1
|
Wollman J, Wanniarachchi K, Pradhan B, Huang L, Kerkvliet JG, Hoppe AD, Thiex NW. Mannose receptor (MRC1) mediates uptake of dextran in macrophages via receptor-mediated endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607841. [PMID: 39211167 PMCID: PMC11360935 DOI: 10.1101/2024.08.13.607841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Macrophages maintain surveillance of their environment using receptor-mediated endocytosis and pinocytosis. Receptor-mediated endocytosis allows macrophages to recognize and internalize specific ligands whereas macropinocytosis non-selectively internalizes extracellular fluids and solutes. Here, CRISPR/Cas9 whole-genome screens were used to identify genes regulating constitutive and growth factor-stimulated dextran uptake in murine bone-marrow derived macrophages (BMDM). The endocytic mannose receptor c-type 1 ( Mrc1 , also known as CD206) was a top hit in the screen. Targeted gene disruptions of Mrc1 reduced dextran uptake but had little effect on uptake of Lucifer yellow, a fluid-phase marker. Other screen hits also differentially affected the uptake of dextran and Lucifer yellow, indicating the solutes are internalized by different mechanisms. We further deduced that BMDMs take up dextran via MRC1-mediated endocytosis by showing that competition with mannan, a ligand of MRC1, as well as treatment with Dyngo-4a, a dynamin inhibitor, reduced dextran uptake. Finally, we observed that IL4-treated BMDM internalize more dextran than untreated BMDM by upregulating MRC1 expression. These results demonstrate that dextran is not an effective marker for the bulk uptake of fluids and solutes by macropinocytosis since it is internalized by both macropinocytosis and receptor-mediated endocytosis in cells expressing MRC1. This report identifies numerous genes that regulate dextran internalization in primary murine macrophages and predicts cellular pathways and processes regulating MRC1. This work lays the groundwork for identifying specific genes and regulatory networks that regulate MRC1 expression and MRC1-mediated endocytosis in macrophages. Significance Statement Macrophages constantly survey and clear tissues by specifically and non-specifically internalizing debris and solutes. However, the molecular mechanisms and modes of regulation of these endocytic and macropinocytic processes are not well understood. Here, CRISPR/Cas9 whole genome screens were used to identify genes regulating uptake of dextran, a sugar polymer that is frequently used as a marker macropinocytosis, and compared with Lucifer yellow, a fluorescent dye with no known receptors. The authors identified the mannose receptor as well as other proteins regulating expression of the mannose receptor as top hits in the screen. Targeted disruption of Mrc1 , the gene that encodes mannose receptor, greatly diminished dextran uptake but had no effect on cellular uptake of Lucifer yellow. Furthermore, exposure to the cytokine IL4 upregulated mannose receptor expression on the cell surface and increased uptake of dextran with little effect on Lucifer yellow uptake. Studies seeking to understand regulation of macropinocytosis in macrophages will be confounded by the use of dextran as a fluid-phase marker. MRC1 is a marker of alternatively activated/anti-inflammatory macrophages and is a potential target for delivery of therapeutics to macrophages. This work provides the basis for mechanistic underpinning of how MRC1 contributes to the receptor-mediated uptake of carbohydrates and glycoproteins from the tissue milieu and distinguishes genes regulating receptor-mediated endocytosis from those regulating the bona fide fluid-phase uptake of fluids and solutes by macropinocytosis.
Collapse
|
2
|
Hurler L, Mescia F, Bergamaschi L, Kajdácsi E, Sinkovits G, Cervenak L, Prohászka Z, Lyons PA, Toonen EJ. sMR and PTX3 levels associate with COVID-19 outcome and survival but not with Long COVID. iScience 2024; 27:110162. [PMID: 39027374 PMCID: PMC11255846 DOI: 10.1016/j.isci.2024.110162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/28/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
Biomarkers for monitoring COVID-19 disease course are lacking. Study aim was to identify biomarkers associated with disease severity, survival, long-term outcome, and Long COVID. As excessive macrophages activation is a hallmark of COVID-19 and complement activation is key in this, we selected the following proteins involved in these processes: PTX3, C1q, C1-INH, C1s/C1-INH, and sMR. EDTA-plasma concentrations were measured in 215 patients and 47 controls using ELISA. PTX3, sMR, C1-INH, and C1s/C1-INH levels were associated with disease severity. PTX3 and sMR were also associated with survival and long-term immune recovery. Lastly, sMR levels associate with ICU admittance. sMR (AUC 0.85) and PTX3 (AUC 0.78) are good markers for disease severity, especially when used in combination (AUC 0.88). No association between biomarker levels and Long COVID was observed. sMR has not previously been associated with COVID-19 disease severity, ICU admittance or survival and may serve as marker for disease course.
Collapse
Affiliation(s)
- Lisa Hurler
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Federica Mescia
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Laura Bergamaschi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Cambridge Institute of Therapeutic Immunology and Infectious Disease-National Institute of Health Research (CITIID-NIHR) COVID BioResource Collaboration
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Research Group for Immunology and Haematology, Semmelweis University - Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
- Research and Development Department, Hycult Biotech, Uden, the Netherlands
| | - Erika Kajdácsi
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - György Sinkovits
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - László Cervenak
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
- Research Group for Immunology and Haematology, Semmelweis University - Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Paul A. Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Erik J.M. Toonen
- Research and Development Department, Hycult Biotech, Uden, the Netherlands
| |
Collapse
|
3
|
de Matos Silva S, Echeverri CR, Mendes-Giannini MJS, Fusco-Almeida AM, Gonzalez A. Common virulence factors between Histoplasma and Paracoccidioides: Recognition of Hsp60 and Enolase by CR3 and plasmin receptors in host cells. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100246. [PMID: 39022313 PMCID: PMC11253281 DOI: 10.1016/j.crmicr.2024.100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Over the last two decades, the incidence of Invasive Fungal Infections (IFIs) globally has risen, posing a considerable challenge despite available antifungal therapies. Addressing this, the World Health Organization (WHO) prioritized research on specific fungi, notably Histoplasma spp. and Paracoccidioides spp. These dimorphic fungi have a mycelial life cycle in soil and a yeast phase associated with tissues of mammalian hosts. Inhalation of conidia and mycelial fragments initiates the infection, crucially transforming into the yeast form within the host, influenced by factors like temperature, host immunity, and hormonal status. Survival and multiplication within alveolar macrophages are crucial for disease progression, where innate immune responses play a pivotal role in overcoming physical barriers. The transition to pathogenic yeast, triggered by increased temperature, involves yeast phase-specific gene expression, closely linked to infection establishment and pathogenicity. Cell adhesion mechanisms during host-pathogen interactions are intricately linked to fungal virulence, which is critical for tissue colonization and disease development. Yeast replication within macrophages leads to their rupture, aiding pathogen dissemination. Immune cells, especially macrophages, dendritic cells, and neutrophils, are key players during infection control, with macrophages crucial for defense, tissue integrity, and pathogen elimination. Recognition of common virulence molecules such as heat- shock protein-60 (Hsp60) and enolase by pattern recognition receptors (PRRs), mainly via the complement receptor 3 (CR3) and plasmin receptor pathways, respectively, could be pivotal in host-pathogen interactions for Histoplasma spp. and Paracoccidioides spp., influencing adhesion, phagocytosis, and inflammatory regulation. This review provides a comprehensive overview of the dynamic of these two IFIs between host and pathogen. Further research into these fungi's virulence factors promises insights into pathogenic mechanisms, potentially guiding the development of effective treatment strategies.
Collapse
Affiliation(s)
- Samanta de Matos Silva
- Laboratory of Mycology, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Nucleous of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Carolina Rodriguez Echeverri
- Laboratory of Mycology, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Nucleous of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Maria José Soares Mendes-Giannini
- Laboratory of Mycology, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Nucleous of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
| | - Ana Marisa Fusco-Almeida
- Laboratory of Mycology, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Nucleous of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
| | - Angel Gonzalez
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
4
|
Svecla M, Nour J, Bladergroen MR, Nicolardi S, Zhang T, Beretta G, Wuhrer M, Norata GD, Falck D. Impact of Asialoglycoprotein Receptor and Mannose Receptor Deficiency on Murine Plasma N-glycome Profiles. Mol Cell Proteomics 2023; 22:100615. [PMID: 37414249 PMCID: PMC10462831 DOI: 10.1016/j.mcpro.2023.100615] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/14/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023] Open
Abstract
The asialoglycoprotein receptor (ASGPR) and the mannose receptor C-type 1 (MRC1) are well known for their selective recognition and clearance of circulating glycoproteins. Terminal galactose and N-Acetylgalactosamine are recognized by ASGPR, while terminal mannose, fucose, and N-Acetylglucosamine are recognized by MRC1. The effects of ASGPR and MRC1 deficiency on the N-glycosylation of individual circulating proteins have been studied. However, the impact on the homeostasis of the major plasma glycoproteins is debated and their glycosylation has not been mapped with high molecular resolution in this context. Therefore, we evaluated the total plasma N-glycome and plasma proteome of ASGR1 and MRC1 deficient mice. ASGPR deficiency resulted in an increase in O-acetylation of sialic acids accompanied by higher levels of apolipoprotein D, haptoglobin, and vitronectin. MRC1 deficiency decreased fucosylation without affecting the abundance of the major circulating glycoproteins. Our findings confirm that concentrations and N-glycosylation of the major plasma proteins are tightly controlled and further suggest that glycan-binding receptors have redundancy, allowing compensation for the loss of one major clearance receptor.
