy number variants (CNVs) associated with environmental variation (temperature, precipitation, solar radiation) within each of the six major American pika lineages, with patterns of divergence largely following elevational and latitudinal gradients. Genes associated (n = 158) with independent annotations across lineages, variables, and/or CNVs had functions related to mitochondrial structure/function, immune response, hypoxia, olfaction, and DNA repair. Some of these genes have been previously linked to putative high elevation and/or climate adaptation in other species, suggesting they may serve as important targets in future studies.
Collapse
Affiliation(s)
- Bryson M F Sjodin
- Department of Biology, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Danielle A Schmidt
- Department of Biology, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Kurt E Galbreath
- Department of Biology, Northern Michigan University, 1401 Presque Isle Ave, Marquette, MI, 49855, USA
| | - Michael A Russello
- Department of Biology, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
12
|
Meng Z, Cheng S, Wang W, Wei Z, Guo Z, Zhao X, Wu B, Chang H, Wang N. Up-regulation of MIC19 promotes growth and metastasis of hepatocellular carcinoma by activating ROS/NF-κB signaling. Transl Oncol 2024; 42:101906. [PMID: 38350286 PMCID: PMC10876907 DOI: 10.1016/j.tranon.2024.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/13/2024] [Accepted: 02/04/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Mitochondrial malfunction has been well-recognized as a critical step in the pathogenesis of many types of diseases, including cancer. MIC19 is a core a subunit of the MICOS complex that plays a critical role in maintaining the normal function of mitochondria. However, the biological functions of MIC19 in human hepatocellular carcinoma (HCC) remain unclear. METHODS The expression level of MIC19 in HCC was evaluated by bioinformatics analysis, quantitative real-time PCR and immunohistochemistry staining assays. Cell growth and metastasis experiments were used to assess the biological functions of MIC19 in HCC cells. FINDINGS MIC19 expression was frequently upregulated in both human HCC specimens and cell lines, and its upregulation is closely associated with patients' survival. Results from loss-of-function and gain-of-function experiments demonstrated that knockdown of MIC19 significantly attenuated, while overexpression of MIC19 enhanced, the proliferation, colony formation, migration and invasion abilities of HCC cells. Mechanistically, we found that MIC19 has no effect on mitochondrial energy production, while activated ROS/NF-κB signaling, which was required for MIC19-promoted HCC growth and metastasis. INTERPRETATION Our findings suggest that MIC19 play a critical oncogenic role in HCC, implying that MIC19 may serve as a potential therapeutic target in the treatment of HCC.
Collapse
Affiliation(s)
- Zhanbing Meng
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Shixia Cheng
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Weifang Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhouxia Wei
- Department of General Surgery (part II), LanZhou Second People's Hospital, Lanzhou 730000, China
| | - Zheng Guo
- Department of Burns and Plastic Surgery, Tangdu Hospital, the Air Force Medical University, Xi'an 710038, China
| | - Xuying Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Bing Wu
- Department of Geriatrics, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| | - Hulin Chang
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an 710061, Shaanxi, China
| | - Nan Wang
- Department of General Surgery, Tangdu Hospital, the Air Force Medical University, Xi'an 710038, China.
| |
Collapse
|
13
|
Wu Y, Ren X, Shi P, Wu C. Regulation of mitochondrial structure by the actin cytoskeleton. Cytoskeleton (Hoboken) 2024; 81:206-214. [PMID: 37929797 DOI: 10.1002/cm.21804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Mitochondria are the powerhouse of the cell and play important roles in multiple cellular processes including cell metabolism, proliferation, and programmed cell death. Mitochondria are double-membrane organelles with the inner membrane folding inward to form cristae. Mitochondria networks undergo dynamic fission and fusion. Deregulation of mitochondrial structure has been linked to perturbed mitochondrial membrane potential and disrupted metabolism, as evidenced in tumorigenesis, neurodegenerative diseases, etc. Actin and its motors-myosins have long been known to generate mechanical forces and participate in short-distance cargo transport. Accumulating knowledge from biochemistry and live cell/electron microscope imaging has demonstrated the role of actin filaments in pre-constricting the mitochondria during fission. Recent studies have suggested the involvement of myosins in cristae maintenance and mitochondria quality control. Here, we review current findings and discuss future directions in the emerging fields of cytoskeletal regulation in cristae formation, mitochondrial dynamics, intracellular transport, and mitocytosis, with focus on the actin cytoskeleton and its motor proteins.
Collapse
Affiliation(s)
- Yihe Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoyu Ren
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Peng Shi
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
| |
Collapse
|
14
|
Zhang Y, Ma X, Liu C, Bie Z, Liu G, Liu P, Yang Z. Identification of HSPD1 as a novel invasive biomarker associated with mitophagy in pituitary adenomas. Transl Oncol 2024; 41:101886. [PMID: 38290248 PMCID: PMC10840335 DOI: 10.1016/j.tranon.2024.101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/26/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The crucial role of mitophagy in tumor progression has been recognized. Therefore, our study aimed to investigate the potential correlation between pituitary adenoma invasiveness and the mitophagy processes. METHODS In this study, we used transcriptomics of postoperative tissue from 32 patients and quantitative proteomics of 19 patients to screen for mitophagy-related invasion genes in pituitary adenomas. The invasive predictive value of target genes was analyzed by Lasso regression model, CytoHubba plugin and expression validation. Co-expression correlation analysis was used to identify paired proteins for target genes, and a predictive model for pituitary adenoma invasiveness was constructed by target genes and paired proteins and assessed using ROC analysis, calibration curves and DCA. GO function, pathway (GSEA or GSVA) and immune cell analysis (ssGSEA or CIBERSORT) were further utilized to explore the action mechanism of target gene. Finally, immunohistochemistry and cell function experiments were used to detect the differential expression and key roles of the target genes in pituitary adenomas. RESULTS Finally, Heat shock protein family D member 1 (HSPD1) was identified as a target gene. The quality of a predictive model for pituitary adenoma invasiveness consisting of HSPD1 and its paired protein expression profiles was satisfactory. Moreover, the expression of HSPD1 was significantly lower in invasive pituitary adenomas than in non-invasive pituitary adenomas. Downregulation of HSPD1 may be significantly related to invasion process, mitochondria-related pathway and immune cell regulation in pituitary adenomas. CONCLUSION The downregulation of HSPD1 may serve as a predictive indicator for identifying invasive pituitary adenomas.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Xin Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Congyu Liu
- School of Life Science, Tsinghua University, Beijing, PR China
| | - Zhixu Bie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Gemingtian Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Pinan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; Department of Neural Reconstruction, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China.
| | - Zhijun Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
15
|
Neikirk K, Stephens DC, Beasley HK, Marshall AG, Gaddy JA, Damo SM, Hinton A. Is space the final frontier for mitochondrial study? Biotechniques 2024; 76:46-51. [PMID: 38084381 DOI: 10.2144/btn-2023-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Tweetable abstract This perspective considers several avenues for future research on mitochondrial dynamics, stress, and DNA in outer space.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Dominique C Stephens
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Department of Life & Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Heather K Beasley
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Andrea G Marshall
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Steven M Damo
- Department of Life & Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Antentor Hinton
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
16
|
Dong J, Chen L, Ye F, Tang J, Liu B, Lin J, Zhou PH, Lu B, Wu M, Lu JH, He JJ, Engelender S, Meng Q, Song Z, He H. Mic19 depletion impairs endoplasmic reticulum-mitochondrial contacts and mitochondrial lipid metabolism and triggers liver disease. Nat Commun 2024; 15:168. [PMID: 38168065 PMCID: PMC10762189 DOI: 10.1038/s41467-023-44057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Endoplasmic reticulum (ER)-mitochondria contacts are critical for the regulation of lipid transport, synthesis, and metabolism. However, the molecular mechanism and physiological function of endoplasmic reticulum-mitochondrial contacts remain unclear. Here, we show that Mic19, a key subunit of MICOS (mitochondrial contact site and cristae organizing system) complex, regulates ER-mitochondria contacts by the EMC2-SLC25A46-Mic19 axis. Mic19 liver specific knockout (LKO) leads to the reduction of ER-mitochondrial contacts, mitochondrial lipid metabolism disorder, disorganization of mitochondrial cristae and mitochondrial unfolded protein stress response in mouse hepatocytes, impairing liver mitochondrial fatty acid β-oxidation and lipid metabolism, which may spontaneously trigger nonalcoholic steatohepatitis (NASH) and liver fibrosis in mice. Whereas, the re-expression of Mic19 in Mic19 LKO hepatocytes blocks the development of liver disease in mice. In addition, Mic19 overexpression suppresses MCD-induced fatty liver disease. Thus, our findings uncover the EMC2-SLC25A46-Mic19 axis as a pathway regulating ER-mitochondria contacts, and reveal that impairment of ER-mitochondria contacts may be a mechanism associated with the development of NASH and liver fibrosis.
