1
|
Shibao CA, Peche VS, Pietka TA, Samovski D, Williams IM, Abumrad NN, Gamazon ER, Goldberg IJ, Wasserman DH, Abumrad NA. Microvascular insulin resistance with enhanced muscle glucose disposal in CD36 deficiency. Diabetologia 2024:10.1007/s00125-024-06292-4. [PMID: 39503770 DOI: 10.1007/s00125-024-06292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 11/13/2024]
Abstract
AIMS/HYPOTHESIS Microvascular dysfunction contributes to insulin resistance. CD36, a fatty acid transporter and modulator of insulin signalling, is abundant in microvascular endothelial cells. Humans carrying the minor allele (G) of CD36 coding variant rs3211938 have 50% reduced CD36 expression and show endothelial dysfunction. We aimed to determine whether G allele carriers have microvascular resistance to insulin and, if so, how this affects glucose disposal. METHODS Our multi-disciplinary approach included hyperinsulinaemic-euglycaemic clamps in Cd36-/- and wild-type mice, and in individuals with 50% CD36 deficiency, together with control counterparts, in addition to primary human-derived microvascular endothelial cells with/without CD36 depletion. RESULTS Insulin clamps showed that Cd36-/- mice have enhanced insulin-stimulated glucose disposal but reduced vascular compliance and capillary perfusion. Intravital microscopy of the gastrocnemius showed unaltered transcapillary insulin flux. CD36-deficient humans had better insulin-stimulated glucose disposal but insulin-unresponsive microvascular blood volume (MBV). Human microvascular cells depleted of CD36 showed impaired insulin activation of Akt, endothelial NO synthase and NO generation. Thus, in CD36 deficiency, microvascular insulin resistance paradoxically associated with enhanced insulin sensitivity of glucose disposal. CONCLUSIONS/INTERPRETATION CD36 deficiency was previously shown to reduce muscle/heart fatty acid uptake, whereas here we showed that it reduced vascular compliance and the ability of insulin to increase MBV for optimising glucose and oxygen delivery. The muscle and heart respond to these energy challenges by transcriptional remodelling priming the tissue for insulin-stimulated glycolytic flux. Reduced oxygen delivery activating hypoxia-induced factors, endothelial release of growth factors or small intracellular vesicles might mediate this adaptation. Targeting NO bioavailability in CD36 deficiency could benefit the microvasculature and muscle/heart metabolism. TRIAL REGISTRATION Clinicaltrials.gov NCT03012386 DATA AVAILABILITY: The RNAseq data generated in this study have been deposited in the NCBI Gene Expression Omnibus ( www.ncbi.nlm.nih.gov/geo/ ) under accession code GSE235988 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE235988 ).
Collapse
Affiliation(s)
- Cyndya A Shibao
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Vivek S Peche
- Department of Medicine, Division of Nutritional Sciences and Obesity Research, Washington University School of Medicine, St Louis, MO, USA
| | - Terri A Pietka
- Department of Medicine, Division of Nutritional Sciences and Obesity Research, Washington University School of Medicine, St Louis, MO, USA
| | - Dmitri Samovski
- Department of Medicine, Division of Nutritional Sciences and Obesity Research, Washington University School of Medicine, St Louis, MO, USA
| | - Ian M Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naji N Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric R Gamazon
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
| | - Ira J Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, New York, NY, USA
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nada A Abumrad
- Department of Medicine, Division of Nutritional Sciences and Obesity Research, Washington University School of Medicine, St Louis, MO, USA.
- Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
2
|
Shang R, Rodrigues B. Lipoprotein lipase as a target for obesity/diabetes related cardiovascular disease. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13199. [PMID: 39081272 PMCID: PMC11286490 DOI: 10.3389/jpps.2024.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Worldwide, the prevalence of obesity and diabetes have increased, with heart disease being their leading cause of death. Traditionally, the management of obesity and diabetes has focused mainly on weight reduction and controlling high blood glucose. Unfortunately, despite these efforts, poor medication management predisposes these patients to heart failure. One instigator for the development of heart failure is how cardiac tissue utilizes different sources of fuel for energy. In this regard, the heart switches from using various substrates, to predominantly using fatty acids (FA). This transformation to using FA as an exclusive source of energy is helpful in the initial stages of the disease. However, over the progression of diabetes this has grave end results. This is because toxic by-products are produced by overuse of FA, which weaken heart function (heart disease). Lipoprotein lipase (LPL) is responsible for regulating FA delivery to the heart, and its function during diabetes has not been completely revealed. In this review, the mechanisms by which LPL regulates fuel utilization by the heart in control conditions and following diabetes will be discussed in an attempt to identify new targets for therapeutic intervention. Currently, as treatment options to directly target diabetic heart disease are scarce, research on LPL may assist in drug development that exclusively targets fuel utilization by the heart and lipid accumulation in macrophages to help delay, prevent, or treat cardiac failure, and provide long-term management of this condition during diabetes.
Collapse
Affiliation(s)
- Rui Shang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Albitar O, D'Souza CM, Adeghate EA. Effects of Lipoproteins on Metabolic Health. Nutrients 2024; 16:2156. [PMID: 38999903 PMCID: PMC11243180 DOI: 10.3390/nu16132156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Lipids are primarily transported in the bloodstream by lipoproteins, which are macromolecules of lipids and conjugated proteins also known as apolipoproteins. The processes of lipoprotein assembly, secretion, transportation, modification, and clearance are crucial components of maintaining a healthy lipid metabolism. Disruption in any of these steps results in pathophysiological abnormalities such as dyslipidemia, obesity, insulin resistance, inflammation, atherosclerosis, peripheral artery disease, and cardiovascular diseases. By studying these genetic mutations, researchers can gain valuable insights into the underlying mechanisms that govern the relationship between protein structure and its physiological role. These lipoproteins, including HDL, LDL, lipoprotein(a), and VLDL, mainly serve the purpose of transporting lipids between tissues and organs. However, studies have provided evidence that apo(a) also possesses protective properties against pathogens. In the future, the field of study will be significantly influenced by the integration of recombinant DNA technology and human site-specific mutagenesis for treating hereditary disorders. Several medications are available for the treatment of dyslipoproteinemia. These include statins, fibrates, ezetimibe, niacin, PCSK9 inhibitors, evinacumab, DPP 4 inhibitors, glucagon-like peptide-1 receptor agonists GLP1RAs, GLP-1, and GIP dual receptor agonists, in addition to SGLT2 inhibitors. This current review article exhibits, for the first time, a comprehensive reflection of the available body of publications concerning the impact of lipoproteins on metabolic well-being across various pathological states.
Collapse
Affiliation(s)
- Obaida Albitar
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Crystal M D'Souza
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Ernest A Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| |
Collapse
|
4
|
Goldberg IJ, Cabodevilla AG, Younis W. In the Beginning, Lipoproteins Cross the Endothelial Barrier. J Atheroscler Thromb 2024; 31:854-860. [PMID: 38616110 PMCID: PMC11150724 DOI: 10.5551/jat.rv22017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024] Open
Abstract
Atherosclerosis begins with the infiltration of cholesterol-containing lipoproteins into the arterial wall. White blood cell (WBC)-associated inflammation follows. Despite decades of research using genetic and pharmacologic methods to alter WBC function, in humans, the most effective method to prevent the initiation and progression of disease remains low-density lipoprotein (LDL) reduction. However, additional approaches to reducing cardiovascular disease would be useful as residual risk of events continues even with currently effective LDL-reducing treatments. Some of this residual risk may be due to vascular toxicity of triglyceride-rich lipoproteins (TRLs). Another option is that LDL transcytosis continues, albeit at reduced rates due to lower circulating levels of this lipoprotein. This review will address these two topics. The evidence that TRLs promote atherosclerosis and the processes that allow LDL and TRLs to be taken up by endothelial cells leading to their accumulation with the subendothelial space.
Collapse
Affiliation(s)
- Ira J Goldberg
- Division of Endocrinology, New York University Grossman School of Medicine
| | | | - Waqas Younis
- Division of Endocrinology, New York University Grossman School of Medicine
| |
Collapse
|
5
|
Shibao C, Peche VS, Williams IM, Samovski D, Pietka TA, Abumrad NN, Gamazon E, Goldberg IJ, Wasserman D, Abumrad NA. Microvascular insulin resistance associates with enhanced muscle glucose disposal in CD36 deficiency. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.16.24302950. [PMID: 38405702 PMCID: PMC10889024 DOI: 10.1101/2024.02.16.24302950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Dysfunction of endothelial insulin delivery to muscle associates with insulin resistance. CD36, a fatty acid transporter and modulator of insulin signaling is abundant in endothelial cells, especially in capillaries. Humans with inherited 50% reduction in CD36 expression have endothelial dysfunction but whether it is associated with insulin resistance is unclear. Using hyperinsulinemic/euglycemic clamps in Cd36-/- and wildtype mice, and in 50% CD36 deficient humans and matched controls we found that Cd36-/- mice have enhanced systemic glucose disposal despite unaltered transendothelial insulin transfer and reductions in microvascular perfusion and blood vessel compliance. Partially CD36 deficient humans also have better glucose disposal than controls with no capillary recruitment by insulin. CD36 knockdown in primary human-derived microvascular cells impairs insulin action on AKT, endothelial nitric oxide synthase, and nitric oxide release. Thus, insulin resistance of microvascular function in CD36 deficiency paradoxically associates with increased glucose utilization, likely through a remodeling of muscle gene expression.
Collapse
Affiliation(s)
- Cyndya Shibao
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville TN
| | - Vivek S. Peche
- Department of Medicine, Division of Nutritional Sciences and Obesity Research, Washington University School of Medicine, St. Louis, MO
| | - Ian M. Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville TN
| | - Dmitri Samovski
- Department of Medicine, Division of Nutritional Sciences and Obesity Research, Washington University School of Medicine, St. Louis, MO
| | - Terri A. Pietka
- Department of Medicine, Division of Nutritional Sciences and Obesity Research, Washington University School of Medicine, St. Louis, MO
| | - Naji N. Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville TN
| | - Eric Gamazon
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN
| | - Ira J. Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, New York, NY
| | - David Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville TN
| | - Nada A. Abumrad
- Department of Medicine, Division of Nutritional Sciences and Obesity Research, Washington University School of Medicine, St. Louis, MO
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
6
|
Da Dalt L, Cabodevilla AG, Goldberg IJ, Norata GD. Cardiac lipid metabolism, mitochondrial function, and heart failure. Cardiovasc Res 2023; 119:1905-1914. [PMID: 37392421 PMCID: PMC10681665 DOI: 10.1093/cvr/cvad100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 07/03/2023] Open
Abstract
A fine balance between uptake, storage, and the use of high energy fuels, like lipids, is crucial in the homeostasis of different metabolic tissues. Nowhere is this balance more important and more precarious than in the heart. This highly energy-demanding muscle normally oxidizes almost all the available substrates to generate energy, with fatty acids being the preferred source under physiological conditions. In patients with cardiomyopathies and heart failure, changes in the main energetic substrate are observed; these hearts often prefer to utilize glucose rather than oxidizing fatty acids. An imbalance between uptake and oxidation of fatty acid can result in cellular lipid accumulation and cytotoxicity. In this review, we will focus on the sources and uptake pathways used to direct fatty acids to cardiomyocytes. We will then discuss the intracellular machinery used to either store or oxidize these lipids and explain how disruptions in homeostasis can lead to mitochondrial dysfunction and heart failure. Moreover, we will also discuss the role of cholesterol accumulation in cardiomyocytes. Our discussion will attempt to weave in vitro experiments and in vivo data from mice and humans and use several human diseases to illustrate metabolism gone haywire as a cause of or accomplice to cardiac dysfunction.