Collapse
Affiliation(s)
- M Svecla
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - J Nour
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - M R Bladergroen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - S Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - T Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - G Beretta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - M Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - G D Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; Centro SISA per lo studio dell'Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, Italy
| | - D Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
5
|
Liu R, Qi Y, Zhai Y, Li H, An L, Yang G, Shan S. Identification and functional analysis of Mannose receptor in Asian swamp eel (Monopterus albus) in response to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2022; 127:463-473. [PMID: 35781053 DOI: 10.1016/j.fsi.2022.06.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/18/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Mannose receptor (MR), as a member of the C-type lectin (CLEC) family, plays an important role in the internalize pathogen-associated ligands and activate immune response. In the present study, MR was identified and characterized from Asian swamp eel (Monopterus albus) (namely MaMR). The open reading frame of MaMR was 4311 bp in length encoding 1437 amino acids of a ∼162.308 kDa protein, including a cysteine-rich (CR) domain, a fibronectin type II (FNII) domain, eight C-type lectin-like domains (CTLDs), a transmembrane domain and a short cytoplasmic domain. Phylogenetic analysis indicated that MaMR shared the highest similarity with that of Paralichthys olivaceus. The expression of MaMR was found in all the examined tissues, with the highest expression in the spleen and kidney. After injection with Edwardsiella tarda, the transcript level of MaMR was initially reduced and then significantly elevated in the liver, spleen, foregut and hindgut. In the isolated peripheral blood leukocytes, the expression of MaMR was significantly induced post stimulated with LPS and LTA. Then the MaMR-CTLD4-8 recombinant protein was purified. Bacterial agglutination and binding assay showed that rMaMR-CTLD4-8 could bind with both Gram-positive and Gram-negative bacteria and agglutinate bacteria in the presence of calcium in vitro. Further analysis revealed that MaMR and TLR2 coordinately induced the expression of TRAF6 and promoted the phosphorylation level of p65, leading to the expression of proinflammatory cytokines il-1β and tnf-α in EPC cells. Taken together, these results reveal that MaMR plays an important role in the immune response of fish to pathogen infections.
Collapse
Affiliation(s)
- Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Yue Qi
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Yaqing Zhai
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Liguo An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China.
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
6
|
Soluble mannose receptor CD206 and von Willebrand factor are early biomarkers to identify patients at risk for severe or necrotizing acute pancreatitis. J Intensive Care 2022; 10:28. [PMID: 35690841 PMCID: PMC9188125 DOI: 10.1186/s40560-022-00619-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background In acute pancreatitis (AP), microcirculatory dysfunction and leukocyte activation contribute to organ damage, inflammation, and mortality. Given the role of macrophage activation, monocyte recruitment, and microthrombus formation in the early pathogenesis of AP, we examined the macrophage activation marker soluble mannose receptor (sCD206) and the endothelial function marker von Willebrand factor (vWF) in patients admitted for AP. Methods In an exploratory analysis, serum sCD206 and plasma vWF were prospectively analyzed on day 1 and day 3 in 81 patients with AP admitted to the hospital. In addition, blood samples from 59 patients with early AP admitted to the intensive care unit and symptom onset < 24 h were retrospectively analyzed. Patients were dichotomized as per study protocol into two groups: (i) “non-severe edematous AP” including patients with mild AP without organ failure and patients with transient organ failure that resolves within 48 h and (ii) “severe/necrotizing AP” including patients with severe AP and persistent organ failure > 48 h and/or patients with local complications. Results In the prospective cohort, 17% developed severe/necrotizing pancreatitis compared with 56% in the ICU cohort. Serum concentrations of sCD206 on admission were higher in patients with severe/necrotizing AP than in patients with non-severe edematous AP (prospective: 1.57 vs. 0.66 mg/l, P = 0.005; ICU: 1.76 vs. 1.25 mg/l, P = 0.006), whereas other inflammatory markers (leukocytes, C-reactive protein, procalcitonin) and disease severity (SOFA, SAPS II, APACHE II) did not show significant differences. Patients with severe/necrotizing AP had a greater increase in sCD206 than patients with non-severe edematous AP at day 3 in the prospective cohort. In contrast to routine coagulation parameters, vWF antigen levels were elevated on admission (prospective cohort: 375 vs. 257%, P = 0.02; ICU cohort: 240 vs. 184%, P = 0.03). When used as continuous variables, sCD206 and VWF antigen remained predictors of severe/necrotizing AP after adjustment for etiology and age in both cohorts. Conclusions sCD206 identifies patients at risk of severe AP at earlier timepoints than routine markers of inflammation and coagulation. Prospective studies are needed to investigate whether incorporating early or repeated measurements into the existing scoring system will better identify patients at increased risk for complications of AP. Supplementary Information The online version contains supplementary material available at 10.1186/s40560-022-00619-2.
Collapse
|
7
|
van der Zande HJP, Nitsche D, Schlautmann L, Guigas B, Burgdorf S. The Mannose Receptor: From Endocytic Receptor and Biomarker to Regulator of (Meta)Inflammation. Front Immunol 2021; 12:765034. [PMID: 34721436 PMCID: PMC8551360 DOI: 10.3389/fimmu.2021.765034] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/27/2021] [Indexed: 01/27/2023] Open
Abstract
The mannose receptor is a member of the C-type lectin (CLEC) family, which can bind and internalize a variety of endogenous and pathogen-associated ligands. Because of these properties, its role in endocytosis as well as antigen processing and presentation has been studied intensively. Recently, it became clear that the mannose receptor can directly influence the activation of various immune cells. Cell-bound mannose receptor expressed by antigen-presenting cells was indeed shown to drive activated T cells towards a tolerogenic phenotype. On the other hand, serum concentrations of a soluble form of the mannose receptor have been reported to be increased in patients suffering from a variety of inflammatory diseases and to correlate with severity of disease. Interestingly, we recently demonstrated that the soluble mannose receptor directly promotes macrophage proinflammatory activation and trigger metaflammation. In this review, we highlight the role of the mannose receptor and other CLECs in regulating the activation of immune cells and in shaping inflammatory responses.
Collapse
Affiliation(s)
| | - Dominik Nitsche
- Cellular Immunology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Laura Schlautmann
- Cellular Immunology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Sven Burgdorf
- Cellular Immunology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Dellière S, Duchateau M, Wong SSW, Giai Gianetto Q, Guegan H, Matondo M, Gangneux JP, Aimanianda V. Proteomic Analysis of Humoral Immune Components in Bronchoalveolar Lavage of Patients Infected or Colonized by Aspergillus fumigatus. Front Immunol 2021; 12:677798. [PMID: 34122441 PMCID: PMC8187748 DOI: 10.3389/fimmu.2021.677798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/10/2021] [Indexed: 02/04/2023] Open
Abstract
Humoral immune components have been individually studied in the context of interaction of host with Aspergillus fumigatus, a major airborne fungal pathogen. However, a global view of the multitude and complex nature of humoral immune components is needed to bring new insight into host-Aspergillus interaction. Therefore, we undertook comparative proteomic analysis of the bronchoalveolar lavage fluid collected from individuals infected or colonized with A. fumigatus versus controls, to identify those alveolar humoral components affected upon A. fumigatus infection. Complement proteins C1q, C8 beta-chain, factor-H, ficolin-1, ficolin-2, mannan binding lectin serine peptidase 2, pentraxin-3 and the surfactant protein-D were identified as the major humoral immune components affected by A. fumigatus infection and colonization. Based on this observation, we hypothesize that crosstalk between these humoral components is essential during host-Aspergillus interaction giving new specific leads to study for better understanding the pathogenesis. Furthermore, the affected humoral components could be potential diagnostic markers of A. fumigatus infection or colonization.
Collapse
Affiliation(s)
- Sarah Dellière
- Institut Pasteur, Molecular Mycology Unit, CNRS, Paris, France.,Université de Paris, Paris, France.,Department of Mycology & Parasitology, Hôpital Saint-Louis, Paris, France
| | - Magalie Duchateau
- Institut Pasteur, Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS, Paris, France
| | | | - Quentin Giai Gianetto
- Institut Pasteur, Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS, Paris, France.,Institut Pasteur, Bioinformatics and Biostatistics Hub, Computational Biology Department, CNRS, Paris, France
| | - Hélène Guegan
- University of Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Mariette Matondo
- Institut Pasteur, Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS, Paris, France
| | - Jean-Pierre Gangneux
- University of Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | | |
Collapse
|
9
|
Ward RA, Vyas JM. The first line of defense: effector pathways of anti-fungal innate immunity. Curr Opin Microbiol 2020; 58:160-165. [PMID: 33217703 DOI: 10.1016/j.mib.2020.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
The innate immune system is critical to proper host defense against fungal pathogens, which is highlighted by increased susceptibility to invasive disease in immunocompromised patients. Innate cells (e.g. macrophages, neutrophils, dendritic cells, eosinophils) are equipped with intricate cell machinery to detect invading fungi and facilitate fungal killing, recruit additional immune cells, and direct the adaptive immune system responses. Understanding the mechanisms that govern a protective response will enable the development of novel treatment strategies. This review focuses on recent insights of signaling and regulation of C-type lectin receptors and their effector mechanisms enabling an effective host antifungal immunity.
