1
|
Locatelli M, Farina C. Role of copper in central nervous system physiology and pathology. Neural Regen Res 2025; 20:1058-1068. [PMID: 38989937 PMCID: PMC11438321 DOI: 10.4103/nrr.nrr-d-24-00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 07/12/2024] Open
Abstract
Copper is a transition metal and an essential element for the organism, as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs, including the central nervous system. Central copper dysregulations have been evidenced in two genetic disorders characterized by mutations in the copper-ATPases ATP7A and ATP7B, Menkes disease and Wilson's disease, respectively, and also in multifactorial neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. This review summarizes current knowledge about the role of copper in central nervous system physiology and pathology, reports about unbalances in copper levels and/or distribution under disease, describes relevant animal models for human disorders where copper metabolism genes are dysregulated, and discusses relevant therapeutic approaches modulating copper availability. Overall, alterations in copper metabolism may contribute to the etiology of central nervous system disorders and represent relevant therapeutic targets to restore tissue homeostasis.
Collapse
Affiliation(s)
- Martina Locatelli
- Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Giannakou M, Akrani I, Tsoka A, Myrianthopoulos V, Mikros E, Vorgias C, Hatzinikolaou DG. Discovery of Novel Inhibitors against ALS-Related SOD1(A4V) Aggregation through the Screening of a Chemical Library Using Differential Scanning Fluorimetry (DSF). Pharmaceuticals (Basel) 2024; 17:1286. [PMID: 39458929 PMCID: PMC11510448 DOI: 10.3390/ph17101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Cu/Zn Superoxide Dismutase 1 (SOD1) is a 32 kDa cytosolic dimeric metalloenzyme that neutralizes superoxide anions into oxygen and hydrogen peroxide. Mutations in SOD1 are associated with ALS, a disease causing motor neuron atrophy and subsequent mortality. These mutations exert their harmful effects through a gain of function mechanism, rather than a loss of function. Despite extensive research, the mechanism causing selective motor neuron death still remains unclear. A defining feature of ALS pathogenesis is protein misfolding and aggregation, evidenced by ubiquitinated protein inclusions containing SOD1 in affected motor neurons. This work aims to identify compounds countering SOD1(A4V) misfolding and aggregation, which could potentially aid in ALS treatment. METHODS The approach employed was in vitro screening of a library comprising 1280 pharmacologically active compounds (LOPAC®) in the context of drug repurposing. Using differential scanning fluorimetry (DSF), these compounds were tested for their impact on SOD1(A4V) thermal stability. RESULTS AND CONCLUSIONS Dimer stability was the parameter chosen as the criterion for screening, since the dissociation of the native SOD1 dimer is the step prior to its in vitro aggregation. The screening revealed one compound raising protein-ligand Tm by 6 °C, eleven inducing a higher second Tm, suggesting a stabilization effect, and fourteen reducing Tm from 10 up to 26 °C, suggesting possible interactions or non-specific binding.
Collapse
Affiliation(s)
- Maria Giannakou
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Ifigeneia Akrani
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Angeliki Tsoka
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Vassilios Myrianthopoulos
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Emmanuel Mikros
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Constantinos Vorgias
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| |
Collapse
|
3
|
Liddell JR, Hilton JBW, Wang YJ, Billings JL, Nikseresht S, Kysenius K, Fuller-Jackson JP, Hare DJ, Crouch PJ. Decreased spinal cord motor neuron numbers in mice depleted of central nervous system copper. Metallomics 2024; 16:mfae036. [PMID: 39251386 DOI: 10.1093/mtomcs/mfae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/03/2024] [Indexed: 09/11/2024]
Abstract
Disrupted copper availability in the central nervous system (CNS) is implicated as a significant feature of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Solute carrier family 31 member 1 (Slc31a1; Ctr1) governs copper uptake in mammalian cells and mutations affecting Slc31a1 are associated with severe neurological abnormalities. Here, we examined the impact of decreased CNS copper caused by ubiquitous heterozygosity for functional Slc31a1 on spinal cord motor neurons in Slc31a1+/- mice. Congruent with the CNS being relatively susceptible to disrupted copper availability, brain and spinal cord tissue from Slc31a1+/- mice contained significantly less copper than wild-type littermates, even though copper levels in other tissues were unaffected. Slc31a1+/- mice had less spinal cord α-motor neurons compared to wild-type littermates, but they did not develop any overt physical signs of motor impairment. By contrast, ALS model SOD1G37R mice had fewer α-motor neurons than control mice and exhibited clear signs of motor function impairment. With the expression of Slc31a1 notwithstanding, spinal cord expression of genes related to copper handling revealed only minor differences between Slc31a1+/- and wild-type mice. This contrasted with SOD1G37R mice where changes in the expression of copper handling genes were pronounced. Similarly, the expression of genes related to toxic glial activation was unchanged in spinal cords from Slc31a1+/- mice but highly upregulated in SOD1G37R mice. Together, results from the Slc31a1+/- mice and SOD1G37R mice indicate that although depleted CNS copper has a significant impact on spinal cord motor neuron numbers, the manifestation of overt ALS-like motor impairment requires additional factors.
Collapse
Affiliation(s)
- J R Liddell
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - J B W Hilton
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Y J Wang
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - J L Billings
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - S Nikseresht
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - K Kysenius
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - J P Fuller-Jackson
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - D J Hare
- Atomic Medicine Initiative, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - P J Crouch
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
4
|
Yang Z, Feng R, Zhao H. Cuproptosis and Cu: a new paradigm in cellular death and their role in non-cancerous diseases. Apoptosis 2024:10.1007/s10495-024-01993-y. [PMID: 39014119 DOI: 10.1007/s10495-024-01993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Cuproptosis, a newly characterized form of regulated cell death driven by copper accumulation, has emerged as a significant mechanism underlying various non-cancerous diseases. This review delves into the complex interplay between copper metabolism and the pathogenesis of conditions such as Wilson's disease (WD), neurodegenerative disorders, and cardiovascular pathologies. We examine the molecular mechanisms by which copper dysregulation induces cuproptosis, highlighting the pivotal roles of key copper transporters and enzymes. Additionally, we evaluate the therapeutic potential of copper chelation strategies, which have shown promise in experimental models by mitigating copper-induced cellular damage and restoring physiological homeostasis. Through a comprehensive synthesis of recent advancements and current knowledge, this review underscores the necessity of further research to translate these findings into clinical applications. The ultimate goal is to harness the therapeutic potential of targeting cuproptosis, thereby improving disease management and patient outcomes in non-cancerous conditions associated with copper dysregulation.
Collapse
Affiliation(s)
- Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, 723000, Shaanxi, China
| | - Ridong Feng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine (FAHZU), 79 Qingchun Rd., Shangcheng District, Hangzhou, 330100, Zhejiang, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China.
| |
Collapse
|
5
|
Min JH, Sarlus H, Harris RA. Copper toxicity and deficiency: the vicious cycle at the core of protein aggregation in ALS. Front Mol Neurosci 2024; 17:1408159. [PMID: 39050823 PMCID: PMC11267976 DOI: 10.3389/fnmol.2024.1408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The pathophysiology of ALS involves many signs of a disruption in copper homeostasis, with both excess free levels and functional deficiency likely occurring simultaneously. This is crucial, as many important physiological functions are performed by cuproenzymes. While it is unsurprising that many ALS symptoms are related to signs of copper deficiency, resulting in vascular, antioxidant system and mitochondrial oxidative respiration deficiencies, there are also signs of copper toxicity such as ROS generation and enhanced protein aggregation. We discuss how copper also plays a key role in proteostasis and interacts either directly or indirectly with many of the key aggregate-prone proteins implicated in ALS, such as TDP-43, C9ORF72, SOD1 and FUS as well as the effect of their aggregation on copper homeostasis. We suggest that loss of cuproprotein function is at the core of ALS pathology, a condition that is driven by a combination of unbound copper and ROS that can either initiate and/or accelerate protein aggregation. This could trigger a positive feedback cycle whereby protein aggregates trigger the aggregation of other proteins in a chain reaction that eventually captures elements of the proteostatic mechanisms in place to counteract them. The end result is an abundance of aggregated non-functional cuproproteins and chaperones alongside depleted intracellular copper stores, resulting in a general lack of cuproenzyme function. We then discuss the possible aetiology of ALS and illustrate how strong risk factors including environmental toxins such as BMAA and heavy metals can functionally behave to promote protein aggregation and disturb copper metabolism that likely drives this vicious cycle in sporadic ALS. From this synthesis, we propose restoration of copper balance using copper delivery agents in combination with chaperones/chaperone mimetics, perhaps in conjunction with the neuroprotective amino acid serine, as a promising strategy in the treatment of this incurable disease.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
6
|
Franco C, Canzoniero LMT. Zinc homeostasis and redox alterations in obesity. Front Endocrinol (Lausanne) 2024; 14:1273177. [PMID: 38260166 PMCID: PMC10800374 DOI: 10.3389/fendo.2023.1273177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Impairment of both cellular zinc and redox homeostasis is a feature of several chronic diseases, including obesity. A significant two-way interaction exists between redox metabolism and the relatively redox-inert zinc ion. Redox metabolism critically influences zinc homeostasis and controls its cellular availability for various cellular functions by regulating zinc exchange from/to zinc-binding proteins. Zinc can regulate redox metabolism and exhibits multiple pro-antioxidant properties. On the other hand, even minor disturbances in zinc status and zinc homeostasis affect systemic and cellular redox homeostasis. At the cellular level, zinc homeostasis is regulated by a multi-layered machinery consisting of zinc-binding molecules, zinc sensors, and two selective families of zinc transporters, the Zinc Transporter (ZnT) and Zrt, Irt-like protein (ZIP). In the present review, we summarize the current state of knowledge on the role of the mutual interaction between zinc and redox homeostasis in physiology and pathophysiology, pointing to the role of zinc in the alterations responsible for redox stress in obesity. Since zinc transporters primarily control zinc homeostasis, we describe how changes in the expression and activity of these zinc-regulating proteins are associated with obesity.