Collapse
Affiliation(s)
- Lorenzo Da Dalt
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, Italy
| | - Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, 550 1st Ave., New York, NY, USA
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, 550 1st Ave., New York, NY, USA
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, Italy
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Via Massimo Gorki 50, Cinisello Balsamo, Italy
| |
Collapse
|
7
|
Peche VS, Pietka TA, Jacome-Sosa M, Samovski D, Palacios H, Chatterjee-Basu G, Dudley AC, Beatty W, Meyer GA, Goldberg IJ, Abumrad NA. Endothelial cell CD36 regulates membrane ceramide formation, exosome fatty acid transfer and circulating fatty acid levels. Nat Commun 2023; 14:4029. [PMID: 37419919 PMCID: PMC10329018 DOI: 10.1038/s41467-023-39752-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
Endothelial cell (EC) CD36 controls tissue fatty acid (FA) uptake. Here we examine how ECs transfer FAs. FA interaction with apical membrane CD36 induces Src phosphorylation of caveolin-1 tyrosine-14 (Cav-1Y14) and ceramide generation in caveolae. Ensuing fission of caveolae yields vesicles containing FAs, CD36 and ceramide that are secreted basolaterally as small (80-100 nm) exosome-like extracellular vesicles (sEVs). We visualize in transwells EC transfer of FAs in sEVs to underlying myotubes. In mice with EC-expression of the exosome marker emeraldGFP-CD63, muscle fibers accumulate circulating FAs in emGFP-labeled puncta. The FA-sEV pathway is mapped through its suppression by CD36 depletion, blocking actin-remodeling, Src inhibition, Cav-1Y14 mutation, and neutral sphingomyelinase 2 inhibition. Suppression of sEV formation in mice reduces muscle FA uptake, raises circulating FAs, which remain in blood vessels, and lowers glucose, mimicking prominent Cd36-/- mice phenotypes. The findings show that FA uptake influences membrane ceramide, endocytosis, and EC communication with parenchymal cells.
Collapse
Affiliation(s)
- V S Peche
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - T A Pietka
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - M Jacome-Sosa
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - D Samovski
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - H Palacios
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - G Chatterjee-Basu
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - A C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - W Beatty
- Department of Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - G A Meyer
- Departments of Physical Therapy, Neurology and Orthopedic Surgery, Washington University School of Medicine, St. Louis, 63110, USA
| | - I J Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - N A Abumrad
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
8
|
Habibi J, Homan C, Naz H, Chen D, Lastra G, Whaley-Connell A, Sowers JR, Jia G. Endothelial MRs Mediate Western Diet-Induced Lipid Disorders and Skeletal Muscle Insulin Resistance in Females. Endocrinology 2023; 164:bqad091. [PMID: 37289042 PMCID: PMC10284339 DOI: 10.1210/endocr/bqad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023]
Abstract
Consumption of a Western diet (WD) consisting of excess fat and carbohydrates activates the renin-angiotensin-aldosterone system, which has emerged as an important risk factor for systemic and tissue insulin resistance. We recently discovered that activated mineralocorticoid receptors (MRs) in diet-induced obesity induce CD36 expression, increase ectopic lipid accumulation, and result in systemic and tissue insulin resistance. Here, we have further investigated whether endothelial cell (EC)-specific MR (ECMR) activation participates in WD-induced ectopic skeletal muscle lipid accumulation, insulin resistance, and dysfunction. Six-week-old female ECMR knockout (ECMR-/-) and wild-type (ECMR+/+) mice were fed either a WD or a chow diet for 16 weeks. ECMR-/- mice were found to have decreased WD-induced in vivo glucose intolerance and insulin resistance at 16 weeks. Improved insulin sensitivity was accompanied by increased glucose transporter type 4 expression in conjunction with improved soleus insulin metabolic signaling in phosphoinositide 3-kinases/protein kinase B and endothelial nitric oxide synthase activation. Additionally, ECMR-/- also blunted WD-induced increases in CD36 expression and associated elevations in soleus free fatty acid, total intramyocellular lipid content, oxidative stress, and soleus fibrosis. Moreover, in vitro and in vivo activation of ECMR increased EC-derived exosomal CD36 that was further taken up by skeletal muscle cells, leading to increased skeletal muscle CD36 levels. These findings indicate that in the context of an obesogenic WD, enhanced ECMR signaling increases EC-derived exosomal CD36 resulting in increased uptake and elevated concentrations of CD36 in skeletal muscle cells, contributing to increased lipid metabolic disorders and soleus insulin resistance.
Collapse
Affiliation(s)
- Javad Habibi
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO, 65201, USA
| | - Carlton Homan
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Huma Naz
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO, 65201, USA
| | - Dongqing Chen
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO, 65201, USA
| | - Guido Lastra
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO, 65201, USA
| | - Adam Whaley-Connell
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Department of Medicine–Nephrology and Hypertension, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO, 65201, USA
| | - James R Sowers
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Department of Medicine–Nephrology and Hypertension, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO, 65201, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65212, USA
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Guanghong Jia
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO, 65201, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65212, USA
| |
Collapse
|
9
|
Shmarakov IO, Gusarova GA, Islam MN, Marhuenda-Muñoz M, Bhattacharya J, Blaner WS. Retinoids stored locally in the lung are required to attenuate the severity of acute lung injury in male mice. Nat Commun 2023; 14:851. [PMID: 36792627 PMCID: PMC9932169 DOI: 10.1038/s41467-023-36475-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Retinoids are potent transcriptional regulators that act in regulating cell proliferation, differentiation, and other cellular processes. We carried out studies in male mice to establish the importance of local cellular retinoid stores within the lung alveolus for maintaining its health in the face of an acute inflammatory challenge induced by intranasal instillation of lipopolysaccharide. We also undertook single cell RNA sequencing and bioinformatic analyses to identify roles for different alveolar cell populations involved in mediating these retinoid-dependent responses. Here we show that local retinoid stores and uncompromised metabolism and signaling within the lung are required to lessen the severity of an acute inflammatory challenge. Unexpectedly, our data also establish that alveolar cells other than lipofibroblasts, specifically microvascular endothelial and alveolar epithelial cells, are able to take up lipoprotein-transported retinoid and to accumulate cellular retinoid stores that are directly used to respond to an acute inflammatory challenge.
Collapse
Affiliation(s)
- Igor O Shmarakov
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Galina A Gusarova
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Mohammad N Islam
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - María Marhuenda-Muñoz
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XIA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921, Santa Coloma de Gramenet, Spain
| | - Jahar Bhattacharya
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - William S Blaner
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
10
|
Gomez-Santos B, Saenz de Urturi D, Buqué X, Aurrekoetxea I, Nieva A, Fernández-Puertas I, Aspichueta P. In Vivo Hepatic Triglyceride Secretion Rate in Antisense Oligonucleotide (ASO)-Treated Mice. Methods Mol Biol 2023; 2675:15-26. [PMID: 37258752 DOI: 10.1007/978-1-0716-3247-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The liver is a central organ in regulating the whole body metabolic homeostasis, and, among many other processes, it plays a crucial role in lipoprotein metabolism. The liver controls the secretion of very-low-density lipoproteins (VLDLs), particles specialized in the transport of liver lipids, mainly triglycerides (TGs), to the adipose tissue, heart, and muscle, among other tissues, providing fatty acids to be stored or to be used as an energy source. The analysis of this metabolic process provides relevant information about the crosstalk between the liver and other organs. It also helps to identify how the liver is able to secrete lipids to reduce its accumulation. This protocol shows how to analyze the liver TG secretion rate blocking the VLDL clearance from the blood by the administration of poloxamer 407. In addition, it shows how to isolate the VLDL produced by the liver at the end of the experiment, so that the apolipoprotein and lipid content and size can be measured. Using antisense oligonucleotides (ASOs) for silencing target proteins involved in metabolic diseases has emerged as a new promising therapeutic approach. Thus, the usage of ASOs has also been included in this protocol. As a conclusion, evaluation of TG secretion rate in mice provides key information to understand the organ crosstalk in metabolic diseases and the capacity of the liver to secrete lipids to blood.
Collapse
Affiliation(s)
- Beatriz Gomez-Santos
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Diego Saenz de Urturi
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Xabier Buqué
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Igor Aurrekoetxea
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ane Nieva
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Idoia Fernández-Puertas
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain.
| |
Collapse
|
11
|
Memetimin H, Zhu B, Lee S, Katz WS, Kern PA, Finlin BS. Improved β-cell function leads to improved glucose tolerance in a transgenic mouse expressing lipoprotein lipase in adipocytes. Sci Rep 2022; 12:22291. [PMID: 36566329 PMCID: PMC9789969 DOI: 10.1038/s41598-022-26995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022] Open
Abstract
Lipoprotein lipase (LPL) hydrolyzes the triglyceride core of lipoproteins and also functions as a bridge, allowing for lipoprotein and cholesterol uptake. Transgenic mice expressing LPL in adipose tissue under the control of the adiponectin promoter (AdipoQ-LPL) have improved glucose metabolism when challenged with a high fat diet. Here, we studied the transcriptional response of the adipose tissue of these mice to acute high fat diet exposure. Gene set enrichment analysis (GSEA) provided mechanistic insight into the improved metabolic phenotype of AdipoQ-LPL mice. First, the cholesterol homeostasis pathway, which is controlled by the SREBP2 transcription factor, is repressed in gonadal adipose tissue AdipoQ-LPL mice. Furthermore, we identified SND1 as a link between SREBP2 and CCL19, an inflammatory chemokine that is reduced in AdipoQ-LPL mice. Second, GSEA identified a signature for pancreatic β-cells in adipose tissue of AdipoQ-LPL mice, an unexpected finding. We explored whether β-cell function is improved in AdipoQ-LPL mice and found that the first phase of insulin secretion is increased in mice challenged with high fat diet. In summary, we identify two different mechanisms for the improved metabolic phenotype of AdipoQ-LPL mice. One involves improved adipose tissue function and the other involves adipose tissue-pancreatic β-cell crosstalk.
Collapse
Affiliation(s)
- Hasiyet Memetimin
- grid.266539.d0000 0004 1936 8438Division of Endocrinology, and the Barnstable Brown Diabetes and Obesity Center, Department of Medicine, University of Kentucky, Lexington, KY USA
| | - Beibei Zhu
- grid.266539.d0000 0004 1936 8438Division of Endocrinology, and the Barnstable Brown Diabetes and Obesity Center, Department of Medicine, University of Kentucky, Lexington, KY USA
| | - Sangderk Lee
- grid.266539.d0000 0004 1936 8438Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY USA
| | - Wendy S. Katz
- grid.266539.d0000 0004 1936 8438Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY USA
| | - Philip A. Kern
- grid.266539.d0000 0004 1936 8438Division of Endocrinology, and the Barnstable Brown Diabetes and Obesity Center, Department of Medicine, University of Kentucky, Lexington, KY USA
| | - Brian S. Finlin
- grid.266539.d0000 0004 1936 8438Division of Endocrinology, and the Barnstable Brown Diabetes and Obesity Center, Department of Medicine, University of Kentucky, Lexington, KY USA
| |
Collapse
|
12
|
Cifarelli V, Kuda O, Yang K, Liu X, Gross RW, Pietka TA, Heo GS, Sultan D, Luehmann H, Lesser J, Ross M, Goldberg IJ, Gropler RJ, Liu Y, Abumrad NA. Cardiac immune cell infiltration associates with abnormal lipid metabolism. Front Cardiovasc Med 2022; 9:948332. [PMID: 36061565 PMCID: PMC9428462 DOI: 10.3389/fcvm.2022.948332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/22/2022] [Indexed: 01/05/2023] Open
Abstract
CD36 mediates the uptake of long-chain fatty acids (FAs), a major energy substrate for the myocardium. Under excessive FA supply, CD36 can cause cardiac lipid accumulation and inflammation while its deletion reduces heart FA uptake and lipid content and increases glucose utilization. As a result, CD36 was proposed as a therapeutic target for obesity-associated heart disease. However, more recent reports have shown that CD36 deficiency suppresses myocardial flexibility in fuel preference between glucose and FAs, impairing tissue energy balance, while CD36 absence in tissue macrophages reduces efferocytosis and myocardial repair after injury. In line with the latter homeostatic functions, we had previously reported that CD36-/- mice have chronic subclinical inflammation. Lipids are important for the maintenance of tissue homeostasis and there is limited information on heart lipid metabolism in CD36 deficiency. Here, we document in the hearts of unchallenged CD36-/- mice abnormalities in the metabolism of triglycerides, plasmalogens, cardiolipins, acylcarnitines, and arachidonic acid, and the altered remodeling of these lipids in response to an overnight fast. The hearts were examined for evidence of inflammation by monitoring the presence of neutrophils and pro-inflammatory monocytes/macrophages using the respective positron emission tomography (PET) tracers, 64Cu-AMD3100 and 68Ga-DOTA-ECL1i. We detected significant immune cell infiltration in unchallenged CD36-/- hearts as compared with controls and immune infiltration was also observed in hearts of mice with cardiomyocyte-specific CD36 deficiency. Together, the data show that the CD36-/- heart is in a non-homeostatic state that could compromise its stress response. Non-invasive immune cell monitoring in humans with partial or total CD36 deficiency could help evaluate the risk of impaired heart remodeling and disease.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States,Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States,*Correspondence: Vincenza Cifarelli,
| | - Ondrej Kuda
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Kui Yang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States,Division of Complex Drug Analysis, Office of Testing and Research, U.S. Food and Drug Administration, St. Louis, MO, United States
| | - Xinping Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Richard W. Gross
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Terri A. Pietka
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Gyu Seong Heo
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Deborah Sultan
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Hannah Luehmann
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Josie Lesser
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Morgan Ross
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Ira J. Goldberg
- Division of Endocrinology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Robert J. Gropler
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States,Yongjian Liu,
| | - Nada A. Abumrad
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States,Nada A. Abumrad,
| |
Collapse
|
13
|
Kim B, Arany Z. Endothelial Lipid Metabolism. Cold Spring Harb Perspect Med 2022; 12:a041162. [PMID: 35074792 PMCID: PMC9310950 DOI: 10.1101/cshperspect.a041162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Endothelial cells (ECs) line all vessels of all vertebrates and are fundamental to organismal metabolism. ECs rely on their metabolism both to transport nutrients in and out of underlying parenchyma, and to support their own cellular activities, including angiogenesis. ECs primarily consume glucose, and much is known of how ECs transport and consume glucose and other carbohydrates. In contrast, how lipids are transported, and the role of lipids in normal EC function, has garnered less attention. We review here recent developments on the role of lipids in endothelial metabolism, with a focus on lipid uptake and transport in quiescent endothelium, and the use of lipid pathways during angiogenesis.