Collapse
Affiliation(s)
- Rebecca A Ward
- Division of Infectious Disease, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Jatin M Vyas
- Division of Infectious Disease, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Galactomannan Produced by Aspergillus fumigatus: An Update on the Structure, Biosynthesis and Biological Functions of an Emblematic Fungal Biomarker. J Fungi (Basel) 2020; 6:jof6040283. [PMID: 33198419 PMCID: PMC7712326 DOI: 10.3390/jof6040283] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
The galactomannan (GM) that is produced by the human fungal pathogen Aspergillus fumigatus is an emblematic biomarker in medical mycology. The GM is composed of two monosaccharides: mannose and galactofuranose. The furanic configuration of galactose residues, absent in mammals, is responsible for the antigenicity of the GM and has favoured the development of ELISA tests to diagnose aspergillosis in immunocompromised patients. The GM that is produced by A. fumigatus is a unique fungal polysaccharide containing a tetramannoside repeat unit and having three different forms: (i) membrane bound through a glycosylphosphatidylinositol (GPI)-anchor, (ii) covalently linked to β-1,3-glucans in the cell wall, or (iii) released in the culture medium as a free polymer. Recent studies have revealed the crucial role of the GM during vegetative and polarized fungal growth. This review highlights these recent data on its biosynthetic pathway and its biological functions during the saprophytic and pathogenic life of this opportunistic human fungal pathogen.
Collapse
|
11
|
Zhang J, Song L, Pedersen DV, Li A, Lambris JD, Andersen GR, Mollnes TE, Ma YJ, Garred P. Soluble collectin-12 mediates C3-independent docking of properdin that activates the alternative pathway of complement. eLife 2020; 9:60908. [PMID: 32909942 PMCID: PMC7511233 DOI: 10.7554/elife.60908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 01/11/2023] Open
Abstract
Properdin stabilizes the alternative C3 convertase (C3bBb), whereas its role as pattern-recognition molecule mediating complement activation is disputed for decades. Previously, we have found that soluble collectin-12 (sCL-12) synergizes complement alternative pathway (AP) activation. However, whether this observation is C3 dependent is unknown. By application of the C3-inhibitor Cp40, we found that properdin in normal human serum bound to Aspergillus fumigatus solely in a C3b-dependent manner. Cp40 also prevented properdin binding when properdin-depleted serum reconstituted with purified properdin was applied, in analogy with the findings achieved by C3-depleted serum. However, when opsonized with sCL-12, properdin bound in a C3-independent manner exclusively via its tetrameric structure and directed in situ C3bBb assembly. In conclusion, a prerequisite for properdin binding and in situ C3bBb assembly was the initial docking of sCL-12. This implies a new important function of properdin in host defense bridging pattern recognition and specific AP activation.
Collapse
Affiliation(s)
- Jie Zhang
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lihong Song
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Dennis V Pedersen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Aarhus, Denmark
| | - Anna Li
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Aarhus, Denmark
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, and University of Oslo, Oslo, Norway.,Research Laboratory, Nordland Hospital, K. G. Jebsen TREC, University of Tromsø, Bodø, Norway.,Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ying Jie Ma
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Zhang D, Wang Y, Shen S, Hou Y, Chen Y, Wang T. The mycobiota of the human body: a spark can start a prairie fire. Gut Microbes 2020; 11:655-679. [PMID: 32150513 PMCID: PMC7524315 DOI: 10.1080/19490976.2020.1731287] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mycobiota are inseparable from human health, shaking up the unique position held by bacteria among microorganisms. What is surprising is that this seemingly small species can trigger huge changes in the human body. Dysbiosis and invasion of mycobiota are confirmed to cause disease in different parts of the body. Meanwhile, our body also produces corresponding immune changes upon mycobiota infection. Several recent studies have made a connection between intestinal mycobiota and the human immune system. In this review, we focus on questions related to mycobiota, starting with an introduction of select species, then we summarize the typical diseases caused by mycobiota in different parts of the human body. Moreover, we constructed a framework for the human anti-fungal immune system based on genetics and immunology. Finally, the progression of fungal detection methods is also reviewed.
Collapse
Affiliation(s)
- Di Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China
| | - Ying Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yugen Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China,CONTACT Tingting Wang The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing210093, China
| |
Collapse
|
13
|
Nielsen MC, Hvidbjerg Gantzel R, Clària J, Trebicka J, Møller HJ, Grønbæk H. Macrophage Activation Markers, CD163 and CD206, in Acute-on-Chronic Liver Failure. Cells 2020; 9:cells9051175. [PMID: 32397365 PMCID: PMC7290463 DOI: 10.3390/cells9051175] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages facilitate essential homeostatic functions e.g., endocytosis, phagocytosis, and signaling during inflammation, and express a variety of scavenger receptors including CD163 and CD206, which are upregulated in response to inflammation. In healthy individuals, soluble forms of CD163 and CD206 are constitutively shed from macrophages, however, during inflammation pathogen- and damage-associated stimuli induce this shedding. Activation of resident liver macrophages viz. Kupffer cells is part of the inflammatory cascade occurring in acute and chronic liver diseases. We here review the existing literature on sCD163 and sCD206 function and shedding, and potential as biomarkers in acute and chronic liver diseases with a particular focus on Acute-on-Chronic Liver Failure (ACLF). In multiple studies sCD163 and sCD206 are elevated in relation to liver disease severity and established as reliable predictors of morbidity and mortality. However, differences in expression- and shedding-stimuli for CD163 and CD206 may explain dissimilarities in prognostic utility in patients with acute decompensation of cirrhosis and ACLF.
Collapse
Affiliation(s)
- Marlene Christina Nielsen
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.C.N.); (H.J.M.)
| | - Rasmus Hvidbjerg Gantzel
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, 8200 Aarhus N, Denmark;
| | - Joan Clària
- European Foundation for the Study of Chronic Liver Failure (EF-CLIF), 08021 Barcelona, Spain; (J.C.); (J.T.)
- Department of Biochemistry and Molecular Genetics, Hospital Clínic-IDIBAPS, 08036 Barcelona, Spain
| | - Jonel Trebicka
- European Foundation for the Study of Chronic Liver Failure (EF-CLIF), 08021 Barcelona, Spain; (J.C.); (J.T.)
- Translational Hepatology, Department of Internal Medicine I, Goethe University Frankfurt, 60323 Frankfurt, Germany
| | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.C.N.); (H.J.M.)
| | - Henning Grønbæk
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, 8200 Aarhus N, Denmark;
- Correspondence: ; Tel.: +45-21-67-92-81
| |
Collapse
|
14
|
Cottier F, Hall RA. Face/Off: The Interchangeable Side of Candida Albicans. Front Cell Infect Microbiol 2020; 9:471. [PMID: 32047726 PMCID: PMC6997470 DOI: 10.3389/fcimb.2019.00471] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
Due to limited mobility, fungi, like most unicellular organisms, have evolved mechanisms to adapt to sudden chemical and/or physical variation in their environment. Candida albicans is recognized as a model organism to study eukaryotic responses to environmental changes, as this human commensal yeast but also opportunistic pathogen responds to numerous environmental cues through switching morphologies from yeast to hyphae growth. This mechanism is largely controlled by two major pathways: cAMP-PKA and MAPK, but each environmental signal is sensed by specific sensors. However, morphological switching is not the only response C. albicans exerts in response to environmental cues. Recently, fungal cell wall remodeling in response to host-derived environmental cues has been identified as a way for C. albicans to manipulate the innate immune system. The fungal cell wall is composed of a chitin skeleton linked to a network of β-glucan, which anchors proteins and mannans to the fungal cell surface. As localized on the cell surface, these molecules drive interactions with the environment and other cells, particularly with host immune cells. C. albicans is recognized by immune cells such as neutrophils and macrophages via pathogen recognition receptors (PRRs) that bind different components of the cell wall. While β-glucan and mannan are proinflammatory molecules, chitin can induce anti-inflammatory responses. Interestingly, C. albicans is able to regulate the exposure of these pathogen-associated molecular patterns (PAMPs) according to environmental cues resulting in a modulation of the host immune response. This review describes the mechanisms involved in C. albicans response to environmental changes and their effect on immune recognition.
Collapse
Affiliation(s)
- Fabien Cottier
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca A Hall
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom.,Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
15
|
C-Type Lectin Receptors in Antifungal Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:1-30. [PMID: 32152941 DOI: 10.1007/978-981-15-1580-4_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most fungal species are harmless to humans and some exist as commensals on mucocutaneous surfaces. Yet many fungi are opportunistic pathogens, causing life-threatening invasive infections when the immune system becomes compromised. The fungal cell wall contains conserved pathogen-associated molecular patterns (PAMPs), which allow the immune system to distinguish between self (endogenous molecular patterns) and foreign material. Sensing of invasive microbial pathogens is achieved through recognition of PAMPs by pattern recognition receptors (PRRs). One of the predominant fungal-sensing PRRs is the C-type lectin receptor (CLR) family. These receptors bind to structures present on the fungal cell wall, eliciting various innate immune responses as well as shaping adaptive immunity. In this chapter, we specifically focus on the four major human fungal pathogens, Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans and Pneumocystis jirovecii, reviewing our current understanding of the CLRs that are involved in their recognition and protection of the host.
Collapse
|
16
|
Höft MA, Hoving JC, Brown GD. Signaling C-Type Lectin Receptors in Antifungal Immunity. Curr Top Microbiol Immunol 2020; 429:63-101. [PMID: 32936383 DOI: 10.1007/82_2020_224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We are all exposed to fungal organisms daily, and although many of these organisms are not harmful, billions of people a year contract a fungal infection. Most of these infections are not fatal and can be cleared by the host immune response. However, due to an increase in high-risk populations, the global fungal burden has increased, with more than 1.5 million deaths per year caused by invasive fungal infections. The fungal cell wall is an important surface for interacting with the host immune system as it contains pathogen-associated molecular patterns (PAMPs) which are detected as being foreign by the host pattern recognition receptors (PRRs). C-type lectin receptors are a group of PRRs that play a central role in the protection against invasive fungal infections. Following the recognition of fungal PAMPs, CLRs trigger various innate and adaptive immune responses. In this chapter, we specifically focus on C-type lectin receptors capable of activating downstream signaling pathways, resulting in protective antifungal immune responses. The current roles that these signaling CLRs play in protection against four of the most prevalent fungal infections affecting humans are reviewed. These include Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans and Pneumocystis jirovecii.