Collapse
|
7
|
Bakavayev S, Stavsky A, Argueti-Ostrovsky S, Yehezkel G, Fridmann-Sirkis Y, Barak Z, Gitler D, Israelson A, Engel S. Blocking an epitope of misfolded SOD1 ameliorates disease phenotype in a model of amyotrophic lateral sclerosis. Brain 2023; 146:4594-4607. [PMID: 37394908 DOI: 10.1093/brain/awad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/01/2023] [Accepted: 06/11/2023] [Indexed: 07/04/2023] Open
Abstract
The current strategies to mitigate the toxicity of misfolded superoxide dismutase 1 (SOD1) in familial amyotrophic lateral sclerosis via blocking SOD1 expression in the CNS are indiscriminative for misfolded and intact proteins, and as such, entail a risk of depriving CNS cells of their essential antioxidant potential. As an alternative approach to neutralize misfolded and spare unaffected SOD1 species, we developed scFv-SE21 antibody that blocks the β6/β7 loop epitope exposed exclusively in misfolded SOD1. The β6/β7 loop epitope has previously been proposed to initiate amyloid-like aggregation of misfolded SOD1 and mediate its prion-like activity. The adeno-associated virus-mediated expression of scFv-SE21 in the CNS of hSOD1G37R mice rescued spinal motor neurons, reduced the accumulation of misfolded SOD1, decreased gliosis and thus delayed disease onset and extended survival by 90 days. The results provide evidence for the role of the exposed β6/β7 loop epitope in the mechanism of neurotoxic gain-of-function of misfolded SOD1 and open avenues for the development of mechanism-based anti-SOD1 therapeutics, whose selective targeting of misfolded SOD1 species may entail a reduced risk of collateral oxidative damage to the CNS.
Collapse
Affiliation(s)
- Shamchal Bakavayev
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Alexandra Stavsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shirel Argueti-Ostrovsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Galit Yehezkel
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yael Fridmann-Sirkis
- Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zeev Barak
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
8
|
Shim D, Han J. Coordination chemistry of mitochondrial copper metalloenzymes: exploring implications for copper dyshomeostasis in cell death. BMB Rep 2023; 56:575-583. [PMID: 37915136 PMCID: PMC10689082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/01/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
Mitochondria, fundamental cellular organelles that govern energy metabolism, hold a pivotal role in cellular vitality. While consuming dioxygen to produce adenosine triphosphate (ATP), the electron transfer process within mitochondria can engender the formation of reactive oxygen species that exert dual roles in endothelial homeostatic signaling and oxidative stress. In the context of the intricate electron transfer process, several metal ions that include copper, iron, zinc, and manganese serve as crucial cofactors in mitochondrial metalloenzymes to mediate the synthesis of ATP and antioxidant defense. In this mini review, we provide a comprehensive understanding of the coordination chemistry of mitochondrial cuproenzymes. In detail, cytochrome c oxidase (CcO) reduces dioxygen to water coupled with proton pumping to generate an electrochemical gradient, while superoxide dismutase 1 (SOD1) functions in detoxifying superoxide into hydrogen peroxide. With an emphasis on the catalytic reactions of the copper metalloenzymes and insights into their ligand environment, we also outline the metalation process of these enzymes throughout the copper trafficking system. The impairment of copper homeostasis can trigger mitochondrial dysfunction, and potentially lead to the development of copper-related disorders. We describe the current knowledge regarding copper-mediated toxicity mechanisms, thereby shedding light on prospective therapeutic strategies for pathologies intertwined with copper dyshomeostasis. [BMB Reports 2023; 56(11): 575-583].
Collapse
Affiliation(s)
- Daeun Shim
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
9
|
Han J. Copper trafficking systems in cells: insights into coordination chemistry and toxicity. Dalton Trans 2023; 52:15277-15296. [PMID: 37702384 DOI: 10.1039/d3dt02166a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Transition metal ions, such as copper, are indispensable components in the biological system. Copper ions which primarily exist in two major oxidation states Cu(I) and Cu(II) play crucial roles in various cellular processes including antioxidant defense, biosynthesis of neurotransmitters, and energy metabolism, owing to their inherent redox activity. The disturbance in copper homeostasis can contribute to the development of copper metabolism disorders, cancer, and neurodegenerative diseases, highlighting the significance of understanding the copper trafficking system in cellular environments. This review aims to offer a comprehensive overview of copper homeostatic machinery, with an emphasis on the coordination chemistry of copper transporters and trafficking proteins. While copper chaperones and the corresponding metalloenzymes are thoroughly discussed, we also explore the potential existence of low-molecular-mass metal complexes within cellular systems. Furthermore, we summarize the toxicity mechanisms originating from copper deficiency or accumulation, which include the dysregulation of oxidative stress, signaling pathways, signal transduction, and amyloidosis. This perspective review delves into the current knowledge regarding the intricate aspects of the copper trafficking system, providing valuable insights into potential treatment strategies from the standpoint of bioinorganic chemistry.
Collapse
Affiliation(s)
- Jiyeon Han
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
10
|
Zhang B, Burke R. Copper homeostasis and the ubiquitin proteasome system. Metallomics 2023; 15:7055959. [PMID: 36822629 PMCID: PMC10022722 DOI: 10.1093/mtomcs/mfad010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023]
Abstract
Copper is involved in many physiological pathways and important biological processes as a cofactor of several copper-dependent enzymes. Given the requirement for copper and its potential toxicity, intracellular copper levels are tightly controlled. Disturbances of human copper homeostasis are characterized by disorders of copper overload (Wilson's disease) or copper deficiency (Menkes disease). The maintenance of cellular copper levels involves numerous copper transporters and copper chaperones. Recently, accumulating evidence has revealed that components of the ubiquitin proteasome system (UPS) participate in the posttranslational regulation of these proteins, suggesting that they might play a role in maintaining copper homeostasis. Cellular copper levels could also affect the activity of the UPS, indicating that copper homeostasis and the UPS are interdependent. Copper homeostasis and the UPS are essential to the integrity of normal brain function and while separate links between neurodegenerative diseases and UPS inhibition/copper dyshomeostasis have been extensively reported, there is growing evidence that these two networks might contribute synergistically to the occurrence of neurodegenerative diseases. Here, we review the role of copper and the UPS in the development of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, and discuss the genetic interactions between copper transporters/chaperones and components of the UPS.
Collapse
Affiliation(s)
- Bichao Zhang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Richard Burke
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
11
|
Chen L, Min J, Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther 2022; 7:378. [PMID: 36414625 PMCID: PMC9681860 DOI: 10.1038/s41392-022-01229-y] [Citation(s) in RCA: 383] [Impact Index Per Article: 191.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/19/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
As an essential micronutrient, copper is required for a wide range of physiological processes in virtually all cell types. Because the accumulation of intracellular copper can induce oxidative stress and perturbing cellular function, copper homeostasis is tightly regulated. Recent studies identified a novel copper-dependent form of cell death called cuproptosis, which is distinct from all other known pathways underlying cell death. Cuproptosis occurs via copper binding to lipoylated enzymes in the tricarboxylic acid (TCA) cycle, which leads to subsequent protein aggregation, proteotoxic stress, and ultimately cell death. Here, we summarize our current knowledge regarding copper metabolism, copper-related disease, the characteristics of cuproptosis, and the mechanisms that regulate cuproptosis. In addition, we discuss the implications of cuproptosis in the pathogenesis of various disease conditions, including Wilson's disease, neurodegenerative diseases, and cancer, and we discuss the therapeutic potential of targeting cuproptosis.
Collapse
Affiliation(s)
- Liyun Chen
- grid.13402.340000 0004 1759 700XThe Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China ,grid.412017.10000 0001 0266 8918The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Junxia Min
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China. .,The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
12
|
Chen QY, Wu P, Wen T, Qin X, Zhang R, Jia R, Jin J, Hu F, Xie X, Dang J. Association of cerebral spinal fluid copper imbalance in amyotrophic lateral sclerosis. Front Aging Neurosci 2022; 14:970711. [PMID: 36466599 PMCID: PMC9714432 DOI: 10.3389/fnagi.2022.970711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/28/2022] [Indexed: 10/24/2023] Open
Abstract
A plethora of environmental risk factors has been persistently implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), including metal/metalloids. This study aimed to examine potential associations between cerebral spinal fluid (CSF) metal/metalloids and ALS risks. CSF concentrations of copper (Cu), nickel (Ni), mercury (Hg), arsenic (As), manganese (Mn), and iron (Fe) in ALS (spinal- and bulbar-onset) patients and controls were measured using inductively coupled plasma mass spectrometry (ICP-MS). Results from this study revealed marked differences between control, spinal-onset, and bulbar-onset groups. We report that Cu levels were lower in the ALS and spinal-onset groups compared to the control group. Ni level were higher in the spinal-onset group compared to the control and bulbar-onset groups. In addition, associations between CSF metal/metalloid levels with disease severity, sex, and serum triglycerides were also examined to broach the potential relevance of neurotoxic metal/metalloids in ALS disease heterogeneity.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Peng Wu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Ting Wen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Xing Qin
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ronghua Zhang
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rui Jia
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiaoting Jin
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Fangfang Hu
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoge Xie
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Jingxia Dang
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
13
|
Dashnaw CM, Zhang AY, Gonzalez M, Koone JC, Shaw BF. Metal migration and subunit swapping in ALS-linked SOD1: Zn 2+ transfer between mutant and wild-type occurs faster than the rate of heterodimerization. J Biol Chem 2022; 298:102610. [PMID: 36265587 PMCID: PMC9667317 DOI: 10.1016/j.jbc.2022.102610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
The heterodimerization of WT Cu, Zn superoxide dismutase-1 (SOD1), and mutant SOD1 might be a critical step in the pathogenesis of SOD1-linked amyotrophic lateral sclerosis (ALS). Rates and free energies of heterodimerization (ΔGHet) between WT and ALS-mutant SOD1 in mismatched metalation states-where one subunit is metalated and the other is not-have been difficult to obtain. Consequently, the hypothesis that under-metalated SOD1 might trigger misfolding of metalated SOD1 by "stealing" metal ions remains untested. This study used capillary zone electrophoresis and mass spectrometry to track heterodimerization and metal transfer between WT SOD1, ALS-variant SOD1 (E100K, E100G, D90A), and triply deamidated SOD1 (modeled with N26D/N131D/N139D substitutions). We determined that rates of subunit exchange between apo dimers and metalated dimers-expressed as time to reach 30% heterodimer-ranged from t30% = 67.75 ± 9.08 to 338.53 ± 26.95 min; free energies of heterodimerization ranged from ΔGHet = -1.21 ± 0.31 to -3.06 ± 0.12 kJ/mol. Rates and ΔGHet values of partially metalated heterodimers were more similar to those of fully metalated heterodimers than apo heterodimers, and largely independent of which subunit (mutant or WT) was metal-replete or metal-free. Mass spectrometry and capillary electrophoresis demonstrated that mutant or WT 4Zn-SOD1 could transfer up to two equivalents of Zn2+ to mutant or WT apo-SOD1 (at rates faster than the rate of heterodimerization). This result suggests that zinc-replete SOD1 can function as a chaperone to deliver Zn2+ to apo-SOD1, and that WT apo-SOD1 might increase the toxicity of mutant SOD1 by stealing its Zn2+.