Collapse
Affiliation(s)
- Boa Kim
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zolt Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
14
|
Ramms B, Patel S, Sun X, Pessentheiner AR, Ducasa GM, Mullick AE, Lee RG, Crooke RM, Tsimikas S, Witztum JL, Gordts PL. Interventional hepatic apoC-III knockdown improves atherosclerotic plaque stability and remodeling by triglyceride lowering. JCI Insight 2022; 7:e158414. [PMID: 35653195 PMCID: PMC9310539 DOI: 10.1172/jci.insight.158414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Apolipoprotein C-III (apoC-III) is a critical regulator of triglyceride metabolism and correlates positively with hypertriglyceridemia and cardiovascular disease (CVD). It remains unclear if therapeutic apoC-III lowering reduces CVD risk and if the CVD correlation depends on the lipid-lowering or antiinflammatory properties. We determined the impact of interventional apoC-III lowering on atherogenesis using an apoC-III antisense oligonucleotide (ASO) in 2 hypertriglyceridemic mouse models where the intervention lowers plasma triglycerides and in a third lipid-refractory model. On a high-cholesterol Western diet apoC-III ASO treatment did not alter atherosclerotic lesion size but did attenuate advanced and unstable plaque development in the triglyceride-responsive mouse models. No lesion size or composition improvement was observed with apoC-III ASO in the lipid-refractory mice. To circumvent confounding effects of continuous high-cholesterol feeding, we tested the impact of interventional apoC-III lowering when switching to a cholesterol-poor diet after 12 weeks of Western diet. In this diet switch regimen, apoC-III ASO treatment significantly reduced plasma triglycerides, atherosclerotic lesion progression, and necrotic core area and increased fibrous cap thickness in lipid-responsive mice. Again, apoC-III ASO treatment did not alter triglyceride levels, lesion development, and lesion composition in lipid-refractory mice after the diet switch. Our findings suggest that interventional apoC-III lowering might be an effective strategy to reduce atherosclerosis lesion size and improve plaque stability when lipid lowering is achieved.
Collapse
Affiliation(s)
- Bastian Ramms
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Chemistry, Biochemistry I, Bielefeld University, Bielefeld, Germany
| | - Sohan Patel
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Xiaoli Sun
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Pharmacology, Mays Cancer Center, Transplant Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | - G. Michelle Ducasa
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | | | | | - Sotirios Tsimikas
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Joseph L. Witztum
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Philip L.S.M. Gordts
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
15
|
Habibi J, DeMarco VG, Hulse JL, Hayden MR, Whaley-Connell A, Hill MA, Sowers JR, Jia G. Inhibition of sphingomyelinase attenuates diet - Induced increases in aortic stiffness. J Mol Cell Cardiol 2022; 167:32-39. [PMID: 35331697 PMCID: PMC9107502 DOI: 10.1016/j.yjmcc.2022.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
Sphingomyelinases ensure ceramide production and play an integral role in cell turnover, inward budding of vesicles and outward release of exosomes. Recent data indicate a unique role for neutral sphingomyelinase (nSMase) in the control of ceramide-dependent exosome release and inflammatory pathways. Further, while inhibition of nSMase in vascular tissue attenuates the progression of atherosclerosis, little is known regarding its role on metabolic signaling and arterial vasomotor function. Accordingly, we hypothesized that nSMase inhibition with GW4869, would attenuate Western diet (WD) - induced increases in aortic stiffness through alterations in pathways which lead to oxidative stress, inflammation and vascular remodeling. Six week-old female C57BL/6L mice were fed either a WD containing excess fat (46%) and fructose (17.5%) for 16 weeks or a standard chow diet (CD). Mice were variably treated with GW4869 (2.0 μg/g body weight, intraperitoneal injection every 48 h for 12 weeks). WD feeding increased nSMase2 expression and activation while causing aortic stiffening and impaired vasorelaxation as determined by pulse wave velocity (PWV) and wire myography, respectively. Moreover, these functional abnormalities were associated with aortic remodeling and attenuated AMP-activated protein kinase, Sirtuin 1, and endothelial nitric oxide synthase activation. GW4869 treatment prevented the WD-induced increases in nSMase activation, PWV, and impaired endothelium dependent/independent vascular relaxation. GW4869 also inhibited WD-induced aortic CD36 expression, lipid accumulation, oxidative stress, inflammatory responses, as well as aortic remodeling. These findings indicate that targeting nSMase prevents diet - induced aortic stiffening and impaired vascular relaxation by attenuating oxidative stress, inflammation and adverse vascular remodeling.
Collapse
Affiliation(s)
- Javad Habibi
- Department of Medicine - Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO 65212, USA; Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65201, USA
| | - Vincent G DeMarco
- Department of Medicine - Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO 65212, USA; Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65201, USA; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Jack L Hulse
- Department of Medicine - Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO 65212, USA; Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65201, USA
| | - Melvin R Hayden
- Department of Medicine - Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Adam Whaley-Connell
- Department of Medicine - Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO 65212, USA; Department of Medicine - Nephrology and Hypertension, University of Missouri School of Medicine, Columbia, MO 65212, USA; Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65201, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - James R Sowers
- Department of Medicine - Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO 65212, USA; Department of Medicine - Nephrology and Hypertension, University of Missouri School of Medicine, Columbia, MO 65212, USA; Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65201, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Guanghong Jia
- Department of Medicine - Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO 65212, USA; Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65201, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
16
|
Bali S, Prasad S, Saini V. Ayurvedic lipid based rasayans - A perspective on the preparation and pharmacological significance of lipids on the bioavailability of phytoconstituents. J Ayurveda Integr Med 2022; 13:100526. [PMID: 34794864 PMCID: PMC8728051 DOI: 10.1016/j.jaim.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/15/2021] [Accepted: 09/11/2021] [Indexed: 11/29/2022] Open
Abstract
For thousands of years, lipid based Ayurvedic formulations have been made in India, and the craft has survived down the millennia up to the present time. Some of these deliciously potent phytonutrient preparations are very popular and have sustained the test of time pertaining to their efficacy. Recent researches on the role of phytonutrients in promoting cardio-pulmonary, brain and immune health substantially buttress the philosophy underlying the use of lipids in preparing these emulsions, since a large number of these bioactives are lipophilic. Being lipoidic, they are absorbed through the lacteals in the small intestine, and are then transported through the thoracic duct directly to the heart, bypassing the liver. The formulations utilizing ghee (clarified butter) or sesame oil as the carrier lipid, either while frying the myrobalams or as Anupana (adjuvant), have special significance in modulating bodily immunity, since the immune system is housed in lymphatics which are lipid rich. Amla and lipid based Ayurvedic rasayans (rejuvenating formulations) are a popular and highly palatable group of phytonutraceutical preparations. This group of polyherbal adaptogenic formulations is classified separately from other formulations in Ayurvedic therapeutics. Several of these health-promoting rasayans are suitable to be consumed by all age-groups in the recommended season and dose. Current research on endothelial and immune cell receptor mediated uptake of lipoidic molecules, together with the knowledge of lipid absorption pathways, lends credence to the usefulness of rasayans in targeting the cardio-pulmonary and immune systems. An attempt has been made in this paper to elucidate the mechanisms underpinning the complex interplay between lipid delivered hydrophobic phyto-molecules, systemic lymphatics and the Immune system.
Collapse
Affiliation(s)
- Sharadendu Bali
- Maharishi Markandeshwar Institute of Medical Sciences and Research, Ambala, 133207, India.
| | - Suvarna Prasad
- Maharishi Markandeshwar Institute of Medical Sciences and Research, Ambala, 133207, India
| | - Vipin Saini
- Maharishi Markandeshwar University, Solan, India
| |
Collapse
|
17
|
Abstract
Obesity has reached epidemic proportions and is a major contributor to insulin resistance (IR) and type 2 diabetes (T2D). Importantly, IR and T2D substantially increase the risk of cardiovascular (CV) disease. Although there are successful approaches to maintain glycemic control, there continue to be increased CV morbidity and mortality associated with metabolic disease. Therefore, there is an urgent need to understand the cellular and molecular processes that underlie cardiometabolic changes that occur during obesity so that optimal medical therapies can be designed to attenuate or prevent the sequelae of this disease. The vascular endothelium is in constant contact with the circulating milieu; thus, it is not surprising that obesity-driven elevations in lipids, glucose, and proinflammatory mediators induce endothelial dysfunction, vascular inflammation, and vascular remodeling in all segments of the vasculature. As cardiometabolic disease progresses, so do pathological changes in the entire vascular network, which can feed forward to exacerbate disease progression. Recent cellular and molecular data have implicated the vasculature as an initiating and instigating factor in the development of several cardiometabolic diseases. This Review discusses these findings in the context of atherosclerosis, IR and T2D, and heart failure with preserved ejection fraction. In addition, novel strategies to therapeutically target the vasculature to lessen cardiometabolic disease burden are introduced.
Collapse
|
18
|
Tall AR, Thomas DG, Gonzalez-Cabodevilla AG, Goldberg IJ. Addressing dyslipidemic risk beyond LDL-cholesterol. J Clin Invest 2022; 132:148559. [PMID: 34981790 PMCID: PMC8718149 DOI: 10.1172/jci148559] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the success of LDL-lowering drugs in reducing cardiovascular disease (CVD), there remains a large burden of residual disease due in part to persistent dyslipidemia characterized by elevated levels of triglyceride-rich lipoproteins (TRLs) and reduced levels of HDL. This form of dyslipidemia is increasing globally as a result of the rising prevalence of obesity and metabolic syndrome. Accumulating evidence suggests that impaired hepatic clearance of cholesterol-rich TRL remnants leads to their accumulation in arteries, promoting foam cell formation and inflammation. Low levels of HDL may associate with reduced cholesterol efflux from foam cells, aggravating atherosclerosis. While fibrates and fish oils reduce TRL, they have not been uniformly successful in reducing CVD, and there is a large unmet need for new approaches to reduce remnants and CVD. Rare genetic variants that lower triglyceride levels via activation of lipolysis and associate with reduced CVD suggest new approaches to treating dyslipidemia. Apolipoprotein C3 (APOC3) and angiopoietin-like 3 (ANGPTL3) have emerged as targets for inhibition by antibody, antisense, or RNAi approaches. Inhibition of either molecule lowers TRL but respectively raises or lowers HDL levels. Large clinical trials of such agents in patients with high CVD risk and elevated levels of TRL will be required to demonstrate efficacy of these approaches.