Collapse
Affiliation(s)
- Jun Dong
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Li Chen
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Department of pathology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Ye
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Junhui Tang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Bing Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Jiacheng Lin
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Pang-Hu Zhou
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Bin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Min Wu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jing-Jing He
- Department of Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Simone Engelender
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Qingtao Meng
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Zhiyin Song
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
- Department of pathology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - He He
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
- Department of pathology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
17
|
Venkatraman K, Lee CT, Garcia GC, Mahapatra A, Milshteyn D, Perkins G, Kim K, Pasolli HA, Phan S, Lippincott‐Schwartz J, Ellisman MH, Rangamani P, Budin I. Cristae formation is a mechanical buckling event controlled by the inner mitochondrial membrane lipidome. EMBO J 2023; 42:e114054. [PMID: 37933600 PMCID: PMC10711667 DOI: 10.15252/embj.2023114054] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
Cristae are high-curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous lipid-based mechanisms have yet to be elucidated. Here, we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the inner mitochondrial membrane against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. This model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that cardiolipin is essential in low-oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of cardiolipin is dependent on the surrounding lipid and protein components of the IMM.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| | - Christopher T Lee
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Guadalupe C Garcia
- Computational Neurobiology LaboratorySalk Institute for Biological StudiesLa JollaCAUSA
| | - Arijit Mahapatra
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
- Present address:
Applied Physical SciencesUniversity of North Carolina Chapel HillChapel HillNCUSA
| | - Daniel Milshteyn
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - Keun‐Young Kim
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - H Amalia Pasolli
- Howard Hughes Medical InstituteAshburnVAUSA
- Present address:
Electron Microscopy Resource CenterThe Rockefeller UniversityNew YorkNYUSA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | | | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Itay Budin
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
18
|
Vue Z, Garza‐Lopez E, Neikirk K, Katti P, Vang L, Beasley H, Shao J, Marshall AG, Crabtree A, Murphy AC, Jenkins BC, Prasad P, Evans C, Taylor B, Mungai M, Killion M, Stephens D, Christensen TA, Lam J, Rodriguez B, Phillips MA, Daneshgar N, Koh H, Koh A, Davis J, Devine N, Saleem M, Scudese E, Arnold KR, Vanessa Chavarin V, Daniel Robinson R, Chakraborty M, Gaddy JA, Sweetwyne MT, Wilson G, Zaganjor E, Kezos J, Dondi C, Reddy AK, Glancy B, Kirabo A, Quintana AM, Dai D, Ocorr K, Murray SA, Damo SM, Exil V, Riggs B, Mobley BC, Gomez JA, McReynolds MR, Hinton A. 3D reconstruction of murine mitochondria reveals changes in structure during aging linked to the MICOS complex. Aging Cell 2023; 22:e14009. [PMID: 37960952 PMCID: PMC10726809 DOI: 10.1111/acel.14009] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 11/15/2023] Open
Abstract
During aging, muscle gradually undergoes sarcopenia, the loss of function associated with loss of mass, strength, endurance, and oxidative capacity. However, the 3D structural alterations of mitochondria associated with aging in skeletal muscle and cardiac tissues are not well described. Although mitochondrial aging is associated with decreased mitochondrial capacity, the genes responsible for the morphological changes in mitochondria during aging are poorly characterized. We measured changes in mitochondrial morphology in aged murine gastrocnemius, soleus, and cardiac tissues using serial block-face scanning electron microscopy and 3D reconstructions. We also used reverse transcriptase-quantitative PCR, transmission electron microscopy quantification, Seahorse analysis, and metabolomics and lipidomics to measure changes in mitochondrial morphology and function after loss of mitochondria contact site and cristae organizing system (MICOS) complex genes, Chchd3, Chchd6, and Mitofilin. We identified significant changes in mitochondrial size in aged murine gastrocnemius, soleus, and cardiac tissues. We found that both age-related loss of the MICOS complex and knockouts of MICOS genes in mice altered mitochondrial morphology. Given the critical role of mitochondria in maintaining cellular metabolism, we characterized the metabolomes and lipidomes of young and aged mouse tissues, which showed profound alterations consistent with changes in membrane integrity, supporting our observations of age-related changes in muscle tissues. We found a relationship between changes in the MICOS complex and aging. Thus, it is important to understand the mechanisms that underlie the tissue-dependent 3D mitochondrial phenotypic changes that occur in aging and the evolutionary conservation of these mechanisms between Drosophila and mammals.
Collapse
Affiliation(s)
- Zer Vue
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | | | - Kit Neikirk
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of HealthMarylandBethesdaUSA
| | - Larry Vang
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Heather Beasley
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Jianqiang Shao
- Central Microscopy Research FacilityUniversity of IowaIowaIowa CityUSA
| | - Andrea G. Marshall
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Amber Crabtree
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Alexandria C. Murphy
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life SciencesPennsylvania State UniversityPennsylvaniaState CollegeUSA
| | - Brenita C. Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life SciencesPennsylvania State UniversityPennsylvaniaState CollegeUSA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life SciencesPennsylvania State UniversityPennsylvaniaState CollegeUSA
| | - Chantell Evans
- Department of Cell BiologyDuke University School of MedicineNorth CarolinaDurhamUSA
| | - Brittany Taylor
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaFloridaGainesvilleUSA
| | - Margaret Mungai
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Mason Killion
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Dominique Stephens
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | | | - Jacob Lam
- Department of Internal MedicineUniversity of IowaIowaIowa CityUSA
| | | | - Mark A. Phillips
- Department of Integrative BiologyOregon State UniversityOregonCorvallisUSA
| | - Nastaran Daneshgar
- Department of Integrative BiologyOregon State UniversityOregonCorvallisUSA
| | - Ho‐Jin Koh
- Department of Biological SciencesTennessee State UniversityTennesseeNashvilleUSA
| | - Alice Koh
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
- Department of MedicineVanderbilt University Medical CenterTennesseeNashvilleUSA
| | - Jamaine Davis
- Department of Biochemistry, Cancer Biology, Neuroscience, and PharmacologyMeharry Medical CollegeTennesseeNashvilleUSA
| | - Nina Devine
- Department of Integrative BiologyOregon State UniversityOregonCorvallisUSA
| | - Mohammad Saleem
- Department of MedicineVanderbilt University Medical CenterTennesseeNashvilleUSA
| | - Estevão Scudese
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO)Rio de JaneiroBrazil
- Sport Sciences and Exercise Laboratory (LaCEE)Catholic University of Petrópolis (UCP)PetrópolisState of Rio de JaneiroBrazil
| | - Kenneth Ryan Arnold
- Department of Ecology and Evolutionary BiologyUniversity of California at IrvineCaliforniaIrvineUSA
| | - Valeria Vanessa Chavarin
- Department of Ecology and Evolutionary BiologyUniversity of California at IrvineCaliforniaIrvineUSA
| | - Ryan Daniel Robinson
- Department of Ecology and Evolutionary BiologyUniversity of California at IrvineCaliforniaIrvineUSA
| | | | - Jennifer A. Gaddy
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
- Department of MedicineVanderbilt University Medical CenterTennesseeNashvilleUSA
- Department of Medicine Health and SocietyVanderbilt UniversityTennesseeNashvilleUSA
- Department of Pathology, Microbiology and ImmunologyVanderbilt University Medical CenterTennesseeNashvilleUSA
- Department of Veterans AffairsTennessee Valley Healthcare SystemsTennesseeNashvilleUSA
| | - Mariya T. Sweetwyne
- Department of Laboratory Medicine and PathologyUniversity of WashingtonWashingtonSeattleUSA
| | - Genesis Wilson
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Elma Zaganjor
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - James Kezos
- Sanford Burnham Prebys Medical Discovery InstituteCaliforniaLa JollaUSA
| | - Cristiana Dondi
- Sanford Burnham Prebys Medical Discovery InstituteCaliforniaLa JollaUSA
| | | | - Brian Glancy
- National Heart, Lung and Blood Institute, National Institutes of HealthMarylandBethesdaUSA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of HealthMarylandBethesdaUSA
| | - Annet Kirabo
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
- Department of MedicineVanderbilt University Medical CenterTennesseeNashvilleUSA
| | - Anita M. Quintana
- Department of Biological Sciences, Border Biomedical Research CenterUniversity of Texas at El PasoTexasEl PasoUSA
| | - Dao‐Fu Dai
- Department of PathologyUniversity of Johns Hopkins School of MedicineMarylandBaltimoreUSA
| | - Karen Ocorr
- Sanford Burnham Prebys Medical Discovery InstituteCaliforniaLa JollaUSA
| | - Sandra A. Murray
- Department of Cell Biology, School of MedicineUniversity of PittsburghPennsylvaniaPittsburghUSA
| | - Steven M. Damo
- Department of Life and Physical SciencesFisk UniversityTennesseeNashvilleUSA
- Center for Structural BiologyVanderbilt UniversityTennesseeNashvilleUSA
| | - Vernat Exil
- Department of Pediatrics, Carver College of MedicineUniversity of IowaIowaIowa CityUSA
- Department of Pediatrics, Division of CardiologySt. Louis University School of MedicineMissouriSt. LouisUSA
| | - Blake Riggs
- Department of BiologySan Francisco State UniversityCaliforniaSan FranciscoUSA
| | - Bret C. Mobley
- Department of PathologyVanderbilt University Medical CenterTennesseeNashvilleUSA
| | - Jose A. Gomez
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
- Department of MedicineVanderbilt University Medical CenterTennesseeNashvilleUSA
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life SciencesPennsylvania State UniversityPennsylvaniaState CollegeUSA
| | - Antentor Hinton
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| |
Collapse
|
19
|
Litowczenko J, Wychowaniec JK, Załęski K, Marczak Ł, Edwards-Gayle CJC, Tadyszak K, Maciejewska BM. Micro/nano-patterns for enhancing differentiation of human neural stem cells and fabrication of nerve conduits via soft lithography and 3D printing. BIOMATERIALS ADVANCES 2023; 154:213653. [PMID: 37862812 DOI: 10.1016/j.bioadv.2023.213653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023]
Abstract
Topographical cues on materials can manipulate cellular fate, particularly for neural cells that respond well to such cues. Utilizing biomaterial surfaces with topographical features can effectively influence neuronal differentiation and promote neurite outgrowth. This is crucial for improving the regeneration of damaged neural tissue after injury. Here, we utilized groove patterns to create neural conduits that promote neural differentiation and axonal growth. We investigated the differentiation of human neural stem cells (NSCs) on silicon dioxide groove patterns with varying height-to-width/spacing ratios. We hypothesize that NSCs can sense the microgrooves with nanoscale depth on different aspect ratio substrates and exhibit different morphologies and differentiation fate. A comprehensive approach was employed, analyzing cell morphology, neurite length, and cell-specific markers. These aspects provided insights into the behavior of the investigated NSCs and their response to the topographical cues. Three groove-pattern models were designed with varying height-to-width/spacing ratios of 80, 42, and 30 for groove pattern widths of 1 μm, 5 μm, and 10 μm and nanoheights of 80 nm, 210 nm, and 280 nm. Smaller groove patterns led to longer neurites and more effective differentiation towards neurons, whereas larger patterns promoted multidimensional differentiation towards both neurons and glia. We transferred these cues onto patterned polycaprolactone (PCL) and PCL-graphene oxide (PCL-GO) composite 'stamps' using simple soft lithography and reproducible extrusion 3D printing methods. The patterned scaffolds elicited a response from NSCs comparable to that of silicon dioxide groove patterns. The smallest pattern stimulated the highest neurite outgrowth, while the middle-sized grooves of PCL-GO induced effective synaptogenesis. We demonstrated the potential for such structures to be wrapped into tubes and used as grafts for peripheral nerve regeneration. Grooved PCL and PCL-GO conduits could be a promising alternative to nerve grafting.