Collapse
Affiliation(s)
- Maxine A Höft
- AFGrica Medical Mycology Research Unit, Institute of Infectious Disease and Molecular Medicine (IDM) at the University of Cape Town, Werner & Beit South Building, Anzio Road, Observatory, 7925, Cape Town, South Africa
| | - J Claire Hoving
- AFGrica Medical Mycology Research Unit, Institute of Infectious Disease and Molecular Medicine (IDM) at the University of Cape Town, Werner & Beit South Building, Anzio Road, Observatory, 7925, Cape Town, South Africa
| | - Gordon D Brown
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, EX4 4QD, Exeter, UK.
| |
Collapse
|
17
|
Hatinguais R, Willment JA, Brown GD. PAMPs of the Fungal Cell Wall and Mammalian PRRs. Curr Top Microbiol Immunol 2020; 425:187-223. [PMID: 32180018 DOI: 10.1007/82_2020_201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fungi are opportunistic pathogens that infect immunocompromised patients and are responsible for an estimated 1.5 million deaths every year. The antifungal innate immune response is mediated through the recognition of pathogen-associated molecular patterns (PAMPs) by the host's pattern recognition receptors (PRRs). PRRs are immune receptors that ensure the internalisation and the killing of fungal pathogens. They also mount the inflammatory response, which contributes to initiate and polarise the adaptive response, controlled by lymphocytes. Both the innate and adaptive immune responses are required to control fungal infections. The immune recognition of fungal pathogen primarily occurs at the interface between the membrane of innate immune cells and the fungal cell wall, which contains a number of PAMPs. This chapter will focus on describing the main mammalian PRRs that have been shown to bind to PAMPs from the fungal cell wall of the four main fungal pathogens: Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans and Pneumocystis jirovecii. We will describe these receptors, their functions and ligands to provide the reader with an overview of how the immune system recognises fungal pathogens and responds to them.
Collapse
Affiliation(s)
- Remi Hatinguais
- MRC Centre for Medical Mycology at University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Janet A Willment
- MRC Centre for Medical Mycology at University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Gordon D Brown
- MRC Centre for Medical Mycology at University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK.
| |
Collapse
|
18
|
Tsuchiya K, Suzuki Y, Yoshimura K, Yasui H, Karayama M, Hozumi H, Furuhashi K, Enomoto N, Fujisawa T, Nakamura Y, Inui N, Yokomura K, Suda T. Macrophage Mannose Receptor CD206 Predicts Prognosis in Community-acquired Pneumonia. Sci Rep 2019; 9:18750. [PMID: 31822747 PMCID: PMC6904766 DOI: 10.1038/s41598-019-55289-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
CD206, a mannose receptor, is mainly expressed on the surface of alternatively activated macrophages where it acts as a pattern recognition receptor and plays a role in innate and adaptive immunity. This study investigated serum soluble CD206 (sCD206) levels in community-acquired pneumonia (CAP) and examined their clinical significance. sCD206 concentrations were measured in the sera of two independent cohorts with CAP (127 and 125 patients, respectively) and 42 controls. The expression of CD206 in the lung from autopsied cases was also examined. Patients with CAP showed significantly elevated sCD206 levels than did the controls (p < 0.0001). Notably, fatal CAP patients had more than two-fold higher sCD206 concentrations than survivors in both cohorts (p < 0.0001). Serum sCD206 concentrations were associated with Pneumonia Severity Index (PSI) and CURB-65 values. Importantly, even fatal CAP patients classified as PSI I-IV, CURB65 0–2 or age <75 years had comparatively higher levels of sCD206 than those classified as PSI V, CURB-65 3–5 or age ≥75 years. Immunohistochemically, the infiltration of CD206+ macrophages was found in the lungs of fatal cases. Elevated levels of sCD206 are associated with CAP prognosis, suggesting sCD206 might be a potential biomarker to predict severity for CAP.
Collapse
Affiliation(s)
- Kazuo Tsuchiya
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Katsuhiro Yoshimura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yutaro Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Koushi Yokomura
- Department of Respiratory Medicine, Seirei Mikatahara Hospital, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
19
|
The soluble mannose receptor (sMR/sCD206) in critically ill patients with invasive fungal infections, bacterial infections or non-infectious inflammation: a secondary analysis of the EPaNIC RCT. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:270. [PMID: 31375142 PMCID: PMC6679534 DOI: 10.1186/s13054-019-2549-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/22/2019] [Indexed: 01/28/2023]
Abstract
Background Invasive fungal infections (IFI) are difficult to diagnose, especially in critically ill patients. As the mannose receptor (MR) is shed from macrophage cell surfaces after exposure to fungi, we investigate whether its soluble serum form (sMR) can serve as a biomarker of IFI. Methods This is a secondary analysis of the multicentre randomised controlled trial (EPaNIC, n = 4640) that investigated the impact of initiating supplemental parenteral nutrition (PN) early during critical illness (Early-PN) as compared to withholding it in the first week of intensive care (Late-PN). Serum sMR concentrations were measured in three matched patient groups (proven/probable IFI, n = 82; bacterial infection, n = 80; non-infectious inflammation, n = 77) on the day of antimicrobial initiation or matched intensive care unit day and the five preceding days, as well as in matched healthy controls (n = 59). Independent determinants of sMR concentration were identified via multivariable linear regression. Serum sMR time profiles were analysed with repeated-measures ANOVA. Predictive properties were assessed via area under the receiver operating curve (aROC). Results Serum sMR was higher in IFI patients than in all other groups (all p < 0.02), aROC to differentiate IFI from no IFI being 0.65 (p < 0.001). The ability of serum sMR to discriminate infectious from non-infectious inflammation was better with an aROC of 0.68 (p < 0.001). The sMR concentrations were already elevated up to 5 days before antimicrobial initiation and remained stable over time. Multivariable linear regression analysis showed that an infection or an IFI, higher severity of illness and sepsis upon admission were associated with higher sMR levels; urgent admission and Late-PN were independently associated with lower sMR concentrations. Conclusion Serum sMR concentrations were higher in critically ill patients with IFI than in those with a bacterial infection or with non-infectious inflammation. However, test properties were insufficient for diagnostic purposes. Electronic supplementary material The online version of this article (10.1186/s13054-019-2549-8) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Nielsen MC, Andersen MN, Rittig N, Rødgaard-Hansen S, Grønbaek H, Moestrup SK, Møller HJ, Etzerodt A. The macrophage-related biomarkers sCD163 and sCD206 are released by different shedding mechanisms. J Leukoc Biol 2019; 106:1129-1138. [PMID: 31242338 DOI: 10.1002/jlb.3a1218-500r] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/30/2019] [Accepted: 06/17/2019] [Indexed: 01/05/2023] Open
Abstract
The hemoglobin receptor CD163 and the mannose receptor CD206 are both expressed on the surface of human macrophages. Upon inflammatory activation, the receptors are shed from the macrophage surface generating soluble products. The plasma concentration of both soluble CD163 (sCD163) and soluble CD206 (sCD206) are increased in several diseases, including inflammatory conditions and cancer. Here, we show that in contrast to CD163, LPS-mediated shedding of CD206 in humans is slow and a result of indirect signaling. Although both sCD163 and sCD206 were increased in response to LPS stimulation in vivo, only CD163 was shed from LPS-stimulated macrophages in vitro. Although both sCD163 and sCD206 were released from cultured macrophages stimulated with zymosan and PMA, shedding of CD206 was generally slower and less efficient and not reduced by inhibitors against the major protease classes. These data indicate that CD163 and CD206 are shed from the macrophages by very different mechanisms potentially involving distinctive inflammatory processes.
Collapse
Affiliation(s)
| | - Morten Nørgaard Andersen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Nikolaj Rittig
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Henning Grønbaek
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Søren Kragh Moestrup
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Etzerodt
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
21
|
El Din Mohamed Abdo A, Mahmoud Mohy El Din K, El Din Saeed Bedewy E, Abdel Haleem Abo Elwafa R, Adel Abdel Aziz M. Plasma soluble CD 163 level as a marker of oesophageal varices in cirrhotic patients. ALEXANDRIA JOURNAL OF MEDICINE 2018. [DOI: 10.1016/j.ajme.2017.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
22
|
Goyal S, Castrillón-Betancur JC, Klaile E, Slevogt H. The Interaction of Human Pathogenic Fungi With C-Type Lectin Receptors. Front Immunol 2018; 9:1261. [PMID: 29915598 PMCID: PMC5994417 DOI: 10.3389/fimmu.2018.01261] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/18/2018] [Indexed: 01/19/2023] Open
Abstract
Fungi, usually present as commensals, are a major cause of opportunistic infections in immunocompromised patients. Such infections, if not diagnosed or treated properly, can prove fatal. However, in most cases healthy individuals are able to avert the fungal attacks by mounting proper antifungal immune responses. Among the pattern recognition receptors (PRRs), C-type lectin receptors (CLRs) are the major players in antifungal immunity. CLRs can recognize carbohydrate ligands, such as β-glucans and mannans, which are mainly found on fungal cell surfaces. They induce proinflammatory immune reactions, including phagocytosis, oxidative burst, cytokine, and chemokine production from innate effector cells, as well as activation of adaptive immunity via Th17 responses. CLRs such as Dectin-1, Dectin-2, Mincle, mannose receptor (MR), and DC-SIGN can recognize many disease-causing fungi and also collaborate with each other as well as other PRRs in mounting a fungi-specific immune response. Mutations in these receptors affect the host response and have been linked to a higher risk in contracting fungal infections. This review focuses on how CLRs on various immune cells orchestrate the antifungal response and on the contribution of single nucleotide polymorphisms in these receptors toward the risk of developing such infections.