Collapse
|
14
|
Trist BG, Genoud S, Roudeau S, Rookyard A, Abdeen A, Cottam V, Hare DJ, White M, Altvater J, Fifita JA, Hogan A, Grima N, Blair IP, Kysenius K, Crouch PJ, Carmona A, Rufin Y, Claverol S, Van Malderen S, Falkenberg G, Paterson DJ, Smith B, Troakes C, Vance C, Shaw CE, Al-Sarraj S, Cordwell S, Halliday G, Ortega R, Double KL. Altered SOD1 maturation and post-translational modification in amyotrophic lateral sclerosis spinal cord. Brain 2022; 145:3108-3130. [PMID: 35512359 PMCID: PMC9473357 DOI: 10.1093/brain/awac165] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Aberrant self-assembly and toxicity of wild-type and mutant superoxide dismutase 1 (SOD1) has been widely examined in silico, in vitro, and in transgenic animal models of amyotrophic lateral sclerosis (ALS). Detailed examination of the protein in disease-affected tissues from ALS patients, however, remains scarce. We employed histological, biochemical and analytical techniques to profile alterations to SOD1 protein deposition, subcellular localization, maturation and post-translational modification in post-mortem spinal cord tissues from ALS cases and controls. Tissues were dissected into ventral and dorsal spinal cord grey matter to assess the specificity of alterations within regions of motor neuron degeneration. We provide evidence of the mislocalization and accumulation of structurally-disordered, immature SOD1 protein conformers in spinal cord motor neurons of SOD1-linked and non-SOD1-linked familial ALS cases, and sporadic ALS cases, compared with control motor neurons. These changes were collectively associated with instability and mismetallation of enzymatically-active SOD1 dimers, as well as alterations to SOD1 post-translational modifications and molecular chaperones governing SOD1 maturation. Atypical changes to SOD1 protein were largely restricted to regions of neurodegeneration in ALS cases, and clearly differentiated all forms of ALS from controls. Substantial heterogeneity in the presence of these changes was also observed between ALS cases. Our data demonstrates that varying forms of SOD1 proteinopathy are a common feature of all forms of ALS, and support the presence of one or more convergent biochemical pathways leading to SOD1 proteinopathy in ALS. The majority of these alterations are specific to regions of neurodegeneration, and may therefore constitute valid targets for therapeutic development.
Collapse
Affiliation(s)
- Benjamin G Trist
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sian Genoud
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stéphane Roudeau
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Alexander Rookyard
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Amr Abdeen
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Veronica Cottam
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dominic J Hare
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia.,Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Melanie White
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jens Altvater
- Sydney Mass Spectrometry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jennifer A Fifita
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Alison Hogan
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Natalie Grima
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ian P Blair
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kai Kysenius
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter J Crouch
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Asuncion Carmona
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Yann Rufin
- Plateforme Biochimie, University of Bordeaux, France
| | | | - Stijn Van Malderen
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - David J Paterson
- Australian Synchrotron, ANSTO, Clayton, Victoria 3168, Australia
| | - Bradley Smith
- Maurice Wohl Clinical Neuroscience Institute and the Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, SE5 9RT, London, UK
| | - Claire Troakes
- UK Dementia Research Institute at King's College London, 5 Cutcombe Road, London, SE5 9RT, UK
| | - Caroline Vance
- Maurice Wohl Clinical Neuroscience Institute and the Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, SE5 9RT, London, UK
| | - Christopher E Shaw
- UK Dementia Research Institute at King's College London, 5 Cutcombe Road, London, SE5 9RT, UK
| | - Safa Al-Sarraj
- London Neurodegenerative Diseases Brain Bank, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
| | - Stuart Cordwell
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Glenda Halliday
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Richard Ortega
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Kay L Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
15
|
Tajiri M, Aoki H, Shintani A, Sue K, Akashi S, Furukawa Y. Metal distribution in Cu/Zn-superoxide dismutase revealed by native mass spectrometry. Free Radic Biol Med 2022; 183:60-68. [PMID: 35314356 DOI: 10.1016/j.freeradbiomed.2022.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 01/09/2023]
Abstract
Cu/Zn-superoxide dismutase (SOD1) is a homodimer with two identical subunits, each of which binds a copper and zinc ion in the native state. In contrast to such a text book case, SOD1 proteins purified in vitro or even in vivo have been often reported to bind a non-stoichiometric amount of the metal ions. Nonetheless, it is difficult to probe how those metal ions are distributed in the two identical subunits. By utilizing native mass spectrometry, we showed here that addition of a sub-stoichiometric copper/zinc ion to SOD1 led to the formation of a homodimer with a stochastic combination of the subunits binding 0, 1, and even 2 metal ions. We also found that the homodimer was able to bind four copper or four zinc ions, implying the binding of a copper and zinc ion at the canonical zinc and copper site, respectively. Such ambiguity in the metal quota and selectivity could be avoided when an intra-subunit disulfide bond in SOD1 was reduced before addition of the metal ions. Apo-SOD1 in the disulfide-reduced state was monomeric and was found to bind only one zinc ion per monomer. By binding a zinc ion, the disulfide-reduced SOD1 became conformationally compact and acquired the ability to dimerize. Based upon the results in vitro, we describe the pathway in vivo enabling SOD1 to bind copper and zinc ions with high accuracy in their quota and selectivity. A failure of correct metallation in SOD1 will also be discussed in relation to amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Michiko Tajiri
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Hiroto Aoki
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Atsuko Shintani
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Kaori Sue
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan.
| | - Yoshiaki Furukawa
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan.
| |
Collapse
|
16
|
Furukawa Y. A pathological link between dysregulated copper binding in Cu/Zn-superoxide dismutase and amyotrophic lateral sclerosis. J Clin Biochem Nutr 2022; 71:73-77. [PMID: 36213785 PMCID: PMC9519421 DOI: 10.3164/jcbn.22-42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
Abstract
Mutations in the gene coding Cu/Zn-superoxide dismutase (SOD1) are linked to a familial form of amyotrophic lateral sclerosis (ALS), and its pathological hallmark includes abnormal accumulation of mutant SOD1 proteins in spinal motorneurons. Mutant SOD1 proteins are considered to be susceptible to misfolding, resulting in the accumulation as oligomers/aggregates. While it remains obscure how and why SOD1 becomes misfolded under pathological conditions in vivo, the failure to bind a copper and zinc ion in SOD1 in vitro leads to the significant destabilization of its natively folded structure. Therefore, genetic and pharmacological attempts to promote the metal binding in mutant SOD1 could serve as an effective treatment of ALS. Here, I briefly review the copper and zinc binding process of SOD1 in vivo and discuss a copper chaperone for SOD1 as a potential target for developing ALS therapeutics.
Collapse
|
17
|
Ellison G, Hollings AL, Hackett MJ. A review of the “metallome” within neurons and glia, as revealed by elemental mapping of brain tissue. BBA ADVANCES 2022; 2:100038. [PMID: 37082604 PMCID: PMC10074908 DOI: 10.1016/j.bbadva.2021.100038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023] Open
Abstract
It is now well established that transition metals, such as Iron (Fe), Copper (Cu), and Zinc (Zn) are necessary for healthy brain function. Although Fe, Cu, and Zn are essential to the brain, imbalances in the amount, distribution, or chemical form ("metallome") of these metals is linked to the pathology of numerous brain diseases or disorders. Despite the known importance of metal ions for both brain health and disease, the metallome that exists within specific types of brain cells is yet to be fully characterised. The aim of this mini-review is to present an overview of the current knowledge of the metallome found within specific brain cells (oligodendrocytes, astrocytes, microglia, and neurons), as revealed by direct elemental mapping techniques. It is hoped this review will foster continued research using direct elemental mapping techniques to fully characterise the brain cell metallome.
Collapse
Affiliation(s)
- Gaewyn Ellison
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Ashley L. Hollings
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Mark J. Hackett
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
- Corresponding author.
| |
Collapse
|
18
|
Timucin AC, Cinaroglu SS, Sezerman OU, Timucin E. Bridging the Bridging Imidazolate in the Bimetallic Center of the Cu/Zn SOD1 and ALS. Front Chem 2021; 9:716438. [PMID: 34540798 PMCID: PMC8446448 DOI: 10.3389/fchem.2021.716438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
Metallation status of human Cu/Zn superoxide dismutase 1 (SOD1) plays a pivotal role in the pathogenesis of amyotrophic lateral sclerosis (ALS). All of the amino acids found in the bimetallic center have been associated with ALS except for two positions. H63 which forms the bridging imidazolate ion in the bimetallic center and K136 which is not directly involved in coordination but located in the bimetallic center were not reported to be mutated in any of the identified ALS cases. In this study, we investigated the structure and flexibility of five SOD1 variants by using classical molecular dynamics simulations. These variants include three substitutions on the non-ALS-linked positions; H63A, H63R, K136A and ALS-linked positions; G37R, H46R/H48D. We have generated four systems for each variant differing in metallation and presence of the intramolecular disulfide bond. Overall, a total of 24 different dimers including the wild-type were generated and simulated at two temperatures, 298 and 400 K. We have monitored backbone mobility, fluctuations and compactness of the dimer structures to assess whether the hypothetical mutations would behave similar to the ALS-linked variants. Results showed that particularly two mutants, H63R and K136A, drastically affected the dimer dynamics by increasing the fluctuations of the metal binding loops compared with the control mutations. Further, these variants resulted in demetallation of the dimers, highlighting probable ALS toxicity that could be elicited by the SOD1 variants of H63R and K136A. Overall, this study bridges two putative SOD1 positions in the metallic center and ALS, underlining the potential use of atomistic simulations for studying disease variants.
Collapse
Affiliation(s)
- Ahmet Can Timucin
- Department of Molecular Biology and Genetics, Acibadem MAA University, Istanbul, Turkey
| | | | - Osman Ugur Sezerman
- Department of Medical Informatics and Biostatistics, School of Medicine, Acibadem MAA University, Istanbul, Turkey
| | - Emel Timucin
- Department of Medical Informatics and Biostatistics, School of Medicine, Acibadem MAA University, Istanbul, Turkey
| |
Collapse
|
19
|
Roudeau S, Trist BG, Carmona A, Davies KM, Halliday GM, Rufin Y, Claverol S, Van Malderen SJM, Falkenberg G, Double KL, Ortega R. Native Separation and Metallation Analysis of SOD1 Protein from the Human Central Nervous System: a Methodological Workflow. Anal Chem 2021; 93:11108-11115. [PMID: 34348022 DOI: 10.1021/acs.analchem.1c01128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies of the metal content of metalloproteins in tissues from the human central nervous system (CNS) can be compromised by preparative techniques which alter levels of, or interactions between, metals and the protein of interest within a complex mixture. We developed a methodological workflow combining size exclusion chromatography, native isoelectric focusing, and either proton or synchrotron X-ray fluorescence within electrophoresis gels to analyze the endogenous metal content of copper-zinc superoxide dismutase (SOD1) purified from minimal amounts (<20 mg) of post-mortem human brain and spinal cord tissue. Abnormal metallation and aggregation of SOD1 are suspected to play a role in amyotrophic lateral sclerosis and Parkinson's disease, but data describing SOD1 metal occupancy in human tissues have not previously been reported. Validating our novel approach, we demonstrated step-by-step metal preservation, preserved SOD1 activity, and substantial enrichment of SOD1 protein versus confounding metalloproteins. We analyzed tissues from nine healthy individuals and five CNS regions (occipital cortex, substantia nigra, locus coeruleus, dorsal spinal cord, and ventral spinal cord). We found that Cu and Zn were bound to SOD1 in a ratio of 1.12 ± 0.28, a ratio very close to the expected value of 1. Our methodological workflow can be applied to the study of endogenous native SOD1 in a pathological context and adapted to a range of metalloproteins from human tissues and other sources.