Collapse
Affiliation(s)
- Jagoda Litowczenko
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland.
| | - Jacek K Wychowaniec
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland; AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Karol Załęski
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland
| | - Łukasz Marczak
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | | | - Krzysztof Tadyszak
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Barbara M Maciejewska
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland
| |
Collapse
|
20
|
Usey MM, Huet D. ATP synthase-associated coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing proteins are critical for mitochondrial function in Toxoplasma gondii. mBio 2023; 14:e0176923. [PMID: 37796022 PMCID: PMC10653836 DOI: 10.1128/mbio.01769-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Members of the coiled-coil-helix-coiled-coil-helix (CHCH) domain protein family are transported into the mitochondrial intermembrane space, where they play important roles in the biogenesis and function of the organelle. Unexpectedly, the ATP synthase of the apicomplexan Toxoplasma gondii harbors CHCH domain-containing subunits of unknown function. As no other ATP synthase studied to date contains this class of proteins, characterizing their function will be of broad interest to the fields of molecular parasitology and mitochondrial evolution. Here, we demonstrate that that two T. gondii ATP synthase subunits containing CHCH domains are required for parasite survival and for stability and function of the ATP synthase. We also show that knockdown disrupts multiple aspects of the mitochondrial morphology of T. gondii and that mutation of key residues in the CHCH domains caused mis-localization of the proteins. This work provides insight into the unique features of the apicomplexan ATP synthase, which could help to develop therapeutic interventions against this parasite and other apicomplexans, such as the malaria-causing parasite Plasmodium falciparum.
Collapse
Affiliation(s)
- Madelaine M. Usey
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Diego Huet
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
21
|
Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A. Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology. Antioxid Redox Signal 2023; 39:635-683. [PMID: 36793196 PMCID: PMC10615093 DOI: 10.1089/ars.2022.0173] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Significance: Mitochondrial (mt) reticulum network in the cell possesses amazing ultramorphology of parallel lamellar cristae, formed by the invaginated inner mitochondrial membrane. Its non-invaginated part, the inner boundary membrane (IBM) forms a cylindrical sandwich with the outer mitochondrial membrane (OMM). Crista membranes (CMs) meet IBM at crista junctions (CJs) of mt cristae organizing system (MICOS) complexes connected to OMM sorting and assembly machinery (SAM). Cristae dimensions, shape, and CJs have characteristic patterns for different metabolic regimes, physiological and pathological situations. Recent Advances: Cristae-shaping proteins were characterized, namely rows of ATP-synthase dimers forming the crista lamella edges, MICOS subunits, optic atrophy 1 (OPA1) isoforms and mitochondrial genome maintenance 1 (MGM1) filaments, prohibitins, and others. Detailed cristae ultramorphology changes were imaged by focused-ion beam/scanning electron microscopy. Dynamics of crista lamellae and mobile CJs were demonstrated by nanoscopy in living cells. With tBID-induced apoptosis a single entirely fused cristae reticulum was observed in a mitochondrial spheroid. Critical Issues: The mobility and composition of MICOS, OPA1, and ATP-synthase dimeric rows regulated by post-translational modifications might be exclusively responsible for cristae morphology changes, but ion fluxes across CM and resulting osmotic forces might be also involved. Inevitably, cristae ultramorphology should reflect also mitochondrial redox homeostasis, but details are unknown. Disordered cristae typically reflect higher superoxide formation. Future Directions: To link redox homeostasis to cristae ultramorphology and define markers, recent progress will help in uncovering mechanisms involved in proton-coupled electron transfer via the respiratory chain and in regulation of cristae architecture, leading to structural determination of superoxide formation sites and cristae ultramorphology changes in diseases. Antioxid. Redox Signal. 39, 635-683.
Collapse
Affiliation(s)
- Petr Ježek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Jabůrek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Blanka Holendová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hana Engstová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrea Dlasková
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
22
|
Ju WK, Perkins GA, Kim KY, Bastola T, Choi WY, Choi SH. Glaucomatous optic neuropathy: Mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog Retin Eye Res 2023; 95:101136. [PMID: 36400670 DOI: 10.1016/j.preteyeres.2022.101136] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by a slow, progressive, and multifactorial degeneration of retinal ganglion cells (RGCs) and their axons, resulting in vision loss. Despite its high prevalence in individuals 60 years of age and older, the causing factors contributing to glaucoma progression are currently not well characterized. Intraocular pressure (IOP) is the only proven treatable risk factor. However, lowering IOP is insufficient for preventing disease progression. One of the significant interests in glaucoma pathogenesis is understanding the structural and functional impairment of mitochondria in RGCs and their axons and synapses. Glaucomatous risk factors such as IOP elevation, aging, genetic variation, neuroinflammation, neurotrophic factor deprivation, and vascular dysregulation, are potential inducers for mitochondrial dysfunction in glaucoma. Because oxidative phosphorylation stress-mediated mitochondrial dysfunction is associated with structural and functional impairment of mitochondria in glaucomatous RGCs, understanding the underlying mechanisms and relationship between structural and functional alterations in mitochondria would be beneficial to developing mitochondria-related neuroprotection in RGCs and their axons and synapses against glaucomatous neurodegeneration. Here, we review the current studies focusing on mitochondrial dynamics-based structural and functional alterations in the mitochondria of glaucomatous RGCs and therapeutic strategies to protect RGCs against glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Won-Kyu Ju
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tonking Bastola
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Woo-Young Choi
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA; Department of Plastic Surgery, College of Medicine, Chosun University, Gwang-ju, South Korea
| | - Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
23
|
Chua JJE. HEBP1 - An early trigger for neuronal cell death and circuit dysfunction in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:102-110. [PMID: 35842370 DOI: 10.1016/j.semcdb.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 12/31/2022]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that gradually impairs memory, cognition and the ability to perform simple daily tasks. It is the most prevalent form of dementia in the elderly and its incidence increases exponentially with age. Neuronal and synapse loss, key hallmarks of the disorder, are widely regarded to occur early during the onset of AD, and the extent of this loss closely correlates with the progression of cognitive decline and dysfunction of the underlying neuronal circuity. Nevertheless, the mechanisms driving neuronal and synapse loss during early AD remains poorly understood. This review focuses on Heme-binding protein 1 (HEBP1), a mitochondrial-associated protein that has recently emerged as an important mediator of neuronal cell death during early AD pathogenesis. Acting downstream of Aβ and heme, HEBP1-mediated apoptosis contributes to neuronal loss and neuronal circuit dysfunction. Deleting HEBP1 expression in neurons protects them from heme- and Aβ-induced apoptosis, both of which are mechanisms implicated in neurodegeneration. HEBP1 participates in heme metabolism and binds to heme to modulate mitochondrial dynamics vital to the maintenance of neural circuitry that is affected in AD. HEBP1 elevation is also associated with AGE/RAGE-related neuronal damage, further implicating its involvement in neuronal loss during early AD. Moreover, F2L, a cleavage product of HEBP1 modulates inflammation. Collectively, these findings highlight the importance of HEBP1 in the disruption of neural circuits during early AD.
Collapse
Affiliation(s)
- John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; LSI Neurobiology Programme, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Health Innovation and Technology, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A⁎STAR), Singapore.
| |
Collapse
|
24
|
Cartes-Saavedra B, Lagos D, Macuada J, Arancibia D, Burté F, Sjöberg-Herrera MK, Andrés ME, Horvath R, Yu-Wai-Man P, Hajnóczky G, Eisner V. OPA1 disease-causing mutants have domain-specific effects on mitochondrial ultrastructure and fusion. Proc Natl Acad Sci U S A 2023; 120:e2207471120. [PMID: 36927155 PMCID: PMC10041121 DOI: 10.1073/pnas.2207471120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/23/2023] [Indexed: 03/18/2023] Open
Abstract
Inner mitochondrial membrane fusion and cristae shape depend on optic atrophy protein 1, OPA1. Mutations in OPA1 lead to autosomal dominant optic atrophy (ADOA), an important cause of inherited blindness. The Guanosin Triphosphatase (GTPase) and GTPase effector domains (GEDs) of OPA1 are essential for mitochondrial fusion; yet, their specific roles remain elusive. Intriguingly, patients carrying OPA1 GTPase mutations have a higher risk of developing more severe multisystemic symptoms in addition to optic atrophy, suggesting pathogenic contributions for the GTPase and GED domains, respectively. We studied OPA1 GTPase and GED mutations to understand their domain-specific contribution to protein function by analyzing patient-derived cells and gain-of-function paradigms. Mitochondria from OPA1 GTPase (c.870+5G>A and c.889C>T) and GED (c.2713C>T and c.2818+5G>A) mutants display distinct aberrant cristae ultrastructure. While all OPA1 mutants inhibited mitochondrial fusion, some GTPase mutants resulted in elongated mitochondria, suggesting fission inhibition. We show that the GED is dispensable for fusion and OPA1 oligomer formation but necessary for GTPase activity. Finally, splicing defect mutants displayed a posttranslational haploinsufficiency-like phenotype but retained domain-specific dysfunctions. Thus, OPA1 domain-specific mutants result in distinct impairments in mitochondrial dynamics, providing insight into OPA1 function and its contribution to ADOA pathogenesis and severity.