Collapse
Affiliation(s)
- Surabhi Goyal
- Institute for Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Juan Camilo Castrillón-Betancur
- Septomics Research Center, Jena University Hospital, Jena, Germany.,International Leibniz Research School for Microbial and Biomolecular Interactions, Leibniz Institute for Natural Product Research and Infection Biology/Hans Knöll Institute, Jena, Germany
| | - Esther Klaile
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Hortense Slevogt
- Septomics Research Center, Jena University Hospital, Jena, Germany
| |
Collapse
|
23
|
Expression, Distribution, and Role of C-Type Lectin Receptors in the Human and Animal Middle Ear and Eustachian Tube: A Review. Molecules 2018; 23:molecules23040734. [PMID: 29565818 PMCID: PMC6017961 DOI: 10.3390/molecules23040734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 11/17/2022] Open
Abstract
Otitis media (OM) is a group of inflammatory diseases of the middle ear (ME), regardless of cause or pathological mechanism. Among the molecular biological studies assessing the pathology of OM are investigations into the expression of C-type lectin receptors (CLR) in the ME and Eustachian tube (ET). To date, nine studies have evaluated CLR expression in the ME and ET. The expression of individual CLRs in mammalian ME and ET varies by species and model of OM. Assessments have shown that the patterns of CLR expression in the ME and ET vary; that CLR expression may vary by type of OM; and that the distribution and levels of expression of CLRs may depend on the presence or absence of inflammation, with variations even within the same species and same tissue. Infection of the ME and ET with various pathogens is a common cause of all types of OM, with host responses to pathogens mediated initially by the innate immune system. CLRs are important factors in the innate immune system because they act as both adhesion molecules and as pathogen recognition receptors. The expression of CLRs in OM tissues suggests that CLRs are associated with the pathogenesis of various types of OM.
Collapse
|
24
|
Laursen TL, Wong GLH, Kazankov K, Sandahl T, Møller HJ, Hamilton-Dutoit S, George J, Chan HLY, Grønbaek H. Soluble CD163 and mannose receptor associate with chronic hepatitis B activity and fibrosis and decline with treatment. J Gastroenterol Hepatol 2018; 33:484-491. [PMID: 28618015 DOI: 10.1111/jgh.13849] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/19/2017] [Accepted: 06/10/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Liver macrophages are activated in chronic hepatitis B virus (CHB) infection and play a pivotal role in hepatic inflammation and fibrosis. However, their role during antiviral treatment is unclear. The soluble (s) macrophage activation markers, sCD163 and mannose receptor (sMR), are released during liver damage, and their serum levels reflect liver disease severity and portal hypertension. We aimed to investigate associations between sCD163 and sMR and histopathological activity and fibrosis and changes in sCD163, sMR, and hepatic CD163-expression following antiviral treatment in CHB patients. METHODS We assessed Ishak histological necroinflammatory activity and fibrosis scores in liver biopsies from 254 CHB patients and serially in 71 patients before and after nucleoside-analogue treatment. Liver CD163-expression was semi-quantitatively determined by immunohistochemistry and serum sCD163 and sMR measured by enzyme-linked immunosorbent assays. RESULTS Before treatment, the mean levels of sCD163 and sMR were 3.57 (SD 1.72) mg/L and 0.35 (0.12) mg/L. sCD163 and sMR increased with histological inflammatory activity (sCD163: r = 0.46, P < 0.00001; sMR: r = 0.48, P < 0.00001) and correlated positively with fibrosis (sCD163: OR 1.16, 95% CI:1.03-1.31; sMR: OR 1.34, 95% CI:1.13-1.59); both were markers of fibrosis independent of other biochemical parameters and risk factors. Antiviral treatment significantly reduced sCD163 (3.76 [1.46] vs 2.31 [0.95], P < 0.00001), sMR (0.37 [0.1] vs 0.29 [0.07], P < 0.00001) and hepatic CD163-expression (P = 0.0002). CONCLUSION The macrophage activation markers sCD163 and sMR were associated with activity and fibrosis in liver biopsies from CHB patients. Both serum markers decreased with antiviral treatment, along with decreased hepatic CD163 expression.
Collapse
Affiliation(s)
- Tea Lund Laursen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Grace Lai-Hung Wong
- Department of Medicine and Therapeutics and Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong
| | - Konstantin Kazankov
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Sandahl
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, New South Wales, Australia
| | - Henry Lik-Yuen Chan
- Department of Medicine and Therapeutics and Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong
| | - Henning Grønbaek
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
25
|
Marie Relster M, Gaini S, Møller HJ, Johansen IS, Pedersen C. The macrophage activation marker sMR as a diagnostic and prognostic marker in patients with acute infectious disease with or without sepsis. Scandinavian Journal of Clinical and Laboratory Investigation 2018; 78:180-186. [PMID: 29383956 DOI: 10.1080/00365513.2018.1431841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sepsis is a leading cause of mortality. This study aims to assess the utility of the soluble mannose receptor (sMR) as a biomarker of sepsis and mortality in patients hospitalized with suspected infection. Using an in-house ELISA assay the concentration of sMR was analyzed in the serum of patients from three prospective studies. Using Sepsis-3 guidelines, patients were stratified as no infection (NI, n = 68), verified infection without sepsis (NSEP, n = 133) and verified infection with sepsis (SEP, n = 190). Adverse outcome was assessed as death before 28 days. We show that the sensitivity of sMR to predict mortality [area under curve (AUC) = 0.77] exceeded the sensitivity of procalcitonin (PCT, AUC = 0.63), C-reactive protein (CRP, AUC = 0.61) and the macrophage soluble receptor, CD163 (sCD163, AUC = 0.74), while it was less accurate to predict diagnosis of sepsis [AUC(sMR) = 0.69 vs. AUC(PCT) = 0.79, AUC(CRP) = 0.71 and AUC(sCD163) = 0.66]. Median sMR was significantly higher in the group with SEP (0.55 mg/L), compared with the groups without sepsis (NI and NSEP) (0.39 mg/L, p < .0001), and among those who died compared to those who survived (0.89 mg/L vs. 0.44 mg/L, p < .0001). Our results, and the current literature, support further evaluation of sMR as a biomarker of sepsis and mortality among patients hospitalized with suspected infection.
Collapse
Affiliation(s)
- Mette Marie Relster
- a Department Infectious Diseases , Odense University Hospital , Odense , Denmark
| | - Shahin Gaini
- a Department Infectious Diseases , Odense University Hospital , Odense , Denmark.,b Medical Department, Infectious Diseases Division , National Hospital Faroe Islands , Torshavn , The Faroe Islands.,c Centre of Health Research , University of the Faroe Islands , Torshavn , The Faroe Islands
| | - Holger Jon Møller
- d Department of Clinical Biochemistry , Aarhus University Hospital , Aarhus N , Denmark
| | | | - Court Pedersen
- a Department Infectious Diseases , Odense University Hospital , Odense , Denmark
| |
Collapse
|
26
|
Activation of the Innate Immune Receptors: Guardians of the Micro Galaxy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1024:1-35. [DOI: 10.1007/978-981-10-5987-2_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Pawar VK, Singh Y, Sharma K, Shrivastav A, Sharma A, Singh A, Meher JG, Singh P, Raval K, Bora HK, Datta D, Lal J, Chourasia MK. Doxorubicin Hydrochloride Loaded Zymosan-Polyethylenimine Biopolymeric Nanoparticles for Dual 'Chemoimmunotherapeutic' Intervention in Breast Cancer. Pharm Res 2017; 34:1857-1871. [PMID: 28608139 DOI: 10.1007/s11095-017-2195-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/26/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To utilize nanoparticles produced by condensation of zymosan (an immunotherapeutic polysaccharide) with pegylated polyethylenimine (PEG-PEI) for dual intervention in breast cancer by modulating tumor microenvironment and direct chemotherapy. METHOD Positively charged PEG-PEI and negatively charged sulphated zymosan were utilized for electrostatic complexation of chemoimmunotherapeutic nanoparticles (ChiNPs). ChiNPs were loaded with doxorubicin hydrochloride (DOX) for improved delivery at tumor site and were tested for in-vivo tolerability. Biodistribution studies were conducted to showcase their effective accumulation in tumor hypoxic regions where tumor associated macrophages (TAMs) are preferentially recruited. RESULTS ChiNPs modulated TAMs differentiation resulting in decrement of CD206 positive population. This immunotherapeutic action was furnished by enhanced expression of Th1 specific cytokines. ChiNPs also facilitated an anti-angiogenetic effect which further reduces the possibility of tumor progression and metastasis.