Collapse
Affiliation(s)
- Stéphane Roudeau
- Univ. Bordeaux, CNRS, CENBG, UMR-5797, F-33170 Gradignan, France
| | - Benjamin G Trist
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, New South Wales 2050, Australia
| | | | - Katherine M Davies
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, New South Wales 2050, Australia
| | - Glenda M Halliday
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Camperdown, Sydney, New South Wales 2050, Australia
| | - Yann Rufin
- Plateforme Biochimie et Biophysique (BioProt), Univ. Bordeaux, F-33077 Bordeaux, France
| | - Stéphane Claverol
- Plateforme Proteome, Univ. Bordeaux, Camperdown, F-33076 Bordeaux, France
| | | | | | - Kay L Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, New South Wales 2050, Australia
| | - Richard Ortega
- Univ. Bordeaux, CNRS, CENBG, UMR-5797, F-33170 Gradignan, France
| |
Collapse
|
20
|
Tarnacka B, Jopowicz A, Maślińska M. Copper, Iron, and Manganese Toxicity in Neuropsychiatric Conditions. Int J Mol Sci 2021; 22:ijms22157820. [PMID: 34360586 PMCID: PMC8346158 DOI: 10.3390/ijms22157820] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
Copper, manganese, and iron are vital elements required for the appropriate development and the general preservation of good health. Additionally, these essential metals play key roles in ensuring proper brain development and function. They also play vital roles in the central nervous system as significant cofactors for several enzymes, including the antioxidant enzyme superoxide dismutase (SOD) and other enzymes that take part in the creation and breakdown of neurotransmitters in the brain. An imbalance in the levels of these metals weakens the structural, regulatory, and catalytic roles of different enzymes, proteins, receptors, and transporters and is known to provoke the development of various neurological conditions through different mechanisms, such as via induction of oxidative stress, increased α-synuclein aggregation and fibril formation, and stimulation of microglial cells, thus resulting in inflammation and reduced production of metalloproteins. In the present review, the authors focus on neurological disorders with psychiatric signs associated with copper, iron, and manganese excess and the diagnosis and potential treatment of such disorders. In our review, we described diseases related to these metals, such as aceruloplasminaemia, neuroferritinopathy, pantothenate kinase-associated neurodegeneration (PKAN) and other very rare classical NBIA forms, manganism, attention-deficit/hyperactivity disorder (ADHD), ephedrone encephalopathy, HMNDYT1-SLC30A10 deficiency (HMNDYT1), HMNDYT2-SLC39A14 deficiency, CDG2N-SLC39A8 deficiency, hepatic encephalopathy, prion disease and “prion-like disease”, amyotrophic lateral sclerosis, Huntington’s disease, Friedreich’s ataxia, and depression.
Collapse
Affiliation(s)
- Beata Tarnacka
- Department of Rehabilitation Medicine, Faculty of Medicine, Warsaw Medical University, Spartańska 1, 02-637 Warsaw, Poland
- Correspondence: ; Tel.: +48-603944804
| | - Anna Jopowicz
- Department of Rehabilitation, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland;
| | - Maria Maślińska
- Department of Early Arthritis, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland;
| |
Collapse
|
21
|
Ayers JI, Xu G, Dillon K, Lu Q, Chen Z, Beckman J, Moreno-Romero AK, Zamora DL, Galaleldeen A, Borchelt DR. Variation in the vulnerability of mice expressing human superoxide dismutase 1 to prion-like seeding: a study of the influence of primary amino acid sequence. Acta Neuropathol Commun 2021; 9:92. [PMID: 34016165 PMCID: PMC8139116 DOI: 10.1186/s40478-021-01191-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/03/2021] [Indexed: 11/24/2022] Open
Abstract
Misfolded forms of superoxide dismutase 1 (SOD1) with mutations associated with familial amyotrophic lateral sclerosis (fALS) exhibit prion characteristics, including the ability to act as seeds to accelerate motor neuron disease in mouse models. A key feature of infectious prion seeding is that the efficiency of transmission is governed by the primary sequence of prion protein (PrP). Isologous seeding, where the sequence of the PrP in the seed matches that of the host, is generally much more efficient than when there is a sequence mis-match. Here, we used paradigms in which mutant SOD1 seeding homogenates were injected intraspinally in newborn mice or into the sciatic nerve of adult mice, to assess the influence of SOD1 primary sequence on seeding efficiency. We observed a spectrum of seeding efficiencies depending upon both the SOD1 expressed by mice injected with seeds and the origin of the seed preparations. Mice expressing WT human SOD1 or the disease variant G37R were resistant to isologous seeding. Mice expressing G93A SOD1 were also largely resistant to isologous seeding, with limited success in one line of mice that express at low levels. By contrast, mice expressing human G85R-SOD1 were highly susceptible to isologous seeding but resistant to heterologous seeding by homogenates from paralyzed mice over-expressing mouse SOD1-G86R. In other seeding experiments with G85R SOD1:YFP mice, we observed that homogenates from paralyzed animals expressing the H46R or G37R variants of human SOD1 were less effective than seeds prepared from mice expressing the human G93A variant. These sequence mis-match effects were less pronounced when we used purified recombinant SOD1 that had been fibrilized in vitro as the seeding preparation. Collectively, our findings demonstrate diversity in the abilities of ALS variants of SOD1 to initiate or sustain prion-like propagation of misfolded conformations that produce motor neuron disease.
Collapse
|
22
|
Trist BG, Hilton JB, Hare DJ, Crouch PJ, Double KL. Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic. Angew Chem Int Ed Engl 2021; 60:9215-9246. [PMID: 32144830 PMCID: PMC8247289 DOI: 10.1002/anie.202000451] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Cu/Zn superoxide dismutase (SOD1) is a frontline antioxidant enzyme catalysing superoxide breakdown and is important for most forms of eukaryotic life. The evolution of aerobic respiration by mitochondria increased cellular production of superoxide, resulting in an increased reliance upon SOD1. Consistent with the importance of SOD1 for cellular health, many human diseases of the central nervous system involve perturbations in SOD1 biology. But far from providing a simple demonstration of how disease arises from SOD1 loss-of-function, attempts to elucidate pathways by which atypical SOD1 biology leads to neurodegeneration have revealed unexpectedly complex molecular characteristics delineating healthy, functional SOD1 protein from that which likely contributes to central nervous system disease. This review summarises current understanding of SOD1 biology from SOD1 genetics through to protein function and stability.
Collapse
Affiliation(s)
- Benjamin G. Trist
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
| | - James B. Hilton
- Department of Pharmacology and TherapeuticsThe University of MelbourneParkvilleVictoria3052Australia
| | - Dominic J. Hare
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
- School of BioSciencesThe University of MelbourneParkvilleVictoria3052Australia
- Atomic Medicine InitiativeThe University of Technology SydneyBroadwayNew South Wales2007Australia
| | - Peter J. Crouch
- Department of Pharmacology and TherapeuticsThe University of MelbourneParkvilleVictoria3052Australia
| | - Kay L. Double
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
| |
Collapse
|
23
|
Bakavayev S, Argueti S, Venkatachalam N, Yehezkel G, Stavsky A, Barak Z, Israelson A, Engel S. Exposure of β6/β7-Loop in Zn/Cu Superoxide Dismutase (SOD1) Is Coupled to Metal Loss and Is Transiently Reversible During Misfolding. ACS Chem Neurosci 2021; 12:49-62. [PMID: 33326235 DOI: 10.1021/acschemneuro.0c00524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Upon losing its structural integrity (misfolding), SOD1 acquires neurotoxic properties to become a pathogenic protein in ALS, a neurodegenerative disease targeting motor neurons; understanding the mechanism of misfolding may enable new treatment strategies for ALS. Here, we reported a monoclonal antibody, SE21, targeting the β6/β7-loop region of SOD1. The exposure of this region is coupled to metal loss and is entirely reversible during the early stages of misfolding. By using SE21 mAb, we demonstrated that, in apo-SOD1 incubated under the misfolding-promoting conditions, the reversible phase, during which SOD1 is capable of restoring its nativelike conformation in the presence of metals, is followed by an irreversible structural transition, autocatalytic in nature, which takes place prior to the onset of SOD1 aggregation and results in the formation of atypical apo-SOD1 that is unable to bind metals. The reversible phase defines a window of opportunity for pharmacological intervention using metal mimetics that stabilize SOD1 structure in its nativelike conformation to attenuate the spreading of the misfolding signal and disease progression by preventing the exposure of pathogenic SOD1 epitopes. Phenotypically similar apo-SOD1 species with impaired metal binding properties may also be produced via oxidation of Cys111, underscoring the diversity of SOD1 misfolding pathways.
Collapse
Affiliation(s)
- Shamchal Bakavayev
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shirel Argueti
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nachiyappan Venkatachalam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Galit Yehezkel
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Alexandra Stavsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Zeev Barak
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
24
|
Trist BG, Hilton JB, Hare DJ, Crouch PJ, Double KL. Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Benjamin G. Trist
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
| | - James B. Hilton
- Department of Pharmacology and Therapeutics The University of Melbourne Parkville Victoria 3052 Australia
| | - Dominic J. Hare
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
- School of BioSciences The University of Melbourne Parkville Victoria 3052 Australia
- Atomic Medicine Initiative The University of Technology Sydney Broadway New South Wales 2007 Australia
| | - Peter J. Crouch
- Department of Pharmacology and Therapeutics The University of Melbourne Parkville Victoria 3052 Australia
| | - Kay L. Double
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
| |
Collapse
|
25
|
McAlary L, Yerbury JJ, Cashman NR. The prion-like nature of amyotrophic lateral sclerosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:261-296. [PMID: 32958236 DOI: 10.1016/bs.pmbts.2020.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The misfolding, aggregation, and deposition of specific proteins is the key hallmark of most progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). ALS is characterized by the rapid and progressive degenerations of motor neurons in the spinal cord and motor cortex, resulting in paralysis of those who suffer from it. Pathologically, there are three major aggregating proteins associated with ALS, including TAR DNA-binding protein of 43kDa (TDP-43), superoxide dismutase-1 (SOD1), and fused in sarcoma (FUS). While there are ALS-associated mutations found in each of these proteins, the most prevalent aggregation pathology is that of wild-type TDP-43 (97% of cases), with the remaining split between mutant forms of SOD1 (~2%) and FUS (~1%). Considering the progressive nature of ALS and its association with the aggregation of specific proteins, a growing notion is that the spread of pathology and symptoms can be explained by a prion-like mechanism. Prion diseases are a group of highly infectious neurodegenerative disorders caused by the misfolding, aggregation, and spread of a transmissible conformer of prion protein (PrP). Pathogenic PrP is capable of converting healthy PrP into a toxic form through template-directed misfolding. Application of this finding to other neurodegenerative disorders, and in particular ALS, has revolutionized our understanding of cause and progression of these disorders. In this chapter, we first provide a background on ALS pathology and genetic origin. We then detail and discuss the evidence supporting a prion-like propagation of protein misfolding and aggregation in ALS with a particular focus on SOD1 and TDP-43 as these are the most well-established models in the field.