Collapse
Affiliation(s)
- Benjamín Cartes-Saavedra
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago8331150, Chile
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA19107
| | - Daniel Lagos
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago8331150, Chile
| | - Josefa Macuada
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago8331150, Chile
| | - Duxan Arancibia
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago8331150, Chile
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta1240000, Chile
| | - Florence Burté
- Wellcome Trust for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NewcastleNE2 4HH, UK
| | - Marcela K. Sjöberg-Herrera
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago8331150, Chile
| | - María Estela Andrés
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago8331150, Chile
| | - Rita Horvath
- John Van Geest Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, CambridgeCB2 0PY, UK
| | - Patrick Yu-Wai-Man
- John Van Geest Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, CambridgeCB2 0PY, UK
- Mitochondrial Research Council Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, CambridgeCB2 0XY, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals, CambridgeCB2 0QQ, UK
- University College London Institute of Ophthalmology, University College London, LondonEC1V 9EL, UK
- Moorfields Eye Hospital National Health Service Foundation Trust, LondonEC1V 2PD, UK
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA19107
| | - Verónica Eisner
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago8331150, Chile
| |
Collapse
|
25
|
Quintana-Cabrera R, Scorrano L. Determinants and outcomes of mitochondrial dynamics. Mol Cell 2023; 83:857-876. [PMID: 36889315 DOI: 10.1016/j.molcel.2023.02.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023]
Abstract
Mitochondria are not only central organelles in metabolism and energy conversion but are also platforms for cellular signaling cascades. Classically, the shape and ultrastructure of mitochondria were depicted as static. The discovery of morphological transitions during cell death and of conserved genes controlling mitochondrial fusion and fission contributed to establishing the concept that mitochondrial morphology and ultrastructure are dynamically regulated by mitochondria-shaping proteins. These finely tuned, dynamic changes in mitochondrial shape can in turn control mitochondrial function, and their alterations in human diseases suggest that this space can be explored for drug discovery. Here, we review the basic tenets and molecular mechanisms of mitochondrial morphology and ultrastructure, describing how they can coordinately define mitochondrial function.
Collapse
Affiliation(s)
| | - Luca Scorrano
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy; Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy.
| |
Collapse
|
26
|
Zhelankin AV, Iulmetova LN, Ahmetov II, Generozov EV, Sharova EI. Diversity and Differential Expression of MicroRNAs in the Human Skeletal Muscle with Distinct Fiber Type Composition. Life (Basel) 2023; 13:659. [PMID: 36983815 PMCID: PMC10056610 DOI: 10.3390/life13030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The ratio of fast- and slow-twitch fibers in human skeletal muscle is variable and largely determined by genetic factors. In this study, we investigated the contribution of microRNA (miRNA) in skeletal muscle fiber type composition. The study involved biopsy samples of the vastus lateralis muscle from 24 male participants with distinct fiber type ratios. The miRNA study included samples from five endurance athletes and five power athletes with the predominance of slow-twitch (61.6-72.8%) and fast-twitch (69.3-80.7%) fibers, respectively. Total and small RNA were extracted from tissue samples. Total RNA sequencing (N = 24) revealed 352 differentially expressed genes between the groups with the predominance of fast- and slow-twitch muscle fibers. Small RNA sequencing showed upregulation of miR-206, miR-501-3p and miR-185-5p, and downregulation of miR-499a-5p and miR-208-5p in the group of power athletes with fast-twitch fiber predominance. Two miRtronic miRNAs, miR-208b-3p and miR-499a-5p, had strong correlations in expression with their host genes (MYH7 and MYH7B, respectively). Correlations between the expression of miRNAs and their experimentally validated messenger RNA (mRNA) targets were calculated, and 11 miRNA-mRNA interactions with strong negative correlations were identified. Two of them belonged to miR-208b-3p and miR-499a-5p, indicating their regulatory links with the expression of CDKN1A and FOXO4, respectively.
Collapse
Affiliation(s)
- Andrey V. Zhelankin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Liliia N. Iulmetova
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ildus I. Ahmetov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| | - Eduard V. Generozov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Elena I. Sharova
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| |
Collapse
|
27
|
Mitochondrial cristae in health and disease. Int J Biol Macromol 2023; 235:123755. [PMID: 36812974 DOI: 10.1016/j.ijbiomac.2023.123755] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Mitochondria are centers of energy metabolism. The mitochondrial network is shaped by mitochondrial dynamics, including the processes of mitochondrial fission and fusion and cristae remodeling. The cristae folded by the inner mitochondrial membrane are sites of the mitochondrial oxidative phosphorylation (OXPHOS) system. However, the factors and their coordinated interplay in cristae remodeling and linked human diseases have not been fully demonstrated. In this review, we focus on key regulators of cristae structure, including the mitochondrial contact site and cristae organizing system, optic atrophy-1, mitochondrial calcium uniporter, and ATP synthase, which function in the dynamic remodeling of cristae. We summarized their contribution to sustaining functional cristae structure and abnormal cristae morphology, including a decreased number of cristae, enlarged cristae junctions, and cristae as concentric ring structures. These abnormalities directly impact cellular respiration and are caused by dysfunction or deletion of these regulators in diseases such as Parkinson's disease, Leigh syndrome, and dominant optic atrophy. Identifying the important regulators of cristae morphology and understanding their role in sustaining mitochondrial morphology could be applied to explore the pathologies of diseases and to develop relevant therapeutic tools.
Collapse
|
28
|
Wu Y, Bayrak CS, Dong B, He S, Stenson PD, Cooper DN, Itan Y, Chen L. Identifying shared genetic factors underlying epilepsy and congenital heart disease in Europeans. Hum Genet 2023; 142:275-288. [PMID: 36352240 DOI: 10.1007/s00439-022-02502-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Epilepsy (EP) and congenital heart disease (CHD) are two apparently unrelated diseases that nevertheless display substantial mutual comorbidity. Thus, while congenital heart defects are associated with an elevated risk of developing epilepsy, the incidence of epilepsy in CHD patients correlates with CHD severity. Although genetic determinants have been postulated to underlie the comorbidity of EP and CHD, the precise genetic etiology is unknown. We performed variant and gene association analyses on EP and CHD patients separately, using whole exomes of genetically identified Europeans from the UK Biobank and Mount Sinai BioMe Biobank. We prioritized biologically plausible candidate genes and investigated the enriched pathways and other identified comorbidities by biological proximity calculation, pathway analyses, and gene-level phenome-wide association studies. Our variant- and gene-level results point to the Voltage-Gated Calcium Channels (VGCC) pathway as being a unifying framework for EP and CHD comorbidity. Additionally, pathway-level analyses indicated that the functions of disease-associated genes partially overlap between the two disease entities. Finally, phenome-wide association analyses of prioritized candidate genes revealed that cerebral blood flow and ulcerative colitis constitute the two main traits associated with both EP and CHD.
Collapse
Affiliation(s)
- Yiming Wu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Cigdem Sevim Bayrak
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bosi Dong
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shixu He
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Peter D Stenson
- Institute of Medical Genetics, Cardiff University, Cardiff, UK
| | - David N Cooper
- Institute of Medical Genetics, Cardiff University, Cardiff, UK
| | - Yuval Itan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Icahn School of Medicine at Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, New York, NY, USA.
| | - Lei Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
29
|
Guo J, Niu K, Ma BF, Sun LN, Fang QW, An JX. Electroacupuncture ameliorates surgery-induced spatial memory deficits by promoting mitophagy in rats. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:74. [PMID: 36819507 PMCID: PMC9929787 DOI: 10.21037/atm-22-6262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/10/2023] [Indexed: 01/30/2023]
Abstract
Background This study sought to explore the mechanism underlying the therapeutic effects of electroacupuncture (EA) on spatial memory deficits caused by surgery. Methods Hepatic apex resection was performed under propofol-based total intravenous anesthesia. Male Sprague-Dawley rats were subjected to EA treatment or EA + mitochondrial division inhibitor-1 (mdivi-1) treatment once a day for three consecutive days after surgery. The Morris water maze test was used to evaluate the spatial memory of the rats after surgery. Tissue from the hippocampus of each rat was frozen and used for transcriptomic and proteomic analyses to identify potential targets for EA treatment. Western blotting was used to confirm the protein expression levels. The levels of reactive oxygen species (ROS) and adenosine triphosphate (ATP) were detected using commercial kits. The rat mitochondria were then isolated, and the activity of mitochondrial complex V was assessed. Results EA attenuated surgery-induced spatial memory deficits on postoperative day 3, while these effects were reversed by treatment with the mdivi-1 (P<0.05). Ribonucleic acid (RNA)-sequencing revealed that EA upregulated multiple metabolic pathways and the phosphatidylinositol 3‑kinas/protein kinase B signaling pathway. The proteomic and western blotting results suggested that the EA treatment substantially downregulated coiled-coil-helix-coiled-coil-helix domain containing 3 (ChChd3) expression in the hippocampus. The EA treatment significantly increased the autophagy-related protein levels, including phosphatase and tensin homolog-induced kinase 1, Parkin, MAP1LC3 (LC3), and Beclin1, and inhibited the production of ROS and inflammatory cytokine interleukin-1β in the hippocampus (P<0.05). Conclusions These results suggest that EA ameliorates postoperative spatial memory deficits and protects hippocampus from oxidative stress and inflammation through enhanced autophagy in an animal model of perioperative neurocognitive disorders (PNDs).
Collapse
Affiliation(s)
- Jian Guo
- School of Anesthesiology, Weifang Medical University, Weifang, China;,Department of Anesthesiology, Pain and Sleep Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China;,Department of Anesthesiology, Yan’an People’s Hospital, Yan’an, China
| | - Kun Niu
- Department of Anesthesiology, Pain and Sleep Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China;,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Anesthesiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Bao-Feng Ma
- School of Anesthesiology, Weifang Medical University, Weifang, China;,Department of Anesthesiology, Pain and Sleep Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Li-Na Sun
- School of Anesthesiology, Weifang Medical University, Weifang, China;,Department of Anesthesiology, Pain and Sleep Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Qi-Wu Fang
- Department of Anesthesiology, Pain and Sleep Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Jian-Xiong An
- School of Anesthesiology, Weifang Medical University, Weifang, China;,Department of Anesthesiology, Pain and Sleep Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China;,Department of Anesthesiology, Pain and Sleep Medicine, The Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
30
|
Kisaretova P, Tsybko A, Bondar N, Reshetnikov V. Molecular Abnormalities in BTBR Mice and Their Relevance to Schizophrenia and Autism Spectrum Disorders: An Overview of Transcriptomic and Proteomic Studies. Biomedicines 2023; 11:289. [PMID: 36830826 PMCID: PMC9953015 DOI: 10.3390/biomedicines11020289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Animal models of psychopathologies are of exceptional interest for neurobiologists because these models allow us to clarify molecular mechanisms underlying the pathologies. One such model is the inbred BTBR strain of mice, which is characterized by behavioral, neuroanatomical, and physiological hallmarks of schizophrenia (SCZ) and autism spectrum disorders (ASDs). Despite the active use of BTBR mice as a model object, the understanding of the molecular features of this strain that cause the observed behavioral phenotype remains insufficient. Here, we analyzed recently published data from independent transcriptomic and proteomic studies on hippocampal and corticostriatal samples from BTBR mice to search for the most consistent aberrations in gene or protein expression. Next, we compared reproducible molecular signatures of BTBR mice with data on postmortem samples from ASD and SCZ patients. Taken together, these data helped us to elucidate brain-region-specific molecular abnormalities in BTBR mice as well as their relevance to the anomalies seen in ASDs or SCZ in humans.