Collapse
Affiliation(s)
- Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York, USA
| | - David G Thomas
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York, USA
| | - Ainara G Gonzalez-Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
19
|
Iso T, Kurabayashi M. Cardiac Metabolism and Contractile Function in Mice with Reduced Trans-Endothelial Fatty Acid Transport. Metabolites 2021; 11:metabo11120889. [PMID: 34940647 PMCID: PMC8706312 DOI: 10.3390/metabo11120889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 01/15/2023] Open
Abstract
The heart is a metabolic omnivore that combusts a considerable amount of energy substrates, mainly long-chain fatty acids (FAs) and others such as glucose, lactate, ketone bodies, and amino acids. There is emerging evidence that muscle-type continuous capillaries comprise the rate-limiting barrier that regulates FA uptake into cardiomyocytes. The transport of FAs across the capillary endothelium is composed of three major steps-the lipolysis of triglyceride on the luminal side of the endothelium, FA uptake by the plasma membrane, and intracellular FA transport by cytosolic proteins. In the heart, impaired trans-endothelial FA (TEFA) transport causes reduced FA uptake, with a compensatory increase in glucose use. In most cases, mice with reduced FA uptake exhibit preserved cardiac function under unstressed conditions. When the workload is increased, however, the total energy supply relative to its demand (estimated with pool size in the tricarboxylic acid (TCA) cycle) is significantly diminished, resulting in contractile dysfunction. The supplementation of alternative fuels, such as medium-chain FAs and ketone bodies, at least partially restores contractile dysfunction, indicating that energy insufficiency due to reduced FA supply is the predominant cause of cardiac dysfunction. Based on recent in vivo findings, this review provides the following information related to TEFA transport: (1) the mechanisms of FA uptake by the heart, including TEFA transport; (2) the molecular mechanisms underlying the induction of genes associated with TEFA transport; (3) in vivo cardiac metabolism and contractile function in mice with reduced TEFA transport under unstressed conditions; and (4) in vivo contractile dysfunction in mice with reduced TEFA transport under diseased conditions, including an increased afterload and streptozotocin-induced diabetes.
Collapse
Affiliation(s)
- Tatsuya Iso
- Department of Medical Technology and Clinical Engineering, Faculty of Medical Technology and Clinical Engineering, Gunma University of Health and Welfare, 191-1 Kawamagari-Machi, Maebashi 371-0823, Gunma, Japan
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
- Correspondence:
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
| |
Collapse
|
20
|
Huang W, Gao F, Zhang Y, Chen T, Xu C. Lipid Droplet-Associated Proteins in Cardiomyopathy. ANNALS OF NUTRITION AND METABOLISM 2021; 78:1-13. [PMID: 34856540 DOI: 10.1159/000520122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The heart requires a high rate of fatty-acid oxidation (FAO) to meet its energy needs. Neutral lipids are the main source of energy for the heart and are stored in lipid droplets (LDs), which are cytosolic organelles that primarily serve to store neutral lipids and regulate cellular lipid metabolism. LD-associated proteins (LDAPs) are proteins either located on the surface of the LDs or reside in the cytosol and contribute to lipid metabolism. Therefore, abnormal cardiac lipid accumulation or FAO can alter the redox state of the heart, resulting in cardiomyopathy, a group of diseases that negatively affect the myocardial function, thereby leading to heart failure and even cardiac death. SUMMARY LDs, along with LDAPs, are pivotal for modulating heart lipid homeostasis. The proper cardiac development and the maintenance of its normal function depend largely on lipid homeostasis regulated by LDs and LDAPs. Overexpression or deletion of specific LDAPs can trigger myocardial dysfunction and may contribute to the development of cardiomyopathy. Extensive connections and interactions may also exist between LDAPs. Key Message: In this review, the various mechanisms involved in LDAP-mediated regulation of lipid metabolism, the association between cardiac development and lipid metabolism, as well as the role of LDAPs in cardiomyopathy progression are discussed.
Collapse
Affiliation(s)
- Weiwei Huang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuting Zhang
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tianhui Chen
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Chen Xu
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Shang R, Lal N, Lee CS, Zhai Y, Puri K, Seira O, Boushel RC, Sultan I, Räsänen M, Alitalo K, Hussein B, Rodrigues B. Cardiac-specific VEGFB overexpression reduces lipoprotein lipase activity and improves insulin action in rat heart. Am J Physiol Endocrinol Metab 2021; 321:E753-E765. [PMID: 34747201 DOI: 10.1152/ajpendo.00219.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac muscle uses multiple sources of energy including glucose and fatty acid (FA). The heart cannot synthesize FA and relies on obtaining it from other sources, with lipoprotein lipase (LPL) breakdown of lipoproteins suggested to be a key source of FA for cardiac use. Recent work has indicated that cardiac vascular endothelial growth factor B (VEGFB) overexpression expands the coronary vasculature and facilitates metabolic reprogramming that favors glucose utilization. We wanted to explore whether this influence of VEGFB on cardiac metabolism involves regulation of LPL activity with consequent effects on lipotoxicity and insulin signaling. The transcriptomes of rats with and without cardiomyocyte-specific overexpression of human VEGFB were compared by using RNA sequencing. Isolated perfused hearts or cardiomyocytes incubated with heparin were used to enable measurement of LPL activity. Untargeted metabolomic analysis was performed for quantification of cardiac lipid metabolites. Cardiac insulin sensitivity was evaluated using fast-acting insulin. Isolated heart and cardiomyocytes were used to determine transgene-encoded VEGFB isoform secretion patterns and mitochondrial oxidative capacity using high-resolution respirometry and extracellular flux analysis. In vitro, transgenic cardiomyocytes incubated overnight and thus exposed to abundantly secreted VEGFB isoforms, in the absence of any in vivo confounding regulators of cardiac metabolism, demonstrated higher basal oxygen consumption. In the whole heart, VEGFB overexpression induced an angiogenic response that was accompanied by limited cardiac LPL activity through multiple mechanisms. This was associated with a lowered accumulation of lipid intermediates, diacylglycerols and lysophosphatidylcholine, that are known to influence insulin action. In response to exogenous insulin, transgenic hearts demonstrated increased insulin sensitivity. In conclusion, the interrogation of VEGFB function on cardiac metabolism uncovered an intriguing and previously unappreciated effect to lower LPL activity and prevent lipid metabolite accumulation to improve insulin action. VEGFB could be a potential cardioprotective therapy to treat metabolic disorders, for example, diabetes.NEW & NOTEWORTHY In hearts overexpressing vascular endothelial growth factor B (VEGFB), besides its known angiogenic response, multiple regulatory mechanisms lowered coronary LPL. This was accompanied by limited cardiac lipid metabolite accumulation with an augmentation of cardiac insulin action. Our data for the first time links VEGFB to coronary LPL in regulation of cardiac metabolism. VEGFB may be cardioprotective in metabolic disorders like diabetes.
Collapse
Affiliation(s)
- Rui Shang
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nathaniel Lal
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chae Syng Lee
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yajie Zhai
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karanjit Puri
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oscar Seira
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert C Boushel
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ibrahim Sultan
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Markus Räsänen
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Lands B. Lipid nutrition: "In silico" studies and undeveloped experiments. Prog Lipid Res 2021; 85:101142. [PMID: 34818526 DOI: 10.1016/j.plipres.2021.101142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
This review examines lipids and lipid-binding sites on proteins in relation to cardiovascular disease. Lipid nutrition involves food energy from ingested fatty acids plus fatty acids formed from excess ingested carbohydrate and protein. Non-esterified fatty acids (NEFA) and lipoproteins have many detailed attributes not evident in their names. Recognizing attributes of lipid-protein interactions decreases unexpected outcomes. Details of double bond position and configuration interacting with protein binding sites have unexpected consequences in acyltransferase and cell replication events. Highly unsaturated fatty acids (HUFA) have n-3 and n-6 motifs with documented differences in intensity of destabilizing positive feedback loops amplifying pathophysiology. However, actions of NEFA have been neglected relative to cholesterol, which is co-produced from excess food. Native low-density lipoproteins (LDL) bind to a high-affinity cell surface receptor which poorly recognizes biologically modified LDLs. NEFA increase negative charge of LDL and decrease its processing by "normal" receptors while increasing processing by "scavenger" receptors. A positive feedback loop in the recruitment of monocytes and macrophages amplifies chronic inflammatory pathophysiology. Computer tools combine multiple components in lipid nutrition and predict balance of energy and n-3:n-6 HUFA. The tools help design and execute precise clinical nutrition monitoring that either supports or disproves expectations.
Collapse
Affiliation(s)
- Bill Lands
- Fellow ASN, AAAS, SFRBM, ISSFAL, College Park, MD, USA.
| |
Collapse
|
23
|
Sexual dimorphism in inorganic mercury toxicokinetics and the attendant lipotoxic and non-lipotoxic dyslipidemia in the rat. Biochem Biophys Rep 2021; 28:101146. [PMID: 34765744 PMCID: PMC8570945 DOI: 10.1016/j.bbrep.2021.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/18/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
The influence of variability in the biology of living organisms is poorly appreciated in toxicology. However, multiple lines of evidence indicate that sex-differences modulate toxicokinetics and toxicodynamics from cellular/molecular to whole animal levels resulting in different toxic responses of living organisms to xenobiotics exposure. In order to investigate the influence of sex in inorganic mercury (Hg) exposure, male and female Wistar rats were exposed to 0.5, 1.0 and 1.5 mg Hg/kg body weight orally as HgCl2 twice a week for 12 weeks. Higher Hg levels in the females (except heart) as compared to males were observed in the animals. At the highest dose of inorganic Hg, female renal Hg content was 3.3 times higher than that of the males. Mixed sexual dimorphism characterised circulating-lipid- and organ-lipid lipotoxic and non-lipotoxic dyslipidemia. The highest dose of inorganic Hg, induced hypercholesterolemia in the males as opposed to hypocholesterolemia in the female. Plasma and erythrocyte free fatty acids increased in both sexes, although the increase was more pronounced in the male. Reverse cholesterol transport was inhibited in the male at the highest dose of Hg, whereas female HDL became enriched with cholesterol. Female erythrocytes had all their lipids increased, whereas only male erythrocyte triglyceride increased. Brain cholesterol and phospholipids, and splenic phospholipids were depleted in both sexes. Our findings indicate that inorganic Hg exposure appears to affect Hg and lipid kinetics differently in both sexes, thus underscoring the need to develop sex-tailored approaches in the treatment of metal toxicosis and its metabolic outcomes. The influence of sex in inorganic Hg exposure was investigated in the rat. Higher Hg levels in females compared to males were observed. Sexual dimorphism characterised inorganic Hg-induced dyslipidemia. Inorganic Hg exposure affects Hg and lipid kinetics differently in both sexes.
Collapse
|
24
|
Abstract
The endothelium acts as the barrier that prevents circulating lipids such as lipoproteins and fatty acids into the arterial wall; it also regulates normal functioning in the circulatory system by balancing vasodilation and vasoconstriction, modulating the several responses and signals. Plasma lipids can interact with endothelium via different mechanisms and produce different phenotypes. Increased plasma-free fatty acids (FFAs) levels are associated with the pathogenesis of atherosclerosis and cardiovascular diseases (CVD). Because of the multi-dimensional roles of plasma FFAs in mediating endothelial dysfunction, increased FFA level is now considered an essential link in the onset of endothelial dysfunction in CVD. FFA-mediated endothelial dysfunction involves several mechanisms, including dysregulated production of nitric oxide and cytokines, metaflammation, oxidative stress, inflammation, activation of the renin-angiotensin system, and apoptosis. Therefore, modulation of FFA-mediated pathways involved in endothelial dysfunction may prevent the complications associated with CVD risk. This review presents details as to how endothelium is affected by FFAs involving several metabolic pathways.
Collapse
|
25
|
Fatty acids and evolving roles of their proteins in neurological, cardiovascular disorders and cancers. Prog Lipid Res 2021; 83:101116. [PMID: 34293403 DOI: 10.1016/j.plipres.2021.101116] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
The dysregulation of fat metabolism is involved in various disorders, including neurodegenerative, cardiovascular, and cancers. The uptake of long-chain fatty acids (LCFAs) with 14 or more carbons plays a pivotal role in cellular metabolic homeostasis. Therefore, the uptake and metabolism of LCFAs must constantly be in tune with the cellular, metabolic, and structural requirements of cells. Many metabolic diseases are thought to be driven by the abnormal flow of fatty acids either from the dietary origin and/or released from adipose stores. Cellular uptake and intracellular trafficking of fatty acids are facilitated ubiquitously with unique combinations of fatty acid transport proteins and cytoplasmic fatty acid-binding proteins in every tissue. Extensive data are emerging on the defective transporters and metabolism of LCFAs and their clinical implications. Uptake and metabolism of LCFAs are crucial for the brain's functional development and cardiovascular health and maintenance. In addition, data suggest fatty acid metabolic transporter can normalize activated inflammatory response by reprogramming lipid metabolism in cancers. Here we review the current understanding of how LCFAs and their proteins contribute to the pathophysiology of three crucial diseases and the mechanisms involved in the processes.