Collapse
Affiliation(s)
- L McAlary
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - J J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - N R Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
26
|
Pro-Oxidant Activity of an ALS-Linked SOD1 Mutant in Zn-Deficient Form. Molecules 2020; 25:molecules25163600. [PMID: 32784718 PMCID: PMC7464938 DOI: 10.3390/molecules25163600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022] Open
Abstract
Cu, Zn superoxide dismutase (SOD1) is a representative antioxidant enzyme that catalyzes dismutation of reactive oxygen species in cells. However, (E,E)-SOD1 mutants in which both copper and zinc ions were deleted exhibit pro-oxidant activity, contrary to their antioxidant nature, at physiological temperatures, following denaturation and subsequent recombination of Cu2+. This oxidative property is likely related to the pathogenesis of amyotrophic lateral sclerosis (ALS); however, the mechanism by which Cu2+ re-binds to the denatured (E,E)-SOD1 has not been elucidated, since the concentration of free copper ions in cells is almost zero. In this study, we prepared the (Cu,E) form in which only a zinc ion was deleted using ALS-linked mutant H43R (His43→Arg) and found that (Cu,E)-H43R showed an increase in the pro-oxidant activity even at physiological temperature. The increase in the pro-oxidant activity of (Cu,E)-H43R was also observed in solution mimicking intracellular environment and at high temperature. These results suggest that the zinc-deficient (Cu,E) form can contribute to oxidative stress in cells, and that the formation of (E,E)-SOD1 together with the subsequent Cu2+ rebinding is not necessary for the acquisition of the pro-oxidant activity.
Collapse
|
27
|
Tompa DR, Muthusamy S, Srikanth S, Kadhirvel S. Molecular dynamics of far positioned surface mutations of Cu/Zn SOD1 promotes altered structural stability and metal-binding site: Structural clues to the pathogenesis of amyotrophic lateral sclerosis. J Mol Graph Model 2020; 100:107678. [PMID: 32768728 DOI: 10.1016/j.jmgm.2020.107678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 10/23/2022]
Abstract
Cu/Zn superoxide dismutase (SOD1) mutations are associated to the motor neuron disorder, amyotrophic lateral sclerosis (ALS), which is characterized by aggregates of the misfolded proteins. The distribution of mutations all over the three-dimensional structure of SOD1 makes it complex to determine the exact molecular mechanism underlying SOD1 destabilization and the associated ALS pathology. In this study, we have examined structure and dynamics of SOD1 protein upon two ALS associated point mutations at the surface residue Glu100 (E100G and E100K), which is located far from the Cu and Zn sites and dimer interface. The molecular dynamics simulations were performed for these mutants for 50ns using GROMACS package. Our results indicate that the mutations result in structural destabilization by affecting the gate keeping role of Glu100 and loss of electrostatic interactions on the protein surface which stabilizes the β-barrel structure of the native form. Further, these mutations could increase the fluctuations in the zinc-binding loop (loop IV), primarily due to loss of hydrogen bond between Asp101 and Arg79. The relaxed conformation of Arg79 further affects the native conformation of His80 and Asp83, that results in altered zinc site geometry and the structure of the substrate channel. Our results clearly suggest that, similar to the mutations located at metal sites/dimer interface/disulfide regions, the mutations at the far positioned site (Glu100) also induce significant conformational changes that could affect the metallation and structure of SOD1 molecule, resulting in formation of toxic intermediate species that cause ALS.
Collapse
Affiliation(s)
- Dharma Rao Tompa
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Sureshan Muthusamy
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Srimari Srikanth
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Saraboji Kadhirvel
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
28
|
Curtin P, Austin C, Curtin A, Gennings C, Figueroa-Romero C, Mikhail KA, Botero TM, Goutman SA, Feldman EL, Arora M. Dysregulated biodynamics in metabolic attractor systems precede the emergence of amyotrophic lateral sclerosis. PLoS Comput Biol 2020; 16:e1007773. [PMID: 32294079 PMCID: PMC7159190 DOI: 10.1371/journal.pcbi.1007773] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/04/2020] [Indexed: 11/19/2022] Open
Abstract
Evolutionarily conserved mechanisms maintain homeostasis of essential elements, and are believed to be highly time-variant. However, current approaches measure elemental biomarkers at a few discrete time-points, ignoring complex higher-order dynamical features. To study dynamical properties of elemental homeostasis, we apply laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) to tooth samples to generate 500 temporally sequential measurements of elemental concentrations from birth to 10 years. We applied dynamical system and Information Theory-based analyses to reveal the longest-known attractor system in mammalian biology underlying the metabolism of nutrient elements, and identify distinct and consistent transitions between stable and unstable states throughout development. Extending these dynamical features to disease prediction, we find that attractor topography of nutrient metabolism is altered in amyotrophic lateral sclerosis (ALS), as early as childhood, suggesting these pathways are involved in disease risk. Mechanistic analysis was undertaken in a transgenic mouse model of ALS, where we find similar marked disruptions in elemental attractor systems as in humans. Our results demonstrate the application of a phenomological analysis of dynamical systems underlying elemental metabolism, and emphasize the utility of these measures in characterizing risk of disease. The metabolism of essential elements in early life is essential to healthy growth and development. Elemental homeostasis is typically studied by characterizing distributions of elemental concentrations at the level of the population. Here, we introduce a new method of characterizing elemental metabolism at the level of the individual. Using tooth-based biomarkers, we tracked the longitudinal trajectory of essential elements throughout childhood at weekly temporal resolution from birth through approximately 10 years of life. We analyzed these trajectories to identify the formation of stable dynamic states (attractors) and transitions between these states throughout development. We found that metabolic dynamics were specific to discrete elemental pathways; copper metabolism typically involved the formation of multiple discrete states throughout childhood, whereas other elements, such as zinc, tended to persist in a single stable dynamic throughout development. Next, we compared elemental biodynamics in neurologically healthy cases and subjects that were later diagnosed with amyotrophic lateral sclerosis (ALS). We found these patterns were dysregulated in ALS, and also found similar results in a mouse model of ALS. Overall, our results provide a novel approach to characterize elemental biodynamics throughout development, and emphasize that the dysregulation of these processes may be predictive of later onset of disease.
Collapse
Affiliation(s)
- Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- * E-mail: (PC); (MA)
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Austen Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | | | - Kristen A. Mikhail
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Tatiana M. Botero
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry University of Michigan, Ann Arbor, MI, United States of America
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- * E-mail: (PC); (MA)
| |
Collapse
|
29
|
Ohyama T, Kuroi K, Wakabayashi T, Fujimaki N, Nakabayashi T. Enhancement of Oxidative Reaction by the Intramolecular Electron Transfer between the Coordinated Redox-Active Metal Ions in SOD1. J Phys Chem B 2020; 124:2116-2123. [PMID: 32101437 DOI: 10.1021/acs.jpcb.9b11807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The denatured Cu, Zn superoxide dismutase (SOD1) has the pro-oxidant activity that is suggested to be related with the pathogenesis of amyotrophic lateral sclerosis (ALS). We showed from the changes in the coordinated metal ions that the Cu ion in the Cu-binding site is the catalytic site of the pro-oxidant activity, and a redox-active metal ion in the Zn-binding site has the auxiliary function to enhance the pro-oxidant activity. The auxiliary function is suggested to arise from the intramolecular electron transfer between the coordinated metal ions in the denatured SOD1. The oxidation/reduction cycle of Cu in the Cu-binding site is assisted with changing the oxidation state of a metal ion in the Zn-binding site. The magnitude of the toxicity of the denatured SOD1 is discussed based on the ability of the auxiliary function.
Collapse
Affiliation(s)
- Takumi Ohyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Kunisato Kuroi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Taiyu Wakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Nobuhiro Fujimaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
30
|
Mutations in Superoxide Dismutase 1 (Sod1) Linked to Familial Amyotrophic Lateral Sclerosis Can Disrupt High-Affinity Zinc-Binding Promoted by the Copper Chaperone for Sod1 (Ccs). Molecules 2020; 25:molecules25051086. [PMID: 32121118 PMCID: PMC7179120 DOI: 10.3390/molecules25051086] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/21/2023] Open
Abstract
Zinc (II) ions (hereafter simplified as zinc) are important for the structural and functional activity of many proteins. For Cu, Zn superoxide dismutase (Sod1), zinc stabilizes the native structure of each Sod1 monomer, promotes homo-dimerization and plays an important role in activity by "softening" the active site so that copper cycling between Cu(I) and Cu(II) can rapidly occur. Previously, we have reported that binding of Sod1 by its copper chaperone (Ccs) stabilizes a conformation of Sod1 that promotes site-specific high-affinity zinc binding. While there are a multitude of Sod1 mutations linked to the familial form of amyotrophic lateral sclerosis (fALS), characterizations by multiple research groups have been unable to realize strong commonalities among mutants. Here, we examine a set of fALS-linked Sod1 mutations that have been well-characterized and are known to possess variation in their biophysical characteristics. The zinc affinities of these mutants are evaluated here for the first time and then compared with the previously established value for wild-type Sod1 zinc affinity. Ccs does not have the same ability to promote zinc binding to these mutants as it does for the wild-type version of Sod1. Our data provides a deeper look into how (non)productive Sod1 maturation by Ccs may link a diverse set of fALS-Sod1 mutations.