Collapse
Affiliation(s)
- Polina Kisaretova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Anton Tsybko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Natalia Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Vasiliy Reshetnikov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Avenue, Sochi 354340, Russia
| |
Collapse
|
31
|
He L, Tronstad KJ, Maheshwari A. Mitochondrial Dynamics during Development. NEWBORN (CLARKSVILLE, MD.) 2023; 2:19-44. [PMID: 37206581 PMCID: PMC10193651 DOI: 10.5005/jp-journals-11002-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mitochondria are dynamic membrane-bound organelles in eukaryotic cells. These are important for the generation of chemical energy needed to power various cellular functions and also support metabolic, energetic, and epigenetic regulation in various cells. These organelles are also important for communication with the nucleus and other cellular structures, to maintain developmental sequences and somatic homeostasis, and for cellular adaptation to stress. Increasing information shows mitochondrial defects as an important cause of inherited disorders in different organ systems. In this article, we provide an extensive review of ontogeny, ultrastructural morphology, biogenesis, functional dynamics, important clinical manifestations of mitochondrial dysfunction, and possibilities for clinical intervention. We present information from our own clinical and laboratory research in conjunction with information collected from an extensive search in the databases PubMed, EMBASE, and Scopus.
Collapse
Affiliation(s)
- Ling He
- Department of Pediatrics and Pharmacology, Johns Hopkins University, Baltimore, United States of America
| | | | - Akhil Maheshwari
- Founding Chairman, Global Newborn Society, Clarksville, Maryland, United States of America
| |
Collapse
|
32
|
Garza S, Chen L, Galano M, Cheung G, Sottas C, Li L, Li Y, Zirkin BR, Papadopoulos V. Mitochondrial dynamics, Leydig cell function, and age-related testosterone deficiency. FASEB J 2022; 36:e22637. [PMID: 36349989 DOI: 10.1096/fj.202201026r] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/04/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
The mitochondrial translocator protein (18 kDa; TSPO) is a high-affinity cholesterol-binding protein that is an integral component of the cholesterol trafficking scaffold responsible for determining the rate of cholesterol import into the mitochondria for steroid biosynthesis. Previous studies have shown that TSPO declines in aging Leydig cells (LCs) and that its decline is associated with depressed circulating testosterone levels in aging rats. However, TSPO's role in the mechanistic decline in LC function is not fully understood. To address the role of TSPO depletion in LC function, we first examined mitochondrial quality in Tspo knockout mouse tumor MA-10 nG1 LCs compared to wild-type MA-10 cells. Tspo deletion caused a disruption in mitochondrial function and membrane dynamics. Increasing mitochondrial fusion via treatment with the mitochondrial fusion promoter M1 or by optic atrophy 1 (OPA1) overexpression resulted in the restoration of mitochondrial function and mitochondrial morphology as well as in steroid formation in TSPO-depleted nG1 LCs. LCs isolated from aged rats form less testosterone than LCs isolated from young rats. Treatment of aging LCs with M1 improved mitochondrial function and increased androgen formation, suggesting that aging LC dysfunction may stem from compromised mitochondrial dynamics caused by the age-dependent LC TSPO decline. These results, taken together, suggest that maintaining or enhancing mitochondrial fusion may provide therapeutic strategies to maintain or restore testosterone levels with aging.
Collapse
Affiliation(s)
- Samuel Garza
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Liting Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Melanie Galano
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Garett Cheung
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Chantal Sottas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Lu Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Yuchang Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Barry R Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
33
|
Hale MD, Koal T, Pham TH, Bowden JA, Parrott BB. Transcriptional networks underlying a primary ovarian insufficiency disorder in alligators naturally exposed to EDCs. Mol Cell Endocrinol 2022; 557:111751. [PMID: 35963581 DOI: 10.1016/j.mce.2022.111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
Interactions between the endocrine system and environmental contaminants are responsible for impairing reproductive development and function. Despite the taxonomic diversity of affected species and attendant complexity inherent to natural systems, the underlying signaling pathways and cellular consequences are mostly studied in lab models. To resolve the genetic and endocrine pathways that mediate affected ovarian function in organisms exposed to endocrine disrupting contaminants in their natural environments, we assessed broad-scale transcriptional and steroidogenic responses to exogenous gonadotropin stimulation in juvenile alligators (Alligator missippiensis) originating from a lake with well-documented pollution (Lake Apopka, FL) and a nearby reference site (Lake Woodruff, FL). We found that individuals from Lake Apopka are characterized by hyperandrogenism and display hyper-sensitive transcriptional responses to gonadotropin stimulation when compared to individuals from Lake Woodruff. Site-specific transcriptomic divergence appears to be driven by wholly distinct subsets of transcriptional regulators, indicating alterations to fundamental genetic pathways governing ovarian function. Consistent with broad-scale transcriptional differences, ovaries of Lake Apopka alligators displayed impediments to folliculogenesis, with larger germinal beds and decreased numbers of late-stage follicles. After resolving the ovarian transcriptome into clusters of co-expressed genes, most site-associated modules were correlated to ovarian follicule phenotypes across individuals. However, expression of two site-specific clusters were independent of ovarian cellular architecture and are hypothesized to represent alterations to cell-autonomous transcriptional programs. Collectively, our findings provide high resolution mapping of transcriptional patterns to specific reproductive function and advance our mechanistic understanding regarding impaired reproductive health in an established model of environmental endocrine disruption.
Collapse
Affiliation(s)
- Matthew D Hale
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA, USA; Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA; Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | | | - John A Bowden
- Center for Environmental and Human Toxicology, Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Benjamin B Parrott
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA, USA; Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| |
Collapse
|
34
|
PGC-1β maintains mitochondrial metabolism and restrains inflammatory gene expression. Sci Rep 2022; 12:16028. [PMID: 36163487 PMCID: PMC9512823 DOI: 10.1038/s41598-022-20215-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022] Open
Abstract
Metabolic programming of the innate immune cells known as dendritic cells (DCs) changes in response to different stimuli, influencing their function. While the mechanisms behind increased glycolytic metabolism in response to inflammatory stimuli are well-studied, less is known about the programming of mitochondrial metabolism in DCs. We used lipopolysaccharide (LPS) and interferon-β (IFN-β), which differentially stimulate the use of glycolysis and oxidative phosphorylation (OXPHOS), respectively, to identify factors important for mitochondrial metabolism. We found that the expression of peroxisome proliferator-activated receptor gamma co-activator 1β (PGC-1β), a transcriptional co-activator and known regulator of mitochondrial metabolism, decreases when DCs are activated with LPS, when OXPHOS is diminished, but not with IFN-β, when OXPHOS is maintained. We examined the role of PGC-1β in bioenergetic metabolism of DCs and found that PGC-1β deficiency indeed impairs their mitochondrial respiration. PGC-1β-deficient DCs are more glycolytic compared to controls, likely to compensate for reduced OXPHOS. PGC-1β deficiency also causes decreased capacity for ATP production at steady state and in response to IFN-β treatment. Loss of PGC-1β in DCs leads to increased expression of genes in inflammatory pathways, and reduced expression of genes encoding proteins important for mitochondrial metabolism and function. Collectively, these results demonstrate that PGC-1β is a key regulator of mitochondrial metabolism and negative regulator of inflammatory gene expression in DCs.
Collapse
|
35
|
Yin X, Wang J, Yang S, Li H, Shen H, Wang H, Li X, Chen G. Sam50 exerts neuroprotection by maintaining the mitochondrial structure during experimental cerebral ischemia/reperfusion injury in rats. CNS Neurosci Ther 2022; 28:2230-2244. [PMID: 36074556 PMCID: PMC9627377 DOI: 10.1111/cns.13967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of Sam50, a barrel protein on the surface of the mitochondrial outer membrane, in cerebral ischemia-reperfusion (I/R) injury and its underlying mechanisms. METHODS A middle cerebral artery occlusion/reperfusion (MCAO/R) model in adult male Sprague-Dawley rats was established in vivo, and cultured neurons were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) to simulate I/R injury in vitro. Lentiviral vector encoding Sam50 or Sam50 shRNA was constructed and administered to rats by intracerebroventricular injection to overexpress and knockdown Sam50, respectively. RESULTS First, after MCAO/R induction, the mitochondrial structure was damaged, and Sam50 protein levels were increased responsively both in vivo and in vitro. Then, it was found that Sam50 overexpression could reduce infarction size, inhibit neuronal cell death, improve neurobehavioral disability, protect mitochondrial structure integrity, and ameliorate mitochondrial dysfunction, which was induced by I/R injury both in vivo and in vitro. However, Sam50 downregulation showed the opposite results and aggravated I/R injury by inducing neuronal cell death, neurobehavioral disability, and mitochondrial dysfunction. Moreover, we found that the interaction between Sam50 and Mic19 was broken off after OGD/R, showing that the Sam50-Mic19-Mic60 axis was breakage in neurons, which would be a reason for mitochondrial structure and function abnormalities induced by I/R injury. CONCLUSION Sam50 played a vital role in the protection of neurons and mitochondria in cerebral I/R injury, which could be a novel target for mitochondrial protection and ameliorating I/R injury.