Collapse
|
26
|
Da Dalt L, Castiglioni L, Baragetti A, Audano M, Svecla M, Bonacina F, Pedretti S, Uboldi P, Benzoni P, Giannetti F, Barbuti A, Pellegatta F, Indino S, Donetti E, Sironi L, Mitro N, Catapano AL, Norata GD. PCSK9 deficiency rewires heart metabolism and drives heart failure with preserved ejection fraction. Eur Heart J 2021; 42:3078-3090. [PMID: 34252181 PMCID: PMC8380058 DOI: 10.1093/eurheartj/ehab431] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/28/2021] [Accepted: 06/24/2021] [Indexed: 12/04/2022] Open
Abstract
Aims PCSK9 is secreted into the circulation, mainly by the liver, and interacts with low-density lipoprotein receptor (LDLR) homologous and non-homologous receptors, including CD36, thus favouring their intracellular degradation. As PCSK9 deficiency increases the expression of lipids and lipoprotein receptors, thus contributing to cellular lipid accumulation, we investigated whether this could affect heart metabolism and function. Methods and results Wild-type (WT), Pcsk9 KO, Liver conditional Pcsk9 KO and Pcsk9/Ldlr double KO male mice were fed for 20 weeks with a standard fat diet and then exercise resistance, muscle strength, and heart characteristics were evaluated. Pcsk9 KO presented reduced running resistance coupled to echocardiographic abnormalities suggestive of heart failure with preserved ejection fraction (HFpEF). Heart mitochondrial activity, following maximal coupled and uncoupled respiration, was reduced in Pcsk9 KO mice compared to WT mice and was coupled to major changes in cardiac metabolism together with increased expression of LDLR and CD36 and with lipid accumulation. A similar phenotype was observed in Pcsk9/Ldlr DKO, thus excluding a contribution for LDLR to cardiac impairment observed in Pcsk9 KO mice. Heart function profiling of the liver selective Pcsk9 KO model further excluded the involvement of circulating PCSK9 in the development of HFpEF, pointing to a possible role locally produced PCSK9. Concordantly, carriers of the R46L loss-of-function variant for PCSK9 presented increased left ventricular mass but similar ejection fraction compared to matched control subjects. Conclusion PCSK9 deficiency impacts cardiac lipid metabolism in an LDLR independent manner and contributes to the development of HFpEF.
Collapse
Affiliation(s)
- Lorenzo Da Dalt
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy
| | - Laura Castiglioni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli, 25, 20133 Milan, Italy
| | - Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy.,IRCCS Multimedica Hospital, Via Milanese, 300, 20099 Sesto San Giovanni, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy
| | - Monika Svecla
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy
| | - Patrizia Uboldi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy
| | - Patrizia Benzoni
- Department of Biosciences, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy
| | - Federica Giannetti
- Department of Biosciences, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy
| | - Andrea Barbuti
- Department of Biosciences, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy
| | - Fabio Pellegatta
- Centro SISA per lo studio dell'Aterosclerosi, Ospedale Bassini, Via Massimo Gorki, 50, 20092 Cinisello Balsamo, Italy
| | - Serena Indino
- Department of Biomedical Science for Health, Università degli Studi di Milano, Via Mangiagalli, 31, 20133 Milan, Italy
| | - Elena Donetti
- Department of Biomedical Science for Health, Università degli Studi di Milano, Via Mangiagalli, 31, 20133 Milan, Italy
| | - Luigi Sironi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli, 25, 20133 Milan, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy
| | - Alberico Luigi Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy.,IRCCS Multimedica Hospital, Via Milanese, 300, 20099 Sesto San Giovanni, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy.,Centro SISA per lo studio dell'Aterosclerosi, Ospedale Bassini, Via Massimo Gorki, 50, 20092 Cinisello Balsamo, Italy
| |
Collapse
|
27
|
Shang R, Rodrigues B. Lipoprotein Lipase and Its Delivery of Fatty Acids to the Heart. Biomolecules 2021; 11:biom11071016. [PMID: 34356640 PMCID: PMC8301904 DOI: 10.3390/biom11071016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023] Open
Abstract
Ninety percent of plasma fatty acids (FAs) are contained within lipoprotein-triglyceride, and lipoprotein lipase (LPL) is robustly expressed in the heart. Hence, LPL-mediated lipolysis of lipoproteins is suggested to be a key source of FAs for cardiac use. Lipoprotein clearance by LPL occurs at the apical surface of the endothelial cell lining of the coronary lumen. In the heart, the majority of LPL is produced in cardiomyocytes and subsequently is translocated to the apical luminal surface. Here, vascular LPL hydrolyzes lipoprotein-triglyceride to provide the heart with FAs for ATP generation. This article presents an overview of cardiac LPL, explains how the enzyme works, describes key molecules that regulate its activity and outlines how changes in LPL are brought about by physiological and pathological states such as fasting and diabetes, respectively.
Collapse
|
28
|
Cabodevilla AG, Tang S, Lee S, Mullick AE, Aleman JO, Hussain MM, Sessa WC, Abumrad NA, Goldberg IJ. Eruptive xanthoma model reveals endothelial cells internalize and metabolize chylomicrons, leading to extravascular triglyceride accumulation. J Clin Invest 2021; 131:e145800. [PMID: 34128469 PMCID: PMC8203467 DOI: 10.1172/jci145800] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Although tissue uptake of fatty acids from chylomicrons is primarily via lipoprotein lipase (LpL) hydrolysis of triglycerides (TGs), studies of patients with genetic LpL deficiency suggest additional pathways deliver dietary lipids to tissues. Despite an intact endothelial cell (EC) barrier, hyperchylomicronemic patients accumulate chylomicron-derived lipids within skin macrophages, leading to the clinical finding eruptive xanthomas. We explored whether an LpL-independent pathway exists for transfer of circulating lipids across the EC barrier. We found that LpL-deficient mice had a marked increase in aortic EC lipid droplets before and after a fat gavage. Cultured ECs internalized chylomicrons, which were hydrolyzed within lysosomes. The products of this hydrolysis fueled lipid droplet biogenesis in ECs and triggered lipid accumulation in cocultured macrophages. EC chylomicron uptake was inhibited by competition with HDL and knockdown of the scavenger receptor-BI (SR-BI). In vivo, SR-BI knockdown reduced TG accumulation in aortic ECs and skin macrophages of LpL-deficient mice. Thus, ECs internalize chylomicrons, metabolize them in lysosomes, and either store or release their lipids. This latter process may allow accumulation of TGs within skin macrophages and illustrates a pathway that might be responsible for creation of eruptive xanthomas.
Collapse
Affiliation(s)
- Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Songtao Tang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Sungwoon Lee
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Jose O Aleman
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - M Mahmood Hussain
- Diabetes and Obesity Center, NYU-Long Island School of Medicine, Mineola, New York, USA
| | - William C Sessa
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nada A Abumrad
- Nutritional Sciences, Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
29
|
Goldberg IJ, Cabodevilla AG, Samovski D, Cifarelli V, Basu D, Abumrad NA. Lipolytic enzymes and free fatty acids at the endothelial interface. Atherosclerosis 2021; 329:1-8. [PMID: 34130222 DOI: 10.1016/j.atherosclerosis.2021.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 01/17/2023]
Abstract
Lipids released from circulating lipoproteins by intravascular action of lipoprotein lipase (LpL) reach parenchymal cells in tissues with a non-fenestrated endothelium by transfer through or around endothelial cells. The actions of LpL are controlled at multiple sites, its synthesis and release by myocytes and adipocytes, its transit and association with the endothelial cell luminal surface, and finally its activation and inhibition by a number of proteins and by its product non-esterified fatty acids. Multiple pathways mediate endothelial transit of lipids into muscle and adipose tissues. These include movement of fatty acids via the endothelial cell fatty acid transporter CD36 and movement of whole or partially LpL-hydrolyzed lipoproteins via other apical endothelial cell receptors such as SR-B1and Alk1. Lipids also likely change the barrier function of the endothelium and operation of the paracellular pathway around endothelial cells. This review summarizes in vitro and in vivo support for the key role of endothelial cells in delivery of lipids and highlights incompletely understood processes that are the focus of active investigation.
Collapse
Affiliation(s)
- Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Dmitri Samovski
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO, USA
| | - Vincenza Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO, USA
| | - Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Nada A Abumrad
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
30
|
Sithara T, Drosatos K. Metabolic Complications in Cardiac Aging. Front Physiol 2021; 12:669497. [PMID: 33995129 PMCID: PMC8116539 DOI: 10.3389/fphys.2021.669497] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Aging is a process that can be accompanied by molecular and cellular alterations that compromise cardiac function. Although other metabolic disorders with increased prevalence in aged populations, such as diabetes mellitus, dyslipidemia, and hypertension, are associated with cardiovascular complications; aging-related cardiomyopathy has some unique features. Healthy hearts oxidize fatty acids, glucose, lactate, ketone bodies, and amino acids for producing energy. Under physiological conditions, cardiac mitochondria use fatty acids and carbohydrate mainly to generate ATP, 70% of which is derived from fatty acid oxidation (FAO). However, relative contribution of nutrients in ATP synthesis is altered in the aging heart with glucose oxidation increasing at the expense of FAO. Cardiac aging is also associated with impairment of mitochondrial abundance and function, resulting in accumulation of reactive oxygen species (ROS) and activation of oxidant signaling that eventually leads to further mitochondrial damage and aggravation of cardiac function. This review summarizes the main components of pathophysiology of cardiac aging, which pertain to cardiac metabolism, mitochondrial function, and systemic metabolic changes that affect cardiac function.
Collapse
Affiliation(s)
- Thomas Sithara
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Konstantinos Drosatos
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
31
|
Abumrad NA, Cabodevilla AG, Samovski D, Pietka T, Basu D, Goldberg IJ. Endothelial Cell Receptors in Tissue Lipid Uptake and Metabolism. Circ Res 2021; 128:433-450. [PMID: 33539224 DOI: 10.1161/circresaha.120.318003] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipid uptake and metabolism are central to the function of organs such as heart, skeletal muscle, and adipose tissue. Although most heart energy derives from fatty acids (FAs), excess lipid accumulation can cause cardiomyopathy. Similarly, high delivery of cholesterol can initiate coronary artery atherosclerosis. Hearts and arteries-unlike liver and adrenals-have nonfenestrated capillaries and lipid accumulation in both health and disease requires lipid movement from the circulation across the endothelial barrier. This review summarizes recent in vitro and in vivo findings on the importance of endothelial cell receptors and uptake pathways in regulating FAs and cholesterol uptake in normal physiology and cardiovascular disease. We highlight clinical and experimental data on the roles of ECs in lipid supply to tissues, heart, and arterial wall in particular, and how this affects organ metabolism and function. Models of FA uptake into ECs suggest that receptor-mediated uptake predominates at low FA concentrations, such as during fasting, whereas FA uptake during lipolysis of chylomicrons may involve paracellular movement. Similarly, in the setting of an intact arterial endothelial layer, recent and historic data support a role for receptor-mediated processes in the movement of lipoproteins into the subarterial space. We conclude with thoughts on the need to better understand endothelial lipid transfer for fuller comprehension of the pathophysiology of hyperlipidemia, and lipotoxic diseases such as some forms of cardiomyopathy and atherosclerosis.
Collapse
Affiliation(s)
- Nada A Abumrad
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| | - Dmitri Samovski
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Terri Pietka
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| |
Collapse
|
32
|
Josefs T, Basu D, Vaisar T, Arets B, Kanter JE, Huggins LA, Hu Y, Liu J, Clouet-Foraison N, Heinecke JW, Bornfeldt KE, Goldberg IJ, Fisher EA. Atherosclerosis Regression and Cholesterol Efflux in Hypertriglyceridemic Mice. Circ Res 2021; 128:690-705. [PMID: 33530703 DOI: 10.1161/circresaha.120.317458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Tatjana Josefs
- Division of Cardiology (T.J., J.L., E.A.F.), Department of Medicine, New York University School of Medicine.,Department of Internal Medicine, MUMC, Maastricht, the Netherlands (T.J., B.A.).,CARIM, MUMC, Maastricht, the Netherlands (T.J., B.A.)
| | - Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism (D.B., L.-A.H., Y.H., I.J.G.), Department of Medicine, New York University School of Medicine.,Department of Internal Medicine, MUMC, Maastricht, the Netherlands (T.J., B.A.).,CARIM, MUMC, Maastricht, the Netherlands (T.J., B.A.)
| | - Tomas Vaisar
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle (T.V., J.E.K., N.C.-F., J.W.H., K.E.B.)
| | | | - Jenny E Kanter
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle (T.V., J.E.K., N.C.-F., J.W.H., K.E.B.)
| | - Lesley-Ann Huggins
- Division of Endocrinology, Diabetes and Metabolism (D.B., L.-A.H., Y.H., I.J.G.), Department of Medicine, New York University School of Medicine
| | - Yunying Hu
- Division of Endocrinology, Diabetes and Metabolism (D.B., L.-A.H., Y.H., I.J.G.), Department of Medicine, New York University School of Medicine
| | - Jianhua Liu
- Division of Cardiology (T.J., J.L., E.A.F.), Department of Medicine, New York University School of Medicine
| | - Noemie Clouet-Foraison
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle (T.V., J.E.K., N.C.-F., J.W.H., K.E.B.)
| | - Jay W Heinecke
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle (T.V., J.E.K., N.C.-F., J.W.H., K.E.B.)
| | - Karin E Bornfeldt
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle (T.V., J.E.K., N.C.-F., J.W.H., K.E.B.)