Collapse
|
31
|
Anzai I, Tokuda E, Handa S, Misawa H, Akiyama S, Furukawa Y. Oxidative misfolding of Cu/Zn-superoxide dismutase triggered by non-canonical intramolecular disulfide formation. Free Radic Biol Med 2020; 147:187-199. [PMID: 31863908 DOI: 10.1016/j.freeradbiomed.2019.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
Misfolded Cu/Zn-superoxide dismutase (SOD1) is a pathological species in a subset of amyotrophic lateral sclerosis (ALS). Oxidative stress is known to increase in affected spinal cords of ALS and is thus considered to cause damages on SOD1 leading to the misfolding and aggregation. Despite this, it still remains elusive what triggers misfolding of SOD1 under oxidizing environment. Here, we show that a thiol group of Cys111 in SOD1 is oxidized to a sulfenic acid with hydrogen peroxide and reveal that further dissociation of the bound metal ions from the oxidized SOD1 allows another free Cys residue (Cys6) to nucleophilically attack the sulfenylated Cys111. As a result, an intra-molecular disulfide bond forms between Cys6 and Cys111. Such an abnormal SOD1 with the non-canonical disulfide bond was conformationally extended with significant cytotoxicity as well as high propensity to aggregate. Taken together, we propose a new model of SOD1 misfolding under oxidizing environment, in which formation of the non-canonical intramolecular disulfide bond plays a pivotal role.
Collapse
Affiliation(s)
- Itsuki Anzai
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Eiichi Tokuda
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Sumika Handa
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Hidemi Misawa
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | - Shuji Akiyama
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan; Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Yoshiaki Furukawa
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan.
| |
Collapse
|
32
|
Abstract
Few proteins have come under such intense scrutiny as superoxide dismutase-1 (SOD1). For almost a century, scientists have dissected its form, function and then later its malfunction in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We now know SOD1 is a zinc and copper metalloenzyme that clears superoxide as part of our antioxidant defence and respiratory regulation systems. The possibility of reduced structural integrity was suggested by the first crystal structures of human SOD1 even before deleterious mutations in the sod1 gene were linked to the ALS. This concept evolved in the intervening years as an impressive array of biophysical studies examined the characteristics of mutant SOD1 in great detail. We now recognise how ALS-related mutations perturb the SOD1 maturation processes, reduce its ability to fold and reduce its thermal stability and half-life. Mutant SOD1 is therefore predisposed to monomerisation, non-canonical self-interactions, the formation of small misfolded oligomers and ultimately accumulation in the tell-tale insoluble inclusions found within the neurons of ALS patients. We have also seen that several post-translational modifications could push wild-type SOD1 down this toxic pathway. Recently we have come to view ALS as a prion-like disease where both the symptoms, and indeed SOD1 misfolding itself, are transmitted to neighbouring cells. This raises the possibility of intervention after the initial disease presentation. Several small-molecule and biologic-based strategies have been devised which directly target the SOD1 molecule to change the behaviour thought to be responsible for ALS. Here we provide a comprehensive review of the many biophysical advances that sculpted our view of SOD1 biology and the recent work that aims to apply this knowledge for therapeutic outcomes in ALS.
Collapse
|
33
|
Doyle CM, Naser D, Bauman HA, Rumfeldt JA, Meiering EM. Spectrophotometric method for simultaneous measurement of zinc and copper in metalloproteins using 4-(2-pyridylazo)resorcinol. Anal Biochem 2019; 579:44-56. [DOI: 10.1016/j.ab.2019.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/04/2019] [Accepted: 03/17/2019] [Indexed: 12/26/2022]
|
34
|
Cohen NR, Zitzewitz JA, Bilsel O, Matthews CR. Nonnative structure in a peptide model of the unfolded state of superoxide dismutase 1 (SOD1): Implications for ALS-linked aggregation. J Biol Chem 2019; 294:13708-13717. [PMID: 31341015 DOI: 10.1074/jbc.ra119.008765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Dozens of mutations throughout the sequence of the gene encoding superoxide dismutase 1 (SOD1) have been linked to toxic protein aggregation in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). A parsimonious explanation for numerous genotypes resulting in a common phenotype would be mutation-induced perturbation of the folding free-energy surface that increases the populations of high-energy states prone to aggregation. The absence of intermediates in the folding of monomeric SOD1 suggests that the unfolded ensemble is a potential source of aggregation. To test this hypothesis, here we dissected SOD1 into a set of peptides end-labeled with FRET probes to model the local behavior of the corresponding sequences in the unfolded ensemble. Using time-resolved FRET, we observed that the peptide corresponding to the Loop VII-β8 sequence at the SOD1 C terminus was uniquely sensitive to denaturant. Utilizing a two-dimensional form of maximum entropy modeling, we demonstrate that the sensitivity to denaturant is the surprising result of a two-state-like transition from a compact to an expanded state. Variations of the peptide sequence revealed that the compact state involves a nonnative interaction between the disordered N terminus and the hydrophobic C terminus of the peptide. This nonnative intramolecular structure could serve as a precursor for intermolecular association and result in aggregation associated with ALS. We propose that this precursor would provide a common molecular target for therapeutic intervention in the dozens of ALS-linked SOD1 mutations.
Collapse
Affiliation(s)
- Noah R Cohen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Jill A Zitzewitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Osman Bilsel
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - C Robert Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
35
|
Tiwari MK, Hägglund PM, Møller IM, Davies MJ, Bjerrum MJ. Copper ion / H 2O 2 oxidation of Cu/Zn-Superoxide dismutase: Implications for enzymatic activity and antioxidant action. Redox Biol 2019; 26:101262. [PMID: 31284117 PMCID: PMC6614508 DOI: 10.1016/j.redox.2019.101262] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 01/25/2023] Open
Abstract
Copper ion-catalyzed oxidation of yeast SOD1 (ySOD1) was examined to determine early oxidative modifications, including oxidation of a crucial disulfide bond, and the structural and functional repercussions of these events. The study used distinct oxidative conditions: Cu2+/H2O2, Cu2+/H2O2/AscH− and Cu2+/H2O2/glucose. Capillary electrophoresis experiments and quantification of protein carbonyls indicate that ySOD1 is highly susceptible to oxidative modification and that changes can be detected within 0.1 min of the initiation of the reaction. Oxidation-induced structural perturbations, characterized by circular dichroism, revealed the formation of partially-unfolded ySOD1 species in a dose-dependent manner. Consistent with these structural changes, pyrogallol assay indicates a partial loss of enzymatic activity. ESI-MS analyses showed seven distinct oxidized ySOD1 species under mild oxidation within 0.1 min. LC/MS analysis after proteolytic digestion demonstrated that the copper-coordinating active site histidine residues, His47 and His49, were converted into 2-oxo-histidine. Furthermore, the Cu and Zn bridging residue, His64 is converted into aspartate/asparagine. Importantly, the disulfide-bond Cys58-Cys147 which is critical for the structural and functional integrity of ySOD1 was detected as being oxidized at Cys147. We propose, based on LC/MS analyses, that disulfide-bond oxidation occurs without disulfide bond cleavage. Modifications were also detected at Met85 and five surface-exposed Lys residues. Based on these data we propose that the Cys58-Cys147 bond may act as a sacrificial target for oxidants and protect ySOD1 from oxidative inactivation arising from exposure to Cu2+/H2O2 and auto-inactivation during extended enzymatic turnover. Oxidation of yeast superoxide dismutase (ySOD1) by Cu2+/H2O2 is examined. Rapid modification of His, Met, Cys and Lys residues detected by LC-MS methods. Oxidation of active site His residues and partial protein unfolding are early events. The Cys58-Cys147 disulfide bond is oxidized and may act as a sacrificial target. Excess exogenous Cu2+ decreases protein damage and can reverse loss of activity.
Collapse
Affiliation(s)
- Manish K Tiwari
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Per M Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Slagelse, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten J Bjerrum
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
36
|
Pushie MJ, Kelly ME, Hackett MJ. Direct label-free imaging of brain tissue using synchrotron light: a review of new spectroscopic tools for the modern neuroscientist. Analyst 2019; 143:3761-3774. [PMID: 29961790 DOI: 10.1039/c7an01904a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The incidence of brain disease and brain disorders is increasing on a global scale. Unfortunately, development of new therapeutic strategies has not increased at the same rate, and brain diseases and brain disorders now inflict substantial health and economic impacts. A greater understanding of the fundamental neurochemistry that underlies healthy brain function, and the chemical pathways that manifest in brain damage or malfunction, are required to enable and accelerate therapeutic development. A previous limitation to the study of brain function and malfunction has been the limited number of techniques that provide both a wealth of biochemical information, and spatially resolved information (i.e., there was a previous lack of techniques that provided direct biochemical or elemental imaging at the cellular level). In recent times, a suite of direct spectroscopic imaging techniques, such as Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence microscopy (XFM), and X-ray absorption spectroscopy (XAS) have been adapted, optimized and integrated into the field of neuroscience, to fill the above mentioned capability-gap. Advancements at synchrotron light sources, such as improved light intensity/flux, increased detector sensitivities and new capabilities of imaging/optics, has pushed the above suite of techniques beyond "proof-of-concept" studies, to routine application to study complex research problems in the field of neuroscience (and other scientific disciplines). This review examines several of the major advancements that have occurred over the last several years, with respect to FTIR, XFM and XAS capabilities at synchrotron facilities, and how the increases in technical capabilities have being integrated and used in the field of neuroscience.
Collapse
Affiliation(s)
- M J Pushie
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | |
Collapse
|
37
|
Farrawell NE, Yerbury MR, Plotkin SS, McAlary L, Yerbury JJ. CuATSM Protects Against the In Vitro Cytotoxicity of Wild-Type-Like Copper-Zinc Superoxide Dismutase Mutants but not Mutants That Disrupt Metal Binding. ACS Chem Neurosci 2019; 10:1555-1564. [PMID: 30462490 DOI: 10.1021/acschemneuro.8b00527] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in the SOD1 gene are associated with some forms of familial amyotrophic lateral sclerosis (fALS). There are more than 150 different mutations in the SOD1 gene that have various effects on the copper-zinc superoxide dismutase (SOD1) enzyme structure, including the loss of metal binding and a decrease in dimer affinity. The copper-based therapeutic CuATSM has been proven to be effective at rescuing neuronal cells from SOD1 mutant toxicity and has also increased the life expectancy of mice expressing the human transgenes SOD1G93A and SOD1G37R. Furthermore, CuATSM is currently the subject of a phase I/II clinical trial in Australia as a treatment for ALS. To determine if CuATSM protects against a broad variety of SOD1 mutations, we used a well-established cell culture model of SOD1-fALS. NSC-34 cells expressing SOD1-EGFP constructs were treated with CuATSM and examined by time-lapse microscopy. Our results show a concentration-dependent protection of cells expressing mutant SOD1A4V over the experimental time period. We tested the efficacy of CuATSM on 10 SOD1-fALS mutants and found that while protection was observed in cells expressing pathogenic wild-type-like mutants, cells expressing a truncation mutant or metal binding region mutants were not. We also show that CuATSM rescue is associated with an increase in human SOD1 activity and a decrease in the level of SOD1 aggregation in vitro. In conclusion, CuATSM has shown to be a promising therapeutic for SOD1-associated ALS; however, our in vitro results suggest that the protection afforded varies depending on the SOD1 variant, including negligible protection to mutants with deficient copper binding.