Collapse
Affiliation(s)
- Xulong Yin
- Department of NeurologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| | - Jiahe Wang
- Institute of Stroke ResearchSoochow UniversitySuzhouChina,Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Siyuan Yang
- Institute of Stroke ResearchSoochow UniversitySuzhouChina,Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Haiying Li
- Institute of Stroke ResearchSoochow UniversitySuzhouChina,Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Haitao Shen
- Institute of Stroke ResearchSoochow UniversitySuzhouChina,Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Hui Wang
- Department of NeurologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| | - Xiang Li
- Institute of Stroke ResearchSoochow UniversitySuzhouChina,Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Gang Chen
- Institute of Stroke ResearchSoochow UniversitySuzhouChina,Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
36
|
Shteinfer-Kuzmine A, Argueti-Ostrovsky S, Leyton-Jaimes MF, Anand U, Abu-Hamad S, Zalk R, Shoshan-Barmatz V, Israelson A. Targeting the Mitochondrial Protein VDAC1 as a Potential Therapeutic Strategy in ALS. Int J Mol Sci 2022; 23:ijms23179946. [PMID: 36077343 PMCID: PMC9456491 DOI: 10.3390/ijms23179946] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 01/02/2023] Open
Abstract
Impaired mitochondrial function has been proposed as a causative factor in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), caused by motor neuron degeneration. Mutations in superoxide dismutase (SOD1) cause ALS and SOD1 mutants were shown to interact with the voltage-dependent anion channel 1 (VDAC1), affecting its normal function. VDAC1 is a multi-functional channel located at the outer mitochondrial membrane that serves as a mitochondrial gatekeeper controlling metabolic and energetic crosstalk between mitochondria and the rest of the cell and it is a key player in mitochondria-mediated apoptosis. Previously, we showed that VDAC1 interacts with SOD1 and that the VDAC1-N-terminal-derived peptide prevented mutant SOD1 cytotoxic effects. In this study, using a peptide array, we identified the SOD1 sequence that interacts with VDAC1. Synthetic peptides generated from the identified VDAC1-binding sequences in SOD1 directly interacted with purified VDAC1. We also show that VDAC1 oligomerization increased in spinal cord mitochondria isolated from mutant SOD1G93A mice and rats. Thus, we used the novel VDAC1-specific small molecules, VBIT-4 and VBIT-12, inhibiting VDAC1 oligomerization and subsequently apoptosis and associated processes such as ROS production, and increased cytosolic Ca2+. VBIT-12 was able to rescue cell death induced by mutant SOD1 in neuronal cultures. Finally, although survival was not affected, VBIT-12 administration significantly improved muscle endurance in mutant SOD1G93A mice. Therefore, VBIT-12 may represent an attractive therapy for maintaining muscle function during the progression of ALS.
Collapse
Affiliation(s)
- Anna Shteinfer-Kuzmine
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shirel Argueti-Ostrovsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Marcel F. Leyton-Jaimes
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Department of Stem Cell and Regenerative Biology, Sherman Fairchild, Harvard University, 7 Divinity Ave., Cambridge, MA 02138, USA
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Salah Abu-Hamad
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ran Zalk
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Correspondence: (V.S.-B.); (A.I.)
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Correspondence: (V.S.-B.); (A.I.)
| |
Collapse
|
37
|
Wischhof L, Scifo E, Ehninger D, Bano D. AIFM1 beyond cell death: An overview of this OXPHOS-inducing factor in mitochondrial diseases. EBioMedicine 2022; 83:104231. [PMID: 35994922 PMCID: PMC9420475 DOI: 10.1016/j.ebiom.2022.104231] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrial intermembrane space flavoprotein with diverse functions in cellular physiology. In this regard, a large number of studies have elucidated AIF's participation to chromatin condensation during cell death in development, cancer, cardiovascular and brain disorders. However, the discovery of rare AIFM1 mutations in patients has shifted the interest of biomedical researchers towards AIF's contribution to pathogenic mechanisms underlying inherited AIFM1-linked metabolic diseases. The functional characterization of AIF binding partners has rapidly advanced our understanding of AIF biology within the mitochondria and beyond its widely reported role in cell death. At the present time, it is reasonable to assume that AIF contributes to cell survival by promoting biogenesis and maintenance of the mitochondrial oxidative phosphorylation (OXPHOS) system. With this review, we aim to outline the current knowledge around the vital role of AIF by primarily focusing on currently reported human diseases that have been linked to AIFM1 deficiency.
Collapse
Affiliation(s)
- Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Enzo Scifo
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
38
|
CCT6A and CHCHD2 Are Coamplified with EGFR and Associated with the Unfavorable Clinical Outcomes of Lung Adenocarcinoma. DISEASE MARKERS 2022; 2022:1560199. [PMID: 35937942 PMCID: PMC9352476 DOI: 10.1155/2022/1560199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
Chaperonin containing TCP1 subunit 6A (CCT6A) and coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) are located at the chromosome 7p11 region proximal to epidermal growth factor receptor (EGFR). However, the amplifications, expressions, and the prognostic effects of CCT6A and CHCDH2 in lung adenocarcinoma (LUAD) are unclear. Here, using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets, we found that CCT6A was coamplified and coexpressed with EGFR in LUAD patients. CCT6A amplification was correlated with the unfavorable outcomes of LUAD. Moreover, CCT6A was upregulated in LUAD tissues, and CCT6A overexpression was correlated with the unfavorable relapse free survival or overall survival of LUAD. On the contrary, CCT6A was hypomethylated in LUAD, and CCT6A hypermethylation was correlated with the favorable overall survival of LUAD. Similar expression and methylation profiling of CCT6A were obtained in 479 lung normal tissues and 544 LUAD tissues collected from 11 independent datasets. In 1,462 LUAD patients from eight independent cohorts, CCT6A was also correlated with LUAD relapse-free survival or overall survival. Furthermore, CCT6A overexpression promoted the cell growth and invasion of LUAD. Identification of genes differentially expressed in CCT6A highly expressed LUAD patients revealed that CHCHD2 was the most correlated with CCT6A expression. CHCHD2 was coamplified with CCT6A. CHCHD2 was upregulated in LUAD tissues, and overexpression of CHCHD2 was correlated with the shorted relapse-free survival or overall survival of LUAD. Overall, our results revealed that CCT6A and CHCHD2 were coamplifying and coexpressing with EGFR and were correlated with the unfavorable clinical outcomes of LUAD.
Collapse
|
39
|
Lu L, Mao H, Zhou M, Lin Y, Dai W, Qiu J, Xiao Y, Mo M, Zhu X, Wu Z, Pei Z, Guo W, Xu P, Chen X. CHCHD2 maintains mitochondrial contact site and cristae organizing system stability and protects against mitochondrial dysfunction in an experimental model of Parkinson's disease. Chin Med J (Engl) 2022; 135:00029330-990000000-00025. [PMID: 35830185 PMCID: PMC9532036 DOI: 10.1097/cm9.0000000000002053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's dementia. Mitochondrial dysfunction is involved in the pathology of PD. Coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2) was identified as associated with autosomal dominant PD. However, the mechanism of CHCHD2 in PD remains unclear. METHODS Short hairpin RNA (ShRNA)-mediated CHCHD2 knockdown or lentivirus-mediated CHCHD2 overexpression was performed to investigate the impact of CHCHD2 on mitochondrial morphology and function in neuronal tumor cell lines represented with human neuroblastoma (SHSY5Y) and HeLa cells. Blue-native polyacrylamide gel electrophoresis (PAGE) and two-dimensional sodium dodecyl sulfate-PAGE analysis were used to illustrate the role of CHCHD2 in mitochondrial contact site and cristae organizing system (MICOS). Co-immunoprecipitation and immunoblotting were used to address the interaction between CHCHD2 and Mic10. Serotype injection of adeno-associated vector-mediated CHCHD2 and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration were used to examine the influence of CHCHD2 in vivo. RESULTS We found that the overexpression of CHCHD2 can protect against methyl-4-phenylpyridinium (MPP+)-induced mitochondrial dysfunction and inhibit the loss of dopaminergic neurons in the MPTP-induced mouse model. Furthermore, we identified that CHCHD2 interacted with Mic10, and overexpression of CHCHD2 can protect against MPP+-induced MICOS impairment, while knockdown of CHCHD2 impaired the stability of MICOS. CONCLUSION This study indicated that CHCHD2 could interact with Mic10 and maintain the stability of the MICOS complex, which contributes to protecting mitochondrial function in PD.
Collapse
Affiliation(s)
- Lin Lu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Hengxu Mao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Miaomiao Zhou
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Yuwan Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Wei Dai
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Jiewen Qiu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xiaoqin Zhu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhuohua Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| |
Collapse
|
40
|
Mitochondrial a Kinase Anchor Proteins in Cardiovascular Health and Disease: A Review Article on Behalf of the Working Group on Cellular and Molecular Biology of the Heart of the Italian Society of Cardiology. Int J Mol Sci 2022; 23:ijms23147691. [PMID: 35887048 PMCID: PMC9322728 DOI: 10.3390/ijms23147691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Second messenger cyclic adenosine monophosphate (cAMP) has been found to regulate multiple mitochondrial functions, including respiration, dynamics, reactive oxygen species production, cell survival and death through the activation of cAMP-dependent protein kinase A (PKA) and other effectors. Several members of the large family of A kinase anchor proteins (AKAPs) have been previously shown to locally amplify cAMP/PKA signaling to mitochondria, promoting the assembly of signalosomes, regulating multiple cardiac functions under both physiological and pathological conditions. In this review, we will discuss roles and regulation of major mitochondria-targeted AKAPs, along with opportunities and challenges to modulate their functions for translational purposes in the cardiovascular system.
Collapse
|
41
|
Ledahawsky LM, Terzenidou ME, Edwards R, Kline RA, Graham LC, Eaton SL, van der Hoorn D, Chaytow H, Huang YT, Groen EJN, Motyl AAL, Lamont DJ, Tokatlidis K, Wishart TM, Gillingwater TH. The mitochondrial protein Sideroflexin 3 (SFXN3) influences neurodegeneration pathways in vivo. FEBS J 2022; 289:3894-3914. [PMID: 35092170 PMCID: PMC9542548 DOI: 10.1111/febs.16377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 12/18/2022]
Abstract
Synapses are a primary pathological target in neurodegenerative diseases. Identifying therapeutic targets at the synapse could delay progression of numerous conditions. The mitochondrial protein SFXN3 is a neuronally enriched protein expressed in synaptic terminals and regulated by key synaptic proteins, including α-synuclein. We first show that SFXN3 uses the carrier import pathway to insert into the inner mitochondrial membrane. Using high-resolution proteomics on Sfxn3-KO mice synapses, we then demonstrate that SFXN3 influences proteins and pathways associated with neurodegeneration and cell death (including CSPα and Caspase-3), as well as neurological conditions (including Parkinson's disease and Alzheimer's disease). Overexpression of SFXN3 orthologues in Drosophila models of Parkinson's disease significantly reduced dopaminergic neuron loss. In contrast, the loss of SFXN3 was insufficient to trigger neurodegeneration in mice, indicating an anti- rather than pro-neurodegeneration role for SFXN3. Taken together, these results suggest a potential role for SFXN3 in the regulation of neurodegeneration pathways.