Collapse
Affiliation(s)
- Vivek K Pawar
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India.,Academy of Scientific & Innovative Research,, New Delhi, 110025, India
| | - Yuvraj Singh
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India.,Academy of Scientific & Innovative Research,, New Delhi, 110025, India
| | - Komal Sharma
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India.,Academy of Scientific & Innovative Research,, New Delhi, 110025, India
| | - Arpita Shrivastav
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Abhisheak Sharma
- Academy of Scientific & Innovative Research,, New Delhi, 110025, India.,Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Akhilesh Singh
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Jaya Gopal Meher
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Pankaj Singh
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India.,Academy of Scientific & Innovative Research,, New Delhi, 110025, India
| | - Kavit Raval
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India.,Academy of Scientific & Innovative Research,, New Delhi, 110025, India
| | - Himangshu K Bora
- Laboratory Animals Facility, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Dipak Datta
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Jawahar Lal
- Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Manish K Chourasia
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India. .,Academy of Scientific & Innovative Research,, New Delhi, 110025, India.
| |
Collapse
|
28
|
Serban KA, Petrusca DN, Mikosz A, Poirier C, Lockett AD, Saint L, Justice MJ, Twigg HL, Campos MA, Petrache I. Alpha-1 antitrypsin supplementation improves alveolar macrophages efferocytosis and phagocytosis following cigarette smoke exposure. PLoS One 2017; 12:e0176073. [PMID: 28448535 PMCID: PMC5407578 DOI: 10.1371/journal.pone.0176073] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/05/2017] [Indexed: 01/13/2023] Open
Abstract
Cigarette smoking (CS), the main risk factor for COPD (chronic obstructive pulmonary disease) in developed countries, decreases alveolar macrophages (AM) clearance of both apoptotic cells and bacterial pathogens. This global deficit of AM engulfment may explain why active smokers have worse outcomes of COPD exacerbations, episodes characterized by airway infection and inflammation that carry high morbidity and healthcare cost. When administered as intravenous supplementation, the acute phase-reactant alpha-1 antitrypsin (A1AT) reduces the severity of COPD exacerbations in A1AT deficient (AATD) individuals and of bacterial pneumonia in murine models, but the effect of A1AT on AM scavenging functions has not been reported. Apoptotic cell clearance (efferocytosis) was measured in human AM isolated from patients with COPD, in primary rat AM or differentiated monocytes exposed to CS ex vivo, and in AM recovered from mice exposed to CS. A1AT (100 μg/mL, 16 h) significantly ameliorated efferocytosis (by ~50%) in AM of active smokers or AM exposed ex vivo to CS. A1AT significantly improved AM global engulfment, including phagocytosis, even when cells were simultaneously challenged with apoptotic and Fc-coated (bacteria-like) targets. The improved efferocytosis in A1AT-treated macrophages was associated with inhibition of tumor necrosis factor-α converting enzyme (TACE) activity, decreased mannose receptor shedding, and markedly increased abundance of efferocytosis receptors (mannose- and phosphatidyl serine receptors and the scavenger receptor B2) on AM plasma membrane. Directed airway A1AT treatment (via inhalation of a nebulized solution) restored in situ airway AM efferocytosis after CS exposure in mice. The amelioration of CS-exposed AM global engulfment may render A1AT as a potential therapy for COPD exacerbations.
Collapse
Affiliation(s)
- Karina A. Serban
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colorado, United States of America
- Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Daniela N. Petrusca
- Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Medicine, Divisions of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Andrew Mikosz
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Christophe Poirier
- Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Angelia D. Lockett
- Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Cellular and Integrative Physiology at Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Lauren Saint
- Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Matthew J. Justice
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colorado, United States of America
- Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Homer L. Twigg
- Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Michael A. Campos
- Division of Pulmonary and Critical Care Medicine, University of Miami, Miami, Florida, United States of America
| | - Irina Petrache
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colorado, United States of America
- Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
29
|
Laursen TL, Rødgaard-Hansen S, Møller HJ, Mortensen C, Karlsen S, Nielsen DT, Frevert S, Clemmesen JO, Møller S, Jensen JS, Bendtsen F, Grønbaek H. The soluble mannose receptor is released from the liver in cirrhotic patients, but is not associated with bacterial translocation. Liver Int 2017; 37:569-575. [PMID: 27706896 DOI: 10.1111/liv.13262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/23/2016] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Intestinal bacterial translocation is involved in activation of liver macrophages in cirrhotic patients. Macrophages play a key role in liver inflammation and are involved in the pathogenesis of cirrhosis and complications. Bacterial translocation may be determined by presence of bacterial DNA and macrophage activation, by the soluble mannose receptor. We hypothesize that the soluble mannose receptor is released from hepatic macrophages in cirrhosis and associated with bacterial DNA, portal pressure and complications. METHODS We investigated 28 cirrhotic patients set for transjugular intrahepatic portosystemic shunt insertion as a result of refractory ascites (n=17), acute (n=3), or recurrent variceal bleeding (n=8). We analysed plasma from the portal and hepatic veins for bacterial DNA and soluble mannose receptor with qPCR and ELISA. RESULTS The median soluble mannose receptor level was elevated in the hepatic vein compared with the portal vein (0.57(interquartile range 0.31) vs 0.55(0.40) mg/L, P=.005). The soluble mannose receptor levels were similar in bacterial DNA-positive and -negative patients. The soluble mannose receptor level in the portal and hepatic veins correlated with the portal pressure prior to transjugular intrahepatic portosystemic shunt insertion (r=.52, P<.008, both) and the levels correlated with Child-Pugh score (r=.63 and r=.56, P<.004, both). We observed higher soluble mannose receptor levels in patients with acute variceal bleeding compared to other indications (P<.05). CONCLUSION This study showed hepatic soluble mannose receptor excretion with a higher level in the hepatic than the portal vein, though with no associations to bacterial DNA. We observed associations between soluble mannose receptor levels and portal pressure and higher levels in patients with acute variceal bleeding indicating the soluble mannose receptor as a marker of complications of cirrhosis, but not bacterial translocation.
Collapse
Affiliation(s)
- Tea L Laursen
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Holger J Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Christian Mortensen
- Department of Gastroenterology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Stine Karlsen
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Dennis T Nielsen
- Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
| | - Susanne Frevert
- Department of Radiology, Rigshospitalet, Copenhagen, Denmark
| | | | - Søren Møller
- Department of Clinical Physiology and Nuclear Medicine, Centre of Functional Imaging and Research, Hvidovre University Hospital, Hvidovre, Denmark
| | - Jørgen S Jensen
- Mycoplasma Laboratory, Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Flemming Bendtsen
- Department of Gastroenterology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Henning Grønbaek
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
30
|
Agustinho DP, de Oliveira MA, Tavares AH, Derengowski L, Stolz V, Guilhelmelli F, Mortari MR, Kuchler K, Silva-Pereira I. Dectin-1 is required for miR155 upregulation in murine macrophages in response to Candida albicans. Virulence 2016; 8:41-52. [PMID: 27294852 DOI: 10.1080/21505594.2016.1200215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The commensal fungal pathogen Candida albicans is a leading cause of lethal systemic infections in immunocompromised patients. One of the main mechanisms of host immune evasion and virulence by this pathogen is the switch from yeast form to hyphal growth morphologies. Micro RNAs (miRNAs), a small regulatory non-coding RNA, has been identified as an important part of the immune response to a wide variety of pathogens. In general, miRNAs act by modulating the intensity of inflammatory responses. miRNAs act by base-paring binding to specific sequences of target mRNAs, generally causing their silencing through mRNA degradation or translational repression. To study the impact of C. albicans cell morphology upon host miRNA expression, we investigated the differential modulation of 9 different immune response-related miRNAs in primary murine bone marrow-derived macrophages (BMDMs) exposed to either yeasts or hyphal forms of Candida albicans. Here, we show that the different growth morphologies induce distinct miRNA expression patterns in BMDMs. Interestingly, our data suggest that the C-Type lectin receptor Dectin-1 is a major PRR that orchestrates miR155 upregulation in a Syk-dependent manner. Our results suggest that PRR-mediating signaling events are key drivers of miRNA-mediated gene regulation during fungal pathogenesis.
Collapse
Affiliation(s)
- Daniel Paiva Agustinho
- a Departamento de Biologia Celular , Laboratório de Biologia Molecular, Universidade de Brasília , Brasília , DF , Brasil
| | - Marco Antônio de Oliveira
- a Departamento de Biologia Celular , Laboratório de Biologia Molecular, Universidade de Brasília , Brasília , DF , Brasil
| | - Aldo Henrique Tavares
- b Departamento de Biologia Celular , Laboratório de Imunologia Aplicada, Instituto de Biologia, Universidade de Brasília , Brasília , DF , Brasil
| | - Lorena Derengowski
- a Departamento de Biologia Celular , Laboratório de Biologia Molecular, Universidade de Brasília , Brasília , DF , Brasil
| | - Valentina Stolz
- c Department of Molecular Genetics , Max F. Perutz Laboratories, Medical University of Vienna , Vienna , Austria
| | - Fernanda Guilhelmelli
- a Departamento de Biologia Celular , Laboratório de Biologia Molecular, Universidade de Brasília , Brasília , DF , Brasil
| | - Márcia Renata Mortari
- d Departamento de Ciências Fisiológicas , Laboratório de Neurofarmacologia, Universidade de Brasília , Brasília , DF , Brasil
| | - Karl Kuchler
- c Department of Molecular Genetics , Max F. Perutz Laboratories, Medical University of Vienna , Vienna , Austria
| | - Ildinete Silva-Pereira
- a Departamento de Biologia Celular , Laboratório de Biologia Molecular, Universidade de Brasília , Brasília , DF , Brasil
| |
Collapse
|
31
|
Role of the Mannose Receptor During Aspergillus fumigatus Infection and Interaction With Dectin-1 in Corneal Epithelial Cells. Cornea 2016; 35:267-73. [DOI: 10.1097/ico.0000000000000710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
El-Kirat-Chatel S, Dufrêne YF. Nanoscale adhesion forces between the fungal pathogen Candida albicans and macrophages. NANOSCALE HORIZONS 2016; 1:69-74. [PMID: 32260605 DOI: 10.1039/c5nh00049a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The development of fungal infections is tightly controlled by the interaction of fungal pathogens with host immune cells. While the recognition of specific fungal cell wall components by immune receptors has been widely investigated, the molecular forces involved are not known. In this Communication, we show the ability of single-cell force spectroscopy to quantify the specific adhesion forces between the fungal pathogen Candida albicans and macrophages. The Candida-macrophage adhesion force is strong, up to ∼3000 pN, and corresponds to multiple cumulative bonds between lectin receptors expressed on the macrophage membrane and mannan carbohydrates on the fungal cell surface. Adhesion force signatures show constant force plateaus, up to >100 μm long, reflecting the extraction of elongated tethers from the macrophage membrane, a phenomenon which may increase the duration of intercellular adhesion. Adhesion strengthens with time, suggesting that the macrophage membrane engulfs the pathogen quickly after initial contact, leading to its internalization. The force nanoscopy method developed here holds great promise for understanding and controlling the early stages of microbe-immune interactions.