Collapse
Affiliation(s)
- Natalie E. Farrawell
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Biological Sciences, Centre of Medicine and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Maddison R. Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Biological Sciences, Centre of Medicine and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Steven S. Plotkin
- Department of Physics & Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Genome Sciences and Technology Program, The University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Luke McAlary
- Department of Physics & Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Justin J. Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Biological Sciences, Centre of Medicine and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
38
|
Kumar Ghosh D, Nanaji Shrikondawar A, Ranjan A. Local structural unfolding at the edge-strands of beta sheets is the molecular basis for instability and aggregation of G85R and G93A mutants of superoxide dismutase 1. J Biomol Struct Dyn 2019; 38:647-659. [DOI: 10.1080/07391102.2019.1584125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Debasish Kumar Ghosh
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Akshaykumar Nanaji Shrikondawar
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India
| |
Collapse
|
39
|
Experimental Mutations in Superoxide Dismutase 1 Provide Insight into Potential Mechanisms Involved in Aberrant Aggregation in Familial Amyotrophic Lateral Sclerosis. G3-GENES GENOMES GENETICS 2019; 9:719-728. [PMID: 30622123 PMCID: PMC6404617 DOI: 10.1534/g3.118.200787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mutations in more than 80 different positions in superoxide dismutase 1 (SOD1) have been associated with amyotrophic lateral sclerosis (fALS). There is substantial evidence that a common consequence of these mutations is to induce the protein to misfold and aggregate. How these mutations perturb native structure to heighten the propensity to misfold and aggregate is unclear. In the present study, we have mutagenized Glu residues at positions 40 and 133 that are involved in stabilizing the β-barrel structure of the native protein and a critical Zn binding domain, respectively, to examine how specific mutations may cause SOD1 misfolding and aggregation. Mutations associated with ALS as well as experimental mutations were introduced into these positions. We used an assay in which mutant SOD1 was fused to yellow fluorescent protein (SOD1:YFP) to visualize the formation of cytosolic inclusions by mutant SOD1. We then used existing structural data on SOD1, to predict how different mutations might alter local 3D conformation. Our findings reveal an association between mutant SOD1 aggregation and amino acid substitutions that are predicted to introduce steric strain, sometimes subtly, in the 3D conformation of the peptide backbone.
Collapse
|
40
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
41
|
Sirabella R, Valsecchi V, Anzilotti S, Cuomo O, Vinciguerra A, Cepparulo P, Brancaccio P, Guida N, Blondeau N, Canzoniero LMT, Franco C, Amoroso S, Annunziato L, Pignataro G. Ionic Homeostasis Maintenance in ALS: Focus on New Therapeutic Targets. Front Neurosci 2018; 12:510. [PMID: 30131665 PMCID: PMC6090999 DOI: 10.3389/fnins.2018.00510] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/05/2018] [Indexed: 01/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most threatening neurodegenerative disease since it causes muscular paralysis for the loss of Motor Neurons in the spinal cord, brainstem and motor cortex. Up until now, no effective pharmacological treatment is available. Two forms of ALS have been described so far: 90% of the cases presents the sporadic form (sALS) whereas the remaining 10% of the cases displays the familiar form (fALS). Approximately 20% of fALS is associated with inherited mutations in the Cu, Zn-superoxide dismutase 1 (SOD1) gene. In the last decade, ionic homeostasis dysregulation has been proposed as the main trigger of the pathological cascade that brings to motor-neurons loss. In the light of these premises, the present review will analyze the involvement in ALS pathophysiology of the most well studied metal ions, i.e., calcium, sodium, iron, copper and zinc, with particular focus to the role of ionic channels and transporters able to contribute in the regulation of ionic homeostasis, in order to propose new putative molecular targets for future therapeutic strategies to ameliorate the progression of this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy.,Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | | | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Pasquale Cepparulo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | | | - Nicolas Blondeau
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Lorella M T Canzoniero
- Division of Pharmacology, Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Cristina Franco
- Division of Pharmacology, Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Salvatore Amoroso
- Department of Neuroscience, Università Politecnica delle Marche, Ancona, Italy
| | | | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
42
|
Sauzéat L, Bernard E, Perret-Liaudet A, Quadrio I, Vighetto A, Krolak-Salmon P, Broussolle E, Leblanc P, Balter V. Isotopic Evidence for Disrupted Copper Metabolism in Amyotrophic Lateral Sclerosis. iScience 2018; 6:264-271. [PMID: 30240616 PMCID: PMC6137708 DOI: 10.1016/j.isci.2018.07.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/08/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Redox-active metals are thought to be implicated in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). To address this point, we measured the concentrations of 12 elements and, for the first time, the stable isotope compositions of copper (redox-active) and zinc (redox-inactive) in human cerebrospinal fluids of 31 patients with ALS, 11 age-matched controls (CTRL), and 14 patients with Alzheimer disease. We first show that metal concentrations weakly discriminate patients with ALS from the two other groups. We then report that zinc isotopic compositions are similar in the three groups, but that patients with ALS have significantly 65copper-enriched isotopic compositions relative to CTRL and patients with AD. This result unambiguously demonstrates that copper is implicated in ALS. We suggest that this copper isotopic signature may result from abnormal protein aggregation in the brain parenchyma, and propose that isotopic analysis is a potential tool that may help unraveling the molecular mechanisms at work in ALS. Redox-active metals are implicated in ALS through oxidative stress Concentrations of these metals in CSFs of patients with ALS are non-specific Copper stable isotope composition in CSFs of patients with ALS are specific Isotopic balance between CSFs and brain is probably the mechanism
Collapse
Affiliation(s)
- Lucie Sauzéat
- Université de Lyon, ENS de Lyon, CNRS, LGL-TPE, 69007 Lyon, France
| | - Emilien Bernard
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Centre de Ressources et de Compétence SLA de Lyon, Service de Neurologie C, Bron, France
| | - Armand Perret-Liaudet
- Université de Lyon, CNRS UMR5292, INSERM U1028, BioRan, Lyon, France; Hospices Civils de Lyon, Neurobiology Laboratory, Biochemistry and Molecular Biology Department, Lyon, France
| | - Isabelle Quadrio
- Université de Lyon, CNRS UMR5292, INSERM U1028, BioRan, Lyon, France; Hospices Civils de Lyon, Neurobiology Laboratory, Biochemistry and Molecular Biology Department, Lyon, France
| | - Alain Vighetto
- Service Neurocognition et Neuroophtalmologie, Hôpital Neurologique, 59 Boulevard Pinel, 69677 Bron Cedex, France; Centre Mémoire Ressources Recherche de Lyon, Hospices Civils de Lyon, Hôpital des Charpennes, Villeurbanne, France; Université Lyon 1, Hospices Civils de Lyon, Centre de Recherche en Neurosciences de Lyon, équipe IMPACT, Lyon, France
| | - Pierre Krolak-Salmon
- Centre Mémoire Ressources Recherche de Lyon, Hospices Civils de Lyon, Hôpital des Charpennes, Villeurbanne, France
| | - Emmanuel Broussolle
- Université de Lyon, Faculté de Médecine Lyon Sud Charles Mérieux, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Lyon, France
| | - Pascal Leblanc
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373 Lyon Cedex 08, France
| | - Vincent Balter
- Université de Lyon, ENS de Lyon, CNRS, LGL-TPE, 69007 Lyon, France.
| |
Collapse
|
43
|
Tokuda E, Nomura T, Ohara S, Watanabe S, Yamanaka K, Morisaki Y, Misawa H, Furukawa Y. A copper-deficient form of mutant Cu/Zn-superoxide dismutase as an early pathological species in amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2119-2130. [PMID: 29551730 DOI: 10.1016/j.bbadis.2018.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/27/2018] [Accepted: 03/14/2018] [Indexed: 12/13/2022]
Abstract
Dominant mutations in the gene encoding copper and zinc-binding superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS). Abnormal accumulation of misfolded SOD1 proteins in spinal motoneurons is a major pathological hallmark in SOD1-related ALS. Dissociation of copper and/or zinc ions from SOD1 has been shown to trigger the protein aggregation/oligomerization in vitro, but the pathological contribution of such metal dissociation to the SOD1 misfolding still remains obscure. Here, we tested the relevance of the metal-deficient SOD1 in the misfolding in vivo by developing a novel antibody (anti-apoSOD), which exclusively recognized mutant SOD1 deficient in metal ions at its copper-binding site. Notably, anti-apoSOD-reactive species were detected specifically in the spinal cords of the ALS model mice only at their early pre-symptomatic stages but not at the end stage of the disease. The cerebrospinal fluid as well as the spinal cord homogenate of one SOD1-ALS patient also contained the anti-apoSOD-reactive species. Our results thus suggest that metal-deficiency in mutant SOD1 at its copper-binding site is one of the earliest pathological features in SOD1-ALS.
Collapse
Affiliation(s)
- Eiichi Tokuda
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Takao Nomura
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama 223-8522, Japan.
| | - Shinji Ohara
- Department of Neurology, Matsumoto Medical Center, Matsumoto 399-0021, Japan.
| | - Seiji Watanabe
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.
| | - Yuta Morisaki
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Hidemi Misawa
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan.
| | - Yoshiaki Furukawa
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama 223-8522, Japan.
| |
Collapse
|
44
|
Enge TG, Ecroyd H, Jolley DF, Yerbury JJ, Kalmar B, Dosseto A. Assessment of metal concentrations in the SOD1 G93A mouse model of amyotrophic lateral sclerosis and its potential role in muscular denervation, with particular focus on muscle tissue. Mol Cell Neurosci 2018. [PMID: 29524628 DOI: 10.1016/j.mcn.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is among the most common of the motor neuron diseases, and arguably the most devastating. During the course of this fatal neurodegenerative disorder, motor neurons undergo progressive degeneration. The currently best-understood animal models of ALS are based on the over-expression of mutant isoforms of Cu/Zn superoxide dismutase 1 (SOD1); these indicate that there is a perturbation in metal homeostasis with disease progression. Copper metabolism in particular is affected in the central nervous system (CNS) and muscle tissue. METHODS This present study assessed previously published and newly gathered concentrations of transition metals (Cu, Zn, Fe and Se) in CNS (brain and spinal cord) and non-CNS (liver, intestine, heart and muscle) tissues from transgenic mice over-expressing the G93A mutant SOD1 isoform (SOD1G93A), transgenic mice over-expressing wildtype SOD1 (SOD1WT) and non-transgenic controls. RESULTS Cu accumulates in non-CNS tissues at pre-symptomatic stages in SOD1G93A tissues. This accumulation represents a potentially pathological feature that cannot solely be explained by the over-expression of mSOD1. As a result of the lack of Cu uptake into the CNS there may be a deficiency of Cu for the over-expressed mutant SOD1 in these tissues. Elevated Cu concentrations in muscle tissue also preceded the onset of symptoms and were found to be pathological and not be the result of SOD1 over-expression. CONCLUSIONS It is hypothesized that the observed Cu accumulations may represent a pathologic feature of ALS, which may actively contribute to axonal retraction leading to muscular denervation, and possibly significantly contributing to disease pathology. Therefore, it is proposed that the toxic-gain-of-function and dying-back hypotheses to explain the molecular drivers of ALS may not be separate, individual processes; rather our data suggests that they are parallel processes.