Collapse
Affiliation(s)
- Leire M Ledahawsky
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| | - Maria Eirini Terzenidou
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Ruairidh Edwards
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Rachel A Kline
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK.,The Roslin Institute and R(D)SVS, University of Edinburgh, UK
| | - Laura C Graham
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK.,The Roslin Institute and R(D)SVS, University of Edinburgh, UK
| | - Samantha L Eaton
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK.,The Roslin Institute and R(D)SVS, University of Edinburgh, UK
| | - Dinja van der Hoorn
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| | - Helena Chaytow
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| | - Yu-Ting Huang
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| | - Ewout J N Groen
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK.,Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, The Netherlands
| | - Anna A L Motyl
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| | | | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Thomas M Wishart
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK.,The Roslin Institute and R(D)SVS, University of Edinburgh, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| |
Collapse
|
42
|
Han C, Geng Q, Qin J, Li Y, Yu H. Activation of 5-Hydroxytryptamine 4 Receptor Improves Colonic Barrier Function by Triggering Mucin 2 Production in a Mouse Model of Type 1 Diabetes. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:876-886. [PMID: 35337837 DOI: 10.1016/j.ajpath.2022.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Diabetes leads to intestinal barrier dysfunction. 5-Hydroxytryptamine 4 receptor (5-HT4R) is distributed in the colonic mucosa, but little is known about the role of its activation in diabetes-evoked colonic barrier dysfunction. This study investigates whether activation of 5-HT4Rs on goblet cells (GCs) protects the colon from commensal bacterial translocation in diabetic mice. Expression of 5-HT4R detected inside the colonic epithelium by RNAscope in situ hybridization was further observed within the mucin 2 (MUC2)-immunoreactive GCs. In diabetic mice, neither 5-HT4R transcription nor protein levels were altered compared with those in nondiabetic mice. Bacterial translocation was characterized by 16S rRNA RNAscope in situ hybridization and manifested in both crypts and lamina propria of the colon in diabetic mice. Mucin production and MUC2 expression were significantly decreased in diabetic mice. Furthermore, the loss of mitochondrial cristae of GCs and the down-regulation of mitofilin, the core protein maintaining mitochondrial homeostasis, were observed in diabetic mice. Long-term treatment with 5-HT4R agonist in diabetic mice not only prevented bacterial penetration of the whole colonic mucosa but also promoted mucin production and MUC2 expression. Markedly, 5-HT4R agonist also restored the mitochondrial cristae of GCs and up-regulated mitofilin. However, co-administration of 5-HT4R antagonist abolished the effects of 5-HT4R agonist on diabetic mice. These findings indicate that 5-HT4R in colonic mucosa is an effective target for the treatment of diabetes-induced colonic mucous barrier dysfunction.
Collapse
Affiliation(s)
- Changhao Han
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Qinghua Geng
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Jingjing Qin
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Yulin Li
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Huarong Yu
- Department of Physiology, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
43
|
Warnsmann V, Marschall LM, Meeßen AC, Wolters M, Schürmanns L, Basoglu M, Eimer S, Osiewacz HD. Disruption of the MICOS complex leads to an aberrant cristae structure and an unexpected, pronounced lifespan extension in Podospora anserina. J Cell Biochem 2022; 123:1306-1326. [PMID: 35616269 DOI: 10.1002/jcb.30278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 11/11/2022]
Abstract
Mitochondria are dynamic eukaryotic organelles involved in a variety of essential cellular processes including the generation of adenosine triphosphate (ATP) and reactive oxygen species as well as in the control of apoptosis and autophagy. Impairments of mitochondrial functions lead to aging and disease. Previous work with the ascomycete Podospora anserina demonstrated that mitochondrial morphotype as well as mitochondrial ultrastructure change during aging. The latter goes along with an age-dependent reorganization of the inner mitochondrial membrane leading to a change from lamellar cristae to vesicular structures. Particularly from studies with yeast, it is known that besides the F1 Fo -ATP-synthase and the phospholipid cardiolipin also the "mitochondrial contact site and cristae organizing system" (MICOS) complex, existing of the Mic60- and Mic10-subcomplex, is essential for proper cristae formation. In the present study, we aimed to understand the mechanistic basis of age-related changes in the mitochondrial ultrastructure. We observed that MICOS subunits are coregulated at the posttranscriptional level. This regulation partially depends on the mitochondrial iAAA-protease PaIAP. Most surprisingly, we made the counterintuitive observation that, despite the loss of lamellar cristae and of mitochondrial impairments, the ablation of MICOS subunits (except for PaMIC12) leads to a pronounced lifespan extension. Moreover, simultaneous ablation of subunits of both MICOS subcomplexes synergistically increases lifespan, providing formal genetic evidence that both subcomplexes affect lifespan by different and at least partially independent pathways. At the molecular level, we found that ablation of Mic10-subcomplex components leads to a mitohormesis-induced lifespan extension, while lifespan extension of Mic60-subcomplex mutants seems to be controlled by pathways involved in the control of phospholipid homeostasis. Overall, our data demonstrate that both MICOS subcomplexes have different functions and play distinct roles in the aging process of P. anserina.
Collapse
Affiliation(s)
- Verena Warnsmann
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Lisa-Marie Marschall
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Anja C Meeßen
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Maike Wolters
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Lea Schürmanns
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Marion Basoglu
- Institute for Cell Biology and Neuroscience, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Stefan Eimer
- Institute for Cell Biology and Neuroscience, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| |
Collapse
|
44
|
Triplication of HSA21 on alterations in structure and function of mitochondria. Mitochondrion 2022; 65:88-101. [PMID: 35623559 DOI: 10.1016/j.mito.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 01/22/2023]
Abstract
Triplication of genes encoded in human chromosome 21 (HSA21) is responsible for the phenotypes of Down syndrome (DS). The dosage-imbalance of the nuclear genes and the extra-nuclear mitochondrial DNA (mtDNA) jointly contributes to patho-mechanisms in DS. The mitochondrial organelles are the power house of cells for generation of ATP and maintaining cellular calcium and redox homeostasis, and cellular energy-metabolism processes. Each cell contains hundreds to thousands of mitochondria depending on their energy consumption. The dynamic structure of mitochondria is maintained with continuous fission and fusion events, and thus, content of mtDNA and its genetic composition are widely variable among cells. Cells of brain and heart tissues of DS patients and DS-mouse models have demonstrated elevated number but reduced amount of mtDNA due to higher fission process. This mechanism perturbs the oxidative phosphorylation (OXPHOS) and generates more free radicals such as reactive oxygen species (ROS), suggesting contribution of mtDNA in proliferation and protection of cells from endogenous toxic environment and external stressors. Gene-dosage in DS population collectively contributes to mitochondrial dysfunction by lowering energy production and respiratory capacity via the impaired OXPHOS, and damaged redox homeostasis and mitochondrial dynamics in all types of cells in DS. The context is highly complex and affects the functioning of all organs. The effect in brain and heart tissues promotes myriads of neurodegenerative diseases and cardiac complexities in individuals with DS. Crosstalk between trisomic nuclear and mitochondrial genome has been crucial for identification of potential therapeutic targets.
Collapse
|
45
|
Challenges and opportunities in the development of metal-based anticancer theranostic agents. Biosci Rep 2022; 42:231168. [PMID: 35420649 PMCID: PMC9109461 DOI: 10.1042/bsr20212160] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Around 10 million fatalities were recorded worldwide in 2020 due to cancer and statistical projections estimate the number to increase by 60% in 2040. With such a substantial rise in the global cancer burden, the disease will continue to impose a huge socio-economic burden on society. Currently, the most widely used clinical treatment modality is cytotoxic chemotherapy using platinum drugs which is used to treat variety of cancers. Despite its clinical success, critical challenges like resistance, off-target side effects and cancer variability often reduce its overall therapeutic efficiency. These challenges require faster diagnosis, simultaneous therapy and a more personalized approach toward cancer management. To this end, small-molecule ‘theranostic’ agents have presented a viable solution combining diagnosis and therapy into a single platform. In this review, we present a summary of recent efforts in the design and optimization of metal-based small-molecule ‘theranostic’ anticancer agents. Importantly, we highlight the advantages of a theranostic candidate over the purely therapeutic or diagnostic agent in terms of evaluation of its biological properties.
Collapse
|
46
|
CARD19 Interacts with Mitochondrial Contact Site and Cristae Organizing System Constituent Proteins and Regulates Cristae Morphology. Cells 2022; 11:cells11071175. [PMID: 35406738 PMCID: PMC8997538 DOI: 10.3390/cells11071175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/25/2023] Open
Abstract
CARD19 is a mitochondrial protein of unknown function. While CARD19 was originally reported to regulate TCR-dependent NF-κB activation via interaction with BCL10, this function is not recapitulated ex vivo in primary murine CD8+ T cells. Here, we employ a combination of SIM, TEM, and confocal microscopy, along with proteinase K protection assays and proteomics approaches, to identify interacting partners of CARD19 in macrophages. Our data show that CARD19 is specifically localized to the outer mitochondrial membrane. Through deletion of functional domains, we demonstrate that both the distal C-terminus and transmembrane domain are required for mitochondrial targeting, whereas the CARD is not. Importantly, mass spectrometry analysis of 3×Myc-CARD19 immunoprecipitates reveals that CARD19 interacts with the components of the mitochondrial intermembrane bridge (MIB), consisting of mitochondrial contact site and cristae organizing system (MICOS) components MIC19, MIC25, and MIC60, and MICOS-interacting proteins SAMM50 and MTX2. These CARD19 interactions are in part dependent on a properly folded CARD. Consistent with previously reported phenotypes upon siRNA silencing of MICOS subunits, absence of CARD19 correlates with irregular cristae morphology. Based on these data, we propose that CARD19 is a previously unknown interacting partner of the MIB and the MIC19–MIC25–MIC60 MICOS subcomplex that regulates cristae morphology.