Collapse
Affiliation(s)
- Sofiane El-Kirat-Chatel
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.06, 1348 Louvain-la-Neuve, Belgium.
| | | |
Collapse
|
33
|
Candida glabrata induced infection of rat tracheal epithelial cells is mediated by TLR-2 induced activation of NF-κB. Microb Pathog 2015; 91:115-22. [PMID: 26477714 DOI: 10.1016/j.micpath.2015.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 01/26/2023]
Abstract
An increasing number of reports identified Candida glabrata (C. glabrata) as the important causative agent of invasive pulmonary fungal infection. However, little is known about immune responses to C. glabrata in rat tracheal epithelial cell (RTEC). Here, the effect of C. glabrata on RTEC and the role of TLR-2 and NF-κB in the immune response were investigated by treatment with TLR-2 siRNA and NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC), respectively. Our results showed that the knockdown of TLR-2 and pretreatment of PDTC led to inhibition of cell proliferation by C. glabrata, further enhanced cells in G0/G1 phases, and promoted C. glabrata -induced apoptosis. C. glabrata infection induced the expression or secretion of TLR-2, NF-κB, TNF-α, and IL-6, and its effect was inhibited by knockdown of TLR-2. Pretreatment with PDTC inhibited the C. glabrata -induced expression of TLR2, and also inhibited the expression of p65 subunit of NF-κB in the first 4 h. Although the expression of p65 subunit at 6 h was elevated compared to baseline, the C. glabrata -induced expression of TNF-α and IL-6 remained attenuated by PDTC pretreatment. Therefore, C. glabrata recognized the TLR-2 in rat tracheal epithelial cell (RTEC), and then activated the transcription factor NF-κB and further promoted the secretion of TNF-α and IL-6 to contribute to the immune response and inflammation.
Collapse
|
34
|
ten Oever J, Netea MG, Kullberg BJ. Utility of immune response-derived biomarkers in the differential diagnosis of inflammatory disorders. J Infect 2015; 72:1-18. [PMID: 26429736 DOI: 10.1016/j.jinf.2015.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 12/27/2022]
Abstract
Differentiating between inflammatory disorders is difficult, but important for a rational use of antimicrobial agents. Biomarkers reflecting the host immune response may offer an attractive strategy to predict the etiology of an inflammatory process and can thus be of help in decision making. We performed a review of the literature to evaluate the diagnostic value of inflammatory biomarkers in adult patients admitted to the hospital with suspected systemic acute infections. Elevated procalcitonin (PCT) concentrations indicate a bacterial infection in febrile patients with an auto-immune disease, rather than a disease flare. CD64 expression on neutrophils can discriminate between non-infectious systemic inflammation and sepsis, and limited evidence suggests the same for decoy receptor 3. PCT is useful for both diagnosing bacterial infection complicating influenza and guiding antibiotic treatment in lower respiratory tract infections in general. In undifferentiated illnesses, increased CD35 expression on neutrophils distinguishes bacterial from viral infections. Compared to bacterial infections, invasive fungal infections are characterized by low concentrations of PCT. No biomarker predicting a specific infecting agent could be identified.
Collapse
Affiliation(s)
- Jaap ten Oever
- Department of Internal Medicine, and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Internal Postal Code 463, PO box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Mihai G Netea
- Department of Internal Medicine, and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Internal Postal Code 463, PO box 9101, 6500 HB Nijmegen, The Netherlands
| | - Bart-Jan Kullberg
- Department of Internal Medicine, and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Internal Postal Code 463, PO box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
35
|
The novel biomarker of alternative macrophage activation, soluble mannose receptor (sMR/sCD206): Implications in multiple myeloma. Leuk Res 2015; 39:971-5. [DOI: 10.1016/j.leukres.2015.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 05/11/2015] [Accepted: 06/06/2015] [Indexed: 12/12/2022]
|
36
|
Borrelia-induced cytokine production is mediated by spleen tyrosine kinase (Syk) but is Dectin-1 and Dectin-2 independent. Cytokine 2015; 76:465-472. [PMID: 26297607 DOI: 10.1016/j.cyto.2015.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/03/2015] [Accepted: 08/13/2015] [Indexed: 12/13/2022]
Abstract
Although it is known that Borrelia species express sugar-like structures on their outer surface, not much is known about the role of these structures in immune recognition by host cells. Fungi, like Candida albicans, are mainly recognized by C-type lectin receptors, in specific Dectin-1 and Dectin-2. In this study we assessed the role of Dectin-1 and Dectin-2 in the recognition process of Borrelia spirochetes. Using specific inhibitors against these receptors on human cells did not influenced cytokine production. Individuals carrying a SNP leading to an early stop codon in the DECTIN-1 gene also did not lead to differential induction of Borrelia-dependent cytokines. After injection of live Borrelia into knee joints of Dectin-2 deficient mice a trend towards lower inflammation was observed. Inhibition of Syk in human cells resulted in lower cytokine production after Borrelia stimulation. In conclusion, Dectin-1 and Dectin-2 seem not to play a major role in Borrelia recognition or Borrelia-induced inflammation. However, Syk seems to be involved in Borrelia-induced cytokine production.
Collapse
|
37
|
Gordon S, Plüddemann A, Mukhopadhyay S. Sinusoidal immunity: macrophages at the lymphohematopoietic interface. Cold Spring Harb Perspect Biol 2014; 7:a016378. [PMID: 25502514 DOI: 10.1101/cshperspect.a016378] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Macrophages are widely distributed throughout the body, performing vital homeostatic and defense functions after local and systemic perturbation within tissues. In concert with closely related dendritic cells and other myeloid and lymphoid cells, which mediate the innate and adaptive immune response, macrophages determine the outcome of the inflammatory and repair processes that accompany sterile and infectious injury and microbial invasion. This article will describe and compare the role of specialized macrophage populations at two critical interfaces between the resident host lymphohematopoietic system and circulating blood and lymph, the carriers of cells, humoral components, microorganisms, and their products. Sinusoidal macrophages in the marginal zone of the spleen and subcapsular sinus and medulla of secondary lymph nodes contribute to the innate and adaptive responses of the host in health and disease. Although historically recognized as major constituents of the reticuloendothelial system, it has only recently become apparent that these specialized macrophages in close proximity to B and T lymphocytes play an indispensable role in recognition and responses to exogenous and endogenous ligands, thus shaping the nature and quality of immunity and inflammation. We review current understanding of these macrophages and identify gaps in our knowledge for further investigation.
Collapse
Affiliation(s)
- Siamon Gordon
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Annette Plüddemann
- Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Subhankar Mukhopadhyay
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
38
|
Plato A, Hardison SE, Brown GD. Pattern recognition receptors in antifungal immunity. Semin Immunopathol 2014; 37:97-106. [PMID: 25420452 PMCID: PMC4326652 DOI: 10.1007/s00281-014-0462-4] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/04/2014] [Indexed: 12/19/2022]
Abstract
Receptors of the innate immune system are the first line of defence against infection, being able to recognise and initiate an inflammatory response to invading microorganisms. The Toll-like (TLR), NOD-like (NLR), RIG-I-like (RLR) and C-type lectin-like receptors (CLR) are four receptor families that contribute to the recognition of a vast range of species, including fungi. Many of these pattern recognition receptors (PRRs) are able to initiate innate immunity and polarise adaptive responses upon the recognition of fungal cell wall components and other conserved molecular patterns, including fungal nucleic acids. These receptors induce effective mechanisms of fungal clearance in normal hosts, but medical interventions, immunosuppression or genetic predisposition can lead to susceptibility to fungal infections. In this review, we highlight the importance of PRRs in fungal infection, specifically CLRs, which are the major PRR involved. We will describe specific PRRs in detail, the importance of receptor collaboration in fungal recognition and clearance, and describe how genetic aberrations in PRRs can contribute to disease pathology.