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism (D.B., L.-A.H., Y.H., I.J.G.), Department of Medicine, New York University School of Medicine
| | - Edward A Fisher
- Division of Cardiology (T.J., J.L., E.A.F.), Department of Medicine, New York University School of Medicine
| |
Collapse
|
33
|
Nguyen TD, Schulze PC. Lipid in the midst of metabolic remodeling - Therapeutic implications for the failing heart. Adv Drug Deliv Rev 2020; 159:120-132. [PMID: 32791076 DOI: 10.1016/j.addr.2020.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
A healthy heart relies on an intact cardiac lipid metabolism. Fatty acids represent the major source for ATP production in the heart. Not less importantly, lipids are directly involved in critical processes such as cell growth, proliferation, and cell death by functioning as building blocks or signaling molecules. In the development of heart failure, perturbations in fatty acid utilization impair cardiac energetics. Furthermore, they may affect glucose and amino acid metabolism and induce the synthesis of several lipid intermediates, whose biological functions are still poorly understood. This work outlines the pivotal role of lipid metabolism in the heart and provides a lipocentric view of metabolic remodeling in heart failure. We will also critically revisit therapeutic attempts targeting cardiac lipid metabolism in heart failure and propose specific strategies for future investigations in this regard.
Collapse
|
34
|
Sukhorukov VN, Khotina VA, Chegodaev YS, Ivanova E, Sobenin IA, Orekhov AN. Lipid Metabolism in Macrophages: Focus on Atherosclerosis. Biomedicines 2020; 8:biomedicines8080262. [PMID: 32752275 PMCID: PMC7459513 DOI: 10.3390/biomedicines8080262] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Mechanisms of lipid homeostasis and its impairment are of crucial importance for atherogenesis, and their understanding is necessary for successful development of new therapeutic approaches. In the arterial wall, macrophages play a prominent role in intracellular lipid accumulation, giving rise to foam cells that populate growing atherosclerotic plaques. Under normal conditions, macrophages are able to process substantial amounts of lipids and cholesterol without critical overload of the catabolic processes. However, in atherosclerosis, these pathways become inefficient, leading to imbalance in cholesterol and lipid metabolism and disruption of cellular functions. In this review, we summarize the existing knowledge on the involvement of macrophage lipid metabolism in atherosclerosis development, including both the results of recent studies and classical concepts, and provide a detailed description of these processes from the moment of lipid uptake with lipoproteins to cholesterol efflux.
Collapse
Affiliation(s)
- Vasily N. Sukhorukov
- Research Institute of Human Morphology, Laboratory of Cellular and Molecular Pathology of Cardiovascular System, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (I.A.S.); (A.N.O.)
- Russian Medical Research Center of Cardiology, Institute of Experimental Cardiology, Laboratory of Medical Genetics, 15-a 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
- Correspondence: ; Tel.: +7-915-393-3263
| | - Victoria A. Khotina
- Research Institute of Human Morphology, Laboratory of Cellular and Molecular Pathology of Cardiovascular System, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (I.A.S.); (A.N.O.)
- Institute of General Pathology and Pathophysiology, Laboratory of Angiopathology, 8 Baltiyskaya Str., 125315 Moscow, Russia
| | | | - Ekaterina Ivanova
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia;
| | - Igor A. Sobenin
- Research Institute of Human Morphology, Laboratory of Cellular and Molecular Pathology of Cardiovascular System, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (I.A.S.); (A.N.O.)
- Russian Medical Research Center of Cardiology, Institute of Experimental Cardiology, Laboratory of Medical Genetics, 15-a 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
| | - Alexander N. Orekhov
- Research Institute of Human Morphology, Laboratory of Cellular and Molecular Pathology of Cardiovascular System, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (I.A.S.); (A.N.O.)
- Institute of General Pathology and Pathophysiology, Laboratory of Angiopathology, 8 Baltiyskaya Str., 125315 Moscow, Russia
| |
Collapse
|
35
|
An early-life diet containing large phospholipid-coated lipid globules programmes later-life postabsorptive lipid trafficking in high-fat diet- but not in low-fat diet-fed mice. Br J Nutr 2020; 125:961-971. [PMID: 32616081 DOI: 10.1017/s0007114520002421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Feeding mice in early life a diet containing an experimental infant milk formula (Nuturis®; eIMF), with a lipid structure similar to human milk, transiently lowered body weight (BW) and fat mass gain upon Western-style diet later in life, when compared with mice fed diets based on control IMF (cIMF). We tested the hypothesis that early-life eIMF feeding alters the absorption or the postabsorptive trafficking of dietary lipids in later life. Male C57BL/6JOlaHsd mice were fed eIMF/cIMF from postnatal day 16-42, followed by low- (LFD, American Institute of Nutrition (AIN)-93 G, 7 wt% fat) or high-fat diet (HFD, D12451, 24 wt% fat) until day 63-70. Lipid absorption rate and tissue concentrations were determined after intragastric administration of stable isotope (2H or 13C) labelled lipids in separate groups. Lipid enrichments in plasma and tissues were analysed using GC-MS. The rate of triolein absorption was similar between eIMF and cIMF fed LFD: 3·2 (sd 1·8) and 3·9 (sd 2·1) and HFD: 2·6 (sd 1·7) and 3·8 (sd 3·0) % dose/ml per h. Postabsorptive lipid trafficking, that is, concentrations of absorbed lipids in tissues, was similar in the eIMF and cIMF groups after LFD. Tissue levels of absorbed TAG after HFD feeding were lower in heart (-42 %) and liver (-46 %), and higher in muscle (+81 %, all P < 0·05) in eIMF-fed mice. In conclusion, early-life IMF diet affected postabsorptive trafficking of absorbed lipids after HFD, but not LFD. Changes in postabsorptive lipid trafficking could underlie the observed lower BW and body fat accumulation in later life upon a persistent long-term obesogenic challenge.
Collapse
|
36
|
Snyder J, Zhai R, Lackey AI, Sato PY. Changes in Myocardial Metabolism Preceding Sudden Cardiac Death. Front Physiol 2020; 11:640. [PMID: 32612538 PMCID: PMC7308560 DOI: 10.3389/fphys.2020.00640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Heart disease is widely recognized as a major cause of death worldwide and is the leading cause of mortality in the United States. Centuries of research have focused on defining mechanistic alterations that drive cardiac pathogenesis, yet sudden cardiac death (SCD) remains a common unpredictable event that claims lives in every age group. The heart supplies blood to all tissues while maintaining a constant electrical and hormonal feedback communication with other parts of the body. As such, recent research has focused on understanding how myocardial electrical and structural properties are altered by cardiac metabolism and the various signaling pathways associated with it. The importance of cardiac metabolism in maintaining myocardial function, or lack thereof, is exemplified by shifts in cardiac substrate preference during normal development and various pathological conditions. For instance, a shift from fatty acid (FA) oxidation to oxygen-sparing glycolytic energy production has been reported in many types of cardiac pathologies. Compounded by an uncoupling of glycolysis and glucose oxidation this leads to accumulation of undesirable levels of intermediate metabolites. The resulting accumulation of intermediary metabolites impacts cardiac mitochondrial function and dysregulates metabolic pathways through several mechanisms, which will be reviewed here. Importantly, reversal of metabolic maladaptation has been shown to elicit positive therapeutic effects, limiting cardiac remodeling and at least partially restoring contractile efficiency. Therein, the underlying metabolic adaptations in an array of pathological conditions as well as recently discovered downstream effects of various substrate utilization provide guidance for future therapeutic targeting. Here, we will review recent data on alterations in substrate utilization in the healthy and diseased heart, metabolic pathways governing cardiac pathogenesis, mitochondrial function in the diseased myocardium, and potential metabolism-based therapeutic interventions in disease.
Collapse
Affiliation(s)
- J Snyder
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - R Zhai
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - A I Lackey
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - P Y Sato
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
37
|
Kalucka J, de Rooij LP, Goveia J, Rohlenova K, Dumas SJ, Meta E, Conchinha NV, Taverna F, Teuwen LA, Veys K, García-Caballero M, Khan S, Geldhof V, Sokol L, Chen R, Treps L, Borri M, de Zeeuw P, Dubois C, Karakach TK, Falkenberg KD, Parys M, Yin X, Vinckier S, Du Y, Fenton RA, Schoonjans L, Dewerchin M, Eelen G, Thienpont B, Lin L, Bolund L, Li X, Luo Y, Carmeliet P. Single-Cell Transcriptome Atlas of Murine Endothelial Cells. Cell 2020; 180:764-779.e20. [DOI: 10.1016/j.cell.2020.01.015] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/21/2019] [Accepted: 01/09/2020] [Indexed: 12/29/2022]
|
38
|
The Pathogenic Role of Very Low Density Lipoprotein on Atrial Remodeling in the Metabolic Syndrome. Int J Mol Sci 2020; 21:ijms21030891. [PMID: 32019138 PMCID: PMC7037013 DOI: 10.3390/ijms21030891] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Atrial fibrillation (AF) is the most common persistent arrhythmia, and can lead to systemic thromboembolism and heart failure. Aging and metabolic syndrome (MetS) are major risks for AF. One of the most important manifestations of MetS is dyslipidemia, but its correlation with AF is ambiguous in clinical observational studies. Although there is a paradoxical relationship between fasting cholesterol and AF incidence, the benefit from lipid lowering therapy in reduction of AF is significant. Here, we reviewed the health burden from AF and MetS, the association between two disease entities, and the metabolism of triglyceride, which is elevated in MetS. We also reviewed scientific evidence for the mechanistic links between very low density lipoproteins (VLDL), which primarily carry circulatory triglyceride, to atrial cardiomyopathy and development of AF. The effects of VLDL to atria suggesting pathogenic to atrial cardiomyopathy and AF include excess lipid accumulation, direct cytotoxicity, abbreviated action potentials, disturbed calcium regulation, delayed conduction velocities, modulated gap junctions, and sarcomere protein derangements. The electrical remodeling and structural changes in concert promote development of atrial cardiomyopathy in MetS and ultimately lead to vulnerability to AF. As VLDL plays a major role in lipid metabolism after meals (rather than fasting state), further human studies that focus on the effects/correlation of postprandial lipids to atrial remodeling are required to determine whether VLDL-targeted therapy can reduce MetS-related AF. On the basis of our scientific evidence, we propose a pivotal role of VLDL in MetS-related atrial cardiomyopathy and vulnerability to AF.
Collapse
|
39
|
Abstract
The placenta, a hallmark of mammalian embryogenesis, allows nutrients to be exchanged between the mother and the fetus. Vitamin A (VA), an essential nutrient, cannot be synthesized by the embryo, and must be acquired from the maternal circulation through the placenta. Our understanding of how this transfer is accomplished is still in its infancy. In this chapter, we recapitulate the early studies about the relationship between maternal dietary/supplemental VA intake and fetal VA levels. We then describe how the discovery of retinol-binding protein (RBP or RBP4), the development of labeling and detection techniques, and the advent of knockout mice shifted this field from a macroscopic to a molecular level. The most recent data indicate that VA and its derivatives (retinoids) and the pro-VA carotenoid, β-carotene, are transferred across the placenta by distinct proteins, some of which overlap with proteins involved in lipoprotein uptake. The VA status and dietary intake of the mother influence the expression of these proteins, creating feedback signals that control the uptake of retinoids and that may also regulate the uptake of lipids, raising the intriguing possibility of crosstalk between micronutrient and macronutrient metabolism. Many questions remain about the temporal and spatial patterns by which these proteins are expressed and transferred throughout gestation. The answers to these questions are highly relevant to human health, considering that those with either limited or excessive intake of retinoids/carotenoids during pregnancy may be at risk of obtaining improper amounts of VA that ultimately impact the development and health of their offspring.