Collapse
|
47
|
Xue X, Ma L, Zhang X, Xu X, Guo S, Wang Y, Qiu S, Cui J, Guo W, Yu Y, Sun F, Shi Y, Wang J. Tumour cells are sensitised to ferroptosis via RB1CC1‐mediated transcriptional reprogramming. Clin Transl Med 2022; 12:e747. [PMID: 35220675 PMCID: PMC8882240 DOI: 10.1002/ctm2.747] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 01/01/2023] Open
Abstract
Background Ferroptosis, a form of regulated cell death, is an important topic in the field of cancer research. However, the signalling pathways and factors that sensitise tumour cells to ferroptosis remain elusive. Methods We determined the level of ferroptosis in cells by measuring cell death and lipid reactive oxygen species (ROS) production. The expression of RB1‐inducible coiled‐coil 1 (RB1CC1) and related proteins was analyzed by immunoblotting and immunohistochemistry. Immunofluorescence was used to determine the subcellular localization of RB1CC1. We investigated the mechanism of RB1CC1 nuclear translocation by constructing a series of RB1CC1 variants. To examine the ferroptosis‐ and RB1CC1‐dependent transcriptional program in tumour cells, chromatin immunoprecipitation sequencing was performed. To assess the effect of c‐Jun N‐terminal kinase (JNK) agonists on strenthening imidazole ketone erastin (IKE) therapy, we constructed cell‐derived xenograft mouse models. Mouse models of hepatocellular carcinoma to elucidate the importance of Rb1cc1 in IKE‐based therapy of liver tumourigenesis. Results RB1CC1 is upregulated by lipid ROS and that nuclear translocation of phosphorylation of RB1CC1 at Ser537 was essential for sensitising ferroptosis in tumour cells. Upon ferroptosis induction, nuclear RB1CC1 sharing forkhead box (FOX)‐binding motifs recruits elongator acetyltransferase complex subunit 3 (ELP3) to strengthen H4K12Ac histone modifications within enhancers linked to ferroptosis. This also stimulated transcription of ferroptosis‐associated genes, such as coiled‐coil–helix–coiled‐coil–helix domain containing 3 (CHCHD3), which enhanced mitochondrial function to elevate mitochondrial ROS early following induction of ferroptosis. FDA‐approved JNK activators reinforced RB1CC1 nuclear translocation and sensitised cells to ferroptosis, which strongly suggested that JNK is upstream of RB1CC1. Nuclear localisation of RB1CC1 correlated with lipid peroxidation in clinical lung cancer specimens. Rb1cc1 was essential for ferroptosis agonists to suppress liver tumourigenesis in mice. Conclusions Our findings indicate that RB1CC1‐associated signalling sensitises tumour cells to ferroptosis and that targeting RB1CC1 may be beneficial for tumour treatment.
Collapse
Affiliation(s)
- Xiangfei Xue
- Department of Clinical Laboratory Shanghai Tenth People's Hospital of Tongji University Shanghai China
| | - Lifang Ma
- Department of Clinical Laboratory Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Institute of Thoracic Oncology Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiao Zhang
- Shanghai Institute of Thoracic Oncology Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xin Xu
- Shanghai Institute of Thoracic Oncology Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Susu Guo
- Shanghai Institute of Thoracic Oncology Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yikun Wang
- Shanghai Institute of Thoracic Oncology Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Shiyu Qiu
- Shanghai Institute of Thoracic Oncology Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jiangtao Cui
- Shanghai Institute of Thoracic Oncology Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Wanxin Guo
- Shanghai Institute of Thoracic Oncology Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yongchun Yu
- Shanghai Institute of Thoracic Oncology Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Fenyong Sun
- Department of Clinical Laboratory Shanghai Tenth People's Hospital of Tongji University Shanghai China
| | - Yi Shi
- Bio‐X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education Shanghai Jiao Tong University Shanghai China
| | - Jiayi Wang
- Department of Clinical Laboratory Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Institute of Thoracic Oncology Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
48
|
Yang Z, Wang L, Yang C, Pu S, Guo Z, Wu Q, Zhou Z, Zhao H. Mitochondrial Membrane Remodeling. Front Bioeng Biotechnol 2022; 9:786806. [PMID: 35059386 PMCID: PMC8763711 DOI: 10.3389/fbioe.2021.786806] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Mitochondria are key regulators of many important cellular processes and their dysfunction has been implicated in a large number of human disorders. Importantly, mitochondrial function is tightly linked to their ultrastructure, which possesses an intricate membrane architecture defining specific submitochondrial compartments. In particular, the mitochondrial inner membrane is highly folded into membrane invaginations that are essential for oxidative phosphorylation. Furthermore, mitochondrial membranes are highly dynamic and undergo constant membrane remodeling during mitochondrial fusion and fission. It has remained enigmatic how these membrane curvatures are generated and maintained, and specific factors involved in these processes are largely unknown. This review focuses on the current understanding of the molecular mechanism of mitochondrial membrane architectural organization and factors critical for mitochondrial morphogenesis, as well as their functional link to human diseases.
Collapse
Affiliation(s)
- Ziyun Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, High-Tech Development Zone, Chengdu, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Ziqi Guo
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China.,Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
49
|
Bakker EY, Fujii M, Krstic-Demonacos M, Demonacos C, Alhammad R. Protein disulfide isomerase A1‑associated pathways in the development of stratified breast cancer therapies. Int J Oncol 2022; 60:16. [PMID: 35014681 PMCID: PMC8776328 DOI: 10.3892/ijo.2022.5306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/07/2021] [Indexed: 11/18/2022] Open
Abstract
The oxidoreductase protein disulfide isomerase A1 (PDIA1) functions as a cofactor for many transcription factors including estrogen receptor α (ERα), nuclear factor (NF)-κB, nuclear factor erythroid 2-like 2 (NRF2) and regulates the protein stability of the tumor suppressor p53. Taking this into account we hypothesized that PDIA1, by differentially modulating the gene expression of a diverse subset of genes in the ERα-positive vs. the ERα-negative breast cancer cells, might modify dissimilar pathways in the two types of breast cancer. This hypothesis was investigated using RNA-seq data from PDIA1-silenced MCF-7 (ERα-positive) and MDA-MB-231 (ERα-negative) breast cancer cells treated with either interferon γ (IFN-γ) or etoposide (ETO), and the obtained data were further analyzed using a variety of bioinformatic tools alongside clinical relevance assessment via Kaplan-Meier patient survival curves. The results highlighted the dual role of PDIA1 in suppressing carcinogenesis in the ERα(+) breast cancer patients by negatively regulating the response to reactive oxygen species (ROS) and promoting carcinogenesis by inducing cell cycle progression. In the ERα(−) breast cancer patients, PDIA1 prevented tumor development by modulating NF-κB and p53 activity and cell migration and induced breast cancer progression through control of cytokine signaling and the immune response. The findings reported in this study shed light on the differential pathways regulating carcinogenesis in ERα(+) and ERα(−) breast cancer patients and could help identify therapeutic targets selectively effective in ERα(+) vs. ERα(−) patients.
Collapse
Affiliation(s)
- Emyr Yosef Bakker
- School of Medicine, University of Central Lancashire, Preston, Lancashire PR1 2HE, UK
| | - Masayuki Fujii
- Department of Biological and Environmental Chemistry, Faculty of Humanity Oriented Science and Engineering, Kindai University, Iizuka, Fukuoka 820‑8555, Japan
| | | | - Constantinos Demonacos
- Faculty of Biology Medicine and Health, School of Health Science, Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, UK
| | - Rashed Alhammad
- Faculty of Biology Medicine and Health, School of Health Science, Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
50
|
Rampelt H, Wollweber F, Licheva M, de Boer R, Perschil I, Steidle L, Becker T, Bohnert M, van der Klei I, Kraft C, van der Laan M, Pfanner N. Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth. Cell Rep 2022; 38:110290. [PMID: 35081352 PMCID: PMC8810396 DOI: 10.1016/j.celrep.2021.110290] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/01/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Invaginations of the mitochondrial inner membrane, termed cristae, are hubs for oxidative phosphorylation. The mitochondrial contact site and cristae organizing system (MICOS) and the dimeric F1Fo-ATP synthase play important roles in controlling cristae architecture. A fraction of the MICOS core subunit Mic10 is found in association with the ATP synthase, yet it is unknown whether this interaction is of relevance for mitochondrial or cellular functions. Here, we established conditions to selectively study the role of Mic10 at the ATP synthase. Mic10 variants impaired in MICOS functions stimulate ATP synthase oligomerization like wild-type Mic10 and promote efficient inner membrane energization, adaptation to non-fermentable carbon sources, and respiratory growth. Mic10's functions in respiratory growth largely depend on Mic10ATPsynthase, not on Mic10MICOS. We conclude that Mic10 plays a dual role as core subunit of MICOS and as partner of the F1Fo-ATP synthase, serving distinct functions in cristae shaping and respiratory adaptation and growth. Dual role of Mic10 of mitochondrial contact site and cristae organizing system (MICOS) Mic10 binds to mitochondrial ATP synthase and stabilizes higher order assemblies Oligomerization of Mic10 is required for its function in MICOS, not at ATP synthase Mic10 binding to ATP synthase supports metabolic adaptation and respiratory growth
Collapse
Affiliation(s)
- Heike Rampelt
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Florian Wollweber
- Medical Biochemistry & Molecular Biology, Center for Molecular Signaling, PZMS, Faculty of Medicine, Saarland University, 66421 Homburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Rinse de Boer
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 Groningen, the Netherlands
| | - Inge Perschil
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Liesa Steidle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany
| | - Maria Bohnert
- Institute of Cell Dynamics and Imaging, Cells in Motion Interfaculty Centre (CiM), University of Münster, 48149 Münster, Germany
| | - Ida van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 Groningen, the Netherlands
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Martin van der Laan
- Medical Biochemistry & Molecular Biology, Center for Molecular Signaling, PZMS, Faculty of Medicine, Saarland University, 66421 Homburg, Germany.
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|