Collapse
Affiliation(s)
- Anthony Plato
- Division of Applied Medicine Immunity, Infection and Inflammation Programme Room 4.20, Institute of Medical Sciences, Ashgrove Road West University of Aberdeen, Aberdeen, AB25 2ZD UK
| | - Sarah E. Hardison
- Division of Applied Medicine Immunity, Infection and Inflammation Programme Room 4.20, Institute of Medical Sciences, Ashgrove Road West University of Aberdeen, Aberdeen, AB25 2ZD UK
| | - Gordon D. Brown
- Division of Applied Medicine Immunity, Infection and Inflammation Programme Room 4.20, Institute of Medical Sciences, Ashgrove Road West University of Aberdeen, Aberdeen, AB25 2ZD UK
| |
Collapse
|
39
|
Ten Oever J, Kox M, van de Veerdonk FL, Mothapo KM, Slavcovici A, Jansen TL, Tweehuysen L, Giamarellos-Bourboulis EJ, Schneeberger PM, Wever PC, Stoffels M, Simon A, van der Meer JWM, Johnson MD, Kullberg BJ, Pickkers P, Pachot A, Joosten LAB, Netea MG. The discriminative capacity of soluble Toll-like receptor (sTLR)2 and sTLR4 in inflammatory diseases. BMC Immunol 2014; 15:55. [PMID: 25406630 PMCID: PMC4240815 DOI: 10.1186/s12865-014-0055-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 11/04/2014] [Indexed: 12/31/2022] Open
Abstract
Background The extracellular domains of cytokine receptors are released during inflammation, but little is known about the shedding of Toll-like receptors (TLR) and whether they can be used as diagnostic biomarkers. Methods The release of sTLR2 and sTLR4 was studied in in-vitro stimulations, as well as in-vivo during experimental human endotoxemia (n = 11, 2 ng/kg LPS), and in plasma of 394 patients with infections (infectious mononucleosis, measles, respiratory tract infections, bacterial sepsis and candidemia) or non-infectious inflammation (Crohn’s disease, gout, rheumatoid arthritis, autoinflammatory syndromes and pancreatitis). Using C-statistics, the value of sTLR2 and sTLR4 levels for discrimination between infections and non-infectious inflammatory diseases, as well as between viral and bacterial infections was analyzed. Results In-vitro, peripheral blood mononuclear cells released sTLR2 and sTLR4 by exposure to microbial ligands. During experimental human endotoxemia, plasma concentrations peaked after 2 hours (sTLR4) and 4 hours (sTLR2). sTLR4 did not correlate with cytokines, but sTLR2 correlated positively with TNFα (rs = 0.80, P < 0.05), IL-6 (rs = 0.65, P < 0.05), and IL-1Ra (rs = 0.57, P = 0.06), and negatively with IL-10 (rs = -0.58, P = 0.06), respectively. sTLR4 had a similar area under the ROC curve [AUC] for differentiating infectious and non-infectious inflammation compared to CRP: 0.72 (95% CI 0.66-0.79) versus 0.74 (95% CI 0.69-0.80) [P = 0.80], while sTLR2 had a lower AUC: 0.60 (95% CI 0.54-0.66) [P = 0.0004]. CRP differentiated bacterial infections better from viral infections than sTLR2 and sTLR4: AUC 0.94 (95% CI 0.90-0.96) versus 0.58 (95% CI 0.51-0.64) and 0.75 (95% CI 0.70-0.80), respectively [P < 0.0001 for both]. Conclusions sTLRs are released into the circulation, and suggest the possibility to use sTLRs as diagnostic tool in inflammatory conditions.
Collapse
|
40
|
Rødgaard-Hansen S, Rafique A, Christensen PA, Maniecki MB, Sandahl TD, Nexø E, Møller HJ. A soluble form of the macrophage-related mannose receptor (MR/CD206) is present in human serum and elevated in critical illness. Clin Chem Lab Med 2014; 52:453-61. [PMID: 24114918 DOI: 10.1515/cclm-2013-0451] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/04/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND This study tests the hypothesis that the mannose receptor (MR/CD206), which is expressed primarily by macrophages and dendritic cells, can be found in a soluble form (sMR, sMR) in human serum. Furthermore, we wished to establish and validate an enzyme-linked immunosorbent assay (ELISA) for sMR and to perform initial studies exploring the potential of sMR as a biomarker. METHODS Western blotting identified a single band of approximately 170 kDa in human serum, and MALDI MS/MS of the purified protein confirmed it to be sMR. An ELISA was established and validated with a measurement range of 1-256 µg/L. RESULTS The 95% reference interval was 0.10-0.43 mg/L based on measurements of serum samples from healthy individuals (n=217). Samples from hospitalised patients (n=219) revealed that more than 50% of patients had concentrations above 0.43 mg/L. Very high concentrations (up to 6.2 mg/L) were observed in critically ill patients with sepsis and/or severe liver disease. CONCLUSIONS This study documents, for the first time, the presence of sMR in human serum and describes an optimised ELISA suitable for quantitative measurements. Levels of sMR are strongly elevated in several disease states, including sepsis and liver disease, and the protein therefore shows promise as a new biomarker.
Collapse
|
41
|
Abstract
The human pathogenic fungus Candida albicans is the predominant cause of both superficial and invasive forms of candidiasis. C. albicans primarily infects immunocompromised individuals as a result of either immunodeficiency or intervention therapy, which highlights the importance of host immune defences in preventing fungal infections. The host defence system utilises a vast communication network of cells, proteins, and chemical signals distributed in blood and tissues, which constitute innate and adaptive immunity. Over the last decade the identity of many key molecules mediating host defence against C. albicans has been identified. This review will discuss how the host recognises this fungus, the events induced by fungal cells, and the host innate and adaptive immune defences that ultimately resolve C. albicans infections during health.
Collapse
|
42
|
Andersen ES, Rødgaard-Hansen S, Moessner B, Christensen PB, Møller HJ, Weis N. Macrophage-related serum biomarkers soluble CD163 (sCD163) and soluble mannose receptor (sMR) to differentiate mild liver fibrosis from cirrhosis in patients with chronic hepatitis C: a pilot study. Eur J Clin Microbiol Infect Dis 2013; 33:117-22. [PMID: 24424890 DOI: 10.1007/s10096-013-1936-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 07/18/2013] [Indexed: 12/17/2022]
Abstract
Macrophages regulate the fibrotic process in chronic liver disease. The aim of the present pilot study was to evaluate two new macrophage-specific serum biomarkers [soluble CD163 (sCD163) and soluble mannose receptor (sMR, sCD206)] as potential fibrosis markers in patients chronically infected with hepatitis C virus (HCV). Forty patients with chronic hepatitis C were included from two hospital clinics. On the day of inclusion, transient elastography (TE) was performed to assess the fibrosis stage, and blood samples were collected for the measurement of sCD163 and sMR. The plasma concentrations of both biomarkers were significantly higher in patients infected with HCV and with cirrhosis compared to those with no/mild liver fibrosis (5.77 mg/l vs. 2.49 mg/l and 0.44 mg/l vs. 0.30 mg/l for sCD163 and sMR, respectively). The best separation between groups was obtained by sCD163 [area under the receiver operating characteristic curve (AUC) 0.89 (95 % confidence interval [CI] 0.79-0.99)] as compared to sMR [AUC 0.75 (95 % CI 0.61-0.90)]. sCD163 and sMR correlated significantly (r (2) = 0.53, p < 0.0001). Interestingly, sCD163 also correlated significantly with TNF-α (presented in a previous publication), which is shed to serum by the same mechanism as sCD163 (r (2) = 0.40, p < 0.0001). In conclusion, the macrophage-related markers sCD163 and sMR are significantly higher in patients chronically infected with HCV and with cirrhosis than in those with no/mild fibrosis. sCD163 is a promising new fibrosis marker in patients infected with HCV.
Collapse
Affiliation(s)
- E S Andersen
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The MR is a highly effective endocytic receptor with a broad binding specificity encompassing ligands of microbial and endogenous origin and a poorly characterized ability to modulate cellular activation. This review provides an update of the latest developments in the field. It discusses how MR biology might be affected by glycosylation and proteolytic processing, MR involvement in antigen delivery, and the potential contribution of MR to T cell differentiation and cellular activation. Further understanding of these areas will, no doubt, inform the design of novel, therapeutic tools for improved vaccination, control of inflammation, and tumor chemotherapy, which will benefit from exploiting MR-efficient internalization properties and unique pattern of expression.
Collapse
Affiliation(s)
- Luisa Martinez-Pomares
- Faculty of Medicine and Health Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom.
| |
Collapse
|
44
|
C-type lectin receptors and cytokines in fungal immunity. Cytokine 2012; 58:89-99. [DOI: 10.1016/j.cyto.2011.08.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 08/20/2011] [Indexed: 12/29/2022]
|
45
|
van der Linde K, Hemetsberger C, Kastner C, Kaschani F, van der Hoorn RA, Kumlehn J, Doehlemann G. A maize cystatin suppresses host immunity by inhibiting apoplastic cysteine proteases. THE PLANT CELL 2012; 24:1285-300. [PMID: 22454455 PMCID: PMC3336116 DOI: 10.1105/tpc.111.093732] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ustilago maydis is a biotrophic pathogen causing maize (Zea mays) smut disease. Transcriptome profiling of infected maize plants indicated that a gene encoding a putative cystatin (CC9) is induced upon penetration by U. maydis wild type. By contrast, cc9 is not induced after infection with the U. maydis effector mutant Δpep1, which elicits massive plant defenses. Silencing of cc9 resulted in a strongly induced maize defense gene expression and a hypersensitive response to U. maydis wild-type infection. Consequently, fungal colonization was strongly reduced in cc9-silenced plants, while recombinant CC9 prevented salicylic acid (SA)-induced defenses. Protease activity profiling revealed a strong induction of maize Cys proteases in SA-treated leaves, which could be inhibited by addition of CC9. Transgenic maize plants overexpressing cc9-mCherry showed an apoplastic localization of CC9. The transgenic plants showed a block in Cys protease activity and SA-dependent gene expression. Moreover, activated apoplastic Cys proteases induced SA-associated defense gene expression in naïve plants, which could be suppressed by CC9. We show that apoplastic Cys proteases play a pivotal role in maize defense signaling. Moreover, we identified cystatin CC9 as a novel compatibility factor that suppresses Cys protease activity to allow biotrophic interaction of maize with the fungal pathogen U. maydis.
Collapse
Affiliation(s)
| | | | - Christine Kastner
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, Plant Reproductive Biology, D-06466 Gatersleben, Germany
| | - Farnusch Kaschani
- Plant Chemetics Lab, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | | | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, Plant Reproductive Biology, D-06466 Gatersleben, Germany
| | - Gunther Doehlemann
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Address correspondence to
| |
Collapse
|