Collapse
|
40
|
Basu D, Bornfeldt KE. Hypertriglyceridemia and Atherosclerosis: Using Human Research to Guide Mechanistic Studies in Animal Models. Front Endocrinol (Lausanne) 2020; 11:504. [PMID: 32849290 PMCID: PMC7423973 DOI: 10.3389/fendo.2020.00504] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Human studies support a strong association between hypertriglyceridemia and atherosclerotic cardiovascular disease (CVD). However, whether a causal relationship exists between hypertriglyceridemia and increased CVD risk is still unclear. One plausible explanation for the difficulty establishing a clear causal role for hypertriglyceridemia in CVD risk is that lipolysis products of triglyceride-rich lipoproteins (TRLs), rather than the TRLs themselves, are the likely mediators of increased CVD risk. This hypothesis is supported by studies of rare mutations in humans resulting in impaired clearance of such lipolysis products (remnant lipoprotein particles; RLPs). Several animal models of hypertriglyceridemia support this hypothesis and have provided additional mechanistic understanding. Mice deficient in lipoprotein lipase (LPL), the major vascular enzyme responsible for TRL lipolysis and generation of RLPs, or its endothelial anchor GPIHBP1, are severely hypertriglyceridemic but develop only minimal atherosclerosis as compared with animal models deficient in apolipoprotein (APO) E, which is required to clear TRLs and RLPs. Likewise, animal models convincingly show that increased clearance of TRLs and RLPs by LPL activation (achieved by inhibition of APOC3, ANGPTL3, or ANGPTL4 action, or increased APOA5) results in protection from atherosclerosis. Mechanistic studies suggest that RLPs are more atherogenic than large TRLs because they more readily enter the artery wall, and because they are enriched in cholesterol relative to triglycerides, which promotes pro-atherogenic effects in lesional cells. Other mechanistic studies show that hepatic receptors (LDLR and LRP1) and APOE are critical for RLP clearance. Thus, studies in animal models have provided additional mechanistic insight and generally agree with the hypothesis that RLPs derived from TRLs are highly atherogenic whereas hypertriglyceridemia due to accumulation of very large TRLs in plasma is not markedly atherogenic in the absence of TRL lipolysis products.
Collapse
Affiliation(s)
- Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY, United States
| | - Karin E. Bornfeldt
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
- Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
- *Correspondence: Karin E. Bornfeldt
| |
Collapse
|
41
|
Chang HR, Josefs T, Scerbo D, Gumaste N, Hu Y, Huggins LA, Barett T, Chiang S, Grossman J, Bagdasarov S, Fisher EA, Goldberg IJ. Role of LpL (Lipoprotein Lipase) in Macrophage Polarization In Vitro and In Vivo. Arterioscler Thromb Vasc Biol 2019; 39:1967-1985. [PMID: 31434492 PMCID: PMC6761022 DOI: 10.1161/atvbaha.119.312389] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Fatty acid uptake and oxidation characterize the metabolism of alternatively activated macrophage polarization in vitro, but the in vivo biology is less clear. We assessed the roles of LpL (lipoprotein lipase)-mediated lipid uptake in macrophage polarization in vitro and in several important tissues in vivo. Approach and Results: We created mice with both global and myeloid-cell specific LpL deficiency. LpL deficiency in the presence of VLDL (very low-density lipoproteins) altered gene expression of bone marrow-derived macrophages and led to reduced lipid uptake but an increase in some anti- and some proinflammatory markers. However, LpL deficiency did not alter lipid accumulation or gene expression in circulating monocytes nor did it change the ratio of Ly6Chigh/Ly6Clow. In adipose tissue, less macrophage lipid accumulation was found with global but not myeloid-specific LpL deficiency. Neither deletion affected the expression of inflammatory genes. Global LpL deficiency also reduced the numbers of elicited peritoneal macrophages. Finally, we assessed gene expression in macrophages from atherosclerotic lesions during regression; LpL deficiency did not affect the polarity of plaque macrophages. CONCLUSIONS The phenotypic changes observed in macrophages upon deletion of Lpl in vitro is not mimicked in tissue macrophages.
Collapse
Affiliation(s)
- Hye Rim Chang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, New York
| | - Tatjana Josefs
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York
| | - Diego Scerbo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, New York
| | - Namrata Gumaste
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, New York
| | - Yunying Hu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, New York
| | - Lesley-Ann Huggins
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, New York
| | - Tessa Barett
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York; Division of Vascular Surgery, Department of Surgery, New York University School of Medicine, New York, New York
| | - Stephanie Chiang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, New York
| | - Jennifer Grossman
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, New York
| | - Svetlana Bagdasarov
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, New York
| | - Edward A. Fisher
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, New York
| |
Collapse
|
42
|
Kegulian NC, Ramms B, Horton S, Trenchevska O, Nedelkov D, Graham MJ, Lee RG, Esko JD, Yassine HN, Gordts PLSM. ApoC-III Glycoforms Are Differentially Cleared by Hepatic TRL (Triglyceride-Rich Lipoprotein) Receptors. Arterioscler Thromb Vasc Biol 2019; 39:2145-2156. [PMID: 31390883 DOI: 10.1161/atvbaha.119.312723] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE ApoC-III (apolipoprotein C-III) glycosylation can predict cardiovascular disease risk. Higher abundance of disialylated (apoC-III2) over monosialylated (apoC-III1) glycoforms is associated with lower plasma triglyceride levels. Yet, it remains unclear whether apoC-III glycosylation impacts TRL (triglyceride-rich lipoprotein) clearance and whether apoC-III antisense therapy (volanesorsen) affects distribution of apoC-III glycoforms. Approach and Results: To measure the abundance of human apoC-III glycoforms in plasma over time, human TRLs were injected into wild-type mice and mice lacking hepatic TRL clearance receptors, namely HSPGs (heparan sulfate proteoglycans) or both LDLR (low-density lipoprotein receptor) and LRP1 (LDLR-related protein 1). ApoC-III was more rapidly cleared in the absence of HSPG (t1/2=25.4 minutes) than in wild-type animals (t1/2=55.1 minutes). In contrast, deficiency of LDLR and LRP1 (t1/2=56.1 minutes) did not affect clearance of apoC-III. After injection, a significant increase in the relative abundance of apoC-III2 was observed in HSPG-deficient mice, whereas the opposite was observed in mice lacking LDLR and LRP1. In patients, abundance of plasma apoC-III glycoforms was assessed after placebo or volanesorsen administration. Volanesorsen treatment correlated with a statistically significant 1.4-fold increase in the relative abundance of apoC-III2 and a 15% decrease in that of apoC-III1. The decrease in relative apoC-III1 abundance was strongly correlated with decreased plasma triglyceride levels in patients. CONCLUSIONS Our results indicate that HSPGs preferentially clear apoC-III2. In contrast, apoC-III1 is more effectively cleared by LDLR/LRP1. Clinically, the increase in the apoC-III2/apoC-III1 ratio on antisense lowering of apoC-III might reflect faster clearance of apoC-III1 because this metabolic shift associates with improved triglyceride levels.
Collapse
Affiliation(s)
- Natalie C Kegulian
- From the Department of Medicine, University of Southern California, Los Angeles (N.C.K., S.H., H.N.Y.)
| | - Bastian Ramms
- Department of Medicine (B.R., J.D.E., P.L.S.M.G.), University of California San Diego, La Jolla
- Department of Chemistry, Biochemistry I, Bielefeld University, Germany (B.R.)
| | - Steven Horton
- From the Department of Medicine, University of Southern California, Los Angeles (N.C.K., S.H., H.N.Y.)
| | | | - Dobrin Nedelkov
- The Biodesign Institute, Arizona State University, Tempe (O.T., D.N.)
| | - Mark J Graham
- Ionis Pharmaceuticals, Carlsbad, CA (M.J.G., R.G.L.)
| | - Richard G Lee
- Ionis Pharmaceuticals, Carlsbad, CA (M.J.G., R.G.L.)
| | - Jeffrey D Esko
- Department of Medicine (B.R., J.D.E., P.L.S.M.G.), University of California San Diego, La Jolla
- Glycobiology Research and Training Center (J.D.E., P.L.S.M.G.), University of California San Diego, La Jolla
| | - Hussein N Yassine
- From the Department of Medicine, University of Southern California, Los Angeles (N.C.K., S.H., H.N.Y.)
| | - Philip L S M Gordts
- Department of Medicine (B.R., J.D.E., P.L.S.M.G.), University of California San Diego, La Jolla
- Glycobiology Research and Training Center (J.D.E., P.L.S.M.G.), University of California San Diego, La Jolla
| |
Collapse
|
43
|
Teratani T, Tomita K, Furuhashi H, Sugihara N, Higashiyama M, Nishikawa M, Irie R, Takajo T, Wada A, Horiuchi K, Inaba K, Hanawa Y, Shibuya N, Okada Y, Kurihara C, Nishii S, Mizoguchi A, Hozumi H, Watanabe C, Komoto S, Nagao S, Yamamoto J, Miura S, Hokari R, Kanai T. Lipoprotein Lipase Up-regulation in Hepatic Stellate Cells Exacerbates Liver Fibrosis in Nonalcoholic Steatohepatitis in Mice. Hepatol Commun 2019; 3:1098-1112. [PMID: 31388630 PMCID: PMC6671781 DOI: 10.1002/hep4.1383] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022] Open
Abstract
Lipoprotein lipase (LPL) plays a central role in incorporating plasma lipids into tissues and regulates lipid metabolism and energy balance in the human body. Conversely, LPL expression is almost absent in normal adult livers. Therefore, its physiological role in the liver remains unknown. We aimed to elucidate the role of LPL in the pathophysiology of nonalcoholic steatohepatitis (NASH), a hepatic manifestation of obesity. Hepatic stellate cell (HSC)–specific LPL‐knockout (LplHSC‐KO) mice, LPL‐floxed (Lplfl/fl) mice, or double‐mutant toll‐like receptor 4–deficient (Tlr4−/−) LplHSC‐KO mice were fed a high‐fat/high‐cholesterol diet for 4 weeks to establish the nonalcoholic fatty liver model or an high‐fat/high‐cholesterol diet for 24 weeks to establish the NASH model. Human samples, derived from patients with nonalcoholic fatty liver disease, were also examined. In human and mouse NASH livers, serum obesity‐related factors, such as free fatty acid, leptin, and interleukin‐6, dramatically increased the expression of LPL, specifically in HSCs through signal transducer and activator of transcription 3 signaling, as opposed to that in hepatocytes or hepatic macrophages. In the NASH mouse model, liver fibrosis was significantly reduced in LplHSC‐KO mice compared with that in Lplfl/fl mice. Nonenzymatic LPL‐mediated cholesterol uptake from serum lipoproteins enhanced the accumulation of free cholesterol in HSCs, which amplified TLR4 signaling, resulting in the activation of HSCs and progression of hepatic fibrosis in NASH. Conclusion: The present study reveals the pathophysiological role of LPL in the liver, and furthermore, clarifies the pathophysiology in which obesity, as a background factor, exacerbates NASH. The LPL‐mediated HSC activation pathway could be a promising therapeutic target for treating liver fibrosis in NASH.
Collapse
Affiliation(s)
- Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine Keio University School of Medicine Shinjuku-ku Tokyo Japan
| | - Kengo Tomita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Hirotaka Furuhashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Nao Sugihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Masaaki Higashiyama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Makoto Nishikawa
- Department of Surgery National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Rie Irie
- Department of Pathology National Center for Child Health and Development Setagaya-ku Tokyo Japan
| | - Takeshi Takajo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Akinori Wada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Kazuki Horiuchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Kenichi Inaba
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Yoshinori Hanawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Naoki Shibuya
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Yoshikiyo Okada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Chie Kurihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Shin Nishii
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Akinori Mizoguchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Hideaki Hozumi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Chikako Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Shunsuke Komoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Shigeaki Nagao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Junji Yamamoto
- Department of Pathology National Center for Child Health and Development Setagaya-ku Tokyo Japan
| | - Soichiro Miura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan.,International University of Health and Welfare Graduate School Minato-ku Tokyo Japan
| | - Ryota Hokari
- Division of Gastroenterology and Hepatology, Department of Internal Medicine National Defense Medical College Tokorozawa-shi Saitama Japan
| | - Tananori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine Keio University School of Medicine Shinjuku-ku Tokyo Japan
| |
Collapse
|
44
|
Ramms B, Patel S, Nora C, Pessentheiner AR, Chang MW, Green CR, Golden GJ, Secrest P, Krauss RM, Metallo CM, Benner C, Alexander VJ, Witztum JL, Tsimikas S, Esko JD, Gordts PLSM. ApoC-III ASO promotes tissue LPL activity in the absence of apoE-mediated TRL clearance. J Lipid Res 2019; 60:1379-1395. [PMID: 31092690 PMCID: PMC6672034 DOI: 10.1194/jlr.m093740] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/10/2019] [Indexed: 11/21/2022] Open
Abstract
Hypertriglyceridemia results from accumulation of triglyceride (TG)-rich lipoproteins (TRLs) in the circulation and is associated with increased CVD risk. ApoC-III is an apolipoprotein on TRLs and a prominent negative regulator of TG catabolism. We recently established that in vivo apoC-III predominantly inhibits LDL receptor-mediated and LDL receptor-related protein 1-mediated hepatic TRL clearance and that apoC-III-enriched TRLs are preferentially cleared by syndecan-1 (SDC1). In this study, we determined the impact of apoE, a common ligand for all three receptors, on apoC-III metabolism using apoC-III antisense oligonucleotide (ASO) treatment in mice lacking apoE and functional SDC1 (Apoe−/−Ndst1f/fAlb-Cre+). ApoC-III ASO treatment significantly reduced plasma TG levels in Apoe−/−Ndst1f/fAlb-Cre+ mice without reducing hepatic VLDL production or improving hepatic TRL clearance. Further analysis revealed that apoC-III ASO treatment lowered plasma TGs in Apoe−/−Ndst1f/fAlb-Cre+ mice, which was associated with increased LPL activity in white adipose tissue in the fed state. Finally, clinical data confirmed that ASO-mediated lowering of APOC-III via volanesorsen can reduce plasma TG levels independent of the APOE isoform genotype. Our data indicate that apoE determines the metabolic impact of apoC-III as we establish that apoE is essential to mediate inhibition of TRL clearance by apoC-III and that, in the absence of functional apoE, apoC-III inhibits tissue LPL activity.