Collapse
Affiliation(s)
- T Gabriel Enge
- Wollongong Isotope Geochronology Laboratory and School of Earth and Environmental Sciences, University of Wollongong, Australia.
| | - Heath Ecroyd
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Australia
| | - Dianne F Jolley
- Center for Medical and Molecular Bioscience and School of Chemistry, University of Wollongong, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Australia
| | - Bernadett Kalmar
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, UK
| | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory and School of Earth and Environmental Sciences, University of Wollongong, Australia
| |
Collapse
|
45
|
Sheykhansari S, Kozielski K, Bill J, Sitti M, Gemmati D, Zamboni P, Singh AV. Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: a review. Cell Death Dis 2018; 9:348. [PMID: 29497049 PMCID: PMC5832817 DOI: 10.1038/s41419-018-0379-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/13/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022]
Abstract
The effect of redox metals such as iron and copper on multiple sclerosis and amyotrophic lateral sclerosis has been intensively studied. However, the origin of these disorders remains uncertain. This review article critically describes the physiology of redox metals that produce oxidative stress, which in turn leads to cascades of immunomodulatory alteration of neurons in multiple sclerosis and amyotrophic lateral sclerosis. Iron and copper overload has been well established in motor neurons of these diseases’ lesions. On the other hand, the role of other metals like cadmium participating indirectly in the redox cascade of neurobiological mechanism is less studied. In the second part of this review, we focus on this less conspicuous correlation between cadmium as an inactive-redox metal and multiple sclerosis and amyotrophic lateral sclerosis, providing novel treatment modalities and approaches as future prospects.
Collapse
Affiliation(s)
- Sahar Sheykhansari
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Kristen Kozielski
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Joachim Bill
- Institute for Materials Science, University of Stuttgart, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Metin Sitti
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Donato Gemmati
- Hemostasis & Thrombosis Center - Azienda Ospedaliera-Universitaria di Ferrara, Ferrara, Italy
| | - Paolo Zamboni
- Translational Surgery Unit, Azienda Ospedaliera Universitaria di Ferrara, via Aldo Moro 8, 44124, Ferrara, Italy.
| | - Ajay Vikram Singh
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany.
| |
Collapse
|
46
|
Uversky VN. The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll-Mr. Hyde" behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Autophagy 2017; 13:2115-2162. [PMID: 28980860 DOI: 10.1080/15548627.2017.1384889] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pathological developments leading to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are associated with misbehavior of several key proteins, such as SOD1 (superoxide dismutase 1), TARDBP/TDP-43, FUS, C9orf72, and dipeptide repeat proteins generated as a result of the translation of the intronic hexanucleotide expansions in the C9orf72 gene, PFN1 (profilin 1), GLE1 (GLE1, RNA export mediator), PURA (purine rich element binding protein A), FLCN (folliculin), RBM45 (RNA binding motif protein 45), SS18L1/CREST, HNRNPA1 (heterogeneous nuclear ribonucleoprotein A1), HNRNPA2B1 (heterogeneous nuclear ribonucleoprotein A2/B1), ATXN2 (ataxin 2), MAPT (microtubule associated protein tau), and TIA1 (TIA1 cytotoxic granule associated RNA binding protein). Although these proteins are structurally and functionally different and have rather different pathological functions, they all possess some levels of intrinsic disorder and are either directly engaged in or are at least related to the physiological liquid-liquid phase transitions (LLPTs) leading to the formation of various proteinaceous membrane-less organelles (PMLOs), both normal and pathological. This review describes the normal and pathological functions of these ALS- and FTLD-related proteins, describes their major structural properties, glances at their intrinsic disorder status, and analyzes the involvement of these proteins in the formation of normal and pathological PMLOs, with the ultimate goal of better understanding the roles of LLPTs and intrinsic disorder in the "Dr. Jekyll-Mr. Hyde" behavior of those proteins.
Collapse
Affiliation(s)
- Vladimir N Uversky
- a Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute , Morsani College of Medicine , University of South Florida , Tampa , FL , USA.,b Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino, Moscow region , Russia
| |
Collapse
|
47
|
Luchinat E, Barbieri L, Banci L. A molecular chaperone activity of CCS restores the maturation of SOD1 fALS mutants. Sci Rep 2017; 7:17433. [PMID: 29234142 PMCID: PMC5727297 DOI: 10.1038/s41598-017-17815-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] Open
Abstract
Superoxide dismutase 1 (SOD1) is an important metalloprotein for cellular oxidative stress defence, that is mutated in familiar variants of Amyotrophic Lateral Sclerosis (fALS). Some mutations destabilize the apo protein, leading to the formation of misfolded, toxic species. The Copper Chaperone for SOD1 (CCS) transiently interacts with SOD1 and promotes its correct maturation by transferring copper and catalyzing disulfide bond formation. By in vitro and in-cell NMR, we investigated the role of the SOD-like domain of CCS (CCS-D2). We showed that CCS-D2 forms a stable complex with zinc-bound SOD1 in human cells, that has a twofold stabilizing effect: it both prevents the accumulation of unstructured mutant SOD1 and promotes zinc binding. We further showed that CCS-D2 interacts with apo-SOD1 in vitro, suggesting that in cells CCS stabilizes mutant apo-SOD1 prior to zinc binding. Such molecular chaperone function of CCS-D2 is novel and its implications in SOD-linked fALS deserve further investigation.
Collapse
Affiliation(s)
- Enrico Luchinat
- Magnetic Resonance Centre (CERM), University of Florence, 50019, Sesto Fiorentino, Italy.,Department of Biomedical, Clinical and Experimental Sciences, University of Florence, 50134, Florence, Italy
| | - Letizia Barbieri
- Magnetic Resonance Centre (CERM), University of Florence, 50019, Sesto Fiorentino, Italy.,Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), 50019, Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic Resonance Centre (CERM), University of Florence, 50019, Sesto Fiorentino, Italy. .,Department of Chemistry, University of Florence, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
48
|
The Role of Metal Binding in the Amyotrophic Lateral Sclerosis-Related Aggregation of Copper-Zinc Superoxide Dismutase. Molecules 2017; 22:molecules22091429. [PMID: 28850080 PMCID: PMC6151412 DOI: 10.3390/molecules22091429] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/22/2017] [Accepted: 08/27/2017] [Indexed: 12/13/2022] Open
Abstract
Protein misfolding and conformational changes are common hallmarks in many neurodegenerative diseases involving formation and deposition of toxic protein aggregates. Although many players are involved in the in vivo protein aggregation, physiological factors such as labile metal ions within the cellular environment are likely to play a key role. In this review, we elucidate the role of metal binding in the aggregation process of copper-zinc superoxide dismutase (SOD1) associated to amyotrophic lateral sclerosis (ALS). SOD1 is an extremely stable Cu-Zn metalloprotein in which metal binding is crucial for folding, enzymatic activity and maintenance of the native conformation. Indeed, demetalation in SOD1 is known to induce misfolding and aggregation in physiological conditions in vitro suggesting that metal binding could play a key role in the pathological aggregation of SOD1. In addition, this study includes recent advances on the role of aberrant metal coordination in promoting SOD1 aggregation, highlighting the influence of metal ion homeostasis in pathologic aggregation processes.
Collapse
|
49
|
Abdolvahabi A, Shi Y, Rasouli S, Croom CM, Aliyan A, Martí AA, Shaw BF. Kaplan-Meier Meets Chemical Kinetics: Intrinsic Rate of SOD1 Amyloidogenesis Decreased by Subset of ALS Mutations and Cannot Fully Explain Age of Disease Onset. ACS Chem Neurosci 2017; 8:1378-1389. [PMID: 28290665 DOI: 10.1021/acschemneuro.7b00029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Over 150 mutations in SOD1 (superoxide dismutase-1) cause amyotrophic lateral sclerosis (ALS), presumably by accelerating SOD1 amyloidogenesis. Like many nucleation processes, SOD1 fibrillization is stochastic (in vitro), which inhibits the determination of aggregation rates (and obscures whether rates correlate with patient phenotypes). Here, we diverged from classical chemical kinetics and used Kaplan-Meier estimators to quantify the probability of apo-SOD1 fibrillization (in vitro) from ∼103 replicate amyloid assays of wild-type (WT) SOD1 and nine ALS variants. The probability of apo-SOD1 fibrillization (expressed as a Hazard ratio) is increased by certain ALS-linked SOD1 mutations but is decreased or remains unchanged by other mutations. Despite this diversity, Hazard ratios of fibrillization correlated linearly with (and for three mutants, approximately equaled) Hazard ratios of patient survival (R2 = 0.67; Pearson's r = 0.82). No correlation exists between Hazard ratios of fibrillization and age of initial onset of ALS (R2 = 0.09). Thus, Hazard ratios of fibrillization might explain rates of disease progression but not onset. Classical kinetic metrics of fibrillization, i.e., mean lag time and propagation rate, did not correlate as strongly with phenotype (and ALS mutations did not uniformly accelerate mean rate of nucleation or propagation). A strong correlation was found, however, between mean ThT fluorescence at lag time and patient survival (R2 = 0.93); oligomers of SOD1 with weaker fluorescence correlated with shorter survival. This study suggests that SOD1 mutations trigger ALS by altering a property of SOD1 or its oligomers other than the intrinsic rate of amyloid nucleation (e.g., oligomer stability; rates of intercellular propagation; affinity for membrane surfaces; and maturation rate).
Collapse
Affiliation(s)
- Alireza Abdolvahabi
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Yunhua Shi
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Sanaz Rasouli
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
- Institute of Biomedical Studies, Baylor University, Waco, Texas 76706, United States
| | - Corbin M. Croom
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Amir Aliyan
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Angel A. Martí
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Bryan F. Shaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| |
Collapse
|
50
|
Forte G, Bocca B, Oggiano R, Clemente S, Asara Y, Sotgiu MA, Farace C, Montella A, Fois AG, Malaguarnera M, Pirina P, Madeddu R. Essential trace elements in amyotrophic lateral sclerosis (ALS): Results in a population of a risk area of Italy. Neurol Sci 2017; 38:1609-1615. [DOI: 10.1007/s10072-017-3018-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
|