Collapse
Affiliation(s)
- Bastian Ramms
- Departments of Cellular and Molecular Medicine,University of California, San Diego, La Jolla, CA.,Medicine, University of California, San Diego, La Jolla, CA.,Department of Chemistry, Biochemistry I, Bielefeld University, Bielefeld, Germany
| | - Sohan Patel
- Medicine, University of California, San Diego, La Jolla, CA
| | - Chelsea Nora
- Medicine, University of California, San Diego, La Jolla, CA
| | | | - Max W Chang
- Departments of Cellular and Molecular Medicine,University of California, San Diego, La Jolla, CA
| | - Courtney R Green
- Bioengineering, University of California, San Diego, La Jolla, CA
| | - Gregory J Golden
- Departments of Cellular and Molecular Medicine,University of California, San Diego, La Jolla, CA.,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA
| | - Patrick Secrest
- Departments of Cellular and Molecular Medicine,University of California, San Diego, La Jolla, CA
| | | | | | - Christopher Benner
- Departments of Cellular and Molecular Medicine,University of California, San Diego, La Jolla, CA
| | | | | | | | - Jeffrey D Esko
- Departments of Cellular and Molecular Medicine,University of California, San Diego, La Jolla, CA.,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA
| | - Philip L S M Gordts
- Medicine, University of California, San Diego, La Jolla, CA .,Bioengineering, University of California, San Diego, La Jolla, CA
| |
Collapse
|
45
|
[ 18F]BODIPY-triglyceride-containing chylomicron-like particles as an imaging agent for brown adipose tissue in vivo. Sci Rep 2019; 9:2706. [PMID: 30804455 PMCID: PMC6389948 DOI: 10.1038/s41598-019-39561-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/16/2019] [Indexed: 12/23/2022] Open
Abstract
Brown adipose tissue (BAT) is present in human adults and the current gold standard to visualize and quantify BAT is [18F]FDG PET-CT. However, this method fails to detect BAT under insulin-resistant conditions associated with ageing and weight gain, such as type 2 diabetes. The aim of this study was to develop a novel triglyceride-based tracer for BAT. For this purpose we designed a dual-modal fluorescent/PET fatty acid tracer based on commercially available BODIPY-FL-C16, which can be esterified to its correspondent triglyceride, radiolabeled and incorporated into pre-synthesized chylomicron-like particles. BODIPY-FL-C16 was coupled to 1,2-diolein with a subsequent radiolabeling step resulting in [18F]BODIPY-C16-triglyceride that was incorporated into chylomicron-like particles. Various quality control steps using fluorescent and radioactive methods were conducted before BAT visualization was tested in mice. Triglyceride synthesis, radiolabeling and subsequent incorporation into chylomicron-like particles was carried out in decent yields. This radiotracer appeared able to visualize BAT in vivo, and the uptake of the radiotracer was stimulated by cold exposure. The here reported method can be used to incorporate radiolabeled triglycerides into pre-synthesized chylomicron-like particles. Our approach is feasible to visualize and quantify the uptake of triglyceride-derived fatty acids by BAT.
Collapse
|
46
|
Nagao M, Nakajima H, Toh R, Hirata KI, Ishida T. Cardioprotective Effects of High-Density Lipoprotein Beyond its Anti-Atherogenic Action. J Atheroscler Thromb 2018; 25:985-993. [PMID: 30146614 PMCID: PMC6193192 DOI: 10.5551/jat.rv17025] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
High-density lipoprotein cholesterol (HDL-C) has been identified as a powerful independent negative predictor of cardiovascular disease. The beneficial effect of HDL is largely attributable to its key role in reverse cholesterol transport, whereby excess cholesterol in the peripheral tissues is transported to the liver, reducing the atherosclerotic burden. However, mounting evidence indicates that HDL also has pleiotropic properties, such as anti-inflammatory, anti-oxidative, and vasodilatory properties, which may contribute in reducing the incidence of heart failure. Actually, previous data from clinical and experimental studies have suggested that HDL exerts cardioprotective effects irrespective of the presence/absence of coronary artery disease. This review summarizes the currently available evidence regarding beneficial effects of HDL on the heart beyond its anti-atherogenic property. Understanding the mechanisms of cardiac protection by HDL will provide new insight into the underlying mechanism and therapeutic strategy for heart failure.
Collapse
Affiliation(s)
- Manabu Nagao
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine
| | - Hideto Nakajima
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine
| | - Ryuji Toh
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine
| |
Collapse
|
47
|
Targeting CD36 as Biomarker for Metastasis Prognostic: How Far from Translation into Clinical Practice? BIOMED RESEARCH INTERNATIONAL 2018; 2018:7801202. [PMID: 30069479 PMCID: PMC6057354 DOI: 10.1155/2018/7801202] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/21/2018] [Indexed: 12/15/2022]
Abstract
Metastasis requires cellular changes related to cell-to-cell and cell-to-matrix adhesion, immune surveillance, activation of growth and survival signalling pathways, and epigenetic modifications. In addition to tumour cells, tumour stroma is also modified in relationship to the primary tumour as well as to distant metastatic sites (forming a metastatic niche). A common denominator of most stromal partners in tumour progression is CD36, a scavenger receptor for fatty acid uptake that modulates cell-to-extracellular matrix attachment, stromal cell fate (for adipocytes, endothelial cells), TGFβ activation, and immune signalling. CD36 has been repeatedly proposed as a prognostic marker in various cancers, mostly of epithelial origin (breast, prostate, ovary, and colon) and also for hepatic carcinoma and gliomas. Data gathered in preclinical models of various cancers have shown that blocking CD36 might prove beneficial in stopping metastasis spread. However, targeting the receptor in clinical trials with thrombospondin mimetic peptides has proven ineffective, and monoclonal antibodies are not yet available for patient use. This review presents data to support CD36 as a potential prognostic biomarker in cancer, its current stage towards achieving bona fide biomarker status, and knowledge gaps that must be filled before further advancement towards clinical practice.
Collapse
|
48
|
Karlstaedt A, Schiffer W, Taegtmeyer H. Actionable Metabolic Pathways in Heart Failure and Cancer-Lessons From Cancer Cell Metabolism. Front Cardiovasc Med 2018; 5:71. [PMID: 29971237 PMCID: PMC6018530 DOI: 10.3389/fcvm.2018.00071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/24/2018] [Indexed: 12/21/2022] Open
Abstract
Recent advances in cancer cell metabolism provide unprecedented opportunities for a new understanding of heart metabolism and may offer new approaches for the treatment of heart failure. Key questions driving the cancer field to understand how tumor cells reprogram metabolism and to benefit tumorigenesis are also applicable to the heart. Recent experimental and conceptual advances in cancer cell metabolism provide the cardiovascular field with the unique opportunity to target metabolism. This review compares cancer cell metabolism and cardiac metabolism with an emphasis on strategies of cellular adaptation, and how to exploit metabolic changes for therapeutic benefit.
Collapse
Affiliation(s)
- Anja Karlstaedt
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Walter Schiffer
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
49
|
He C, Weston TA, Jung RS, Heizer P, Larsson M, Hu X, Allan CM, Tontonoz P, Reue K, Beigneux AP, Ploug M, Holme A, Kilburn M, Guagliardo P, Ford DA, Fong LG, Young SG, Jiang H. NanoSIMS Analysis of Intravascular Lipolysis and Lipid Movement across Capillaries and into Cardiomyocytes. Cell Metab 2018; 27:1055-1066.e3. [PMID: 29719224 PMCID: PMC5945212 DOI: 10.1016/j.cmet.2018.03.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/16/2018] [Accepted: 03/24/2018] [Indexed: 10/17/2022]
Abstract
The processing of triglyceride-rich lipoproteins (TRLs) in capillaries provides lipids for vital tissues, but our understanding of TRL metabolism is limited, in part because TRL processing and lipid movement have never been visualized. To investigate the movement of TRL-derived lipids in the heart, mice were given an injection of [2H]triglyceride-enriched TRLs, and the movement of 2H-labeled lipids across capillaries and into cardiomyocytes was examined by NanoSIMS. TRL processing and lipid movement in tissues were extremely rapid. Within 30 s, TRL-derived lipids appeared in the subendothelial spaces and in the lipid droplets and mitochondria of cardiomyocytes. Enrichment of 2H in capillary endothelial cells was not greater than in cardiomyocytes, implying that endothelial cells may not be a control point for lipid movement into cardiomyocytes. Remarkably, a deficiency of the putative fatty acid transport protein CD36, which is expressed highly in capillary endothelial cells, did not impede entry of TRL-derived lipids into cardiomyocytes.
Collapse
Affiliation(s)
- Cuiwen He
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas A Weston
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rachel S Jung
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Patrick Heizer
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mikael Larsson
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xuchen Hu
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher M Allan
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anne P Beigneux
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Holme
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth 6009, Australia
| | - Matthew Kilburn
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth 6009, Australia
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth 6009, Australia
| | - David A Ford
- Department of Biochemistry and Molecular Biology, Center for Cardiovascular Research, Saint Louis University, St. Louis, MO 63104, USA
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Haibo Jiang
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth 6009, Australia.
| |
Collapse
|
50
|
Goldberg IJ. 2017 George Lyman Duff Memorial Lecture: Fat in the Blood, Fat in the Artery, Fat in the Heart: Triglyceride in Physiology and Disease. Arterioscler Thromb Vasc Biol 2018; 38:700-706. [PMID: 29419410 PMCID: PMC5864527 DOI: 10.1161/atvbaha.117.309666] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022]
Abstract
Cholesterol is not the only lipid that causes heart disease. Triglyceride supplies the heart and skeletal muscles with highly efficient fuel and allows for the storage of excess calories in adipose tissue. Failure to transport, acquire, and use triglyceride leads to energy deficiency and even death. However, overabundance of triglyceride can damage and impair tissues. Circulating lipoprotein-associated triglycerides are lipolyzed by lipoprotein lipase (LpL) and hepatic triglyceride lipase. We inhibited these enzymes and showed that LpL inhibition reduces high-density lipoprotein cholesterol by >50%, and hepatic triglyceride lipase inhibition shifts low-density lipoprotein to larger, more buoyant particles. Genetic variations that reduce LpL activity correlate with increased cardiovascular risk. In contrast, macrophage LpL deficiency reduces macrophage function and atherosclerosis. Therefore, muscle and macrophage LpL have opposite effects on atherosclerosis. With models of atherosclerosis regression that we used to study diabetes mellitus, we are now examining whether triglyceride-rich lipoproteins or their hydrolysis by LpL affect the biology of established plaques. Following our focus on triglyceride metabolism led us to show that heart-specific LpL hydrolysis of triglyceride allows optimal supply of fatty acids to the heart. In contrast, cardiomyocyte LpL overexpression and excess lipid uptake cause lipotoxic heart failure. We are now studying whether interrupting pathways for lipid uptake might prevent or treat some forms of heart failure.
Collapse
Affiliation(s)
- Ira J Goldberg
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University School of Medicine.
| |
Collapse
|